[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002126535A - Catalyst for selective oxidation of carbon monoxide and production method of the same - Google Patents

Catalyst for selective oxidation of carbon monoxide and production method of the same

Info

Publication number
JP2002126535A
JP2002126535A JP2000329999A JP2000329999A JP2002126535A JP 2002126535 A JP2002126535 A JP 2002126535A JP 2000329999 A JP2000329999 A JP 2000329999A JP 2000329999 A JP2000329999 A JP 2000329999A JP 2002126535 A JP2002126535 A JP 2002126535A
Authority
JP
Japan
Prior art keywords
selective oxidation
catalyst
carbon monoxide
oxidation catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000329999A
Other languages
Japanese (ja)
Inventor
Masanao Yonemura
将直 米村
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000329999A priority Critical patent/JP2002126535A/en
Publication of JP2002126535A publication Critical patent/JP2002126535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a carbon monoxide selective oxidation catalyst capable of selectively oxidizing CO in a CO-containing gas mixture and excellent in selective oxidation and provide a production method of the oxidation catalyst. SOLUTION: The method for producing a carbon monoxide selective oxidation catalyst for selectively oxidizing CO in a CO-containing gas mixture comprises a sep of adding a catalyst carrier in a solvent and further adding a catalytic active species to the solvent to produce a carbon monoxide selective oxidation catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化炭素選択酸
化触媒およびその製造方法に関するものである。
The present invention relates to a catalyst for selective oxidation of carbon monoxide and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池(PEFC装置と
以下表すこともある。)は低公害で、さらに熱効率が高
いため、自動車用電源や分散電源などの幅広い分野で動
力源としての適用が期待されている。この固体高分子型
燃料電池の電極には主に白金触媒が用いられる。白金触
媒は、一酸化炭素(CO)によって被毒されやすいの
で、水素を主成分とする燃料ガス中からCOを極力除去
する必要がある。
2. Description of the Related Art Polymer electrolyte fuel cells (hereinafter sometimes referred to as PEFC devices) have low pollution and high thermal efficiency, so that they can be used as power sources in a wide range of fields such as power sources for automobiles and distributed power sources. Expected. A platinum catalyst is mainly used for the electrodes of this polymer electrolyte fuel cell. Since the platinum catalyst is easily poisoned by carbon monoxide (CO), it is necessary to remove as much CO as possible from the fuel gas containing hydrogen as a main component.

【0003】ここで、この燃料ガスの製造方法を説明す
る。まず、メタノールなどの燃料を水蒸気改質反応や部
分酸化反応などにより改質して水素を生成させ、この改
質反応で副生するCOをCOシフト反応(反応式:CO
+H2O→CO2+H2)により除去する。COシフト反
応のみでは化学平衡上の制約からCOの削減に限度があ
る。このため、COシフト反応に加え、CO濃度を固体
高分子型燃料電池が被毒しないように低減するための方
法を採用する必要がある。参考までにCOシフト反応後
のガスの成分の一例(メタノールを燃料とする)を挙げ
ると、H2が40〜60%、CO2が約10%、H2Oが
約20%およびCOが約0.5%となる。仮に、COシ
フト反応後のガス中に酸素を添加してCOを選択酸化す
ることができれば、COを除去する種々の方法のうちで
最も効率的で安価な方法となると思われる。
Here, a method for producing this fuel gas will be described. First, a fuel such as methanol is reformed by a steam reforming reaction or a partial oxidation reaction to generate hydrogen, and CO produced as a by-product of the reforming reaction is subjected to a CO shift reaction (reaction formula: CO
+ H 2 O → CO 2 + H 2 ). The CO shift reaction alone has a limit in reducing CO due to restrictions on chemical equilibrium. Therefore, in addition to the CO shift reaction, it is necessary to adopt a method for reducing the CO concentration so that the polymer electrolyte fuel cell is not poisoned. Taking an example of a component of the gas after CO-shift reaction for reference (methanol as fuel), H 2 is 40 to 60%, CO 2 is about 10%, H 2 O is about 20% and CO of about 0.5%. If CO could be selectively oxidized by adding oxygen to the gas after the CO shift reaction, it would be the most efficient and inexpensive method among various methods for removing CO.

【0004】しかしながら、従来の燃焼触媒によると、
前記原料ガスに添加された酸素は水素のみと反応し、つ
まり原料ガス中の主成分である水素の方が燃焼するた
め、COは残存したままとなる。したがって、COの選
択酸化を実現するために、水素の燃焼を抑制し、かつC
Oの燃焼を選択的に促進する触媒が待ち望まれている。
[0004] However, according to the conventional combustion catalyst,
Oxygen added to the source gas reacts only with hydrogen, that is, hydrogen, which is the main component in the source gas, burns, so that CO remains. Therefore, in order to realize the selective oxidation of CO, the combustion of hydrogen is suppressed and
A catalyst that selectively promotes the combustion of O has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に対
してなされたものであり、広範囲の温度域において、C
Oを含む混合ガス中のCOを選択酸化することができ、
その選択酸化性に優れた一酸化炭素選択酸化触媒とその
製造方法を提供することを目的とする。本発明で、CO
を含む混合ガスとは、CO、水素(H2)、酸素(O2
などを含む気体のことである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a wide range of temperatures.
CO in the mixed gas containing O can be selectively oxidized,
An object of the present invention is to provide a carbon monoxide selective oxidation catalyst having excellent selective oxidation properties and a method for producing the same. In the present invention, CO 2
Is a mixed gas containing CO, hydrogen (H 2 ), oxygen (O 2 )
It is a gas containing such.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、COを含む混合ガスにCOの選択酸化反
応を生じさせるための一酸化炭素選択酸化触媒の製造方
法おいて、触媒担体を溶媒中に添加し、さらに、触媒活
性種を該溶媒中に添加することを含むこととした。本発
明でCOの選択酸化反応とは、COを含む混合ガス中に
COより酸化しやすい元素(例えばH2)が含まれたと
しても、COを選択的に酸化する反応のことである。溶
媒とは、本発明で使用する触媒活性種を溶解すればよ
く、水(H2O)に限定されるものではない。例えば、
メタノール、エタノール等の有機溶媒でもよい。
In order to achieve the above object, the present invention relates to a method for producing a carbon monoxide selective oxidation catalyst for causing a selective oxidation reaction of CO in a mixed gas containing CO. It was intended to include adding the carrier into the solvent and further adding the catalytically active species into the solvent. In the present invention, the selective oxidation reaction of CO refers to a reaction that selectively oxidizes CO even if an element (eg, H 2 ) that is more easily oxidized than CO is contained in a mixed gas containing CO. The solvent only needs to dissolve the catalytically active species used in the present invention, and is not limited to water (H 2 O). For example,
Organic solvents such as methanol and ethanol may be used.

【0007】また、触媒担体としてゼオライト系担体を
用い、溶媒として水を用い、さらにこの水にゼオライト
担体を添加した後、触媒活性種である金属塩を水に添加
して、ゼオライト系担体中のアルカリ金属またはH元素
と、金属塩中の金属元素とをイオン交換することを製造
方法に含むことが好適である。本発明において、ゼオラ
イト系担体とは、結晶性シリケート、Y型ゼオライト、
A型ゼオライト、β型ゼオライト、モルデナイト、フェ
リエライトから成るグループから選択される少なくとも
一種を含むものが好適である。しかし、触媒活性種を担
うことができる担体ならばよく、限定されるものではな
い。この結晶性シリケートは、(1±0.8)R2O・
[aM23・bLO・cAl23]・ySiO2の化学
式で表され、この化学式中、Rがアルカリ金属およびH
から成るグループから選択される少なくとも1種の元素
であり、Mが8(VIII)族元素、希土類元素、Ti、
V、Cr、Nb、SbおよびGaから成るグループから
選択される少なくとも一種の元素であり、LがMg、C
a、SrおよびBaから成るグループから選択される少
なくとも一種の元素であり、モル比a、b、cおよびy
が0≦a、0≦b≦20、a+b=1および11≦y≦
3000であり、CuKα線を用いる粉末X線回折で格
子面間隔3.65±0.1Å、3.75±0.1Å、
3.85±0.1Å、10.0±0.3Åおよび11.
2±0.3Åに最強ピークから第5位までのピークが現
れることを特徴とするものが好適である。しかし、触媒
活性種を担うことができる結晶性シリケートならばよ
く、限定されるものではない。
Further, a zeolite-based carrier is used as a catalyst carrier, water is used as a solvent, a zeolite carrier is added to the water, and a metal salt, which is a catalytically active species, is added to the water. It is preferable that the production method includes ion exchange between the alkali metal or H element and the metal element in the metal salt. In the present invention, the zeolite-based carrier is a crystalline silicate, a Y-type zeolite,
Those containing at least one selected from the group consisting of A-type zeolite, β-type zeolite, mordenite, and ferrierite are preferable. However, the carrier is not limited as long as it can support the catalytically active species. This crystalline silicate is (1 ± 0.8) R 2 O.
[AM 2 O 3 · bLO · cAl 2 O 3 ] · ySiO 2 , wherein R is an alkali metal and H
At least one element selected from the group consisting of: wherein M is a group 8 (VIII) element, a rare earth element, Ti,
At least one element selected from the group consisting of V, Cr, Nb, Sb and Ga, wherein L is Mg, C
at least one element selected from the group consisting of a, Sr and Ba, and having a molar ratio of a, b, c and y
Are 0 ≦ a, 0 ≦ b ≦ 20, a + b = 1 and 11 ≦ y ≦
3000, and a lattice spacing of 3.65 ± 0.1 °, 3.75 ± 0.1 ° in powder X-ray diffraction using CuKα ray,
3.85 ± 0.1 °, 10.0 ± 0.3 ° and 11.
It is preferable that peaks from the strongest peak to the fifth place appear at 2 ± 0.3 °. However, any crystalline silicate that can carry the catalytically active species may be used, and is not limited.

【0008】また、金属塩が、Pt、Ru、Pd、R
h、Ir、Cr、Co、Ni、Cu、FeおよびSnか
ら成るグループから選択される少なくとも1種の金属
を、硝酸塩、硫酸塩、塩化物、酢酸塩または水酸化物の
形態で含むことが好適である。金属塩の形態は、硝酸
塩、硫酸塩、塩化物、酢酸塩および水酸化物とからなる
グループから選択される少なくとも一種であることが好
ましい。しかし、一酸化炭素を選択的に酸化するという
本発明の目的を達成すれば、2種以上を含む場合でもど
のような組み合わせでもよく、限定されるものではな
い。
[0008] The metal salt is Pt, Ru, Pd, R
Preferably, at least one metal selected from the group consisting of h, Ir, Cr, Co, Ni, Cu, Fe and Sn is contained in the form of nitrate, sulfate, chloride, acetate or hydroxide. It is. The form of the metal salt is preferably at least one selected from the group consisting of nitrate, sulfate, chloride, acetate and hydroxide. However, as long as the object of the present invention of selectively oxidizing carbon monoxide is achieved, any combination including two or more kinds may be used without any limitation.

【0009】また、上記の一酸化炭素選択酸化触媒の各
種の条件による製造方法によって、COを含む混合ガス
において一酸化炭素を選択的に酸化反応を生じさせられ
る一酸化炭素選択酸化触媒が提供される。
Further, by the method for producing a selective oxidation catalyst for carbon monoxide under various conditions, a selective oxidation catalyst for carbon monoxide capable of selectively causing oxidation reaction of carbon monoxide in a mixed gas containing CO is provided. You.

【0010】[0010]

【発明の実施の形態】[イオン交換によるゼオライト系
担体中のアルカリ金属または水素元素と、触媒活性種の
金属元素との交換]以下に、本発明に係る一酸化炭素選
択触媒の製造方法の実施の形態について、さらに詳細に
説明する。あらかじめ、40℃〜100℃に加熱保持し
ておいた溶液中にゼオライト系担体を添加し、撹拌によ
り均一に溶液中に分散させる。その後、触媒活性種をゼ
オライト担体に存在するアルカリ金属濃度の1〜100
mol倍相当の濃度で含む金属塩溶液を添加する。その
後、40〜100℃の範囲で0.5〜48時間撹拌し、
イオン交換を進行させる。イオン交換後、ろ過、洗浄
し、60〜150℃の範囲で1〜120時間乾燥させる
ことにより触媒粉末を得る。ゼオライト系担体として
は、結晶性シリケート、Y型ゼオライト、A型ゼオライ
ト、β型ゼオライト、モルデナイト、フェリエライトで
よく、限定されるものではない。触媒活性種が存在する
金属塩の溶液として、テトラアンミン白金水酸塩溶液、
テトラアンミン白金クロライド溶液、テトラアンミン白
金硝酸塩溶液、ヘキサアンミン白金水酸塩溶液、ヘキサ
アンミン白金クロライド溶液、ヘキサアンミン白金硝酸
塩溶液、硝酸ルテニウム、ヘキサアンミンルテニウム水
酸塩溶液、ヘキサアンミンルテニウムクロライド溶液、
ヘキサアンミンルテニウム硝酸塩溶液、硝酸パラジウ
ム、テトラアンミンパラジウム水酸塩溶液、テトラアン
ミンパラジウムクロライド溶液、テトラアンミンパラジ
ウム硝酸塩溶液、ヘキサアンミンイリジウム水酸塩溶
液、ヘキサアンミンイリジウムクロライド溶液、ヘキサ
アンミンイリジウム硝酸塩溶液、硝酸ロジウム、ヘキサ
アンミンロジウム水酸塩溶液、ヘキサアンミンロジウム
クロライド溶液、ヘキサアンミンロジウム硝酸塩溶液、
塩化クロム、塩化コバルト、塩化ニッケル、塩化銅、塩
化鉄または塩化スズを用いることができるが、触媒活性
種である金属塩を含むものなら限定されるものではな
い。この中でも、触媒活性種とイオン交換しやすい傾向
がある水酸化物(水酸塩)が特に好適である。
BEST MODE FOR CARRYING OUT THE INVENTION [Exchange of an alkali metal or hydrogen element in a zeolite-based carrier with a metal element of a catalytically active species by ion exchange] The method for producing a carbon monoxide selective catalyst according to the present invention will be described below. Will be described in more detail. The zeolite-based carrier is added to a solution that has been heated and held at 40 ° C. to 100 ° C. in advance, and is uniformly dispersed in the solution by stirring. Thereafter, the catalytically active species is added to the alkali metal concentration of the zeolite carrier of 1 to 100.
A metal salt solution containing a concentration equivalent to mol times is added. Thereafter, the mixture is stirred in the range of 40 to 100 ° C for 0.5 to 48 hours,
Allow ion exchange to proceed. After ion exchange, the resultant is filtered, washed, and dried at a temperature of 60 to 150 ° C. for 1 to 120 hours to obtain a catalyst powder. The zeolite-based carrier may be, but is not limited to, crystalline silicate, Y-type zeolite, A-type zeolite, β-type zeolite, mordenite, or ferrierite. As a solution of a metal salt in which a catalytically active species is present, a tetraammine platinum hydroxide solution,
Tetraammine platinum chloride solution, tetraammine platinum nitrate solution, hexaammine platinum hydroxide solution, hexaammine platinum chloride solution, hexaammine platinum nitrate solution, ruthenium nitrate, hexaammine ruthenium hydroxide solution, hexaammine ruthenium chloride solution,
Hexamin ruthenium nitrate solution, palladium nitrate, tetraammine palladium hydroxide solution, tetraammine palladium chloride solution, tetraammine palladium nitrate solution, hexaammine iridium hydrochloride solution, hexaammine iridium chloride solution, hexaammine iridium nitrate solution, rhodium nitrate, hexa Ammine rhodium hydroxide solution, hexaammine rhodium chloride solution, hexaammine rhodium nitrate solution,
Chromium chloride, cobalt chloride, nickel chloride, copper chloride, iron chloride or tin chloride can be used, but is not limited as long as it contains a metal salt that is a catalytically active species. Among these, hydroxides (hydrates), which tend to easily exchange ions with the catalytically active species, are particularly preferred.

【0011】[触媒の調製]得られた触媒粉末100重
量部に対して、シリカゾル(SiO2含有)1重量部〜
50重量部と、イオン交換水とを添加して、固形分濃度
1wt%〜50wt%スラリーを調製した後、ウオッシ
ュコートし、例えば、ハニカム型など型をした触媒を調
製する。
[Preparation of catalyst] 1 part by weight of silica sol (containing SiO 2 ) to 100 parts by weight of the obtained catalyst powder
After adding 50 parts by weight and ion-exchanged water to prepare a slurry having a solid content concentration of 1 wt% to 50 wt%, wash-coat and prepare, for example, a honeycomb-shaped catalyst.

【0012】[結晶性シリケートの調製]上述したゼオ
ライト系担体である結晶性シリケートの調製方法を説明
する。水ガラス1号(SiO2含有)100重量部を水
100重量部に溶解し、この溶液を溶液Aとする。一
方、水に硫酸アルミニウム、塩化第二鉄、酢酸カルシウ
ム、塩化ナトリウム、濃塩酸を溶解し、この溶液を溶液
Bとする。溶液Aと溶液Bを一定の割合で供給し、沈殿
を生成させ、充分攪拌してPH8のスラリーを得る。こ
のスラリーをオートクレーブに仕込み、さらにテトラプ
ロピルアンモニウムブロマイドを添加し、100℃〜2
00℃で1時間〜100時間水熱合成し、合成後、水洗
し、乾燥した後、さらに、300℃〜600℃で1時間
〜12時間、焼成することにより、脱水された状態にお
いて結晶性シリケートを得る。
[Preparation of Crystalline Silicate] A method of preparing the above-mentioned crystalline silicate as a zeolite-based carrier will be described. 100 parts by weight of Water Glass No. 1 (containing SiO 2 ) is dissolved in 100 parts by weight of water. On the other hand, aluminum sulfate, ferric chloride, calcium acetate, sodium chloride, and concentrated hydrochloric acid are dissolved in water. The solution A and the solution B are supplied at a constant ratio to form a precipitate, and the mixture is sufficiently stirred to obtain a PH8 slurry. This slurry was charged into an autoclave, and tetrapropylammonium bromide was further added.
Hydrothermal synthesis at 00 ° C for 1 hour to 100 hours, after synthesis, washing with water, drying, and further firing at 300 ° C to 600 ° C for 1 hour to 12 hours to obtain crystalline silicate in a dehydrated state Get.

【0013】[固体高分子型燃料電池(PEFC装
置)]次に、本発明に係る低温酸化触媒を用いたPEF
C装置について、その実施の形態を説明する。図1は、
低温酸化触媒が好適に適用されるPEFC装置の一実施
の形態に関し、その概要を説明するブロック図である。
このPEFC装置1は、LTS装置2、PROx装置
3、燃料電池4、蒸発器5及び排ガス燃焼器6を含む。
これらの装置は、太い実線で示した定常時ガス流れに沿
って機能する。その機能を個々の装置の概要と共に説明
する。なお、本発明に係る一酸化炭素選択酸化触媒は、
PROx装置3で用いられる。
[Polymer-type fuel cell (PEFC device)] Next, PEF using the low-temperature oxidation catalyst according to the present invention.
An embodiment of the C apparatus will be described. FIG.
1 is a block diagram illustrating an outline of an embodiment of a PEFC device to which a low-temperature oxidation catalyst is suitably applied.
The PEFC device 1 includes an LTS device 2, a PROx device 3, a fuel cell 4, an evaporator 5, and an exhaust gas combustor 6.
These devices function according to the steady state gas flow shown by the bold solid line. The function will be described together with the outline of each device. Incidentally, the carbon monoxide selective oxidation catalyst according to the present invention,
Used in the PROx device 3.

【0014】LTS(low temperature
shift)装置は、メタノール改質触媒によって、
メタノール改質を行うための装置であり、メタノールと
水の供給を受け、以下のような反応によってメタノール
から水素を得るようにしている。 CH3OH+H2O → CO2+3H2 (1) CH3OH+1/2O2 → CO+H2+H2O (2) CO+H2O → CO2+H2 (3) 反応(1)は、メタノールを改質して水素を得るための
反応である。この反応(1)は、吸熱反応である。そこ
で、発熱反応である反応(2)によって改質反応を維持
するための熱を得ている。ただし、この反応(2)で
は、COを生じる。COは、燃料電池4の働きを阻害す
る。そこで、反応(3)によってCOを除去するように
している。
LTS (low temperature)
shift) device is provided by a methanol reforming catalyst,
This is a device for performing methanol reforming, receives methanol and water, and obtains hydrogen from methanol by the following reaction. CH 3 OH + H 2 O → CO 2 + 3H 2 (1) CH 3 OH + 1 / 2O 2 → CO + H 2 + H 2 O (2) CO + H 2 O → CO 2 + H 2 (3) The reaction (1) reforms methanol. This is a reaction for obtaining hydrogen. This reaction (1) is an endothermic reaction. Therefore, heat for maintaining the reforming reaction is obtained by the reaction (2) which is an exothermic reaction. However, in this reaction (2), CO is generated. CO hinders the operation of the fuel cell 4. Therefore, CO is removed by the reaction (3).

【0015】LTS装置2からの気体は、空気を加え、
PROx装置3に送られる。PROx装置3は、本発明
に係る一酸化炭素選択酸化触媒によって、COを選択除
去するための装置であり、以下のような反応によってC
Oを除去する。 CO+1/2O2 → CO2 (4) 前記反応(3)によってLTS装置2で発生するCOが
除去される。ただし、LTS装置2では、0.3〜0.
4%まで除去している。このPROx装置3では、さら
に、20ppm以下までCOを除去する。なお、本発明
に係る一酸化炭素選択触媒はこの装置に用いることが好
適である。
The gas from the LTS device 2 adds air,
It is sent to the PROx device 3. The PROx device 3 is a device for selectively removing CO by the carbon monoxide selective oxidation catalyst according to the present invention.
O is removed. CO + / O 2 → CO 2 (4) CO generated in the LTS device 2 is removed by the reaction (3). However, in the LTS device 2, 0.3 to 0.
It has been removed to 4%. The PROx device 3 further removes CO to 20 ppm or less. Note that the carbon monoxide selective catalyst according to the present invention is preferably used for this device.

【0016】PROx装置3からの水素を含む気体は、
燃料電池4に送られる。燃料電池4は、アノード電極7
においてアノード電極触媒により、以下の反応を起こさ
せる。 H2 → 2H++2e- (5) この反応(5)によって生じるH+が拡散する。一方、
カソード電極8においてカソード電極触媒により、以下
の反応を起こさせる。 2H++2e+1/2O2 → H2O (6) これらの反応(5)と(6)を合わせて電池反応が構成
され、起電力を得ることができる。
The gas containing hydrogen from the PROx device 3 is:
It is sent to the fuel cell 4. The fuel cell 4 includes an anode electrode 7
In the above, the following reaction is caused by the anode electrode catalyst. H 2 → 2H + + 2e (5) H + generated by this reaction (5) diffuses. on the other hand,
The following reaction is caused in the cathode electrode 8 by the cathode electrode catalyst. 2H + + 2e + / O 2 → H 2 O (6) These reactions (5) and (6) constitute a battery reaction, and an electromotive force can be obtained.

【0017】燃料電池4からのオフガスは、蒸発器5に
送られる。蒸発器5は、付属する燃焼器により、このオ
フガス中に20%程度含まれる水素を本発明に係る低温
酸化触媒(低温燃焼触媒)により燃焼して、水、メタノ
ールをガス化する機能を果たしている。ガス化した水、
メタノールは、前記したように、LTS装置2に送られ
る。さらに、排ガス燃焼器6は、残存する水素を本発明
に係る低温酸化触媒(低温燃焼触媒)により完全に燃焼
させる。
The off-gas from the fuel cell 4 is sent to an evaporator 5. The evaporator 5 has a function of gasifying water and methanol by using an attached combustor to burn about 20% of hydrogen contained in the off-gas with the low-temperature oxidation catalyst (low-temperature combustion catalyst) according to the present invention. . Gasified water,
The methanol is sent to the LTS device 2 as described above. Further, the exhaust gas combustor 6 completely combusts the remaining hydrogen with the low-temperature oxidation catalyst (low-temperature combustion catalyst) according to the present invention.

【0018】燃料電池4の入口、燃料電池4、排ガス燃
焼器6には、熱交換器9、10、11が設けられてお
り、冷却水源12から、循環ポンプ13によって冷却水
が循環される。冷却水は、循環ライン14(点線)中を
流れ、このライン14中の温度を図示しない温度センサ
ーで検知する。温度センサーからの温度情報は、制御シ
ステムに送られ、流量を適宜コントロールすることによ
り、PROx装置3、燃料電池4内の温度を適正に保
つ。
Heat exchangers 9, 10 and 11 are provided at the inlet of the fuel cell 4, the fuel cell 4 and the exhaust gas combustor 6, and cooling water is circulated from a cooling water source 12 by a circulation pump 13. The cooling water flows in the circulation line 14 (dotted line), and the temperature in the line 14 is detected by a temperature sensor (not shown). The temperature information from the temperature sensor is sent to the control system, and the temperature in the PROx device 3 and the fuel cell 4 is appropriately maintained by appropriately controlling the flow rate.

【0019】さらに、このPEFC装置1は、起動シス
テムを備えている。まず、予め、水とメタノールを電気
ヒータ20で加熱して蒸発させ、バーナ21に送り込
む。ここに空気を加え、メタノールの一部を燃焼させ、
250℃に昇温させる。昇温した気体にさらに空気を加
え、LTS装置2に送り込む。LTS装置2では、上記
した反応が起こる。そして、PROx装置3でも前記し
たように、COを選択的に酸化除去する。PROx装置
3は、100℃以上にならないとCO濃度を十分に低減
できない。PROx装置3内が100℃以上になるまで
起動ルートで運転する。定常運転に切り替わると、バー
ナ21などの使用を止める。PROx装置3からの気体
は、燃料電池4に送られ、電気を得る状態となる。
Further, the PEFC device 1 has an activation system. First, water and methanol are heated and evaporated by the electric heater 20 in advance, and are sent to the burner 21. Add air here to burn some of the methanol,
Raise the temperature to 250 ° C. Air is further added to the heated gas and sent to the LTS device 2. In the LTS device 2, the above-described reaction occurs. Then, as described above, the PROx device 3 also selectively oxidizes and removes CO. The PROx device 3 cannot sufficiently reduce the CO concentration unless the temperature exceeds 100 ° C. The PROx device 3 is operated on the starting route until the temperature inside the PROx device 3 becomes 100 ° C. or more. When the operation is switched to the steady operation, the use of the burner 21 and the like is stopped. The gas from the PROx device 3 is sent to the fuel cell 4 to be in a state of obtaining electricity.

【0020】本発明に係る一酸化炭素選択触媒は、H2
とCOを含む混合ガスにおいて一酸化炭素を選択的に酸
化燃焼させられるので、PROx装置3内おいて、CO
を酸化する際にH2が先に酸化してしまうような支障を
きたすことがない。
The carbon monoxide selective catalyst according to the present invention comprises H 2
Carbon monoxide can be selectively oxidized and burned in the mixed gas containing CO and CO.
H 2 in oxidizing the is never hindered that oxidizes earlier.

【0021】[0021]

【実施例】[実施例1:結晶性シリケート調製、イオン
交換法による触媒調製]次に、結晶性シリケートを原料
としてイオン交換法により触媒を調製した結果について
説明する。水ガラス1号(SiO2:30wt%含有)
5616gを水5429gに溶解し、この溶液を溶液A
とした。一方、水4175gに硫酸アルミニウム71
8.9g、塩化第二鉄110g、酢酸カルシウム47.
2g、塩化ナトリウム262g、濃塩酸2020gを溶
解し、この溶液を溶液Bとした。溶液Aと溶液Bを一定
割合で供給し、沈殿を生成させ、充分攪拌してpHが8
のスラリーを得た。このスラリーを20リットルのオー
トクレーブに仕込み、さらにテトラプロピルアンモニウ
ムブロマイドを500g添加し、160℃で72時間水
熱合成し、合成後水洗し乾燥した後、さらに500℃で
3時間焼成することにより、脱水された状態においてH
2O[0.25Fe23・0.8Al23・0.2Ca
O]27SiO2の組成を有する結晶性シリケート1を
得た。
EXAMPLES Example 1 Preparation of Crystalline Silicate, Preparation of Catalyst by Ion Exchange Method Next, the result of preparing a catalyst by an ion exchange method using crystalline silicate as a raw material will be described. Water glass No. 1 (containing 30 wt% of SiO 2 )
5616 g was dissolved in 5429 g of water.
And On the other hand, aluminum sulfate 71 was added to 4175 g of water.
8.9 g, ferric chloride 110 g, calcium acetate 47.
2 g, 262 g of sodium chloride and 2020 g of concentrated hydrochloric acid were dissolved. Solution A and solution B are supplied at a constant rate to form a precipitate, and the mixture is sufficiently stirred to adjust the pH to 8
Was obtained. This slurry was charged into a 20-liter autoclave, and 500 g of tetrapropylammonium bromide was further added. Hydrothermal synthesis was performed at 160 ° C. for 72 hours. H
2 O [0.25Fe 2 O 3 .0.8Al 2 O 3 .0.2Ca
A crystalline silicate 1 having a composition of [O] 27SiO 2 was obtained.

【0022】得られた結晶性シリケート1について、C
uKα線を用いる粉末X線回折測定を行い、最強線から
第15位までのピークの格子面間隔(d値)及び相対強
度を下記表1に示す。表1から明らかなように、結晶性
シリケート1は、CuKα線を用いる粉末X線回折測定
において格子面間隔3.65±0.1Å、3.75±
0.1Å、3.85±0.1Å、10.0±0.3Å及
び11.2±0.3Åに最強ピークから第5位までのピ
ークを示し、格子面間隔3.0±0.1Å、3.3±
0.1Å、4.25±0.1Å、5.6±0.2Å、
6.0±0.2Å及び6.4±0.2Åに第6位から第
11位までのピークを示し、かつ3.05±0.1Å、
4.6±0.1Å、5.7±0.2Å及び6.7±0.
2Åに第12位から第15位までのピークを示した。ま
た、得られた結晶性シリケート1のNa+量をICPに
て測定した結果、1.0mmol/gであった。
With respect to the obtained crystalline silicate 1, C
The powder X-ray diffraction measurement using uKα ray was performed, and the lattice spacing (d value) and the relative intensity of the peaks from the strongest line to the 15th position are shown in Table 1 below. As is clear from Table 1, the crystalline silicate 1 has a lattice spacing of 3.65 ± 0.1 ° and 3.75 ± in powder X-ray diffraction measurement using CuKα radiation.
The peaks from the strongest peak to the fifth place are shown at 0.1 °, 3.85 ± 0.1 °, 10.0 ± 0.3 ° and 11.2 ± 0.3 °, and the lattice spacing is 3.0 ± 0.1 °. 3.3 ±
0.1 °, 4.25 ± 0.1 °, 5.6 ± 0.2 °,
The peaks from the 6th position to the 11th position are shown at 6.0 ± 0.2 ° and 6.4 ± 0.2 °, and 3.05 ± 0.1 °,
4.6 ± 0.1%, 5.7 ± 0.2 ° and 6.7 ± 0.
The peaks from the twelfth to the fifteenth are shown in FIG. Further, the amount of Na + in the obtained crystalline silicate 1 was measured by ICP and found to be 1.0 mmol / g.

【表1】 [Table 1]

【0023】前記結晶性シリケート1を75℃で、Pt
が10mmol存在するテトラアンミン白金水酸塩溶液
に浸漬し、12時間攪拌してPtイオン交換を実施し
た。イオン交換後、ろ過、水洗、110℃で一晩乾燥さ
せることにより触媒粉末1を得た。得られた触媒粉末1
の100部に対してシリカゾル(SiO2:20wt%
含有)50部とイオン交換水とを添加して、固形分濃度
20wt%のスラリーを調製した後、62セル/cm2
(400セル/inch2)のコージェライトハニカム
基材表面積当りの固形分量が60g/m2となるように
ウオッシュコートし、ハニカム触媒1を調製した。
The crystalline silicate 1 is heated at 75.degree.
Was immersed in a solution of 10 mmol of tetraammine platinum hydroxide and stirred for 12 hours to carry out Pt ion exchange. After ion exchange, the resultant was filtered, washed with water, and dried at 110 ° C. overnight to obtain a catalyst powder 1. Obtained catalyst powder 1
100 parts by weight of silica sol (SiO 2 : 20 wt%)
50 parts and ion-exchanged water to prepare a slurry having a solid content concentration of 20 wt%, and then 62 cells / cm 2
A honeycomb catalyst 1 was prepared by wash-coating such that the solid content per unit surface area of the cordierite honeycomb substrate (400 cells / inch 2 ) was 60 g / m 2 .

【0024】[実施例2:他のゼオライトを担体とした
イオン交換法による調製]実施例1の結晶性シリケート
1の代わりにY型ゼオライト、A型ゼオライト、β型ゼ
オライト、モルデナイト、フェリエライトを用いること
以外は、前述した実施例1と同様にして粉末触媒2〜6
を得た。次いで、粉末触媒2〜6を用いること以外は前
述した実施例1と同様にしてハニカム触媒2〜6を得
た。(表2参照)
[Example 2: Preparation by ion exchange method using another zeolite as a carrier] Instead of the crystalline silicate 1 of Example 1, Y-type zeolite, A-type zeolite, β-type zeolite, mordenite, and ferrierite are used. Except for the above, the powder catalysts 2 to 6 were the same as in Example 1 described above.
I got Next, honeycomb catalysts 2 to 6 were obtained in the same manner as in Example 1 except that powder catalysts 2 to 6 were used. (See Table 2)

【表2】 [Table 2]

【0025】[実施例3:他の活性金属を活性種とした
イオン交換法による調製]次に、実施例1のイオン交換
する活性金属の原料を替えた触媒について説明する。実
施例1のイオン交換する活性金属の原料として、テトラ
アンミン白金水酸塩溶液の他にテトラアンミン白金クロ
ライド溶液、テトラアンミン白金硝酸塩溶液、ヘキサア
ンミン白金水酸塩溶液、ヘキサアンミン白金クロライド
溶液、ヘキサアンミン白金硝酸塩溶液、硝酸ルテニウ
ム、ヘキサアンミンルテニウム水酸塩溶液、ヘキサアン
ミンルテニウムクロライド溶液、ヘキサアンミンルテニ
ウム硝酸塩溶液、硝酸パラジウム、テトラアンミンパラ
ジウム水酸塩溶液、テトラアンミンパラジウムクロライ
ド溶液、テトラアンミンパラジウム硝酸塩溶液、ヘキサ
アンミンイリジウム水酸塩溶液、ヘキサアンミンイリジ
ウムクロライド溶液、ヘキサアンミンイリジウム硝酸塩
溶液、硝酸ロジウム、ヘキサアンミンロジウム水酸塩溶
液、ヘキサアンミンロジウムクロライド溶液、ヘキサア
ンミンロジウム硝酸塩溶液、塩化クロム、塩化コバル
ト、塩化ニッケル、塩化銅、塩化鉄または塩化スズを用
いること以外は前述した実施例1と同様にして粉末触媒
7〜32を得た。次いで、粉末触媒7〜32を用いるこ
と以外は前述した実施例1と同様にしてハニカム触媒7
〜32を得た。(表2参照)
Example 3 Preparation by Ion Exchange Method Using Another Active Metal as an Active Species Next, the catalyst of Example 1 in which the raw material of the active metal to be ion-exchanged was changed will be described. As a raw material of the active metal to be ion-exchanged in Example 1, in addition to a tetraammine platinum hydroxide solution, a tetraammine platinum chloride solution, a tetraammine platinum nitrate solution, a hexaammine platinum hydroxide solution, a hexaammine platinum chloride solution, and a hexaammine platinum nitrate solution Solution, ruthenium nitrate, hexaammine ruthenium hydroxide solution, hexaammine ruthenium chloride solution, hexaammine ruthenium nitrate solution, palladium nitrate, tetraammine palladium hydroxide solution, tetraammine palladium chloride solution, tetraammine palladium nitrate solution, hexaammineiridium hydroxide Salt solution, hexaammine iridium chloride solution, hexaammine iridium nitrate solution, rhodium nitrate, hexaammine rhodium hydroxide solution, hexaammine iridium chloride solution Rhodium chloride solution, hexamine rhodium nitrate solution, chromium chloride, cobalt chloride, nickel chloride, copper chloride, but using iron chloride or tin chloride to obtain a powder catalyst 7-32 in the same manner as in Example 1 described above. Next, a honeycomb catalyst 7 was prepared in the same manner as in Example 1 except that the powder catalysts 7 to 32 were used.
~ 32 were obtained. (See Table 2)

【0026】[比較例1:含浸法による調製]次に比較
例として、イオン交換法の代わりに含侵法による触媒の
調製を説明する。結晶性シリケート1からなる担体に塩
化白金酸水溶液を含浸法により担体1g当りPtを1m
mol担持させ、乾燥後、500℃で焼成することによ
り比較粉末触媒1を得た。次いで、比較粉末触媒1を用
いること以外は前述した実施例1と同様にして比較ハニ
カム触媒1を得た。(表2参照)ここで使用された含侵
法とは、担体に塩化白金酸溶液を添加した後、混練りし
ながら蒸発乾固により徐々に水分を飛ばしていき、乾燥
粉末を得るを行う調製方法のことである。
Comparative Example 1: Preparation by impregnation method Next, as a comparative example, preparation of a catalyst by an impregnation method instead of an ion exchange method will be described. The carrier made of crystalline silicate 1 was impregnated with an aqueous solution of chloroplatinic acid to obtain a Pt of 1 m per 1 g of the carrier.
After being supported by mol, dried and calcined at 500 ° C., Comparative Powder Catalyst 1 was obtained. Next, a comparative honeycomb catalyst 1 was obtained in the same manner as in Example 1 except that the comparative powder catalyst 1 was used. (See Table 2) The impregnation method used here is a preparation in which a chloroplatinic acid solution is added to a carrier, and then the water is gradually removed by evaporation to dryness while kneading to obtain a dry powder. That's how.

【0027】[イオン交換容量の測定]次に得られたイ
オン交換粉末触媒1〜32及びそのイオン交換後のろ液
はICP分析にてイオン交換容量を確認した結果を説明
する。結果は表2に示す通り、イオン交換後の粉末触媒
中のPt濃度及びろ液中のNa濃度はイオン交換前の粉
末触媒中のNa濃度とほぼ同値であるため、イオン交換
が完全に進行していることが分かる。また、比較粉末触
媒1についてはPtは所定量担持されているものの、N
aも含浸前と同量存在しており、イオン交換は進行して
いないことが分かる。
[Measurement of ion exchange capacity] Next, the results of confirming the ion exchange capacity of the obtained ion exchange powder catalysts 1 to 32 and the filtrate after the ion exchange by ICP analysis will be described. As shown in Table 2, the Pt concentration in the powder catalyst after the ion exchange and the Na concentration in the filtrate were almost the same as the Na concentration in the powder catalyst before the ion exchange. You can see that it is. In the comparative powder catalyst 1, although Pt is supported in a predetermined amount,
a is also present in the same amount as before impregnation, indicating that ion exchange has not progressed.

【0028】[CO選択酸化試験]ハニカム触媒1〜3
2及び比較ハニカム触媒1においてのCO選択酸化試験
を説明する。試験条件を表3に記載する。試験中、反応
管出口から排出されたガスのCO濃度をND−IR方式
のCO分析計によって連続的にモニターした後、安定と
なったCO濃度を計測し、その触媒のCO選択酸化性能
とした。その結果は表4に示した通り、イオン交換法に
より調製したハニカム触媒1〜32は、反応管入口温度
が110℃〜230℃という広範囲の温度域において処
理ガス中のCO濃度を低く出来ることが分かる。これに
対し、含浸法により調製した比較ハニカム触媒1は反応
管入口温度が230℃の時は処理ガス中のCO除去が不
十分であることが分かる。このイオン交換法によって調
製された一酸化炭素選択酸素触媒が、含浸法によって調
製された触媒より、CO濃度低減効果において優った理
由は、イオン交換で触媒活性種を担体に配位させた方
が、触媒の比表面積を大きくさせ、触媒活性種の反応を
向上させるからだと思われる。
[CO selective oxidation test] Honeycomb catalysts 1 to 3
The CO selective oxidation test in Comparative Catalyst 2 and Comparative Honeycomb Catalyst 1 will be described. The test conditions are described in Table 3. During the test, the CO concentration of the gas discharged from the outlet of the reaction tube was continuously monitored by a CO analyzer of an ND-IR system, and then the stabilized CO concentration was measured, and the measured value was regarded as the CO selective oxidation performance of the catalyst. . As shown in Table 4, the honeycomb catalysts 1 to 32 prepared by the ion exchange method can lower the CO concentration in the processing gas in a wide temperature range of 110 ° C. to 230 ° C. at the inlet of the reaction tube. I understand. On the other hand, it can be seen that the comparative honeycomb catalyst 1 prepared by the impregnation method had insufficient removal of CO in the processing gas when the reaction tube inlet temperature was 230 ° C. The reason that the carbon monoxide selective oxygen catalyst prepared by this ion exchange method was superior to the catalyst prepared by the impregnation method in the effect of reducing the CO concentration was that the catalytically active species was coordinated to the carrier by ion exchange. This is because the specific surface area of the catalyst is increased, and the reaction of the catalytically active species is improved.

【表3】 [Table 3]

【表4】 [Table 4]

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば、固体高分子型燃料電池装置のPROx装置内
のH2とCOなどを含む混合ガスにおいて、COを選択
的に酸化燃焼できる一酸化炭素選択酸化触媒の製造方法
が提供される。本発明によって提供される一酸化炭素選
択酸化触媒は、水素燃料自動車の固体高分子型燃料電池
装置のPROx装置に用いるのが特に好適である。ま
た、本発明の一酸化炭素選択酸化触媒の製造方法はイオ
ン交換法によるため、含浸法による製造する際に必要な
焼成過程が不要である。このため、一酸化炭素選択酸化
触媒の製造は簡便で安価にできる。また、含浸法で調製
された触媒に比べ広範囲の温度域で一酸化炭素を選択的
に酸化できるようになる。
As is apparent from the above description, according to the present invention, CO is selectively oxidized and burned in a mixed gas containing H 2 and CO in a PROx device of a polymer electrolyte fuel cell device. A method for producing a carbon monoxide selective oxidation catalyst is provided. The carbon monoxide selective oxidation catalyst provided by the present invention is particularly suitable for use in a PROx device of a polymer electrolyte fuel cell device of a hydrogen fueled vehicle. In addition, since the method for producing the carbon monoxide selective oxidation catalyst of the present invention is based on the ion exchange method, the calcination step required for the production by the impregnation method is unnecessary. For this reason, the production of the carbon monoxide selective oxidation catalyst can be simple and inexpensive. Further, carbon monoxide can be selectively oxidized in a wide temperature range as compared with a catalyst prepared by the impregnation method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る低温酸化触媒を使用するPEFC
装置の一実施の形態を説明する概念図である。
FIG. 1 shows a PEFC using a low-temperature oxidation catalyst according to the present invention.
It is a conceptual diagram explaining one Embodiment of an apparatus.

【符号の説明】[Explanation of symbols]

1 PEFC装置 2 LTS装置 3 PROx装置 4 燃料電池 5 蒸発器 6 排ガス燃焼器 7 アノード電極 8 カソード電極 9、10、11 熱交換器 12 冷却水源 13 循環ポンプ 14 循環ライン 20 電気ヒータ 21 バーナ DESCRIPTION OF SYMBOLS 1 PEFC apparatus 2 LTS apparatus 3 PROx apparatus 4 Fuel cell 5 Evaporator 6 Exhaust gas combustor 7 Anode electrode 8 Cathode electrode 9, 10, 11 Heat exchanger 12 Cooling water source 13 Circulation pump 14 Circulation line 20 Electric heater 21 Burner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 29/76 B01J 29/76 M 5H027 29/78 29/78 M C10K 1/34 C10K 1/34 H01M 8/06 H01M 8/06 G 8/10 8/10 // C01B 3/32 C01B 3/32 A (72)発明者 安武 聡信 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA02 EA06 EA07 EB31 4G069 AA01 AA08 BA07A BA07B BC01A BC09A BC10A BC12A BC13A BC17A BC22A BC22B BC26A BC31A BC31B BC38A BC50A BC54A BC55A BC58A BC58B BC65A BC66A BC66B BC67A BC68A BC68B BC69A BC70A BC70B BC71A BC71B BC72A BC72B BC74B BC75A BC75B CC17 ZA01A ZA01B ZA02A ZA02B ZA04A ZA04B ZA06A ZA06B ZA13A ZA13B ZA19A ZA19B ZC02 ZC04 ZD01 4G140 EA02 EA06 EA07 EB31 4H060 AA04 BB11 BB33 DD01 EE03 FF02 GG02 5H026 AA06 5H027 AA06 BA09 BA17 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B01J 29/76 B01J 29/76 M 5H027 29/78 29/78 M C10K 1/34 C10K 1/34 H01M 8 / 06 H01M 8/06 G 8/10 8/10 // C01B 3/32 C01B 3/32 A (72) Inventor: Toshinobu Yasutake 4-6-22 Kanon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Research by Mitsubishi Heavy Industries, Ltd. Hiroshima In-plant F-term (reference) 4G040 EA02 EA06 EA07 EB31 4G069 AA01 AA08 BA07A BA07B BC01A BC09A BC10A BC12A BC13A BC17A BC22A BC22B BC26A BC31A BC31B BC38A BC50A BC54A BC55A BC58A BC68 BC66 BCA BC66 BCA BC66 BCBC ZA01A ZA01B ZA02A ZA02B ZA04A ZA04B ZA06A ZA06B ZA13A ZA13B ZA19A ZA19B ZC02 ZC04 ZD01 4G140 EA02 EA06 EA07 EB31 4H060 AA04 BB11 B B33 DD01 EE03 FF02 GG02 5H026 AA06 5H027 AA06 BA09 BA17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 COを含む混合ガスにCOの選択酸化反
応を生じさせるための一酸化炭素選択酸化触媒の製造方
法おいて、触媒担体を溶媒中に添加し、さらに、触媒活
性種を該溶媒中に添加することを含む一酸化炭素選択酸
化触媒の製造方法。
1. A method for producing a carbon monoxide selective oxidation catalyst for causing a selective oxidation reaction of CO in a mixed gas containing CO, wherein a catalyst carrier is added to a solvent, and a catalytically active species is further added to the solvent. A method for producing a carbon monoxide selective oxidation catalyst, which comprises adding the catalyst to the inside.
【請求項2】 前記触媒担体としてゼオライト系担体を
用い、前記溶媒として用いた水にさらにゼオライト系担
体を添加した後、前記触媒活性種である金属塩を水に添
加して、ゼオライト系担体中のアルカリ金属またはH元
素と、金属塩中の金属元素とをイオン交換することを含
むことを特徴とする請求項1に記載の一酸化炭素選択酸
化触媒の製造方法。
2. A zeolite-based support is used as the catalyst support, and after the zeolite-based support is further added to water used as the solvent, the metal salt that is the catalytically active species is added to water to form a zeolite-based support. 2. The method for producing a carbon monoxide selective oxidation catalyst according to claim 1, comprising ion-exchanging the alkali metal or H element of the above with the metal element in the metal salt.
【請求項3】 前記ゼオライト系担体が、結晶性シリケ
ート、Y型ゼオライト、A型ゼオライト、β型ゼオライ
ト、モルデナイト、フェリエライトから成るグループか
ら選択される少なくとも一種であることを特徴とする請
求項2に記載の一酸化炭素選択酸化触媒の製造方法。
3. The zeolite-based carrier is at least one selected from the group consisting of crystalline silicate, Y-type zeolite, A-type zeolite, β-type zeolite, mordenite, and ferrierite. 3. The method for producing a carbon monoxide selective oxidation catalyst according to item 1.
【請求項4】 前記結晶性シリケートが、(1±0.
8)R2O・[aM2 3・bLO・cAl23]・yS
iO2の化学式で表され、該化学式中、Rがアルカリ金
属およびHから成るグループから選択される少なくとも
1種の元素であり、MがVIII族元素、希土類元素、T
i、V、Cr、Nb、SbおよびGaから成るグループ
から選択される少なくとも一種の元素であり、LがM
g、Ca、SrおよびBaから成るグループから選択さ
れる少なくとも一種の元素であり、モル比a、b、cお
よびyが0≦a、0≦b≦20、a+b=1および11
≦y≦3000であり、CuKα線を用いる粉末X線回
折で格子面間隔3.65±0.1Å、3.75±0.1
Å、3.85±0.1Å、10.0±0.3Åおよび1
1.2±0.3Åに最強ピークから第5位までのピーク
が現れることを特徴とする請求項3に記載の一酸化炭素
選択酸化触媒の製造方法。
4. The method according to claim 1, wherein the crystalline silicate is (1 ± 0.
8) RTwoO ・ [aMTwoO Three・ BLO ・ cAlTwoOThree] ・ YS
iOTwoWherein R is an alkali gold
At least selected from the group consisting of the genus and H
M is a group VIII element, a rare earth element, T
a group consisting of i, V, Cr, Nb, Sb and Ga
L is at least one element selected from
g, Ca, Sr and Ba.
At least one element, and the molar ratios a, b, c and
And y is 0 ≦ a, 0 ≦ b ≦ 20, a + b = 1 and 11
≦ y ≦ 3000, and a powder X-ray cycle using CuKα ray
3.65 ± 0.1Å, 3.75 ± 0.1
{3.85 ± 0.1}, 10.0 ± 0.3} and 1
Peak from strongest peak to fifth place at 1.2 ± 0.3
4. The carbon monoxide according to claim 3, wherein
A method for producing a selective oxidation catalyst.
【請求項5】 前記金属塩が、Pt、Ru、Pd、R
h、Ir、Cr、Co、Ni、Cu、FeおよびSnか
ら成るグループから選択される少なくとも1種の金属
を、硝酸塩、硫酸塩、塩化物、酢酸塩または水酸化物の
形態で含むことを特徴とする請求項2から4のいずれか
に記載の一酸化炭素選択酸化触媒の製造方法。
5. The method according to claim 1, wherein the metal salt is Pt, Ru, Pd, R
at least one metal selected from the group consisting of h, Ir, Cr, Co, Ni, Cu, Fe and Sn, in the form of nitrate, sulfate, chloride, acetate or hydroxide. The method for producing a carbon monoxide selective oxidation catalyst according to any one of claims 2 to 4.
【請求項6】 COを含む混合ガスにCOの選択酸化反
応を生じさせるための一酸化炭素選択酸化触媒であっ
て、請求項1から6のいずれかに記載の製造方法によっ
て製造される一酸化炭素選択酸化触媒。
6. A carbon monoxide selective oxidation catalyst for causing a selective oxidation reaction of CO in a mixed gas containing CO, the monoxide being produced by the production method according to any one of claims 1 to 6. Carbon selective oxidation catalyst.
JP2000329999A 2000-10-30 2000-10-30 Catalyst for selective oxidation of carbon monoxide and production method of the same Pending JP2002126535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329999A JP2002126535A (en) 2000-10-30 2000-10-30 Catalyst for selective oxidation of carbon monoxide and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329999A JP2002126535A (en) 2000-10-30 2000-10-30 Catalyst for selective oxidation of carbon monoxide and production method of the same

Publications (1)

Publication Number Publication Date
JP2002126535A true JP2002126535A (en) 2002-05-08

Family

ID=18806587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329999A Pending JP2002126535A (en) 2000-10-30 2000-10-30 Catalyst for selective oxidation of carbon monoxide and production method of the same

Country Status (1)

Country Link
JP (1) JP2002126535A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263501A (en) * 2001-03-05 2002-09-17 Toyota Motor Corp Carbon monoxide selective oxidation catalyst and method for producing the same
WO2002090248A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
US8080224B2 (en) 2006-05-05 2011-12-20 Sud-Chemie Inc. Catalyst for the conversion of carbon monoxide
CN114349081A (en) * 2021-12-22 2022-04-15 昆明贵金属研究所 Hexaammine platinum compound, preparation method and application thereof in platinum plating on jewelry surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH09208502A (en) * 1996-01-29 1997-08-12 Mitsubishi Heavy Ind Ltd Selective production of p-xylene
JPH09320624A (en) * 1995-08-18 1997-12-12 Matsushita Electric Ind Co Ltd Carbon monoxide removing catalyst body, fuel cell device provided with the same, and method for removing carbon monoxide in reformed gas supplied to fuel cell
JPH1029803A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JPH10212104A (en) * 1997-01-27 1998-08-11 Asahi Chem Ind Co Ltd Method for purifying hydrogen for fuel cell
JPH11347414A (en) * 1998-06-10 1999-12-21 Tanaka Kikinzoku Kogyo Kk Reformed gas oxidation catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH09320624A (en) * 1995-08-18 1997-12-12 Matsushita Electric Ind Co Ltd Carbon monoxide removing catalyst body, fuel cell device provided with the same, and method for removing carbon monoxide in reformed gas supplied to fuel cell
JPH09208502A (en) * 1996-01-29 1997-08-12 Mitsubishi Heavy Ind Ltd Selective production of p-xylene
JPH1029803A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JPH10212104A (en) * 1997-01-27 1998-08-11 Asahi Chem Ind Co Ltd Method for purifying hydrogen for fuel cell
JPH11347414A (en) * 1998-06-10 1999-12-21 Tanaka Kikinzoku Kogyo Kk Reformed gas oxidation catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263501A (en) * 2001-03-05 2002-09-17 Toyota Motor Corp Carbon monoxide selective oxidation catalyst and method for producing the same
WO2002090248A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus
US8080224B2 (en) 2006-05-05 2011-12-20 Sud-Chemie Inc. Catalyst for the conversion of carbon monoxide
CN114349081A (en) * 2021-12-22 2022-04-15 昆明贵金属研究所 Hexaammine platinum compound, preparation method and application thereof in platinum plating on jewelry surface

Similar Documents

Publication Publication Date Title
KR100386435B1 (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
EP1232790A1 (en) Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
WO2000030745A1 (en) Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2002126535A (en) Catalyst for selective oxidation of carbon monoxide and production method of the same
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2001054734A (en) Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen
JP5580626B2 (en) Hydrogen production catalyst, hydrogen production catalyst production method, hydrogen production method, hydrogen production apparatus and fuel cell system
JP3796744B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
CA2311027C (en) Selective removing method of carbon monoxide
JP2001224965A (en) Carbon monoxide selective oxidation catalyst and selective removal method for carbon monoxide
EP1059263B1 (en) Selective removing method of carbon monoxide
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP4335505B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming system
JP2004244231A (en) Carbon monoxide concentration reduction method
JP2010005498A (en) Co modification catalyst for dss operation of fuel cell, method of manufacturing the same, and fuel cell system
JP3943606B2 (en) Method for selective removal of carbon monoxide
JP2002121008A (en) Method of removing carbon monoxide
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP4508362B2 (en) Carbon monoxide selective oxidation apparatus and carbon monoxide removal method
KR20050079567A (en) Catalyst for water-gas shift reaction of carbon monoxide
JP2004134299A (en) Carbon monoxide removal device and polymer electrolyte fuel cell system
JP2003047857A (en) Method of producing catalyst useful to selectively oxidize carbon monoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301