[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002246253A - Method of manufacturing sintered magnet - Google Patents

Method of manufacturing sintered magnet

Info

Publication number
JP2002246253A
JP2002246253A JP2001037745A JP2001037745A JP2002246253A JP 2002246253 A JP2002246253 A JP 2002246253A JP 2001037745 A JP2001037745 A JP 2001037745A JP 2001037745 A JP2001037745 A JP 2001037745A JP 2002246253 A JP2002246253 A JP 2002246253A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
sintered
temperature
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001037745A
Other languages
Japanese (ja)
Inventor
Tetsuya Hidaka
徹也 日高
Tsutomu Ishizaka
力 石坂
Tokuji Sakamoto
篤司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001037745A priority Critical patent/JP2002246253A/en
Publication of JP2002246253A publication Critical patent/JP2002246253A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Nd2Fe14B-based sintered magnet that has sufficiently high coercive force in practical use even if aging treatment is not made. SOLUTION: This method is used for manufacturing the sintered magnet containing R that is at least one kind of rare earth elements, Fe, and B, and includes a formation process for forming the powder of a raw material alloy to obtain a forming body, and a sintering process for sintering the forming body to obtain a sintered body. In the sintering process, atmospheric pressure is set to 1 atmosphere or more and 10 atmospheres or less for at least a period from the time when relative density in the sintered body becomes 70% in heat-up to the time when fall in temperature is started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Nd2Fe14B系
組成をもつ希土類焼結磁石を製造する方法に関する。
The present invention relates to a method for producing a rare earth sintered magnet having an Nd 2 Fe 14 B-based composition.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、例
えば特許第1431617号公報に記載されているNd
2Fe14B系磁石が知られている。
2. Description of the Related Art As a rare earth magnet having high performance, for example, Nd described in Japanese Patent No. 1431617 is disclosed.
2 Fe 14 B-based magnets are known.

【0003】Nd2Fe14B系磁石は、密度が高いほど
残留磁束密度が高くなる。しかし、高密度化のために高
温または長時間の焼結を行うと、結晶粒が粗大化して高
保磁力が得られなくなってしまう。保磁力低下を抑えた
上で高密度化するためには、熱間静水圧プレスが用いら
れる。しかし、熱間静水圧プレスは、500気圧程度以
上の高圧を利用するため、設備費および保守点検費が高
額となり、また、製造時間が長くなる。そのため、製造
コストが高くなってしまう。
The higher the density of the Nd 2 Fe 14 B-based magnet, the higher the residual magnetic flux density. However, if sintering is performed at high temperature or for a long time for high density, the crystal grains become coarse and high coercive force cannot be obtained. A hot isostatic press is used to increase the density while suppressing the decrease in coercive force. However, the hot isostatic press uses a high pressure of about 500 atm or more, so that the equipment cost and the maintenance and inspection cost are high, and the manufacturing time is long. Therefore, the manufacturing cost increases.

【0004】このような事情から、特開2000−23
2012号公報では、真空中または大気圧以下の不活性
ガス雰囲気中において、1000〜1150℃で、焼結
体の密度が真密度の90〜98%になるまで焼結を行
い、引き続き1〜20気圧の不活性ガス雰囲気におい
て、900〜1150℃で0.1〜5時間焼結を行うこ
とを特徴とする希土類磁石の製造方法を提案している。
同公報には、前段の真空中焼結により、オープン・ポア
のなくなる密度(90〜98%)まで上昇させ、後段の
1〜20気圧下での焼結により、結晶粒をほとんど粗大
化させることなく高密度化する旨が記載されている。
[0004] Under such circumstances, Japanese Patent Laid-Open No. 2000-23
According to Japanese Patent Publication No. 2012, sintering is performed at 1000 to 1150 ° C. in a vacuum or an inert gas atmosphere at or below atmospheric pressure until the density of the sintered body becomes 90 to 98% of the true density. A method for producing a rare earth magnet, characterized in that sintering is performed at 900 to 1150 ° C. for 0.1 to 5 hours in an atmosphere of an inert gas at atmospheric pressure.
According to the same publication, sintering in vacuum at the first stage increases the density (90-98%) to eliminate open pores, and sintering at 1-20 atm in the second stage almost increases the size of crystal grains. It is described that the density is increased without any change.

【0005】また、特開平7−335468号公報で
は、真空中において真密度の85〜95%まで焼結を行
い、引き続き不活性ガス雰囲気中において50〜500
気圧にて焼結を行うことを特徴とする希土類磁石の製造
方法を提案している。この製造方法における作用効果
は、特開2000−232012号公報記載の製造方法
とほぼ同じである。
In Japanese Patent Application Laid-Open No. 7-335468, sintering is performed to a true density of 85 to 95% in a vacuum, and subsequently, the sintering is performed in an inert gas atmosphere for 50 to 500%.
A method for producing a rare earth magnet characterized by sintering at atmospheric pressure has been proposed. The operation and effect of this manufacturing method are almost the same as those of the manufacturing method described in JP-A-2000-232012.

【0006】[0006]

【発明が解決しようとする課題】本発明は、保磁力の高
いNd2Fe14B系焼結磁石を提供することを目的とす
る。また、本発明は、時効処理を施さなくても実用上十
分に高い保磁力をもつNd2Fe14B系焼結磁石を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an Nd 2 Fe 14 B sintered magnet having a high coercive force. Another object of the present invention is to provide a Nd 2 Fe 14 B-based sintered magnet having a practically sufficiently high coercive force without aging treatment.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(3)の本発明により達成される。 (1) R(Rは、希土類元素の少なくとも1種であ
る)、FeおよびBを含有する焼結磁石を製造する方法
であって、原料合金の粉末を成形して成形体を得る成形
工程と、前記成形体を焼結して焼結体を得る焼結工程と
を有し、前記焼結工程において、少なくとも、昇温時に
焼結体の相対密度が70%となったときから降温開始ま
での期間で、雰囲気圧力を1気圧超10気圧以下とする
焼結磁石の製造方法。 (2) 前記焼結工程において得られた焼結体を、時効
処理を施すことなく焼結磁石として用いる上記(1)の
焼結磁石の製造方法。 (3) R(Rは、希土類元素の少なくとも1種であ
る)、FeおよびBを含有する焼結磁石を製造する方法
であって、原料合金の粉末を成形して成形体を得る成形
工程と、前記成形体を焼結して焼結体を得る焼結工程と
を有し、前記焼結工程において、少なくとも、昇温時に
焼結体の相対密度が70%となったときから降温開始ま
での期間で、雰囲気圧力を0〜10気圧の範囲内で制御
することにより、同一の原料合金を用いて保磁力および
残留磁束密度の異なる焼結体を得る焼結磁石の製造方
法。
This and other objects are achieved by the present invention which is defined below as (1) to (3). (1) A method for producing a sintered magnet containing R (R is at least one kind of rare earth element), Fe and B, comprising a step of molding a powder of a raw alloy to obtain a molded body; A sintering step of sintering the molded body to obtain a sintered body. In the sintering step, at least from the time when the relative density of the sintered body becomes 70% at the time of raising the temperature to the start of the temperature decrease A method for producing a sintered magnet in which the atmospheric pressure is set to more than 1 atm and 10 atm or less during the period. (2) The method for producing a sintered magnet according to the above (1), wherein the sintered body obtained in the sintering step is used as a sintered magnet without performing aging treatment. (3) A method for producing a sintered magnet containing R (R is at least one kind of rare earth element), Fe and B, comprising a step of molding a powder of a raw material alloy to obtain a compact. A sintering step of sintering the molded body to obtain a sintered body. In the sintering step, at least from the time when the relative density of the sintered body becomes 70% at the time of raising the temperature to the start of the temperature decrease A method of producing a sintered magnet in which the same raw material alloy is used to obtain sintered bodies having different coercive forces and residual magnetic flux densities by controlling the atmospheric pressure within a range of 0 to 10 atm.

【0008】[0008]

【作用および効果】本発明では、Nd2Fe14B系磁石
を製造する際の焼結工程において、昇温時に焼結体の相
対密度が70%となったときから降温開始までの期間
で、高圧雰囲気中で焼結を行う。これにより、高保磁力
が得られる。Nd2Fe14B系磁石製造の際には、焼結
後に時効処理を施さないと実用的な保磁力が得られない
ことがよく知られているが、本発明にしたがって焼結雰
囲気の圧力を制御すれば、時効処理を施すことなく実用
的な保磁力が得られる。したがって本発明では、製造時
間を著しく短縮することが可能であり、従来にない著し
いコスト低減効果が得られる。
According to the present invention, in the sintering step when manufacturing the Nd 2 Fe 14 B-based magnet, the relative density of the sintered body becomes 70% at the time of raising the temperature and the period from the time when the temperature is lowered is reduced. Sintering is performed in a high pressure atmosphere. Thereby, a high coercive force is obtained. It is well known that a practical coercive force cannot be obtained unless aging treatment is performed after sintering in the production of Nd 2 Fe 14 B-based magnets. If controlled, a practical coercive force can be obtained without aging treatment. Therefore, according to the present invention, the manufacturing time can be remarkably reduced, and a remarkable cost reduction effect which has not been achieved in the past can be obtained.

【0009】また、本発明では、焼結体の密度が比較的
低い段階から高圧で焼結するので、焼結体中にポア(空
孔)が閉じ込められる。そのため、焼結体密度が比較的
低くなり、磁石を軽量化できる。また、そのため、焼結
時の収縮率が低くなるので、寸法精度の良好な磁石が得
られ、焼結後の形状加工の負担を軽減できる。
In the present invention, since the sintered body is sintered at a high pressure from a relatively low density stage, pores (voids) are confined in the sintered body. Therefore, the density of the sintered body is relatively low, and the weight of the magnet can be reduced. In addition, since the shrinkage ratio during sintering is low, a magnet with good dimensional accuracy can be obtained, and the burden of shape processing after sintering can be reduced.

【0010】なお、本発明において焼結体に形成される
ポアは、焼結体の外部と連通しないクローズド・ポアを
主体とする。本発明において、焼結体の密度がかなり低
いにもかかわらず高保磁力が得られるのは、焼結体が全
体として粗なのではなく、緻密に焼結された高保磁力領
域とクローズド・ポアとが混在した組織構造となってい
るためと考えられる。その結果、低密度かつ高保磁力の
焼結体が得られると考えられる。
[0010] In the present invention, the pores formed in the sintered body are mainly closed pores that do not communicate with the outside of the sintered body. In the present invention, the reason why a high coercive force is obtained despite the fact that the density of the sintered body is quite low is not that the sintered body is coarse as a whole, but that the densely sintered high coercive force region and the closed pore are formed. This is probably due to the mixed organizational structure. As a result, it is considered that a sintered body having a low density and a high coercive force can be obtained.

【0011】前記した特開2000−232012号公
報および特開平7−335468号公報では、焼結体の
外部と連通するオープン・ポアをなくすために、焼結体
密度が少なくとも85%以上となるまで真空または減圧
下で焼結し、その後、高圧雰囲気中で焼結する。すなわ
ち、焼結雰囲気を高圧にするタイミングが本発明より著
しく遅い。このように真空または低圧下から高圧雰囲気
に変更するタイミングが遅いと、保磁力の向上率が低く
なり、また、時効処理なしに実用的な保磁力を得ること
はできない。また、焼結体の密度が高くなるため、磁石
が重くなる。また、焼結時の収縮率が高くなるため、寸
法精度の良好な磁石が得られにくい。
In the above-mentioned JP-A-2000-232012 and JP-A-7-335468, in order to eliminate open pores communicating with the outside of the sintered body, until the density of the sintered body becomes at least 85% or more. Sinter under vacuum or reduced pressure, and then sinter in a high pressure atmosphere. That is, the timing of setting the sintering atmosphere to a high pressure is significantly later than the present invention. If the timing of changing from the vacuum or low pressure to the high pressure atmosphere is late, the improvement rate of the coercive force decreases, and a practical coercive force cannot be obtained without aging treatment. Further, since the density of the sintered body increases, the weight of the magnet increases. In addition, since the shrinkage ratio during sintering increases, it is difficult to obtain a magnet with good dimensional accuracy.

【0012】また、本発明では、昇温時に焼結体の相対
密度が70%となったときから降温開始までの期間にお
いて、焼結雰囲気の圧力を制御することにより、焼結体
の磁気特性および時効処理後の磁気特性を制御すること
が可能である。具体的には、比較的低圧で焼結すること
により、残留磁束密度が高く最大エネルギー積の高い磁
石が得られる。また、比較的高圧で焼結することによ
り、残留磁束密度はそれほど高くないが高保磁力の磁石
が得られる。すなわち、焼結雰囲気の圧力を制御するだ
けで、他の条件、例えば焼結温度、焼結時間、時効処理
条件などを変更しなくても、同一の原料合金から磁石特
性の相異なる様々な磁石を製造することができる。した
がって、様々な特性の磁石を製造するに際し、原料合金
の管理が容易となるほか、製造工程の管理も容易とな
る。
Further, according to the present invention, the pressure of the sintering atmosphere is controlled during the period from when the relative density of the sintered body becomes 70% at the time of raising the temperature to when the temperature is lowered, whereby the magnetic properties of the sintered body are controlled. Further, it is possible to control the magnetic properties after the aging treatment. Specifically, by sintering at a relatively low pressure, a magnet having a high residual magnetic flux density and a high maximum energy product can be obtained. In addition, by sintering at a relatively high pressure, a magnet having a high coercive force can be obtained although the residual magnetic flux density is not so high. In other words, various magnets having different magnet properties can be obtained from the same raw material alloy by simply controlling the pressure of the sintering atmosphere and without changing other conditions such as sintering temperature, sintering time, and aging treatment conditions. Can be manufactured. Therefore, when manufacturing magnets having various characteristics, the management of the raw material alloy and the management of the manufacturing process become easy.

【0013】[0013]

【発明の実施の形態】本発明により製造される焼結磁石
は、R(ただし、RはYを含む希土類元素の1種以
上)、FeおよびBを含有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION A sintered magnet manufactured according to the present invention contains R (where R is one or more rare earth elements including Y), Fe and B.

【0014】RおよびBの含有量は、原子百分率で 12≦R≦16、 4≦B≦8 であることが好ましい。残部はFeである。It is preferable that the contents of R and B satisfy 12 ≦ R ≦ 16 and 4 ≦ B ≦ 8 in atomic percentage. The balance is Fe.

【0015】希土類元素Rとしては、Nd、Pr、D
y、Tbのうち少なくとも1種を必ず用いることが好ま
しい。また、これらに加え、La、Ce、Sm、Pm、
Eu、Gd、Ho、Er、Tm、Yb、Lu、Yのうち
1種以上を用いてもよい。なお、Rとして2種以上の元
素を用いる場合、原料としてミッシュメタル等の混合物
を用いることもできる。R含有量が少なすぎると、結晶
構造がα−Feと同一構造の立方晶組織となるため、高
い保磁力が得られない。一方、R含有量が多すぎると、
Rリッチな非磁性相が多くなり、残留磁束密度が低下す
る。Fe含有量が少なすぎると残留磁束密度が低くな
り、多すぎると保磁力が低くなる。B含有量が少なすぎ
ると菱面体組繊となるため保磁力が不十分となり、多す
ぎるとBリッチな非磁性相が多くなるため残留磁束密度
が低くなる。
As the rare earth element R, Nd, Pr, D
It is preferable to use at least one of y and Tb. In addition, in addition to these, La, Ce, Sm, Pm,
One or more of Eu, Gd, Ho, Er, Tm, Yb, Lu, and Y may be used. When two or more elements are used as R, a mixture such as misch metal can be used as a raw material. If the R content is too small, a high coercive force cannot be obtained because the crystal structure becomes a cubic structure having the same structure as α-Fe. On the other hand, if the R content is too large,
The number of R-rich non-magnetic phases increases, and the residual magnetic flux density decreases. If the Fe content is too low, the residual magnetic flux density will be low, and if it is too high, the coercive force will be low. If the B content is too small, the coherence becomes insufficient due to the rhombohedral braiding, and if it is too large, the B-rich nonmagnetic phase increases and the residual magnetic flux density decreases.

【0016】なお、Feの一部をCoで置換することに
より、磁気特性を損うことなく温度特性を改善すること
ができる。この場合、Co置換量がFeの50%を超え
ると磁気特性が劣化するため、Co置換量は50%以下
とすることが好ましい。
By substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics. In this case, if the amount of Co substitution exceeds 50% of Fe, the magnetic properties deteriorate, so the amount of Co substitution is preferably set to 50% or less.

【0017】さらに、Bの一部を、C、P、Sのうちの
1種以上で置換することにより、生産性の向上および低
コスト化が実現できる。この場合、置換量は全体の4モ
ル%以下であることが好ましい。また、保磁力の向上、
生産性の向上、低コスト化のために、Al、Ti、V、
Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、G
e、Sn、Zr、Ni、Si、Hf、Ga、Zn、Cu
等の1種以上を添加してもよい。この場合、添加量は総
計で10モル%以下とすることが好ましい。
Further, by replacing a part of B with one or more of C, P and S, it is possible to improve productivity and reduce costs. In this case, the substitution amount is preferably 4 mol% or less of the whole. In addition, improvement of coercive force,
Al, Ti, V,
Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, G
e, Sn, Zr, Ni, Si, Hf, Ga, Zn, Cu
And the like may be added. In this case, the amount of addition is preferably 10 mol% or less in total.

【0018】上記焼結磁石は、実質的に正方晶系の結晶
構造の主相を有する。この主相の粒径は、3〜50μm
程度であることが好ましい。そして、通常、体積比で1
〜15%の非磁性相を含む。
The sintered magnet has a main phase having a substantially tetragonal crystal structure. The particle size of this main phase is 3-50 μm
It is preferred that it is about. And usually, the volume ratio is 1
15% non-magnetic phase.

【0019】次に、本発明の製造方法について説明す
る。
Next, the manufacturing method of the present invention will be described.

【0020】まず、合金を鋳造し、インゴットを得る。
得られたインゴットを、ディスクミル等により10〜1
00μm程度の粒径まで粗粉砕し、次いで、ジェットミ
ル等により0.5〜5μm程度の粒径まで微粉砕する。
なお、水素吸蔵粉砕を行うこともできる。水素吸蔵粉砕
では、インゴットを30mm角程度まで粗粉砕し、水素吸
蔵と水素放出とを少なくとも1回行うことにより、微粉
砕する。この水素吸蔵粉砕と機械的粉砕とを併用しても
よい。水素吸蔵粉砕を行うと元素Rは水素化物となる
が、焼結工程の昇温過程において800℃付近で脱水素
される。
First, an alloy is cast to obtain an ingot.
The obtained ingot is placed in a disc mill or the like for 10 to 1
The material is roughly pulverized to a particle size of about 00 μm, and then finely pulverized to a particle size of about 0.5 to 5 μm by a jet mill or the like.
In addition, hydrogen occlusion grinding can also be performed. In the hydrogen storage pulverization, the ingot is coarsely pulverized to about 30 mm square, and finely pulverized by performing hydrogen storage and hydrogen release at least once. The hydrogen storage pulverization and the mechanical pulverization may be used in combination. The element R becomes a hydride when the hydrogen absorbing and pulverizing is performed, but is dehydrogenated at around 800 ° C. in the temperature rising process of the sintering step.

【0021】得られた粉末を、好ましくは磁場中にて成
形し、成形体を得る。この場合、磁場強度は800kA/m
以上、成形圧力は50〜500MPa程度であることが好
ましい。成形体の密度は、焼結体の理論密度(真密度)
の50〜65%であることが好ましい。成形体密度が低
すぎると、焼結時の収縮率が大きくなって焼結体の寸法
精度が低くなる。一方、成形体密度が高すぎると、焼結
後に十分に高い残留磁束密度が得られにくくなる。
The obtained powder is preferably molded in a magnetic field to obtain a molded product. In this case, the magnetic field strength is 800 kA / m
As described above, the molding pressure is preferably about 50 to 500 MPa. The density of the compact is the theoretical density (true density) of the sintered body
Is preferably 50 to 65%. If the density of the compact is too low, the shrinkage ratio during sintering will increase, and the dimensional accuracy of the sintered compact will decrease. On the other hand, if the density of the compact is too high, it is difficult to obtain a sufficiently high residual magnetic flux density after sintering.

【0022】次に、成形体を焼結する。このとき、昇温
時に焼結体の相対密度が70%となったときから降温開
始までの期間の全域において、雰囲気圧力を1気圧超、
好ましくは1.2気圧以上、より好ましくは2気圧以上
に保ちながら焼結を行う。これにより、時効処理を施さ
なくても磁石として利用可能な程度の保磁力をもつ焼結
体が得られる。1気圧以下の圧力下で昇温を開始し、相
対密度が例えば90%程度となってから初めて1気圧超
の圧力とした場合には、高保磁力が得られない。また、
上記期間において雰囲気圧力が低すぎると、高保磁力が
得られない。
Next, the compact is sintered. At this time, in the entire region from the time when the relative density of the sintered body becomes 70% at the time of raising the temperature to the time when the temperature is reduced, the atmospheric pressure exceeds 1 atm.
The sintering is performed preferably while maintaining the pressure at 1.2 atm or more, more preferably at 2 atm or more. Thus, a sintered body having a coercive force that can be used as a magnet without aging treatment is obtained. When the temperature is increased under a pressure of 1 atm or less and the pressure is increased to a pressure exceeding 1 atm for the first time after the relative density becomes, for example, about 90%, a high coercive force cannot be obtained. Also,
If the atmospheric pressure is too low during the above period, a high coercive force cannot be obtained.

【0023】一方、上記期間において雰囲気圧力が高す
ぎると、焼結時にクローズド・ポアが縮まりにくくなる
結果、残留磁束密度が低くなってしまう。また、上記期
間における雰囲気圧力を著しく高くしても、保磁力向上
効果は顕著には向上しない。また、雰囲気圧力が高すぎ
ると、焼結体のクローズド・ポア内に高圧の気体が閉じ
込められる結果、時効処理を施したときに焼結体が破裂
する危険がある。また、10気圧を超える圧力とする場
合、厳しい法的規制に対応しなくてはならず、コスト高
となってしまう。したがって、上記期間における雰囲気
圧力は10気圧以下、好ましくは4気圧以下、より好ま
しくは3気圧以下とする。
On the other hand, if the atmospheric pressure is too high during the above period, the closed pores are less likely to shrink during sintering, resulting in a lower residual magnetic flux density. Further, even if the atmospheric pressure in the above period is significantly increased, the effect of improving the coercive force is not significantly improved. On the other hand, if the atmospheric pressure is too high, the high-pressure gas is trapped in the closed pores of the sintered body, and there is a risk that the sintered body may burst when subjected to aging treatment. If the pressure exceeds 10 atm, strict legal regulations must be met, and the cost will increase. Therefore, the atmospheric pressure in the above period is set to 10 atm or less, preferably 4 atm or less, more preferably 3 atm or less.

【0024】なお、本発明における焼結時の雰囲気圧力
の制御は、少なくとも、昇温時に焼結体の相対密度が7
0%となったときから降温開始までの期間において行え
ばよい。すなわち、焼結体の相対密度が70%に達する
前から、例えば昇温過程の最初から高圧雰囲気としても
よい。また、焼結体の組成や焼結工程における温度制御
パターンによっては、降温過程でも焼結が進行すること
があるので、好ましくは降温過程においても上記した雰
囲気圧力の制御を行うことが好ましい。
The control of the atmospheric pressure during sintering in the present invention is performed at least when the relative density of the sintered body is 7 at the time of temperature rise.
What is necessary is just to perform in the period from 0% to the start of temperature fall. That is, a high-pressure atmosphere may be used before the relative density of the sintered body reaches 70%, for example, from the beginning of the heating process. In addition, depending on the composition of the sintered body and the temperature control pattern in the sintering step, sintering may progress even in the temperature decreasing step. Therefore, it is preferable to control the above-mentioned atmospheric pressure also in the temperature decreasing step.

【0025】焼結時の雰囲気ガスは、Ar等の希ガスや
窒素などの不活性ガスから構成されることが好ましく、
特に希ガスから構成されることが好ましい。
The atmosphere gas during sintering is preferably composed of a rare gas such as Ar or an inert gas such as nitrogen.
In particular, it is preferable to be composed of a rare gas.

【0026】なお、焼結体の相対密度は、焼結体の実測
密度をその理論密度で除した値である。本明細書におけ
る焼結体の理論密度は、「固体物理Vol.21,No.1,37-45
(1986)」(アグネ技術センター発行)のTable 1に記載
されたR2Fe14Bの密度であり、例えば、Nd2Fe14
Bは7.58Mg/m3、Dy2Fe14Bは8.07Mg/m3
ある。また、元素Rを2種以上用いる場合には、各元素
の比率に応じ直線近似する。具体的には、元素Rとして
NdおよびDyを用い、これらのモル比がNd:Dy=
x:yである場合、理論密度は (7.58x+8.07y)/(x+y) とする。
The relative density of the sintered body is a value obtained by dividing the measured density of the sintered body by its theoretical density. The theoretical density of the sintered body in the present specification, "Solid Physics Vol. 21, No. 1, 37-45
(1986) "(published by Agne Technical Center), which is the density of R 2 Fe 14 B, for example, Nd 2 Fe 14
B is 7.58 Mg / m 3 and Dy 2 Fe 14 B is 8.07 Mg / m 3 . When two or more elements R are used, a linear approximation is performed according to the ratio of each element. Specifically, Nd and Dy are used as the element R, and their molar ratio is Nd: Dy =
If x: y, the theoretical density is (7.58x + 8.07y) / (x + y).

【0027】焼結温度(安定温度)は、1000〜11
00℃とすることが好ましい。安定温度とは、昇温過程
と降温過程とに挟まれた安定温度域における温度であ
る。安定温度に保持する時間は、0.1〜100時間と
することが好ましい。焼結温度が低すぎたり焼結時間が
短すぎたりすると、焼結が十分に進まず残留磁束密度が
低くなりやすい。一方、焼結温度が高すぎたり焼結時間
が長すぎたりすると、結晶粒が粗大化して保磁力が低く
なりやすい。なお、焼結体の相対密度が70%となる温
度は、焼結体の組成や成形体の圧力によっても異なる
が、通常、800〜900℃程度である。
The sintering temperature (stable temperature) is 1000 to 11
The temperature is preferably set to 00 ° C. The stable temperature is a temperature in a stable temperature range between a temperature rising process and a temperature falling process. The time for maintaining the temperature at a stable temperature is preferably 0.1 to 100 hours. If the sintering temperature is too low or the sintering time is too short, sintering does not proceed sufficiently and the residual magnetic flux density tends to be low. On the other hand, if the sintering temperature is too high or the sintering time is too long, the crystal grains become coarse and the coercive force tends to decrease. The temperature at which the relative density of the sintered body becomes 70% depends on the composition of the sintered body and the pressure of the molded body, but is usually about 800 to 900 ° C.

【0028】本発明にしたがって高圧雰囲気中で焼結し
た場合、焼結完了後の焼結体の相対密度は、通常、91
〜96%となる。
When sintering in a high-pressure atmosphere according to the present invention, the relative density of the sintered body after completion of sintering is usually 91%.
~ 96%.

【0029】上記したように比較的高圧で焼結すれば、
時効処理を施さなくても磁石として使用可能な焼結体が
得られるが、必要に応じて時効処理を施してもよい。時
効処理は、好ましくは不活性ガス雰囲気中において、好
ましくは500℃以上焼結温度以下の温度、より好まし
くは500〜950℃で、0.1〜100時間加熱する
ことにより行う。時効処理により保磁力がさらに向上す
る。なお、時効処理は、多段階の熱処理から構成しても
よい。例えば2段の熱処理からなる時効処理では、1段
目の熱処理を700℃以上焼結温度未満の温度で0.1
〜50時間行い、2段目の熱処理を500〜700℃で
0.1〜100時間行うことが好ましい。
By sintering at a relatively high pressure as described above,
A sintered body that can be used as a magnet can be obtained without aging treatment, but may be subjected to aging treatment if necessary. The aging treatment is preferably performed by heating in an inert gas atmosphere at a temperature of preferably 500 ° C. or more and a sintering temperature or less, more preferably 500 to 950 ° C. for 0.1 to 100 hours. The coercive force is further improved by the aging treatment. Note that the aging treatment may be constituted by a multi-step heat treatment. For example, in the aging treatment including the two-stage heat treatment, the first-stage heat treatment is performed at a temperature of 700 ° C. or higher and lower than the sintering temperature by 0.1%.
It is preferable to perform the heat treatment in the second stage at 500 to 700 ° C. for 0.1 to 100 hours.

【0030】前述したように本発明には、高圧焼結に限
らず、雰囲気圧力を制御することによって焼結体の磁気
特性を制御する発明も包含される。その場合、少なくと
も、昇温時に焼結体の相対密度が70%となったときか
ら降温開始までの期間において、雰囲気圧力を0〜10
気圧の範囲内で制御することにより、同一の原料合金を
用いて保磁力および残留磁束密度の異なる焼結体を得る
ことができる。
As described above, the present invention includes not only high-pressure sintering but also an invention in which the magnetic properties of a sintered body are controlled by controlling the atmospheric pressure. In this case, at least during the period from the time when the relative density of the sintered body becomes 70% at the time of raising the temperature to the start of the temperature drop, the atmospheric pressure is set to 0 to 10
By controlling the pressure within the range of the atmospheric pressure, sintered bodies having different coercive force and residual magnetic flux density can be obtained using the same raw material alloy.

【0031】本発明により製造される焼結磁石の用途は
特に限定されず、例えばモータやスピーカなど各種機器
に適用可能である。
The use of the sintered magnet produced according to the present invention is not particularly limited, and can be applied to various devices such as a motor and a speaker.

【0032】[0032]

【実施例】実施例1 表1に示す焼結体サンプルを、以下の手順で作製した。EXAMPLES Example 1 Sintered body samples shown in Table 1 were produced by the following procedure.

【0033】鋳造した合金インゴットを窒素ガス雰囲気
中で粉砕することにより、合金粉末を得た。合金粉末の
組成(モル百分率)は、 組成1:12.78Nd-5.96B-0.06Cu-0.11Co-残部Fe、 組成2:12.78Nd-5.96B-0.08Cu-0.11Co-残部Fe、 組成3:12.78Nd-5.96B-0.04Cu-0.55Co-残部Fe、 組成4:12.78Nd-5.96B-0.04Cu-0.11Co-残部Fe、 組成5:(11.65Nd-2.38Dy)-6.08B-0.10Cu-0.56Co-0.49A
l-0.05Sn-残部Fe とした。
An alloy powder was obtained by grinding the cast alloy ingot in a nitrogen gas atmosphere. The composition (molar percentage) of the alloy powder was as follows: composition 1: 12.78Nd-5.96B-0.06Cu-0.11Co-balance Fe, composition 2: 12.78Nd-5.96B-0.08Cu-0.11Co-balance Fe, composition 3: 12.78 Nd-5.96B-0.04Cu-0.55Co-balance Fe, composition 4: 12.78Nd-5.96B-0.04Cu-0.11Co-balance Fe, composition 5: (11.65Nd-2.38Dy) -6.08B-0.10Cu-0.56 Co-0.49A
l-0.05Sn-The balance was Fe.

【0034】次いで、合金粉末を強度5Tのパルス磁場
中で50MPaの圧力で成形し、相対密度50%の成形体
を得た。ただし、組成5のサンプルでは、強度1.2T
の静磁場中で150MPaの圧力で成形し、相対密度58
%の成形体を得た。
Next, the alloy powder was compacted at a pressure of 50 MPa in a pulse magnetic field having a strength of 5 T to obtain a compact having a relative density of 50%. However, in the sample of composition 5, the strength was 1.2T.
Molding at a pressure of 150 MPa in a static magnetic field of
% Of a molded product was obtained.

【0035】次いで、成形体を真空中またはAr雰囲気
中において焼結し、焼結体サンプルを得た。焼結時の雰
囲気圧力を表1に示す。なお、雰囲気圧力は、焼結工程
全体を通して一定に保った。焼結は以下の条件で行っ
た。下記焼結条件において、温度は安定温度であり、時
間は安定温度での保持時間である。
Next, the compact was sintered in a vacuum or in an Ar atmosphere to obtain a sintered body sample. Table 1 shows the atmospheric pressure during sintering. The atmosphere pressure was kept constant throughout the sintering process. Sintering was performed under the following conditions. In the following sintering conditions, the temperature is the stable temperature, and the time is the holding time at the stable temperature.

【0036】焼結条件1:1070℃で4時間熱処理、 焼結条件2:1050℃で4時間熱処理、 焼結条件3:1090℃で4時間熱処理Sintering condition 1: heat treatment at 1070 ° C. for 4 hours, sintering condition 2: heat treatment at 1050 ° C. for 4 hours, sintering condition 3: heat treatment at 1090 ° C. for 4 hours

【0037】各サンプルについて、組成、焼結条件、相
対密度、保磁力(HcJ)、残留磁束密度(Br)および
最大エネルギー積((BH)max)を表1に示す。また、各
サンプルに、Ar雰囲気中において下記条件で時効処理
を施した。時効処理後の保磁力および最大エネルギー積
も、表1に示す。
Table 1 shows the composition, sintering conditions, relative density, coercive force (HcJ), residual magnetic flux density (Br), and maximum energy product ((BH) max) for each sample. Each sample was subjected to aging treatment in an Ar atmosphere under the following conditions. Table 1 also shows the coercive force and the maximum energy product after the aging treatment.

【0038】時効条件1:700℃で1時間熱処理後、
600℃で10時間熱処理、 時効条件2:900℃で1時間熱処理後、540℃で1
時間熱処理
Aging condition 1: After heat treatment at 700 ° C. for 1 hour,
Heat treatment at 600 ° C for 10 hours, Aging condition 2: Heat treatment at 900 ° C for 1 hour, then 540 ° C for 1 hour
Time heat treatment

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、本発明に基づいて、焼結体の密
度が低い時点から高圧雰囲気として焼結することによ
り、低密度かつ高保磁力の焼結体が得られることがわか
る。このときの保磁力は、時効処理を施していないにも
かかわらず、真空中で焼結したサンプルの時効処理後の
保磁力に近く、実用に耐える値である。そして、時効処
理後には保磁力がさらに向上している。これに対し、真
空中で焼結したサンプルは、時効処理前には実用不可能
な低い保磁力しか得られていない。
From Table 1, it can be seen that, according to the present invention, a sintered body having a low density and a high coercive force can be obtained by sintering in a high pressure atmosphere from the time when the density of the sintered body is low. The coercive force at this time is close to the coercive force after the aging treatment of the sample sintered in a vacuum, even though the aging treatment is not performed, and is a value that can withstand practical use. And, after the aging treatment, the coercive force is further improved. On the other hand, the sample sintered in a vacuum has only a low coercive force that is not practical before aging treatment.

【0041】なお、組成1〜4のサンプルの理論密度は
7.58Mg/m3であり、組成5のサンプルの理論密度は
7.66Mg/m3である。
The theoretical density of the samples of compositions 1 to 4 is 7.58 Mg / m 3 , and the theoretical density of the sample of composition 5 is 7.66 Mg / m 3 .

【0042】表1において、組成1〜4のサンプルの保
磁力は、Nd2Fe14B系磁石として特に高いとはいえ
ないが、これは元素R含有量が、通常の組成に比べかな
り少ないためである。ただし、元素Rを少なくすると共
にCuを添加したため、Cuを添加せずに元素Rを少な
くした場合に比べ保磁力はかなり高くなっている。そし
て、元素Rを少なくしたことにより高残留磁束密度が得
られているため、結果として、元素Rの多い組成5のサ
ンプルを凌ぐ極めて大きな最大エネルギー積が得られて
いる。
In Table 1, the coercive force of the samples of compositions 1 to 4 is not particularly high as a Nd 2 Fe 14 B-based magnet, but this is because the content of element R is considerably smaller than that of a normal composition. It is. However, since the element R was reduced and Cu was added, the coercive force was considerably higher than when the element R was reduced without adding Cu. Since a high residual magnetic flux density is obtained by reducing the amount of the element R, as a result, an extremely large maximum energy product is obtained over the sample of the composition 5 having a large amount of the element R.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 篤司 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 4K018 AA27 DA22 DA31 DA35 5E040 AA04 BD01 CA01 HB03 NN12 NN13 NN17 5E062 CD04 CG02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Atsushi Sakamoto 1-1-13 Nihonbashi, Chuo-ku, Tokyo TDK Corporation F-term (reference) 4K018 AA27 DA22 DA31 DA35 5E040 AA04 BD01 CA01 HB03 NN12 NN13 NN17 5E062 CD04 CG02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、希土類元素の少なくとも1種
である)、FeおよびBを含有する焼結磁石を製造する
方法であって、 原料合金の粉末を成形して成形体を得る成形工程と、前
記成形体を焼結して焼結体を得る焼結工程とを有し、 前記焼結工程において、少なくとも、昇温時に焼結体の
相対密度が70%となったときから降温開始までの期間
で、雰囲気圧力を1気圧超10気圧以下とする焼結磁石
の製造方法。
1. A method for producing a sintered magnet containing R (R is at least one of rare earth elements), Fe and B, comprising forming a compact by molding powder of a raw material alloy. And a sintering step of sintering the molded body to obtain a sintered body. In the sintering step, the temperature is lowered at least when the relative density of the sintered body becomes 70% at the time of temperature rise. A method for producing a sintered magnet in which the atmospheric pressure is increased from more than 1 atm to 10 atm or less in a period up to the start.
【請求項2】 前記焼結工程において得られた焼結体
を、時効処理を施すことなく焼結磁石として用いる請求
項1の焼結磁石の製造方法。
2. The method according to claim 1, wherein the sintered body obtained in the sintering step is used as a sintered magnet without performing aging treatment.
【請求項3】 R(Rは、希土類元素の少なくとも1種
である)、FeおよびBを含有する焼結磁石を製造する
方法であって、 原料合金の粉末を成形して成形体を得る成形工程と、前
記成形体を焼結して焼結体を得る焼結工程とを有し、 前記焼結工程において、少なくとも、昇温時に焼結体の
相対密度が70%となったときから降温開始までの期間
で、雰囲気圧力を0〜10気圧の範囲内で制御すること
により、同一の原料合金を用いて保磁力および残留磁束
密度の異なる焼結体を得る焼結磁石の製造方法。
3. A method for producing a sintered magnet containing R (R is at least one of rare earth elements), Fe and B, wherein a powder of a raw material alloy is molded to obtain a molded body. And a sintering step of sintering the molded body to obtain a sintered body. In the sintering step, the temperature is lowered at least when the relative density of the sintered body becomes 70% at the time of temperature rise. A method for producing a sintered magnet in which a sintered body having a different coercive force and a different residual magnetic flux density is obtained using the same raw material alloy by controlling the atmospheric pressure within a range of 0 to 10 atm until the start.
JP2001037745A 2001-02-14 2001-02-14 Method of manufacturing sintered magnet Withdrawn JP2002246253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037745A JP2002246253A (en) 2001-02-14 2001-02-14 Method of manufacturing sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037745A JP2002246253A (en) 2001-02-14 2001-02-14 Method of manufacturing sintered magnet

Publications (1)

Publication Number Publication Date
JP2002246253A true JP2002246253A (en) 2002-08-30

Family

ID=18900828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037745A Withdrawn JP2002246253A (en) 2001-02-14 2001-02-14 Method of manufacturing sintered magnet

Country Status (1)

Country Link
JP (1) JP2002246253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146781A1 (en) * 2012-03-30 2013-10-03 インターメタリックス株式会社 NdFeB-BASED SINTERED MAGNET
WO2014123079A1 (en) * 2013-02-05 2014-08-14 インターメタリックス株式会社 Sintered magnet production method
JPWO2014017249A1 (en) * 2012-07-24 2016-07-07 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet
US10066135B2 (en) 2012-12-28 2018-09-04 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146781A1 (en) * 2012-03-30 2013-10-03 インターメタリックス株式会社 NdFeB-BASED SINTERED MAGNET
CN104221100A (en) * 2012-03-30 2014-12-17 因太金属株式会社 Ndfeb-based sintered magnet
JPWO2013146781A1 (en) * 2012-03-30 2015-12-14 インターメタリックス株式会社 NdFeB-based sintered magnet
CN104221100B (en) * 2012-03-30 2018-03-16 因太金属株式会社 NdFeB based sintered magnets
JPWO2014017249A1 (en) * 2012-07-24 2016-07-07 インターメタリックス株式会社 Manufacturing method of NdFeB-based sintered magnet
US10066135B2 (en) 2012-12-28 2018-09-04 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using the same
WO2014123079A1 (en) * 2013-02-05 2014-08-14 インターメタリックス株式会社 Sintered magnet production method
CN104969316A (en) * 2013-02-05 2015-10-07 因太金属株式会社 Sintered magnet production method
EP2955732A4 (en) * 2013-02-05 2016-01-13 Intermetallics Co Ltd Sintered magnet production method
JPWO2014123079A1 (en) * 2013-02-05 2017-02-02 インターメタリックス株式会社 Sintered magnet manufacturing method

Similar Documents

Publication Publication Date Title
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
EP2500915B1 (en) R-T-B rare earth sintered magnet
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
US10825589B2 (en) R-T-B based rare earth magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP3683260B2 (en) Rare earth permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
EP2645381B1 (en) Process for producing R-T-B-based rare earth magnet particles
JP2002246253A (en) Method of manufacturing sintered magnet
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090514