[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002252276A - Method and device for measuring self bias, and electrostatic attraction device - Google Patents

Method and device for measuring self bias, and electrostatic attraction device

Info

Publication number
JP2002252276A
JP2002252276A JP2001361202A JP2001361202A JP2002252276A JP 2002252276 A JP2002252276 A JP 2002252276A JP 2001361202 A JP2001361202 A JP 2001361202A JP 2001361202 A JP2001361202 A JP 2001361202A JP 2002252276 A JP2002252276 A JP 2002252276A
Authority
JP
Japan
Prior art keywords
voltage
self
bias
variable
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001361202A
Other languages
Japanese (ja)
Other versions
JP3635463B2 (en
Inventor
Hiroaki Saeki
弘明 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001361202A priority Critical patent/JP3635463B2/en
Publication of JP2002252276A publication Critical patent/JP2002252276A/en
Application granted granted Critical
Publication of JP3635463B2 publication Critical patent/JP3635463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a self bias voltage of a object to be processed accurately in a short time and hold the object stably with the required electrostatic attraction. SOLUTION: A circular electrostatic chuck sheet 30 is crowned on the upper surface of a mounting stage 18, which is provided at the central part of a processing container 10. A semiconductor wafer W is mounted on the electrostatic chuck sheet 30. The electrostatic chuck sheet 30 is constituted by sealing a thin conducting film 36, which comprises, e.g. a copper coil as an electrode for electrostatic attraction, between a thin film 32 and an insulating film 34 comprising, e.g. polyimide. The thin film 32 has the function of, e.g. a resistor, and comprises a dielectric, e.g. SiC. The conductive film 36 is connected to the output terminal of a variable DC power supply 46 through an ammeter 44. The ammeter 44 detects the leaking current between the semiconductor wafer W and the conducting film 36. The variable DC power supply 46 outputs the variable DC voltage V0 under the control of a control part 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ処理装置にお
いて被処理体の自己バイアス電圧を測定する自己バイア
ス測定方法および装置ならびに被処理体を載置台上に静
電吸着力で保持する静電吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a self-bias voltage of an object to be processed in a plasma processing apparatus, and an electrostatic chuck for holding an object to be processed on a mounting table with an electrostatic attraction force. Related to the device.

【0002】[0002]

【従来の技術】たとえば、半導体集積回路の製造におい
ては、アッシング、エッチング、CVD、スパッタリン
グ等の諸工程で、処理ガスのイオン化や化学反応等を促
進するために、プラズマが利用されている。一般のプラ
ズマ処理装置は、真空の処理容器内に一対の電極を上下
に対向配置して、上部電極をアース電位に接続し、下部
電極(載置台)に高周波電圧を印加することで、両電極
間に放電によるプラズマを発生させ、このプラズマ中の
電子、イオン等を載置台上の被処理体たとえば半導体ウ
エハに電界の力で引っ張り込んで、半導体ウエハの表面
に所定のプラズマ処理を施すようにしている。
2. Description of the Related Art In the manufacture of semiconductor integrated circuits, for example, plasma is used in various processes such as ashing, etching, CVD, and sputtering to promote the ionization and chemical reaction of a processing gas. In a general plasma processing apparatus, a pair of electrodes are vertically arranged opposite to each other in a vacuum processing container, an upper electrode is connected to a ground potential, and a high-frequency voltage is applied to a lower electrode (mounting table). During this time, plasma is generated by electric discharge, and electrons, ions, etc. in the plasma are pulled into a target object, for example, a semiconductor wafer on the mounting table by an electric field, so that a predetermined plasma process is performed on the surface of the semiconductor wafer. ing.

【0003】このようなプラズマ処理装置では、高周波
電圧がコンデンサを介して下部電極(載置台)に印加さ
れることから、載置台上の被処理体は直流的に負の電位
いわゆる自己バイアス電圧にクランプされる。つまり、
高周波電圧が正電圧となる半周期ではプラズマ中の電子
(負の電荷)が被処理体側に引き寄せられ、高周波電圧
が負電圧となる半周期ではプラズマ中のイオン(正の電
荷)が被処理体側に引き寄せられるが、電子のほうがイ
オンよりも質量が小さくて移動しやすいため、より多く
引き寄せられ、その結果、定常的にコンデンサが充電さ
れ、被処理体は直流的にほぼ一定の負電位(自己バイア
ス電圧)にクランプされる。
In such a plasma processing apparatus, since a high-frequency voltage is applied to the lower electrode (mounting table) via a capacitor, the object to be processed on the mounting table has a DC negative potential, that is, a self-bias voltage. Clamped. That is,
In the half cycle in which the high frequency voltage becomes a positive voltage, electrons (negative charges) in the plasma are attracted to the object to be processed, and in the half cycle in which the high frequency voltage becomes a negative voltage, ions (positive charges) in the plasma are drawn to the object to be processed. The electrons are attracted more because the mass of the electrons is smaller than that of the ions and they are easier to move. As a result, the capacitor is constantly charged, and the object to be processed has a substantially constant DC negative potential (self-voltage). Bias voltage).

【0004】自己バイアス電圧によって被処理体に入射
するイオンのエネルギが左右され、これが大きすぎると
被処理体表面の酸化膜が損傷する等の不具合が生じる。
このことから、プラズマ処理装置においては、自己バイ
アス電圧を測定して所望の値に調整する必要がある。し
かし、処理容器内の被処理体にプローブ等を当てて直接
自己バイアス電圧を測定することは事実上不可能であ
る。そこで、従来は、下部電極(載置台)の電位を電圧
センス線等を介して測定し、その測定値から自己バイア
ス電圧を推定していた。
[0004] The self-bias voltage affects the energy of ions incident on the object to be processed. If the energy is too large, problems such as damage to an oxide film on the surface of the object to be processed occur.
For this reason, in the plasma processing apparatus, it is necessary to measure the self-bias voltage and adjust it to a desired value. However, it is practically impossible to directly measure the self-bias voltage by applying a probe or the like to the object in the processing container. Therefore, conventionally, the potential of the lower electrode (mounting table) has been measured via a voltage sense line or the like, and the self-bias voltage has been estimated from the measured value.

【0005】ところで、最近のプラズマ処理装置は、ク
ランプ等の機械的な保持手段を使わずに静電気の吸着力
で被処理体を載置台上に保持するようにした静電チャッ
クを設けている。この種の静電チャックの初期のもの
は、たとえばアルミニウムからなる載置台の表面を酸化
して絶縁被膜を形成してなり、載置台に高圧の直流電圧
を印加して載置台表面の絶縁被膜を分極させることによ
り、被処理体との境面に静電気を発生させ、その静電吸
着力(クーロン力)によって被処理体を載置台上に保持
する機構であった。しかし、このような静電チャック機
構は、載置台表面の絶縁被膜に十分な分極が得られず、
静電吸着力が物足りなかった。今日では、絶縁フィルム
の中に導電膜(静電吸着用電極)を封入してなる静電チ
ャックシートを載置台の上面に被せる構造の静電チャッ
クが主流となっている。
Incidentally, a recent plasma processing apparatus is provided with an electrostatic chuck which holds an object to be processed on a mounting table by electrostatic attraction without using mechanical holding means such as a clamp. The initial type of this type of electrostatic chuck has an insulating coating formed by oxidizing the surface of a mounting table made of, for example, aluminum, and applying a high DC voltage to the mounting table to remove the insulating coating on the mounting table surface. The polarization is such that static electricity is generated at a boundary surface with the object to be processed, and the object to be processed is held on the mounting table by its electrostatic attraction force (Coulomb force). However, such an electrostatic chuck mechanism cannot obtain sufficient polarization of the insulating film on the mounting table surface,
The electrostatic attraction force was not enough. Today, the mainstream is an electrostatic chuck having a structure in which an electrostatic chuck sheet in which a conductive film (electrostatic attraction electrode) is sealed in an insulating film is placed on the upper surface of a mounting table.

【0006】[0006]

【発明が解決しようとする課題】上記したように、従来
の自己バイアス測定法は、下部電極(載置台)の電位を
測定し、その測定値から自己バイアス電圧を推定する方
法であった。しかし、下部電極と被処理体との間には静
電チャックシートまたは絶縁被膜が介在し、その分の抵
抗ないしキャパシタが作用するため、下部電極の電位と
被処理体の電位(自己バイアス電圧)との近似性はよく
ない。このために、従来の方法は、測定誤差が多く、精
度の高い自己バイアス電圧測定値が得られなかった。
As described above, the conventional self-bias measurement method is a method of measuring the potential of the lower electrode (mounting table) and estimating the self-bias voltage from the measured value. However, an electrostatic chuck sheet or an insulating film is interposed between the lower electrode and the object to be processed, and the resistance or capacitor acts accordingly, so that the potential of the lower electrode and the electric potential of the object to be processed (self-bias voltage). Is not good. For this reason, the conventional method has many measurement errors and cannot obtain a highly accurate self-bias voltage measurement value.

【0007】また、従来は、静電吸着用電極に印加する
直流電圧の値を自己バイアス電圧とは無関係に決めてい
た。このため、所要の静電吸着力を得るための直流印加
電圧の設定または調整に手間がかかるだけでなく、いっ
たん調整した後も処理条件の変化(たとえばプラズマ生
成用の高周波電力の変化)によって自己バイアス電圧が
変わると静電吸着力も変わってしまい、具合が悪かっ
た。
Conventionally, the value of the DC voltage applied to the electrostatic chucking electrode has been determined independently of the self-bias voltage. Therefore, not only is it time-consuming to set or adjust the DC applied voltage for obtaining the required electrostatic attraction force, but also after the adjustment, the self-adjustment due to a change in processing conditions (for example, a change in high-frequency power for plasma generation). When the bias voltage was changed, the electrostatic attraction force was also changed, and the condition was bad.

【0008】本発明は、かかる問題点に鑑みてなされた
もので、プラズマ処理装置において被処理体の自己バイ
アス電圧を短時間で正確に測定することができる自己バ
イアス測定方法および装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a self-bias measuring method and apparatus capable of accurately measuring the self-bias voltage of an object to be processed in a plasma processing apparatus in a short time. With the goal.

【0009】また、本発明は、プラズマ処理装置におい
て被処理体を所望の静電吸着力で保持することができる
とともに自己バイアス電圧の変動に対して静電吸着力を
設定値に安定に維持することができる静電吸着装置を提
供することを目的とする。
Further, according to the present invention, in a plasma processing apparatus, an object to be processed can be held at a desired electrostatic attraction force, and the electrostatic attraction force is stably maintained at a set value with respect to a change in a self-bias voltage. It is an object of the present invention to provide an electrostatic attraction device capable of performing the above.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の第1の自己バイアス測定方法は、プラズ
マ処理装置の処理容器内で載置台上に静電吸着力で保持
される被処理体の自己バイアス電圧を測定する自己バイ
アス測定方法において、前記載置台の静電吸着用電極に
可変の直流電圧を印加し、前記直流電圧の値を変えなが
ら前記被処理体と前記静電吸着用電極との間の直流漏れ
電流を検出し、前記直流電圧の電圧値と前記直流漏れ電
流の電流値との間の電圧電流特性に基づいて前記自己バ
イアス電圧の測定値を求める方法とした。
In order to achieve the above object, a first self-bias measuring method of the present invention is provided by a method of electrostatically attracting and holding a mounting table in a processing vessel of a plasma processing apparatus. In the self-bias measuring method for measuring the self-bias voltage of the object, a variable DC voltage is applied to the electrostatic chucking electrode of the mounting table, and the object and the electrostatic force are changed while changing the value of the DC voltage. A method of detecting a DC leakage current between the attraction electrode and a method of obtaining a measured value of the self-bias voltage based on a voltage-current characteristic between the voltage value of the DC voltage and the current value of the DC leakage current. .

【0011】また、本発明の第1の自己バイアス測定装
置は、プラズマ処理装置の処理容器内で載置台上に静電
吸着力で保持される被処理体の自己バイアス電圧を測定
する自己バイアス測定装置において、前記載置台の静電
吸着用電極に可変直流電圧を印加する可変直流電圧発生
手段と、前記被処理体と前記静電吸着用電極との間の直
流漏れ電流を検出する漏れ電流検出手段と、前記可変直
流電圧発生手段より前記載置台の静電吸着用電極に印加
される前記直流電圧を可変制御し、前記直流電圧の電圧
値と前記漏れ電流検出手段によって検出される前記直流
漏れ電流の電流値との間の電圧電流特性に基づいて前記
自己バイアス電圧の測定値を求める自己バイアス電圧検
出手段とを具備する構成とした。
Further, a first self-bias measuring device of the present invention is a self-bias measuring device for measuring a self-bias voltage of an object to be processed held by an electrostatic attraction force on a mounting table in a processing vessel of a plasma processing apparatus. In the apparatus, a variable DC voltage generating means for applying a variable DC voltage to the electrostatic attraction electrode of the mounting table, and a leakage current detection for detecting a DC leakage current between the object to be processed and the electrostatic attraction electrode Means for variably controlling the DC voltage applied to the electrostatic chucking electrode of the mounting table from the variable DC voltage generating means, wherein the DC value detected by the voltage value of the DC voltage and the leakage current detecting means is provided. Self-bias voltage detecting means for obtaining a measured value of the self-bias voltage based on a voltage-current characteristic between the current value and the current value.

【0012】本発明の第2の自己バイアス測定方法は、
プラズマ処理装置の処理容器内で載置台上に静電吸着力
で保持される被処理体の自己バイアス電圧を測定する自
己バイアス測定方法において、前記載置台の静電吸着用
電極に可変の直流電圧を印加し、前記直流電圧の値を変
えながら前記被処理体と前記静電吸着用電極との間の直
流漏れ電流を検出し、前記直流漏れ電流がほぼ零となる
ときの前記直流電圧の値を前記自己バイアス電圧の測定
値とする方法とした。
A second self-bias measuring method according to the present invention comprises:
In a self-bias measurement method for measuring a self-bias voltage of an object to be processed which is held on a mounting table by an electrostatic attraction force in a processing vessel of a plasma processing apparatus, a variable DC voltage is applied to the electrostatic adsorption electrode of the mounting table. To detect a DC leakage current between the object to be processed and the electrostatic chucking electrode while changing the value of the DC voltage, and the value of the DC voltage when the DC leakage current becomes substantially zero. Is used as the measured value of the self-bias voltage.

【0013】また、本発明の第2の自己バイアス測定装
置は、プラズマ処理装置の処理容器内で載置台上に静電
吸着力で保持される被処理体の自己バイアス電圧を測定
する自己バイアス測定装置において、前記載置台の静電
吸着用電極に可変の直流電圧を印加する可変直流電圧発
生手段と、前記被処理体と前記静電吸着用電極との間の
直流漏れ電流を検出する漏れ電流検出手段と、前記可変
直流電圧発生手段より前記載置台の静電吸着用電極に印
加される前記直流電圧を可変制御し、前記漏れ電流検出
手段より得られる前記直流漏れ電流の電流検出値がほぼ
零となるときの前記直流電圧を前記自己バイアス電圧の
測定値とする自己バイアス電圧検出手段とを具備する構
成とした。
Further, a second self-bias measuring device of the present invention is a self-bias measuring device for measuring a self-bias voltage of an object to be processed which is held by an electrostatic attraction force on a mounting table in a processing vessel of a plasma processing apparatus. In the apparatus, a variable DC voltage generating means for applying a variable DC voltage to the electrostatic chucking electrode of the mounting table, and a leak current detecting a DC leak current between the object to be processed and the electrostatic chucking electrode Detecting means for variably controlling the DC voltage applied to the electrostatic chucking electrode of the mounting table from the variable DC voltage generating means, wherein the current detection value of the DC leakage current obtained by the leakage current detecting means is substantially Self-bias voltage detecting means for setting the DC voltage when the voltage becomes zero as a measured value of the self-bias voltage.

【0014】本発明の静電吸着装置は、プラズマ処理装
置の処理容器内で被処理体を静電吸着力で載置台上に保
持するための静電吸着装置において、前記被処理体に前
記静電吸着力を及ぼすように前記載置台に設けられた静
電吸着用電極と、前記静電吸着用電極に可変直流電圧を
印加する可変直流電圧発生手段と、前記被処理体と前記
静電吸着用電極との間の直流漏れ電流を検出する漏れ電
流検出手段と、前記可変直流電圧発生手段より前記静電
吸着用電極に印加される可変直流電圧の電圧値と前記漏
れ電流検出手段によって検出される前記直流漏れ電流の
電流値との間の電圧電流特性に基づいて前記自己バイア
ス電圧の測定値を求める自己バイアス電圧検出手段と、
前記自己バイアス電圧検出手段より得られた前記自己バ
イアス電圧の測定値と所望の静電吸着力を得るための前
記被処理体および前記電極間の電圧差との和または差の
値にほぼ等しい電圧を前記被処理体の処理時に前記静電
吸着用電極に印加するように前記可変直流電圧発生手段
を制御する電圧制御手段とを具備する構成とした。
According to the present invention, there is provided an electrostatic attraction apparatus for holding an object to be processed on a mounting table in a processing vessel of a plasma processing apparatus by an electrostatic attraction force. An electrostatic attraction electrode provided on the mounting table to exert an electroadhesive force; a variable DC voltage generating means for applying a variable DC voltage to the electrostatic attraction electrode; A leakage current detecting means for detecting a DC leakage current between the electrode for electrostatic adsorption, a voltage value of a variable DC voltage applied to the electrode for electrostatic attraction by the variable DC voltage generating means and a voltage value detected by the leakage current detecting means. Self-bias voltage detection means for obtaining a measured value of the self-bias voltage based on a voltage-current characteristic between the current value of the DC leakage current and
A voltage substantially equal to the sum or difference between the measured value of the self-bias voltage obtained by the self-bias voltage detection means and the voltage difference between the object to be processed and the electrode for obtaining a desired electrostatic attraction force. And a voltage control means for controlling the variable DC voltage generating means so as to apply the voltage to the electrostatic attraction electrode during the processing of the object to be processed.

【0015】本発明の第1の自己バイアス測定方法また
は自己バイアス測定装置では、載置台の静電吸着用電極
に可変の直流電圧を印加し、その可変直流電圧の値を変
えながら被処理体と静電吸着用電極との間に流れる直流
の漏れ電流を検出し、可変直流電圧と直流漏れ電流の電
圧電流特性に基づいて自己バイアス電圧の測定値を求め
る。一般に、この電圧電流特性は自己バイアス電圧の値
を中心とする対称な曲線として表される。このことか
ら、本発明の第2の自己バイアス測定方法または自己バ
イアス測定装置では、直流漏れ電流がほぼ零となるとき
の可変直流電圧の値を自己バイアス電圧の測定値とす
る。
In the first self-bias measuring method or the self-bias measuring apparatus of the present invention, a variable DC voltage is applied to the electrostatic chucking electrode of the mounting table, and the object to be processed is changed while changing the value of the variable DC voltage. A DC leakage current flowing between the electrode and the electrostatic chucking electrode is detected, and a measured value of the self-bias voltage is obtained based on the voltage-current characteristics of the variable DC voltage and the DC leakage current. Generally, this voltage-current characteristic is represented as a symmetric curve centered on the value of the self-bias voltage. Therefore, in the second self-bias measurement method or the self-bias measurement device of the present invention, the value of the variable DC voltage when the DC leakage current becomes substantially zero is used as the measured value of the self-bias voltage.

【0016】本発明の静電吸着装置では、本発明による
自己バイアス測定方法で得られた自己バイアス電圧の測
定値に基づいて、被処理体と静電吸着用電極間の電圧差
が所望の静電吸着力を得るための電圧差となるように、
静電吸着用電極に所定の可変直流電圧を印加する。電圧
制御手段によって静電吸着力の制御・調整を行うので、
自己バイアス電圧が変わっても自動的に可変直流電圧を
調整して静電吸着力を設定値に安定に維持することがで
きる。
In the electrostatic chuck according to the present invention, the voltage difference between the object to be processed and the electrode for electrostatic chuck is determined based on the measured value of the self-bias voltage obtained by the self-bias measuring method according to the present invention. So that the voltage difference for obtaining the electroadsorption force
A predetermined variable DC voltage is applied to the electrostatic attraction electrode. Since the voltage control means controls and adjusts the electrostatic attraction force,
Even if the self-bias voltage changes, the variable DC voltage is automatically adjusted to stably maintain the electrostatic attraction force at the set value.

【0017】[0017]

【発明の実施の形態】以下、添付図を参照して本発明の
実施形態を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1は、本発明の一実施形態におけるプラ
ズマエッチング装置の構成を示す断面図である。
FIG. 1 is a sectional view showing the structure of a plasma etching apparatus according to one embodiment of the present invention.

【0019】このプラズマエッチング装置の処理容器1
0は、たとえばアルミニウムからなる両端の閉塞した円
筒状のチャンバとして構成されている。処理容器10の
側壁には、被処理体たとえば半導体ウエハWを容器10
内に搬入・搬出するためのゲートバルブ11が設けられ
ている。
Processing container 1 of this plasma etching apparatus
Numeral 0 is formed as a closed cylindrical chamber made of, for example, aluminum at both ends. An object to be processed, for example, a semiconductor wafer W, is placed on the side wall of the processing vessel 10.
There is provided a gate valve 11 for carrying in / out the inside.

【0020】処理容器10の底面には円筒状でかつ導電
性の外支持枠12が立設され、この外支持枠12の内側
に有底円筒状でかつ絶縁性の内支持枠14が嵌め込まれ
ている。内支持枠14の内側底部には円柱形の支持台1
6が配設され、この支持台16の上に円盤状の載置台1
8がボルト(図示せず)によって固定されている。支持
台16および載置台18のいずれもアルミニウム等の導
電性金属からなる。支持台16の内部には冷却ジャケッ
ト20が設けられており、導入管22を通って冷却ジャ
ケット20に供給された冷却液は排出管24を通って装
置外部へ排出されるようになっている。支持台16およ
び載置台18には、熱交換用のガスたとえばヘリウムガ
スを載置台18上の半導体ウエハWの裏面に供給するた
めの貫通孔16a,18aが形成されている。下部電極
として機能する載置台18には、コンデンサ26を介し
て高周波電源28が接続されている。
A cylindrical, electrically conductive outer support frame 12 is erected on the bottom surface of the processing container 10, and a bottomed, cylindrical, insulated inner support frame 14 is fitted inside the outer support frame 12. ing. A cylindrical support table 1 is provided on the inner bottom of the inner support frame 14.
6, and a disc-shaped mounting table 1 on the support 16.
8 is fixed by bolts (not shown). Both the support table 16 and the mounting table 18 are made of a conductive metal such as aluminum. The cooling jacket 20 is provided inside the support base 16, and the cooling liquid supplied to the cooling jacket 20 through the introduction pipe 22 is discharged to the outside of the apparatus through the discharge pipe 24. The support table 16 and the mounting table 18 are formed with through holes 16a, 18a for supplying a heat exchange gas, for example, a helium gas, to the back surface of the semiconductor wafer W on the mounting table 18. A high frequency power supply 28 is connected via a capacitor 26 to the mounting table 18 functioning as a lower electrode.

【0021】載置台18の上面には円形の静電チャック
シート30が冠着され、この静電チャックシート30の
上に半導体ウエハWが載置される。静電チャックシート
30は、抵抗体としての機能をも併せ持つ誘電体たとえ
ばSiCからなる薄膜32を上に、たとえばポリイミド
からなる絶縁膜34を下にして両者を重ね合わせ、その
中に静電吸着用電極としてたとえば銅箔からなる薄い導
電膜36を封入してなるものである。この静電チャック
シート30においても、熱交換用のヘリウムガスを載置
台18上の半導体ウエハWの裏面に供給するための通気
孔30aが形成されている。
A circular electrostatic chuck sheet 30 is mounted on the upper surface of the mounting table 18, and a semiconductor wafer W is mounted on the electrostatic chuck sheet 30. The electrostatic chuck sheet 30 is formed by laminating a dielectric such as SiC, which also has a function as a resistor, on a thin film 32 made of, for example, SiC, and an insulating film 34 made of polyimide, for example. The electrodes are formed by enclosing a thin conductive film 36 made of, for example, copper foil. Also in this electrostatic chuck sheet 30, a vent hole 30a for supplying helium gas for heat exchange to the back surface of the semiconductor wafer W on the mounting table 18 is formed.

【0022】静電チャックシート30の導電膜36は、
載置台18を貫通する絶縁被覆導電線38、支持台1
6、内支持枠14および外支持枠12を貫通する給電棒
40、処理容器10の外に設けられたコイル42ならび
に電流計44を介して可変直流電源46の出力端子に接
続されている。
The conductive film 36 of the electrostatic chuck sheet 30 is
Insulating coated conductive wire 38 penetrating mounting table 18, support table 1
6, a power supply rod 40 penetrating the inner support frame 14 and the outer support frame 12, a coil 42 provided outside the processing container 10, and an ammeter 44, which are connected to the output terminal of a variable DC power supply 46.

【0023】コイル42は、コンデンサ48と協働し
て、この直流回路に誘導または混入した高周波ノイズを
除去するためのローパスフィルタを構成する。電流計4
4は、この直流回路を流れる電流、つまり半導体ウエハ
W(被処理体)と静電チャックシート30の導電膜36
(静電吸着用電極)との間の漏れ電流を検出し、その電
流検出値を表す漏れ電流検出信号MLを制御部50に出
力する。可変直流電源46は、制御部50からの電圧制
御信号ESで指定された任意の直流電圧V0 を出力でき
るように構成されている。制御部50は、たとえばマイ
クロコンピュータからなり、後述するように本実施形態
における自己バイアス電圧測定の制御および静電吸着力
の制御・調整を行う。
The coil 42 cooperates with a capacitor 48 to constitute a low-pass filter for removing high-frequency noise induced or mixed into the DC circuit. Ammeter 4
Reference numeral 4 denotes a current flowing through the DC circuit, that is, the semiconductor wafer W (workpiece) and the conductive film 36 of the electrostatic chuck sheet 30.
(Electrode for electrostatic attraction), and outputs a leakage current detection signal ML indicating the detected current value to the control unit 50. The variable DC power supply 46 is configured to output an arbitrary DC voltage V0 specified by the voltage control signal ES from the control unit 50. The control unit 50 includes, for example, a microcomputer, and controls the self-bias voltage measurement and the control and adjustment of the electrostatic attraction force in the present embodiment as described later.

【0024】載置台18の上方には、ガス導入室52が
配設されている。ガス供給管54を介してこのガス導入
室52に導入されたエッチングガスは、載置台18と対
向する多孔板52aの多数の通気孔52bより均一な圧
力・流量で半導体ウエハWに向けて吐出または噴射され
る。ガス導入室52は、上部電極を兼ねており、接地さ
れている。処理容器10の底付近の側壁には排気口56
が設けられており、この排気口56に排気管58を介し
て真空ポンプ(図示せず)が接続されている。
A gas introduction chamber 52 is provided above the mounting table 18. The etching gas introduced into the gas introduction chamber 52 through the gas supply pipe 54 is discharged or directed toward the semiconductor wafer W at a uniform pressure and flow rate from the large number of ventilation holes 52b of the porous plate 52a facing the mounting table 18. It is injected. The gas introduction chamber 52 also serves as an upper electrode and is grounded. An exhaust port 56 is provided on a side wall near the bottom of the processing container 10.
A vacuum pump (not shown) is connected to the exhaust port 56 via an exhaust pipe 58.

【0025】かかる構成のプラズマエッチング装置にお
いては、次のようにしてプラズマエッチング加工が行わ
れる。下部電極(載置台)18に高周波電源28よりコ
ンデンサ26を介してたとえば380KHz、15KW
の高周波電圧が印加され、かつ処理容器10内が排気口
54および排気管56を介して真空ポンプにより所定の
真空度まで排気された状態の下で、ガス供給管54およ
びガス導入室52を通ってエッチングガスが処理容器1
0内に供給される。そうすると、ガス導入室52の直下
で、エッチングガスのガス分子が高周波電力のエネルギ
により電離し、プラズマが発生する。このプラズマ中の
電子、イオン、活性種等が載置台18上の半導体ウエハ
Wの表面(被処理面)にほぼ垂直に入射してウエハ表面
の被加工物と化学反応を起こすことによって、エッチン
グが行われる。エッチングによって気化した反応生成物
は排気口56より排気される。
In the plasma etching apparatus having such a configuration, plasma etching is performed as follows. For example, 380 KHz, 15 KW from a high frequency power supply 28 via a capacitor 26 to a lower electrode (mounting table) 18
Under a state in which the processing vessel 10 is evacuated to a predetermined degree of vacuum by a vacuum pump through an exhaust port 54 and an exhaust pipe 56, and passes through the gas supply pipe 54 and the gas introduction chamber 52. Etching gas
It is supplied within 0. Then, the gas molecules of the etching gas are ionized by the energy of the high-frequency power immediately below the gas introduction chamber 52, and plasma is generated. Electrons, ions, active species, and the like in the plasma enter the surface (processed surface) of the semiconductor wafer W on the mounting table 18 almost perpendicularly and cause a chemical reaction with a workpiece on the wafer surface, thereby performing etching. Done. The reaction product vaporized by the etching is exhausted from the exhaust port 56.

【0026】このようなエッチングが行われる間、静電
チャックシート30の導電膜36には可変直流電源46
より一定の直流電圧が印加され、その直流電圧によって
誘電体膜32が分極して、導電膜36の上面に正電荷、
半導体ウエハWの裏面に負電荷がそれぞれ誘導され、そ
れら正電荷および負電荷間のクーロン力により半導体ウ
エハWが載置台18上に吸着保持される。
During such etching, a variable DC power supply 46 is applied to the conductive film 36 of the electrostatic chuck sheet 30.
A more constant DC voltage is applied, the dielectric film 32 is polarized by the DC voltage, and a positive charge,
Negative charges are induced on the back surface of the semiconductor wafer W, and the semiconductor wafer W is suction-held on the mounting table 18 by the Coulomb force between the positive charges and the negative charges.

【0027】また、下部電極としての載置台18にはコ
ンデンサ26を介して高周波電源28より高周波電圧が
印加され、かつ半導体ウエハWの直上にはプラズマが立
ち篭もっているため、半導体ウエハWには自己バイアス
電圧が誘起される。本実施例によれば、以下に説明する
ように、この自己バイアス電圧が正確に測定され、その
自己バイアス電圧測定値に基づいてプラズマエッチング
中に半導体ウエハWを載置台18上に所望の静電吸着力
で保持するための直流電圧が可変直流電源46より静電
チャックシート30の導電膜36に印加されるようにな
っている。
A high-frequency voltage is applied from a high-frequency power supply 28 to a mounting table 18 as a lower electrode via a capacitor 26, and plasma is stored just above the semiconductor wafer W. A self-bias voltage is induced. According to this embodiment, as described below, the self-bias voltage is accurately measured, and the semiconductor wafer W is placed on the mounting table 18 during plasma etching based on the self-bias voltage measurement value. A DC voltage for holding by suction force is applied to the conductive film 36 of the electrostatic chuck sheet 30 from the variable DC power supply 46.

【0028】図2および図4につき本実施形態における
自己バイアス測定方法について説明する。図2は、本実
施形態における自己バイアスの測定に関係する部分の回
路図である。静電チャックシート30の誘電体膜32
は、導電体と絶縁体の中間の抵抗率(1×10 〜1
×1012Ω・cm)を有するSiCからなるので、こ
れを抵抗体とみることができる。この抵抗体32の抵抗
値は相当大きいので、可変直流電源46から導電膜36
までの導体(42,40,38等)の抵抗値は無視する
ことができる。また、上部電極52と半導体ウエハWと
の間は、プラズマPR中のイオン、電子が移動するの
で、導電性の空間である。
The method of measuring the self-bias according to the present embodiment will be described with reference to FIGS. FIG. 2 is a circuit diagram of a portion related to the measurement of the self-bias in the present embodiment. Dielectric film 32 of electrostatic chuck sheet 30
Is the intermediate resistivity between the conductor and the insulator (1 × 10 8 to 1
(× 10 12 Ω · cm), which can be regarded as a resistor. Since the resistance of the resistor 32 is considerably large, the variable DC power supply 46
The resistance values of the conductors (42, 40, 38, etc.) can be neglected. The space between the upper electrode 52 and the semiconductor wafer W is a conductive space because ions and electrons in the plasma PR move.

【0029】したがって、図2に示すように、可変直流
電源46の出力端子とアースとの間に、電流計44、抵
抗体(誘電体膜)32、半導体ウエハW、プラズマPR
および上部電極52が直列接続された電気回路が形成さ
れる。定常状態でプラズマPR内の電圧分布(電位)は
一定で安定しており、半導体ウエハWの電位は上部電極
52(アース電位)に対して自己バイアス電圧VSBにク
ランプされる。したがって、可変直流電源46の出力電
圧をV0 、抵抗体32の抵抗値をRとし、電流計44に
おける電圧降下を無視できるものとすると、この電気回
路に流れる直流電流、つまり半導体ウエハWと導電膜
(静電吸着用電極)36間の漏れ電流iLは次式で表さ
れる。 iL =(V0 −VSB)/R ……(1)
Therefore, as shown in FIG. 2, between the output terminal of the variable DC power supply 46 and the ground, the ammeter 44, the resistor (dielectric film) 32, the semiconductor wafer W, the plasma PR
And an electric circuit in which the upper electrode 52 is connected in series. In a steady state, the voltage distribution (potential) in the plasma PR is constant and stable, and the potential of the semiconductor wafer W is clamped to the self-bias voltage VSB with respect to the upper electrode 52 (earth potential). Therefore, assuming that the output voltage of the variable DC power supply 46 is V0, the resistance value of the resistor 32 is R, and the voltage drop in the ammeter 44 can be ignored, the DC current flowing in this electric circuit, that is, the semiconductor wafer W and the conductive film The leakage current iL between the (electrostatic attraction electrodes) 36 is expressed by the following equation. iL = (V0-VSB) / R (1)

【0030】上式(1)において、自己バイアス電圧V
SBは一定であるが、抵抗体32の抵抗値Rは電圧V0 ,
温度,半導体ウエハWの裏面の状態たとえば酸化状態等
によって変わる値である。
In the above equation (1), the self-bias voltage V
Although the SB is constant, the resistance R of the resistor 32 is equal to the voltage V0,
It is a value that changes depending on the temperature, the state of the back surface of the semiconductor wafer W, for example, the oxidation state, and the like.

【0031】本実施形態では、制御部50の制御の下で
可変直流電源46の出力電圧V0 の値を変えながら電流
計44で漏れ電流iL を検出する。そうすると、V0 と
iLの絶対値|iL |との間には、図3に示すような電
圧電流特性が得られる。この電圧電流特性においては、
V0 がVSB(自己バイアス電圧)にほぼ等しいときに|
iL |はほぼ零になり、V0 とVSBの差(絶対値)が大
きくなるにしたがって|iL |は放物線状に増大する。
V0 がVSBよりも大きいときiL は導電膜(静電吸着用
電極)36側から半導体ウエハW側に流れ、V0 がVSB
よりも小さいときiL は反対に半導体ウエハW側から導
電膜36側に流れる。かかる電圧電流特性を基に自己バ
イアス電圧の測定値を求めることができる。
In this embodiment, under the control of the control unit 50, the leakage current iL is detected by the ammeter 44 while changing the value of the output voltage V0 of the variable DC power supply 46. Then, a voltage-current characteristic as shown in FIG. 3 is obtained between V0 and the absolute value | iL | of iL. In this voltage-current characteristic,
When V0 is almost equal to VSB (self-bias voltage) |
iL | becomes substantially zero, and | iL | increases parabolically as the difference (absolute value) between V0 and VSB increases.
When V0 is larger than VSB, iL flows from the conductive film (electrostatic attraction electrode) 36 side to the semiconductor wafer W side, and V0 becomes VSB.
When it is smaller than iL, iL flows from the semiconductor wafer W side to the conductive film 36 side. A measured value of the self-bias voltage can be obtained based on the voltage-current characteristics.

【0032】本実施形態の好適な自己バイアス測定法に
よれば、V0 がVSBにほぼ等しいときに|iL |がほぼ
零になるという上記電圧電流特性に基づいて、|iL |
がほぼ零になったときのV0 の値が自己バイアス電圧V
SBの測定値とされる。制御部50は、電流計44より|
iL |がほぼ零の値であることを示す漏れ電流検出値M
Lを受け取った時の可変直流電源46の出力電圧V0 の
値を自己バイアス電圧VSBの測定値と判定する。制御部
50は、こうして求めた自己バイアス電圧VSBの測定値
を表示装置や記録装置(図示せず)に与えて表示または
記録させることも可能である。
According to the preferred self-bias measurement method of this embodiment, | iL | is based on the voltage-current characteristic that | iL | becomes substantially zero when V0 is substantially equal to VSB.
Is almost zero, the value of V0 is the self-bias voltage V
It is the measured value of SB. The control unit 50 outputs from the ammeter 44 |
leakage current detection value M indicating that iL | is almost zero
The value of the output voltage V0 of the variable DC power supply 46 when L is received is determined as the measured value of the self-bias voltage VSB. The control unit 50 can also give the measured value of the self-bias voltage VSB obtained in this way to a display device or a recording device (not shown) to display or record.

【0033】また、第2の自己バイアス測定法によれ
ば、自己バイアス電圧VSBの値を中心点としてV0 とV
SBの差が大きくなるにしたがって|iL |は放物線状に
増大するという上記電圧電流特性に基づいて、極性が逆
で絶対値の等しい漏れ電流iLの電流値iLa,iLbが得
られるときのV0 の値V0a,V0bの中間値(V0a+V0
b)/2が自己バイアス電圧VSBの測定値とされる。こ
の場合、制御部20は、V0 の各値に対するiL の測定
値を記憶部(図示せず)に取り込み、比較演算により極
性が逆で絶対値の等しい測定値iLa,iLbを割り出し、
ひいてはそれらの測定値にそれぞれ対応するV0 の値V
0a,V0bを割り出し、それらの電圧値V0a,V0bから自
己バイアス電圧VSBの測定値を演算で求める。
According to the second self-bias measurement method, V 0 and V
Based on the above-mentioned voltage-current characteristic that | iL | increases in a parabolic manner as the difference in SB increases, the value of V0 when the current values iLa and iLb of the leakage current iL having the opposite polarity and the same absolute value are obtained is obtained. The intermediate value of the values V0a and V0b (V0a + V0
b) / 2 is the measured value of the self-bias voltage VSB. In this case, the control unit 20 fetches the measured value of iL for each value of V0 into a storage unit (not shown), and determines the measured values iLa and iLb having opposite polarities and equal absolute values by a comparison operation,
Consequently, the value V0 of V0 corresponding to each of the measured values is obtained.
0a and V0b are determined, and a measured value of the self-bias voltage VSB is calculated from the voltage values V0a and V0b.

【0034】本実施形態において、制御部50は開ルー
プで可変直流電源46の出力電圧V0 を制御するが、必
要に応じてV0 を検出する電圧検出手段を設けてもよ
く、その場合はより高い精度でV0 の値を監視ないし制
御することができ、ひいてはより高い精度で自己バイア
ス電圧VSBの測定値を得ることができる。
In this embodiment, the control unit 50 controls the output voltage V0 of the variable DC power supply 46 in an open loop. However, if necessary, a voltage detection means for detecting V0 may be provided. The value of V0 can be monitored or controlled with high accuracy, and a measured value of the self-bias voltage VSB can be obtained with higher accuracy.

【0035】なお、本実施形態の自己バイアス測定法に
おいては、V0 をVSBに近づけると、半導体ウエハWと
導電膜(静電吸着用電極)36間の印加電圧(電圧差)
が小さくなり、静電吸着力が小さくなる。半導体ウエハ
Wの裏面には熱交換用のガスが供給されるため、静電吸
着力が小さくなると、熱交換用のガスの圧力で半導体ウ
エハWが載置台18からずれ落ちるおそれもある。した
がって、図1のプラズマエッチング装置においてこの自
己バイアス測定法を実施するときは、たとえばダミーの
半導体ウエハWを用いて、これを適当な治具で保持する
等の工夫が必要である。その点、上記第2の自己バイア
ス測定法においては、V0 をVSBに近づけずに極性が逆
で絶対値の等しい測定値iLa,iLbを割り出すことが可
能であるから、実際にエッチング加工を受ける半導体ウ
エハWに対して自己バイアス電圧VSBを測定することが
できる。
In the self-bias measurement method according to the present embodiment, when V0 approaches VSB, the applied voltage (voltage difference) between the semiconductor wafer W and the conductive film (electrostatic attraction electrode) 36 is increased.
And the electrostatic attraction force is reduced. Since the gas for heat exchange is supplied to the back surface of the semiconductor wafer W, if the electrostatic attraction force is reduced, the semiconductor wafer W may be displaced from the mounting table 18 due to the pressure of the gas for heat exchange. Therefore, when the self-bias measurement method is performed in the plasma etching apparatus of FIG. 1, it is necessary to use a dummy semiconductor wafer W and hold it with an appropriate jig. In this respect, in the second self-bias measurement method, since it is possible to determine the measured values iLa and iLb having opposite polarities and the same absolute value without bringing V0 close to VSB, the semiconductor which is actually subjected to the etching process is obtained. The self-bias voltage VSB can be measured for the wafer W.

【0036】本実施形態における静電吸着装置は、静電
チャックシート30、可変直流電源46、電流計44、
制御部50から構成される。制御部50は、上記したよ
うな可変直流電源46の出力電圧V0 と電流計44によ
って検出される漏れ電流iLとの間の電圧電流特性に基
づいて半導体ウエハWの自己バイアス電圧VSBの測定値
を求める自己バイアス電圧検出手段として機能するだけ
でなく、次のようにエッチング加工時に半導体ウエハW
を載置台18上に所望の静電吸着力で保持するための直
流電圧を導電膜(静電吸着用電極)36に与えるように
可変直流電源46を制御する電圧制御手段としても機能
する。
The electrostatic chuck according to this embodiment includes an electrostatic chuck sheet 30, a variable DC power supply 46, an ammeter 44,
It comprises a control unit 50. The control unit 50 calculates the measured value of the self-bias voltage VSB of the semiconductor wafer W based on the voltage-current characteristic between the output voltage V0 of the variable DC power supply 46 and the leakage current iL detected by the ammeter 44 as described above. In addition to functioning as the required self-bias voltage detection means, the semiconductor wafer W
Also functions as a voltage control means for controlling the variable DC power supply 46 so as to apply a DC voltage to the conductive film (electrode for electrostatic attraction) 36 to hold a DC voltage on the mounting table 18 with a desired electrostatic attraction force.

【0037】すなわち、半導体ウエハWと導電膜(静電
吸着用電極)36間の印加電圧VFと静電吸着力Fとの
間には図4に示すような比例関係があり、この関係(特
性)は理論値または実験値として得られる。制御部50
は、所要の静電吸着力Fs が設定されたならば、このF
s に対応した印加電圧VF の値VFSに上記自己バイアス
電圧VSBの測定値を加え、その加算値(VFS+VSB)に
等しい出力電圧V0 を可変直流電源46に出力させる。
That is, there is a proportional relationship between the applied voltage VF between the semiconductor wafer W and the conductive film (electrostatic attraction electrode) 36 and the electrostatic attraction force F as shown in FIG. ) Are obtained as theoretical or experimental values. Control unit 50
Is, if the required electrostatic attraction force Fs is set, this F
The measured value of the self-bias voltage VSB is added to the value VFS of the applied voltage VF corresponding to s, and the variable DC power supply 46 outputs an output voltage V0 equal to the sum (VFS + VSB).

【0038】本実施形態では、たとえば高周波電源28
の出力が変わって自己バイアス電圧VSBが変化した場
合、制御部50は、上記のようにしてその新たな自己バ
イアス電圧VSBの値を測定することができるから、その
新たな測定値に基づいて可変直流電源46の出力電圧V
0 を調整することで、静電吸着力Fを設定値Fs に安定
に維持することができる。
In this embodiment, for example, the high frequency power supply 28
When the self-bias voltage VSB changes due to the change of the output of the control circuit 50, the control unit 50 can measure the value of the new self-bias voltage VSB as described above. Output voltage V of DC power supply 46
By adjusting 0, the electrostatic attraction force F can be stably maintained at the set value Fs.

【0039】好適な実施形態について上述説明したが、
本発明は上記した実施形態に限定されるわけではなく、
その技術的思想の範囲内で種々の変形・変更が可能であ
る。
While the preferred embodiment has been described above,
The present invention is not limited to the above embodiments,
Various modifications and changes are possible within the scope of the technical idea.

【0040】たとえば、静電吸着用電極は誘電性と漏電
性とを併せ持つ膜または板を介して被処理体と対向配置
されるものであればよく、その形状・構造・サイズを任
意に選ぶことが可能である。したがって、静電チヤック
シート以外の構成も可能である。
For example, the electrode for electrostatic attraction may be one which is disposed opposite to the object to be processed via a film or plate having both dielectric properties and electric leakage, and its shape, structure and size may be arbitrarily selected. Is possible. Therefore, configurations other than the electrostatic chuck sheet are possible.

【0041】また、電流計44および可変直流電源46
の回路構成ならびに制御部50の回路構成・ソフトウェ
アも任意に変形・変更が可能である。また、制御部50
を設けないで、電流計44の測定値を表示させ、作業員
がその電流測定値を見ながら、マニュアル操作で可変直
流電源46の出力電圧を可変調整するようにしてもよ
い。
The ammeter 44 and the variable DC power supply 46
The circuit configuration and software of the control unit 50 can be arbitrarily modified and changed. The control unit 50
May not be provided, the measured value of the ammeter 44 may be displayed, and the operator may variably adjust the output voltage of the variable DC power supply 46 by manual operation while viewing the measured current value.

【0042】また、上記実施形態はプラズマエッチング
装置に係るものであったが、本発明はプラズマアッシン
グ装置、プラズマCVD装置等の他のプラズマ処理装置
にも適用可能であり、半導体ウエハW以外の被処理体た
とえばLCD基板にも適用可能である。
Although the above embodiment relates to a plasma etching apparatus, the present invention is applicable to other plasma processing apparatuses such as a plasma ashing apparatus and a plasma CVD apparatus. The present invention is also applicable to a processing object such as an LCD substrate.

【0043】[0043]

【発明の効果】本発明の自己バイアス測定方法および装
置によれば、静電吸着用電極に印加する直流電圧の値を
変えながら被処理体と静電吸着用電極間の漏れ電流を検
出し、印加直流電圧と漏れ電流の電圧電流特性に基づい
て自己バイアス電圧の測定値を求めるようにしたので、
誤差の少ない高精度な自己バイアス電圧測定値を短時間
で容易に得ることができる。
According to the self-bias measuring method and apparatus of the present invention, the leakage current between the object to be processed and the electrostatic attraction electrode is detected while changing the value of the DC voltage applied to the electrostatic attraction electrode, Since the measured value of the self-bias voltage was obtained based on the voltage-current characteristics of the applied DC voltage and the leakage current,
A highly accurate self-bias voltage measurement value with few errors can be easily obtained in a short time.

【0044】本発明の静電吸着装置によれば、自己バイ
アス電圧の測定値に基づいて被処理体と静電吸着用電極
間の電圧差が所望の静電吸着力を得るための電圧差とな
るように、静電吸着用電極に所定の可変直流電圧を印加
するようにしたので、自己バイアス電圧が変わっても静
電吸着力を設定値に安定に維持することができる。
According to the electrostatic attraction device of the present invention, the voltage difference between the object to be processed and the electrode for electrostatic attraction is based on the measured value of the self-bias voltage and the voltage difference for obtaining the desired electrostatic attraction force. Since a predetermined variable DC voltage is applied to the electrostatic attraction electrode, the electrostatic attraction force can be stably maintained at the set value even when the self-bias voltage changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態におけるプラズマエッチン
グ装置の全体構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating an overall configuration of a plasma etching apparatus according to an embodiment of the present invention.

【図2】実施形態における自己バイアス測定方法の作用
を説明するための電気回路図である。
FIG. 2 is an electric circuit diagram for explaining the operation of the self-bias measurement method in the embodiment.

【図3】実施形態における自己バイアス測定方法で用い
られる可変直流電圧と漏れ電流間の電圧電流特性を示す
図である。
FIG. 3 is a diagram illustrating a voltage-current characteristic between a variable DC voltage and a leakage current used in the self-bias measurement method according to the embodiment.

【図4】実施形態における静電吸着装置で用いられる印
加電圧−静電吸着力間の特性を示す図である。
FIG. 4 is a diagram showing characteristics between an applied voltage and an electrostatic attraction force used in the electrostatic attraction device according to the embodiment.

【符号の説明】[Explanation of symbols]

10 処理容器 18 載置台 30 静電チャックシート 32 誘電体膜(抵抗体) 34 絶縁膜 36 導電膜(静電吸着用電極) 44 電流計 46 可変直流電源 50 制御部 W 半導体ウエハ REFERENCE SIGNS LIST 10 processing container 18 mounting table 30 electrostatic chuck sheet 32 dielectric film (resistor) 34 insulating film 36 conductive film (electrode for electrostatic attraction) 44 ammeter 46 variable DC power supply 50 control unit W semiconductor wafer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ処理装置の処理容器内で載置台
上に静電吸着力で保持される被処理体の自己バイアス電
圧を測定する自己バイアス測定方法において、 前記載置台の静電吸着用電極に可変の直流電圧を印加
し、前記直流電圧の値を変えながら前記被処理体と前記
静電吸着用電極との間の直流漏れ電流を検出し、前記直
流電圧の電圧値と前記直流漏れ電流の電流値との間の電
圧電流特性に基づいて前記自己バイアス電圧の測定値を
求めることを特徴とする自己バイアス測定方法。
1. A self-bias measuring method for measuring a self-bias voltage of an object to be processed held on a mounting table by an electrostatic attraction force in a processing vessel of a plasma processing apparatus, the method comprising: A variable DC voltage is applied to the DC voltage, and a DC leakage current between the object to be processed and the electrostatic chucking electrode is detected while changing the value of the DC voltage, and the voltage value of the DC voltage and the DC leakage current are detected. A self-bias voltage measurement value obtained based on a voltage-current characteristic between the self-bias voltage value and the current value.
【請求項2】 プラズマ処理装置の処理容器内で載置台
上に静電吸着力で保持される被処理体の自己バイアス電
圧を測定する自己バイアス測定装置において、 前記載置台の静電吸着用電極に可変直流電圧を印加する
可変直流電圧発生手段と、 前記被処理体と前記静電吸着用電極との間の直流漏れ電
流を検出する漏れ電流検出手段と、 前記可変直流電圧発生手段より前記載置台の静電吸着用
電極に印加される前記直流電圧を可変制御し、前記直流
電圧の電圧値と前記漏れ電流検出手段によって検出され
る前記直流漏れ電流の電流値との間の電圧電流特性に基
づいて前記自己バイアス電圧の測定値を求める自己バイ
アス電圧検出手段とを具備することを特徴とする自己バ
イアス測定装置。
2. A self-bias measuring device for measuring a self-bias voltage of an object to be processed held on a mounting table by an electrostatic attraction force in a processing vessel of a plasma processing apparatus. A variable DC voltage generating means for applying a variable DC voltage to the electrode; a leakage current detecting means for detecting a DC leakage current between the object to be processed and the electrostatic chucking electrode; and the variable DC voltage generating means. The DC voltage applied to the electrostatic chuck electrode of the mounting table is variably controlled, and a voltage-current characteristic between a voltage value of the DC voltage and a current value of the DC leakage current detected by the leakage current detection unit is obtained. A self-bias voltage detecting device for obtaining a measured value of the self-bias voltage based on the self-bias voltage.
【請求項3】 プラズマ処理装置の処理容器内で載置台
上に静電吸着力で保持される被処理体の自己バイアス電
圧を測定する自己バイアス測定方法において、 前記載置台の静電吸着用電極に可変の直流電圧を印加
し、前記直流電圧の値を変えながら前記被処理体と前記
静電吸着用電極との間の直流漏れ電流を検出し、前記直
流漏れ電流がほぼ零となるときの前記直流電圧の値を前
記自己バイアス電圧の測定値とすることを特徴とする自
己バイアス測定方法。
3. A self-bias measuring method for measuring a self-bias voltage of an object to be processed held on a mounting table by an electrostatic attraction force in a processing vessel of a plasma processing apparatus. Applying a variable DC voltage to the DC voltage, detecting a DC leakage current between the object to be processed and the electrostatic chucking electrode while changing the value of the DC voltage, when the DC leakage current becomes substantially zero. A self-bias measurement method, wherein the value of the DC voltage is a measured value of the self-bias voltage.
【請求項4】 プラズマ処理装置の処理容器内で載置台
上に静電吸着力で保持される被処理体の自己バイアス電
圧を測定する自己バイアス測定装置において、 前記載置台の静電吸着用電極に可変の直流電圧を印加す
る可変直流電圧発生手段と、 前記被処理体と前記静電吸着用電極との間の直流漏れ電
流を検出する漏れ電流検出手段と、 前記可変直流電圧発生手段より前記載置台の静電吸着用
電極に印加される前記直流電圧を可変制御し、前記漏れ
電流検出手段より得られる前記直流漏れ電流の電流検出
値がほぼ零となるときの前記直流電圧を前記自己バイア
ス電圧の測定値とする自己バイアス電圧検出手段とを具
備することを特徴とする自己バイアス測定装置。
4. A self-bias measuring device for measuring a self-bias voltage of an object to be processed held on a mounting table by an electrostatic attraction force in a processing vessel of a plasma processing apparatus. A variable DC voltage generating means for applying a variable DC voltage to the leakage current detecting means for detecting a DC leakage current between the object to be processed and the electrostatic chucking electrode; and The DC voltage applied to the electrostatic chucking electrode of the mounting table is variably controlled, and the DC voltage when the current detection value of the DC leakage current obtained by the leakage current detection means becomes substantially zero is the self-bias. A self-bias voltage measuring device for measuring a voltage;
【請求項5】 プラズマ処理装置の処理容器内で被処理
体を静電吸着力で載置台上に保持するための静電吸着装
置において、 前記被処理体に前記静電吸着力を及ぼすように前記載置
台に設けられた静電吸着用電極と、 前記静電吸着用電極に可変直流電圧を印加する可変直流
電圧発生手段と、 前記被処理体と前記静電吸着用電極との間の直流漏れ電
流を検出する漏れ電流検出手段と、 前記可変直流電圧発生手段より前記静電吸着用電極に印
加される可変直流電圧の電圧値と前記漏れ電流検出手段
によって検出される前記直流漏れ電流の電流値との間の
電圧電流特性に基づいて前記自己バイアス電圧の測定値
を求める自己バイアス電圧検出手段と、 前記自己バイアス電圧検出手段より得られた前記自己バ
イアス電圧の測定値と所望の静電吸着力を得るための前
記被処理体および前記電極間の電圧差との和または差の
値にほぼ等しい電圧を前記被処理体の処理時に前記静電
吸着用電極に印加するように前記可変直流電圧発生手段
を制御する電圧制御手段とを具備することを特徴とする
静電吸着装置。
5. An electrostatic attraction device for holding an object to be processed on a mounting table with an electrostatic attraction force in a processing vessel of a plasma processing apparatus, wherein the electrostatic attraction force is applied to the object to be processed. The electrostatic chucking electrode provided on the mounting table, a variable DC voltage generating means for applying a variable DC voltage to the electrostatic chucking electrode, and a DC voltage between the workpiece and the electrostatic chucking electrode. A leak current detecting means for detecting a leak current; a voltage value of a variable DC voltage applied to the electrostatic chucking electrode by the variable DC voltage generating means; and a current of the DC leak current detected by the leak current detecting means. Self-bias voltage detecting means for obtaining a measured value of the self-bias voltage based on a voltage-current characteristic between the self-bias voltage and a desired electrostatic attraction. Power The variable DC voltage generating means such that a voltage substantially equal to a sum or a difference value between a voltage difference between the object to be processed and the electrode to be obtained is applied to the electrostatic attraction electrode during processing of the object to be processed. And a voltage control means for controlling the voltage.
JP2001361202A 2001-11-27 2001-11-27 Self-bias measurement method and apparatus, and electrostatic chuck Expired - Lifetime JP3635463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361202A JP3635463B2 (en) 2001-11-27 2001-11-27 Self-bias measurement method and apparatus, and electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361202A JP3635463B2 (en) 2001-11-27 2001-11-27 Self-bias measurement method and apparatus, and electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13385693A Division JP3306677B2 (en) 1993-05-12 1993-05-12 Self-bias measurement method and device, and electrostatic suction device

Publications (2)

Publication Number Publication Date
JP2002252276A true JP2002252276A (en) 2002-09-06
JP3635463B2 JP3635463B2 (en) 2005-04-06

Family

ID=19171901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361202A Expired - Lifetime JP3635463B2 (en) 2001-11-27 2001-11-27 Self-bias measurement method and apparatus, and electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3635463B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487823B1 (en) * 1996-10-17 2005-06-16 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method for actively controlling the dc potential of a cathode pedestal
JP2007048986A (en) * 2005-08-10 2007-02-22 Hitachi High-Technologies Corp Device and method for processing plasma
JP2007073309A (en) * 2005-09-06 2007-03-22 Nec Electronics Corp Plasma processing device and abnormal discharge preventing method
JP2007234869A (en) * 2006-03-01 2007-09-13 Hitachi High-Technologies Corp Etching processing apparatus, monitoring method thereof, and self bias voltage measuring method
WO2009113481A1 (en) * 2008-03-14 2009-09-17 三菱重工業株式会社 Plasma treatment apparatus, and method for controlling substrate attraction force in plasma treatment apparatus
US7732010B2 (en) 2003-05-09 2010-06-08 Applied Materials, Inc. Method for supporting a glass substrate to improve uniform deposition thickness
JP2010171454A (en) * 2010-04-19 2010-08-05 Hitachi High-Technologies Corp Plasma processing apparatus and plasma processing method
US8173228B2 (en) 2006-01-27 2012-05-08 Applied Materials, Inc. Particle reduction on surfaces of chemical vapor deposition processing apparatus
US8372205B2 (en) 2003-05-09 2013-02-12 Applied Materials, Inc. Reducing electrostatic charge by roughening the susceptor
JPWO2022180723A1 (en) * 2021-02-25 2022-09-01

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487823B1 (en) * 1996-10-17 2005-06-16 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method for actively controlling the dc potential of a cathode pedestal
US8372205B2 (en) 2003-05-09 2013-02-12 Applied Materials, Inc. Reducing electrostatic charge by roughening the susceptor
US7732010B2 (en) 2003-05-09 2010-06-08 Applied Materials, Inc. Method for supporting a glass substrate to improve uniform deposition thickness
JP2007048986A (en) * 2005-08-10 2007-02-22 Hitachi High-Technologies Corp Device and method for processing plasma
JP2007073309A (en) * 2005-09-06 2007-03-22 Nec Electronics Corp Plasma processing device and abnormal discharge preventing method
US7974067B2 (en) 2005-09-06 2011-07-05 Renesas Electronics Corporation Plasma processing apparatus and method of suppressing abnormal discharge therein
US8173228B2 (en) 2006-01-27 2012-05-08 Applied Materials, Inc. Particle reduction on surfaces of chemical vapor deposition processing apparatus
JP4657949B2 (en) * 2006-03-01 2011-03-23 株式会社日立ハイテクノロジーズ Etching processing apparatus, self-bias voltage measuring method, and etching processing apparatus monitoring method
US7330346B2 (en) 2006-03-01 2008-02-12 Hitachi High-Technologies Corporation Etching apparatus, method for measuring self-bias voltage, and method for monitoring etching apparatus
JP2007234869A (en) * 2006-03-01 2007-09-13 Hitachi High-Technologies Corp Etching processing apparatus, monitoring method thereof, and self bias voltage measuring method
WO2009113481A1 (en) * 2008-03-14 2009-09-17 三菱重工業株式会社 Plasma treatment apparatus, and method for controlling substrate attraction force in plasma treatment apparatus
JP2010171454A (en) * 2010-04-19 2010-08-05 Hitachi High-Technologies Corp Plasma processing apparatus and plasma processing method
JPWO2022180723A1 (en) * 2021-02-25 2022-09-01
WO2022180723A1 (en) * 2021-02-25 2022-09-01 株式会社日立ハイテク Plasma treatment device
KR20220123373A (en) * 2021-02-25 2022-09-06 주식회사 히타치하이테크 plasma processing unit
JP7350995B2 (en) 2021-02-25 2023-09-26 株式会社日立ハイテク plasma processing equipment
TWI830156B (en) * 2021-02-25 2024-01-21 日商日立全球先端科技股份有限公司 Plasma treatment device
KR102662551B1 (en) 2021-02-25 2024-05-03 주식회사 히타치하이테크 plasma processing device

Also Published As

Publication number Publication date
JP3635463B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
KR100281935B1 (en) Self-bias measuring method and apparatus and electrostatic adsorption apparatus
JP3306677B2 (en) Self-bias measurement method and device, and electrostatic suction device
JP3208044B2 (en) Plasma processing apparatus and plasma processing method
JP5160802B2 (en) Plasma processing equipment
JP4657949B2 (en) Etching processing apparatus, self-bias voltage measuring method, and etching processing apparatus monitoring method
KR100346587B1 (en) Semiconductor workpiece processing apparatus and method
TW297986B (en)
WO2000021127A1 (en) Method and device for compensating wafer bias in a plasma processing chamber
KR20070037452A (en) Method of determining the correct average bias compensation voltage during a plasma process
JP2004047696A (en) Method and apparatus for plasma doping, and matching circuit
JP2017022216A (en) Plasma processing apparatus
JP3635463B2 (en) Self-bias measurement method and apparatus, and electrostatic chuck
US9209001B2 (en) Sputtering apparatus and sputtering method
JPWO2002059954A1 (en) Plasma processing apparatus and plasma processing method
JP7018978B2 (en) Plasma processing equipment
JP3017631B2 (en) Control method of low-temperature processing equipment
JPH0927395A (en) Plasma treatment device, and plasma treatment method using this device
JPH10125494A (en) Plasma processing system and method therefor
JPH08181118A (en) Plasma processor
JP3167493B2 (en) Pressure control device
JPH07142199A (en) Plasma treatment device and its control method
CN112345814A (en) DC bias detection method, device, jig and lower electrode system
JPH0866071A (en) Electrostatic attraction apparatus
US6843926B2 (en) In-situ measurement of wafer position on lower electrode
US20240019881A1 (en) Accurate temperature monitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

EXPY Cancellation because of completion of term