[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002122526A - Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same - Google Patents

Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same

Info

Publication number
JP2002122526A
JP2002122526A JP2000315235A JP2000315235A JP2002122526A JP 2002122526 A JP2002122526 A JP 2002122526A JP 2000315235 A JP2000315235 A JP 2000315235A JP 2000315235 A JP2000315235 A JP 2000315235A JP 2002122526 A JP2002122526 A JP 2002122526A
Authority
JP
Japan
Prior art keywords
test piece
sacrificial test
main body
thin portion
artificial crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000315235A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
由紀夫 藤本
Eiji Shintaku
英司 新宅
Hisashi Ito
久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000315235A priority Critical patent/JP2002122526A/en
Publication of JP2002122526A publication Critical patent/JP2002122526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a sacrifice test piece which is simple with a higher sensitivity and moreover, allows the expectations of various advantages such as broader applicable range. SOLUTION: In the sacrifice test piece artificially torn across the width at the central part in the longitudinal direction of the body thereof, the plate surface of the body is cut off along the direction of the extensions of the artificial tearing to form a very thin part. In the process, the plate surface of the body is worked to make a circular arc-shaped groove or to make a V groove thereby forming the very thin part. The thickness of the very thin part is selected to be about 0.1 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶,橋梁,海洋
構造物,鉄塔,建設機械,クレーン等の鋼構造物の応力
状態および疲労累積被害度の測定やモニタリングする技
術に関し、特にセンサー技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for measuring and monitoring the stress state and cumulative fatigue damage of steel structures such as ships, bridges, offshore structures, steel towers, construction machines, cranes and the like, and more particularly to a sensor technology. .

【0002】[0002]

【従来の技術】従来、構造物の疲労累積被害度の測定も
しくはそのモニタリングを行うためには、歪ゲージを構
造物に貼付して応力の時間的変化を計測することにより
評価する方法が一般的であった。しかしながら、このよ
うな評価方法では歪ゲージの貼付が簡単でかつ安価であ
るものの、計測にはAC100Vクラスの電源およびこ
れによって駆動される動歪計測器および記録装置が必要
であり、長期間の継続的な計測には向かない欠点があ
る。このため、これに代わる方法として、いわゆる犠牲
試験片が開発されている(例えば、特開平9−3042
40)。
2. Description of the Related Art Conventionally, in order to measure or monitor the cumulative fatigue damage of a structure, a method of attaching a strain gauge to the structure and measuring a temporal change of stress is generally evaluated. Met. However, although such an evaluation method is easy and inexpensive to attach a strain gauge, the measurement requires a power supply of AC100V class and a dynamic strain measuring device and a recording device driven by the AC power source, and the measurement must be performed for a long time. There is a drawback that is not suitable for typical measurement. For this reason, a so-called sacrificial test piece has been developed as an alternative method (for example, see Japanese Patent Application Laid-Open No. 9-3042).
40).

【0003】上記の特開平9−304240号は構造物
に犠牲試験片を貼付し、この試験片に設けた人工き裂の
進展量を見ることにより、構造物に作用する応力情報お
よび疲労累積被害度を推定するものである。この場合、
人工き裂が適切な作用応力レベルのもとで適切な速度で
進展するように設計する必要があり、一般には人工き裂
の先端に応力集中を生じさせて、き裂の進展を促すよう
に工夫されている。上記の公開公報はこのような犠牲試
験片の概念を示したものであるが、構造物に作用する応
力レベルは、構造物の種類,使用環境,および着目部位
によって大きく異なり、一般に犠牲試験片のき裂を進展
させるためには、人工き裂に作用する応力を構造的応力
集中効果を利用して高める必要がある。
[0003] Japanese Patent Application Laid-Open No. 9-304240 discloses a method of attaching a sacrificial test piece to a structure and observing the amount of propagation of an artificial crack provided on the test piece to obtain information on stress acting on the structure and accumulated fatigue damage. The degree is estimated. in this case,
Artificial cracks must be designed to propagate at the appropriate rate under the appropriate applied stress levels, and generally create stress concentrations at the tip of the artificial crack to encourage crack propagation. It is devised. Although the above publication discloses the concept of such a sacrificial test piece, the stress level acting on the structure greatly differs depending on the type of the structure, the use environment, and the site of interest. In order to propagate a crack, it is necessary to increase the stress acting on the artificial crack by utilizing the structural stress concentration effect.

【0004】このような観点から、特許第302016
2号の発明では、人工き裂部分に合わせてスリットを設
けた樹脂製の合わせ板を接着することにより、人工き裂
が進展する感度を高めている。この工夫により感度の高
い犠牲試験片が得られているが、未だ十分な感度に達し
ているとは言えない。また、製作方法に関しても犠牲試
験片の本体に手作業で樹脂板を張り合わせる必要があ
り、製作に手間がかかるという難点がある。
From such a viewpoint, Japanese Patent No. 302016 is disclosed.
In the invention of No. 2, the sensitivity at which the artificial crack propagates is increased by bonding a resin-made laminated plate provided with slits in accordance with the artificial crack portion. Although a sacrificial test piece with high sensitivity has been obtained by this measure, it cannot be said that sufficient sensitivity has yet been reached. Also, regarding the manufacturing method, it is necessary to manually attach a resin plate to the main body of the sacrificial test piece, and there is a problem that the manufacturing is troublesome.

【0005】また、この段落番号末尾に掲げた文献
[1]には、犠牲試験片と類似のコンセプトのものがあ
るが、感度を向上させるためにゲージ長を長くとってお
り、ゲージに作用する歪みまたは応力が平均化されるこ
とにより計測精度が悪くなるという欠点に加え、圧縮応
力が作用した場合には試験片が座屈して正しく測定でき
ない欠点がある。そこで、後者の欠点の対策として試験
片貼付時に熱歪を利用して初期引張応力を付加すること
により座屈を防止する手段が考えられているが、この作
業は非常に手間が掛かると共に、初期引張力を一定に与
えることが至難である等の問題点があった。文献[1]
阿部充他、「構造物の活荷重履歴モニタリングシステ
ム」、第2回構造物の診断に関するシンポジウム論文
集、1999年8月。
The document [1] listed at the end of this paragraph number has a concept similar to that of the sacrificial test piece. However, the gauge length is increased in order to improve the sensitivity and acts on the gauge. In addition to the disadvantage that the measurement accuracy is deteriorated due to the averaging of strain or stress, there is a disadvantage that when a compressive stress is applied, the test specimen buckles and the measurement cannot be performed correctly. Therefore, as a countermeasure for the latter drawback, means has been considered to prevent buckling by applying an initial tensile stress using thermal strain at the time of attaching the test piece, but this work is extremely time-consuming and requires There were problems such as difficulty in providing a constant tensile force. Document [1]
Mitsuru Abe et al., "System for Monitoring the Live Load of Structures", 2nd Symposium on Structural Diagnosis, August 1999.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述のような
従来の問題点を解消するために為されたもので、従来の
各犠牲試験片の感度をさらに向上させること、製作工程
を単純化すること、および構造物に貼付する方策を増加
させること等を目的とするものである。構造物への貼付
方法については、従来は犠牲試験片を構造物に接着する
ことだけを前提にしていたものを、本発明では接着のほ
かにボルト結合および溶接の3種類の貼付手段のいずれ
かを選択できる工夫を加味した。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and further improves the sensitivity of each conventional sacrificial test piece and simplifies the manufacturing process. And to increase the number of measures to be attached to a structure. Conventionally, the method of attaching to a structure is based on the premise that only the sacrificial test piece is adhered to the structure. In the present invention, in addition to adhesion, any one of three types of attaching means, bolt connection and welding, is used. We added a device that can be selected.

【0007】[0007]

【課題を解決するための手段】本発明は、本体の長さ方
向の中央部に、幅方向の人工き裂を設けた犠牲試験片に
おいて、人工き裂の進展方向に沿って本体の板面を切除
して極薄部を形成した犠牲試験片を構成したものであ
る。また、上記において、本体の板面を円弧溝加工を施
して極薄部を形成した犠牲試験片を構成したものであ
る。また、上記において、本体の板面をV溝加工を施し
て極薄部を形成した犠牲試験片を構成したものである。
また、上記において、極薄部の板厚さをほぼ0.1mm
に選定した犠牲試験片を構成したものである。また、本
発明は、金属板からなる本体の長さ方向の中央部に、幅
方向の人工き裂を設けた犠牲試験片において、人工き裂
の進展方向に沿って溝状に切除して極薄部を形成すると
共に、極薄部の幅方向の外側に板厚を貫通する空洞部を
設けた犠牲試験片を構成したものである。また、本発明
は、金属板からなる本体の長さ方向の中央部に、幅方向
の人工き裂を設けた犠牲試験片において、人工き裂の進
展方向に沿って溝状に切除して極薄部を形成し、極薄部
の幅方向の外側に板厚を貫通する空洞部を設けると共
に、本体の長さ方向の両端に板厚を貫通する開口部を設
けた犠牲試験片を構成したものである。また、本発明
は、請求項1乃至請求項6の犠牲試験片を構造物に貼付
し、犠牲試験片の人工き裂の進展を検出することにより
構造物の疲労損傷を予知する疲労損傷予知方法を採用し
たものである。さらに、本発明は、請求項7の方法で人
工き裂の進展を検出することにより、構造物に作用する
応力情報を取得する方法を採用したものである。
According to the present invention, there is provided a sacrificial test piece having an artificial crack in a width direction provided at a central portion in a longitudinal direction of a main body. Is a sacrificial test piece in which an ultrathin portion is formed by cutting off the sample. Further, in the above, a sacrificial test piece in which an extremely thin portion is formed by applying a circular arc groove processing to the plate surface of the main body. Further, in the above, a sacrificial test piece in which the plate surface of the main body is subjected to V-groove processing to form an extremely thin portion is formed.
In the above, the thickness of the ultra-thin portion is set to approximately 0.1 mm.
Of the sacrificial test piece selected in (1). Further, the present invention provides a sacrificial test piece having a width direction artificial crack provided at a central portion in a length direction of a main body made of a metal plate, and cutting the groove in a groove shape along the direction of propagation of the artificial crack. This is a sacrificial test piece having a thin portion and a hollow portion penetrating the plate thickness on the outside in the width direction of the extremely thin portion. Further, the present invention provides a sacrificial test piece having a width direction artificial crack provided at a central portion in a length direction of a main body made of a metal plate, and cutting the groove in a groove shape along the direction of propagation of the artificial crack. A sacrificial test piece was formed in which a thin portion was formed, a hollow portion penetrating the plate thickness was provided outside the width direction of the ultra-thin portion, and openings were formed at both ends in the length direction of the main body. Things. Also, the present invention provides a method for predicting fatigue damage of a structure by attaching the sacrificial test piece according to any one of claims 1 to 6 to a structure and detecting the growth of an artificial crack in the sacrificial test piece. Is adopted. Further, the present invention adopts a method of acquiring stress information acting on a structure by detecting the growth of an artificial crack by the method of claim 7.

【0008】[0008]

【発明の実施の形態】実施の形態1.図1は本発明の基
本的構成を示す説明図で、(a)は平面図、(b)は
(a)の断面図、(c)は(a)の部分拡大図、図2と
図3は実施の形態1と2の構成を示す説明図で、それぞ
れ(a)は斜視図、(b)は拡大平面図、図4(a),
(b)は極薄部の断面図である。図1において、1は犠
牲試験片、2は犠牲試験片1の本体である。本体2は図
示のように小判型に形成されて材料は基本的には疲労き
裂伝播特性が安定していてばらつきの小さい材料であれ
ば、必ずしも予知しようとする構造物と同材質である必
要はない。例えば、鉄,銅,チタン,アルミニウムおよ
びこれらの合金類,ステンレス鋼などが考えられる。た
だし、使用環境条件に適合するように、耐熱性,耐候
性,耐食性,構造物本体との電食の問題がないこと等が
付帯要件となることがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 1A and 1B are explanatory views showing a basic configuration of the present invention. FIG. 1A is a plan view, FIG. 1B is a cross-sectional view of FIG. 1A, FIG. 1C is a partially enlarged view of FIG. FIGS. 4A and 4B are explanatory views showing the configuration of the first and second embodiments, wherein FIG. 4A is a perspective view, FIG. 4B is an enlarged plan view, and FIGS.
(B) is a sectional view of an extremely thin portion. In FIG. 1, reference numeral 1 denotes a sacrificial test piece, and 2 denotes a main body of the sacrificial test piece 1. The main body 2 is formed in an oval shape as shown in the figure, and the material is basically the same as the structure to be predicted if the material has basically stable fatigue crack propagation characteristics and small variations. There is no. For example, iron, copper, titanium, aluminum and alloys thereof, stainless steel and the like can be considered. However, there may be additional requirements such as heat resistance, weather resistance, corrosion resistance, and no problem of electrolytic corrosion with the structure body so as to conform to the use environment conditions.

【0009】3は本体2に設けられた人工き裂(符号3
は総称)、4,4は空洞部、5,5は開口部である。実
施の形態1では人工き裂3が、中心の小円孔31とその
両側に延びた細線状のき裂32,32とからなるほぼ
“Φ字状”に形成されている。また、空洞部4,4は、
その形状を例えて言えばバスストップの“標識状”に構
成されている。そして、図1に示すように、小判型の薄
い金属板の本体2の長さ方向の中央部に、幅方向の人工
き裂3が直接機械加工,放電加工,電解研磨等の精密加
工技術によって形成される。また、同様な加工を経て小
円孔31を軸として隙間を空けて一対の空洞部4,4が
対称的に設けられ、長さ方向の両端部には開口部5,5
が貫設されている。小円孔31を軸対称にして幅方向に
対称的に設けられた“標識状”の空洞部4,4は、中心
部の人工き裂3の応力集中を効果的に高める機能を果た
すことになる。
Reference numeral 3 denotes an artificial crack provided on the main body 2 (reference numeral 3).
, 4 and 4 are cavities and 5, 5 are openings. In the first embodiment, the artificial crack 3 is formed in a substantially “Φ shape” including a small hole 31 at the center and fine line-shaped cracks 32 extending on both sides thereof. Also, the cavities 4 and 4
For example, it is configured as a "sign" of a bus stop. Then, as shown in FIG. 1, an artificial crack 3 in the width direction is directly formed in the central portion of the main body 2 of the thin oval thin metal plate in the longitudinal direction by precision machining technology such as machining, electric discharge machining, and electrolytic polishing. It is formed. Further, through similar processing, a pair of cavities 4 and 4 are provided symmetrically with a gap around the small circular hole 31, and openings 5 and 5 are provided at both ends in the length direction.
Is pierced. The “marked” cavities 4 and 4 symmetrically provided in the width direction with the small circular holes 31 being axially symmetrical have a function of effectively increasing the stress concentration of the artificial crack 3 at the center. Become.

【0010】このような基本的構造の本体2において、
本発明では図2,3に示すように具体的には人工き裂3
の作用応力が高くなるように前記の精密加工技術を利用
して、更に人工き裂3の付近の厚さを薄くするための極
薄部6(6は総称)の加工が施されている。極薄部6の
加工エリアには、A,Bの2つのタイプが採用されてい
る。Aタイプは図2の特に図(b)の斜線部分に明示す
るように、き裂32,32の先端部付近から両側の空洞
部4,4における“標識状”の脚部までの分割領域であ
る。また、Bタイプは図3〔図(b)に明示〕のよう
に、人工き裂3を挟む空洞部4,4間を結ぶ単一領域を
極薄部6としたものである。
In the main body 2 having such a basic structure,
In the present invention, as shown in FIGS.
The ultra-thin portion 6 (6 is a generic name) for further reducing the thickness in the vicinity of the artificial crack 3 is applied using the above-mentioned precision processing technique so that the acting stress of the artificial crack 3 is increased. Two types of A and B are employed in the processing area of the ultra-thin portion 6. The type A is a divided region from the vicinity of the tip of the cracks 32, 32 to the "marked" legs in the cavities 4, 4 on both sides, as clearly indicated by the hatched portions in FIG. is there. In the B type, as shown in FIG. 3 (shown in FIG. 3B), a single region connecting the cavities 4 and 4 sandwiching the artificial crack 3 is an extremely thin portion 6.

【0011】そして、上記の極薄部6の断面形状には、
ここではさらに第1の極薄部61と第2の極薄部62の
2形状が採用されている。第1の極薄部61は図4
(a)の拡大図で示すように、本体1の板面の表裏をき
裂32,32の進展方向に沿って角溝状に切除加工して
形成される。また、第2の極薄部62には同図の(b)
のように、両面に円弧溝状のアール加工が施されてい
る。
The cross-sectional shape of the ultra-thin portion 6 includes
Here, two shapes of a first ultra-thin portion 61 and a second ultra-thin portion 62 are further adopted. The first ultra-thin portion 61 is shown in FIG.
As shown in the enlarged view of (a), the front and back surfaces of the plate surface of the main body 1 are formed by cutting into square grooves along the direction in which the cracks 32 and 32 progress. Also, the second ultra-thin portion 62 includes (b) in FIG.
As shown in the figure, arc grooves are formed on both surfaces.

【0012】このような極薄加工による極薄部61,6
2を構成することにより、き裂32,32から背中合わ
せに進展するき裂c(不図示)の方向が横ズレ等で異常
になることを防ぐことが可能になる。この結果、き裂3
2,32の先から形成されるき裂cの進展が極薄部6に
誘導されて、本体2の幅方向に沿う方向に延長して行わ
れることになる。また、人工き裂3以外の他の応力集中
も緩和されて、き裂cの進展を人工き裂3におけるき裂
32,32の先端から確実に発生させることにもなる。
一方、実施の形態1では本体2の長さ方向の両側の2箇
所にボルト結合用の一対の開孔部5,5を設けて、犠牲
試験片1の構造物への貼付に利用できるように構成され
ている。
Ultra-thin portions 61, 6 formed by such ultra-thin processing
By configuring 2, it becomes possible to prevent the direction of a crack c (not shown) that propagates back to back from the cracks 32, 32 from becoming abnormal due to lateral displacement or the like. As a result, crack 3
The growth of the crack c formed from the tip of the body 2 or 32 is guided by the ultrathin portion 6 and is extended in the direction along the width direction of the main body 2. Further, stress concentration other than the artificial crack 3 is also alleviated, so that the propagation of the crack c is reliably generated from the tip of the cracks 32 in the artificial crack 3.
On the other hand, in the first embodiment, a pair of holes 5 and 5 for bolt connection are provided at two locations on both sides in the longitudinal direction of the main body 2 so that the sacrificial test piece 1 can be used for attaching to the structure. It is configured.

【0013】このほか、図5に実施の形態1,2の変形
例が示され、(a)は変形例の基本的構成を示す平面
図、(b)は極薄部の形成領域を示す平面図、(c)は
極薄部の別の形状を示す断面図である。変形例の本体1
も図1と同様に小判型に形成され、その長さ方向の中央
部に幅方向の人工き裂3が形成されている。また、人工
き裂3の幅方向と長さ方向には、各一対の空洞部4,4
と開口部5,5が対称的に設けられていることも共通し
ている。ただし、この変形例では細線状のき裂32と3
2のみからなる人工き裂3が、別々に円形の空洞部4と
4に各別に連通していて間隔を隔てて幅方向の中心線上
に対向している。
5A and 5B show a modification of the first and second embodiments. FIG. 5A is a plan view showing a basic configuration of the modification, and FIG. FIG. 3C is a cross-sectional view showing another shape of the ultra-thin portion. Modified body 1
1 is formed in an oval shape similarly to FIG. 1, and an artificial crack 3 in a width direction is formed at a central portion in a length direction. Further, in the width direction and the length direction of the artificial crack 3, each pair of hollow portions 4, 4
And the openings 5, 5 are provided symmetrically. However, in this modification, the fine line-shaped cracks 32 and 3
An artificial crack 3 consisting solely of 2 is separately communicated with each of the circular cavities 4 and 4 and faces the center line in the width direction at an interval.

【0014】そして、図(b)のように一定幅の極薄部
6が、互いに対向するき裂32と32の両先端を含めて
形成されている。この場合、極薄部6の溝加工を前述し
た図4(a),(b)の“角溝型”や“円弧溝型”で形
成することは勿論のこと、ここでは特に図5(c)に示
されたように両面をき裂32,32に沿って緩いV字状
に切除加工して“V字溝型”の第3の極薄部63が形成
されている。このように構成した犠牲試験片1において
も、第3の極薄部63によって極薄部61や極薄部62
のときと全く同様にき裂cの進展が極薄部63に誘導さ
れることになる。このため、き裂cの進展を裂32,3
2の先端から確実に発生させる等、前記と同等の効果が
得られることには変わりがない。
Then, as shown in FIG. 2B, an extremely thin portion 6 having a constant width is formed including both ends of the cracks 32 and 32 facing each other. In this case, of course, the groove processing of the ultra-thin portion 6 is carried out by the above-mentioned "square groove type" or "arc groove type" shown in FIGS. 4 (a) and 4 (b). As shown in ()), both sides are cut in a loose V-shape along the cracks 32, 32 to form a "V-groove-shaped" third ultrathin portion 63. Also in the sacrificial test piece 1 configured as described above, the third ultrathin portion 63 allows the ultrathin portion 61 and the ultrathin portion 62 to be formed.
The propagation of the crack c is guided to the ultra-thin portion 63 just as in the case of (1). For this reason, the propagation of crack c is
There is no change in that the same effect as above can be obtained, for example, it is surely generated from the tip of No. 2.

【0015】実施の形態2.開口部5,5を利用した犠
牲試験片1の構造物への貼付状態が、図6に示めされて
いる。図6(a)〜(c)において、7は接着剤、8は
フッ素樹脂フィルムである。また、9と10はボルトと
ナット、11はワッシャ、12は溶接部、13は疲労損
傷を予知しようとする構造物である。図6(a)では人
工き裂3の付近にフッ素樹脂フィルム8を介装して、長
さ方向の両端に設けた開口部5,5を利用して犠牲試験
片1が構造物13に接着剤7で接着される。開口部5,
5内でリベット状に固化した接着剤7が楔機能を果たし
て、犠牲試験片1の両端が構造物13の所定の位置に抜
け出し不能に面接着されている。
Embodiment 2 FIG. 6 shows a state in which the sacrificial test piece 1 is attached to the structure using the openings 5 and 5. 6A to 6C, reference numeral 7 denotes an adhesive, and reference numeral 8 denotes a fluororesin film. Numerals 9 and 10 are bolts and nuts, 11 is a washer, 12 is a welded portion, and 13 is a structure whose fatigue damage is to be predicted. In FIG. 6 (a), a sacrifice test piece 1 is bonded to a structure 13 by interposing a fluororesin film 8 in the vicinity of the artificial crack 3 and using openings 5, 5 provided at both ends in the longitudinal direction. Bonded with agent 7. Opening 5,
The adhesive 7 solidified in a rivet shape in 5 performs a wedge function, and both ends of the sacrificial test piece 1 are surface-bonded to predetermined positions of the structure 13 so as not to come out.

【0016】図6の(b)では開口部5,5に挿通され
たボルト9,9により、犠牲試験片1がそれぞれ2枚の
ワッシャ11,11を介して構造物13の表面にスペー
スを空けて添付される。また、(c)では予めネジ付き
ナット10,10が、構造物13に溶接部12でスポッ
ト溶接またはパーカッション溶接等によって溶接され
る。その後、犠牲試験片1がワッシャ11,11を介し
て、ボルト9,9で直接構造物13に固着される。な
お、予め犠牲試験片1をボルト9やネジ付きナット10
等で一体化しておき,この一体化されたネジ付きナット
10,10を構造物13に溶接するようにしてもよい。
In FIG. 6B, the sacrifice test piece 1 is separated from the surface of the structure 13 by two bolts 9, 9 inserted through the openings 5, 5, via two washers 11, 11, respectively. Attached. In (c), the threaded nuts 10 and 10 are previously welded to the structure 13 at the welding portion 12 by spot welding or percussion welding. Thereafter, the sacrificial test piece 1 is directly fixed to the structure 13 with the bolts 9, 9 via the washers 11, 11. In addition, the sacrificial test piece 1 was previously bolted 9 or screwed nut 10
And the like, and the integrated threaded nuts 10, 10 may be welded to the structure 13.

【0017】開口部5,5を設けてこれに挿通したボル
ト9を利用する図6(b),(c)の構成によれば、共
に必要時にボルト9を緩めて犠牲試験片1が交換可能に
できる特徴を有する。こうして、本発明の実施の形態
1,2の構成によれば構造物13の貼付位置の状況に対
応して、(a)の接着及び(b),(c)によるボルト
による固定の3種類の固定のうちの何れかの最適手段を
選択して、犠牲試験片1を構造物13上に貼付すること
が可能である。
According to the configurations shown in FIGS. 6B and 6C in which the openings 9 are provided and the bolts 9 are inserted therethrough, the bolts 9 can be loosened when necessary and the sacrificial test piece 1 can be replaced. It has features that can be. Thus, according to the configurations of Embodiments 1 and 2 of the present invention, three types of bonding of (a) and fixing with bolts by (b) and (c) are performed according to the situation of the attaching position of the structure 13. It is possible to affix the sacrificial test piece 1 on the structure 13 by selecting any optimal means of fixing.

【0018】前記したA,Bの2つのタイプについて、
破断寿命Nfの推定と疲労累積被害度を求める手順が、
図7のフロー図に示されている。フロー図7のステップ
S2においてき列cの長さc〜Nの計測値を基にして、
予め実験により求められた図8の基準曲線を利用して破
断(寿命)Nfが推定される。さらに、詳しい説明は省
略するが、ステップS3〜S6を経てステップS7にお
いて疲労累積被害度が求められるようになっている。
For the two types A and B described above,
The procedure for estimating the rupture life Nf and calculating the cumulative fatigue damage is as follows:
This is shown in the flowchart of FIG. In step S2 of the flow chart 7, based on the measured values of the lengths c to N of the row c,
The fracture (life) Nf is estimated using the reference curve of FIG. 8 obtained in advance by an experiment. Further, although detailed description is omitted, the cumulative fatigue damage is calculated in step S7 through steps S3 to S6.

【0019】図9において点線Aと実線Bは極薄部6等
がなく人工き裂だけを設けた従来タイプ(文献[2]…
末尾参照)の疲労実験結果に対して、本発明による犠牲
試験片1のAタイプとBタイプの試験結果が○と●でプ
ロットされている。本発明は人工き裂3のき裂32の先
端部の応力集中を高めたことにより、従来よりもはるか
に高感度の犠牲試験片1を得ることができた。本図から
非常に低い作用レベル(20MPa)でも極めて早期に
き裂cが発生し破断に至ることがわかる。文献[2]藤
本由紀夫他「構造物の長期応力度モニタリングのための
高感度犠牲試験片の開発」日本造船学会論文集、第18
7号、2000年6月。
In FIG. 9, a dotted line A and a solid line B represent a conventional type in which there is no ultrathin portion 6 or the like and only an artificial crack is provided (reference [2] ...
With respect to the fatigue test results (see the end), the test results of the A type and the B type of the sacrificial test piece 1 according to the present invention are plotted with ○ and ●. In the present invention, by increasing the stress concentration at the tip of the crack 32 of the artificial crack 3, the sacrificial test piece 1 with much higher sensitivity than before can be obtained. From this figure, it can be seen that even at a very low action level (20 MPa), crack c is generated very early, leading to fracture. Reference [2] Yukio Fujimoto et al. "Development of Highly Sensitive Sacrificial Specimen for Long-Term Stress Monitoring of Structures" Proceedings of the Society of Shipbuilding Engineers of Japan, No.18
No. 7, June 2000.

【0020】[0020]

【実施例】因みに、実施の形態1の犠牲試験片1に具体
的な数値を記入した実施例を、図10の(a),(b)
に示した。図10(a)は犠牲試験片1の本体2の基本
的構成を示す図面、図(b)は本発明要部の極薄部6付
近の設計図面である。上記の極薄部6における表面は、
電解研磨等で精密加工を加えた。また、実施例仕様によ
る角形溝や円弧溝を加工した溝幅wは2mm程度で、極
薄部6の板厚t〔図4および図5(c)参照〕の好まし
い値はA,B両タイプ共にほぼ0.1mm〜0.3mm
である。また、アール加工の半径の望ましい範囲は0.
5mmR〜3mmR程度である。本体2には板厚0.5
mmの銅板が用いられ、人工き裂3はワイヤカットで加
工された。
Examples By way of example, FIGS. 10A and 10B show examples in which specific numerical values are entered in the sacrificial test piece 1 of the first embodiment.
It was shown to. FIG. 10A is a drawing showing a basic configuration of the main body 2 of the sacrificial test piece 1, and FIG. 10B is a design drawing around the ultra-thin portion 6 of the main part of the present invention. The surface in the ultra-thin portion 6 is:
Precision processing was added by electrolytic polishing or the like. The groove width w of the square groove or the arc groove according to the specification of the embodiment is about 2 mm, and the preferable value of the plate thickness t of the ultra-thin portion 6 (see FIGS. 4 and 5C) is A and B types. Both are approximately 0.1mm to 0.3mm
It is. A desirable range of the radius of the radius processing is 0.1.
It is about 5 mmR to 3 mmR. Body 2 has a thickness of 0.5
mm artificial copper plate was used, and the artificial crack 3 was processed by wire cutting.

【0021】なお、上述の本発明の実施の形態では横方
向が長い小判型の本体2の長さ方向の中央部に幅方向に
延びる人工き列3を形成した図面を例示して説明した
が、必ずしも縦横の長さが異なる必要がなく、要するに
長さ方向に対して幅方向が直角に交叉する本体2であれ
ばよい。また、本体の基本的な構成図や実施例の設計図
面には“標識状”の空洞部や円形の開口部が図示されて
いるが、これらの形状は勿論のこと第1〜第3の極薄部
についても板面の厚さを相対的に薄くしてき裂の進展を
誘導するものである限りは実施の形態の形状や寸法に拘
るものではない。また、極薄部を板面の裏表を切除して
形成したが、素材の表面の粗密性状によっては表側或い
は裏側の何れか一方だけを加工して形成することもでき
る。
In the above-described embodiment of the present invention, an artificial row 3 extending in the width direction is formed at the center in the longitudinal direction of the oval-shaped main body 2 having a long lateral direction. The main body 2 does not necessarily have to have different vertical and horizontal lengths. In other words, the main body 2 has a width direction crossing at right angles to the length direction. In addition, in the basic configuration diagram of the main body and the design drawings of the embodiment, “marked” cavities and circular openings are shown, but these shapes as well as the first to third poles are used. The thin portion is not limited to the shape and dimensions of the embodiment as long as the thickness of the plate surface is made relatively thin to induce crack propagation. Further, although the ultra-thin portion is formed by cutting the front and rear surfaces of the plate surface, it may be formed by processing only one of the front side and the back side depending on the density of the surface of the material.

【0022】さらに、図7のフロー図によって破断寿命
Nfと疲労累積被害度を求めたが、他の推定方法や算出
方法等を利用してもよい。例えば、図7のフローよりも
簡便な次の2つの方法が考えられる。その1つは、c〜
N/Nfカーブ(図8)を利用する方法である。このカ
ーブはランダム荷重でも一定荷重でもほぼ同一であるこ
とが実験的に確認できている。したがって、図11に示
すような手順で、疲労損傷度を算定することができる。
さらに、き裂長さをパラメータにしたSN線図を利用す
る方法(図12)がある。この方法は、前記図11と同
じことを、疲労センサーのき裂長さをパラメータにした
SN線図を使って行う。
Furthermore, although the rupture life Nf and the cumulative fatigue damage were determined by the flow chart of FIG. 7, other estimation methods and calculation methods may be used. For example, the following two methods that are simpler than the flow of FIG. 7 can be considered. One of them is c ~
This is a method using an N / Nf curve (FIG. 8). It has been experimentally confirmed that this curve is almost the same whether the load is random or constant. Therefore, the degree of fatigue damage can be calculated by the procedure shown in FIG.
Furthermore, there is a method (FIG. 12) using an SN diagram in which the crack length is used as a parameter. In this method, the same as in FIG. 11 is performed using an SN diagram using the crack length of the fatigue sensor as a parameter.

【0023】図7の方法で疲労累積被害度の算定と疲労
寿命の予測を行った場合は、作用応力の確率密度関数f
(s)を決定することができ、構造物に作用する応力情
報を正確に取得することができる。この応力情報を用い
ることにより、たとえば設計寿命の範囲で作用する応力
の最大期待値などの確率量を求めることができるため、
疲労強度だけでなく、構造物の各種の強度評価、たとえ
ば座屈強度や降伏強度、最終強度などの評価、さらには
構造物の設計に役立てることができる。また、図11お
よび図12の方法で簡易に評価する場合では等価応力範
囲△σeqが応力情報となり、構造物の寿命を評価でき
るとともに、構造物の疲労設計に役立てることができ
る。
When the calculation of the cumulative fatigue damage and the prediction of the fatigue life are performed by the method shown in FIG. 7, the probability density function f of the acting stress is obtained.
(S) can be determined, and stress information acting on the structure can be accurately obtained. By using this stress information, for example, a probability amount such as a maximum expected value of the stress acting within the design life range can be obtained.
Not only fatigue strength but also various strength evaluations of a structure, for example, evaluation of buckling strength, yield strength, final strength, and the like, and further can be used for structure design. In the case of simple evaluation using the methods shown in FIGS. 11 and 12, the equivalent stress range △ σeq serves as stress information, so that the life of the structure can be evaluated and the fatigue design of the structure can be used.

【0024】[0024]

【発明の効果】以上説明したように、極薄部を形成した
本発明によれば図9にも示すように、±20MPa程度
の微小な応力レベルに対してもき裂cの進展を確認する
ことができ、実用的には十分な感度に達した。また、犠
牲試験片を1枚の金属板から製作するために製作もシン
プルになると同時に、製作精度のばらつきも小さくなっ
た。しかも、犠牲試験片がユニット化されて、前述の船
舶や橋梁或いはクレーン等の鋼構造物以外の分野への広
範な適用が可能になる。また、構造物に接合する方法を
複数種類の中から選べることにより、適用も容易になっ
た。
As described above, according to the present invention having an extremely thin portion, as shown in FIG. 9, the propagation of the crack c is confirmed even at a minute stress level of about ± 20 MPa. And reached practically sufficient sensitivity. In addition, since the sacrificial test piece is manufactured from one metal plate, the manufacturing is simplified, and the variation in manufacturing accuracy is reduced. In addition, since the sacrificial test piece is unitized, it can be widely applied to fields other than steel structures such as the aforementioned ships, bridges and cranes. In addition, the method of joining to a structure can be selected from a plurality of types, so that the application is facilitated.

【0025】よって、本発明によれば、感度が高くシン
プルで、しかも適用範囲が広くなる等の種々の利点が期
待できる犠牲試験片を提供することができる。
Thus, according to the present invention, it is possible to provide a sacrificial test piece which is simple and has high sensitivity and can be expected to have various advantages such as a wide application range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的構成を示す説明図である。FIG. 1 is an explanatory diagram showing a basic configuration of the present invention.

【図2】実施の形態1の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of the first embodiment.

【図3】実施の形態2の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a second embodiment.

【図4】極薄部の断面図である。FIG. 4 is a sectional view of an extremely thin portion.

【図5】本発明の基本的構成の変形例を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a modification of the basic configuration of the present invention.

【図6】犠牲試験片の貼付状態を示す説明図である。FIG. 6 is an explanatory view showing an attached state of a sacrificial test piece.

【図7】実施の形態1の動作を示すフロー図である。FIG. 7 is a flowchart showing an operation of the first embodiment.

【図8】実施の形態1の動作を説明するための線図であ
る。
FIG. 8 is a diagram for explaining the operation of the first embodiment.

【図9】実施の形態動作を説明するための別の線図であ
る。
FIG. 9 is another diagram for explaining the operation of the embodiment.

【図10】実施例の仕様を示す図面である。FIG. 10 is a drawing showing specifications of an example.

【図11】疲労損傷の簡便な算定方法の説明図である。FIG. 11 is an explanatory diagram of a simple calculation method of fatigue damage.

【図12】別の疲労損傷の簡便な算定方法の説明図であ
る。
FIG. 12 is an explanatory diagram of another simple method of calculating fatigue damage.

【符号の説明】[Explanation of symbols]

1 犠牲試験片 2 本体 3 人工き裂 4 空洞部 5 開口部 6 極薄部 7 接着剤 8 フッ素樹脂フィルム 9 ボルト 10 ナット 11 ワッシャ 12 溶接部 13 構造物 31 小円孔 32 き裂 61 第1の極薄部 62 第2の極薄部 63 第3の極薄部 c 進展するき裂 t 極薄部の板厚 w 極薄部の溝幅 DESCRIPTION OF SYMBOLS 1 Sacrificial test piece 2 Main body 3 Artificial crack 4 Cavity part 5 Opening part 6 Ultrathin part 7 Adhesive 8 Fluororesin film 9 Bolt 10 Nut 11 Washer 12 Welded part 13 Structure 31 Small circular hole 32 Crack 61 First Ultra-thin section 62 Second ultra-thin section 63 Third ultra-thin section c Growing crack t Plate thickness of ultra-thin section w Groove width of ultra-thin section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新宅 英司 広島県東広島市鏡山北317−3 (72)発明者 伊藤 久 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 2G050 AA01 BA12 DA03 EB01 EC06 2G061 AB05 BA03 BA15 DA19 EA02 EA03 EA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Eiji Shintaku, Inventor 317-3 Kagamiyamakita, Higashihiroshima City, Hiroshima Prefecture (72) Hisashi Ito, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term (Reference) 2G050 AA01 BA12 DA03 EB01 EC06 2G061 AB05 BA03 BA15 DA19 EA02 EA03 EA10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 本体の長さ方向の中央部に、幅方向の人
工き裂を設けた犠牲試験片において、 前記人工き裂の進展方向に沿って本体の板面を切除して
極薄部を形成したことを特徴とする犠牲試験片。
1. A sacrificial test piece provided with an artificial crack in a width direction at a central portion in a longitudinal direction of a main body, wherein an extremely thin portion is formed by cutting a plate surface of the main body along a direction in which the artificial crack propagates. A sacrificial test piece characterized by forming a.
【請求項2】 前記請求項1における本体の板面を円弧
溝加工を施して極薄部を形成したことを特徴とする犠牲
試験片。
2. A sacrificial test piece according to claim 1, wherein an extremely thin portion is formed by subjecting the plate surface of the main body to arc groove processing.
【請求項3】 前記請求項1における本体の板面をV溝
加工を施して極薄部を形成したことを特徴とする犠牲試
験片。
3. A sacrificial test piece according to claim 1, wherein the plate surface of the main body is subjected to V-groove processing to form an extremely thin portion.
【請求項4】 前記請求項2および請求項3における極
薄部の板厚さをほぼ0.1mmに選定したことを特徴と
する犠牲試験片。
4. A sacrificial test piece according to claim 2, wherein the thickness of the ultra-thin portion is selected to be approximately 0.1 mm.
【請求項5】 金属板からなる本体の長さ方向の中央部
に、幅方向の人工き裂を設けた犠牲試験片において、 前記人工き裂の進展方向に沿って溝状に切除して極薄部
を形成すると共に、該極薄部の幅方向の外側に板厚を貫
通する空洞部を設けたことを特徴とする犠牲試験片。
5. A sacrificial test piece having an artificial crack in a width direction provided at a central portion in a longitudinal direction of a main body made of a metal plate, wherein the sacrificial test piece is cut in a groove shape along the direction of propagation of the artificial crack. A sacrificial test piece, wherein a thin portion is formed, and a hollow portion that penetrates a plate thickness is provided outside a width direction of the extremely thin portion.
【請求項6】 金属板からなる本体の長さ方向の中央部
に、幅方向の人工き裂を設けた犠牲試験片において、 前記人工き裂の進展方向に沿って溝状に切除して極薄部
を形成し、該極薄部の幅方向の外側に板厚を貫通する空
洞部を設けると共に、前記本体の長さ方向の両端に板厚
を貫通する開口部を設けたことを特徴とする犠牲試験
片。
6. A sacrificial test piece provided with an artificial crack in a width direction at a central portion in a length direction of a main body made of a metal plate, wherein the sacrificial test piece is cut into a groove along the direction of propagation of the artificial crack. Forming a thin portion, providing a hollow portion penetrating the plate thickness on the outside in the width direction of the ultra-thin portion, and providing openings penetrating the plate thickness at both ends in the length direction of the main body. Sacrificial test specimen
【請求項7】 前記請求項1乃至請求項6の犠牲試験片
を構造物に貼付し、該犠牲試験片の人工き裂の進展を検
出することにより構造物の疲労損傷を予知する疲労損傷
予知方法。
7. A method for predicting fatigue damage of a structure by adhering the sacrificial test piece according to claim 1 to a structure and detecting the growth of an artificial crack in the sacrificial test piece. Method.
【請求項8】 前記請求項7の方法で人工き裂の進展を
検出することにより、構造物に作用する応力情報を取得
する方法。
8. A method of acquiring stress information acting on a structure by detecting the growth of an artificial crack by the method of claim 7.
JP2000315235A 2000-10-16 2000-10-16 Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same Pending JP2002122526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315235A JP2002122526A (en) 2000-10-16 2000-10-16 Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315235A JP2002122526A (en) 2000-10-16 2000-10-16 Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same

Publications (1)

Publication Number Publication Date
JP2002122526A true JP2002122526A (en) 2002-04-26

Family

ID=18794375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315235A Pending JP2002122526A (en) 2000-10-16 2000-10-16 Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same

Country Status (1)

Country Link
JP (1) JP2002122526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309801A (en) * 2006-05-18 2007-11-29 Kawasaki Heavy Ind Ltd Fatigue sensor and fatigue damage estimation method
JP2010019660A (en) * 2008-07-10 2010-01-28 Nippon Sharyo Seizo Kaisha Ltd Test piece for shearing fatigue test
KR101308626B1 (en) 2006-12-22 2013-10-04 재단법인 포항산업과학연구원 Priscipal stress direction detectiong gage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309801A (en) * 2006-05-18 2007-11-29 Kawasaki Heavy Ind Ltd Fatigue sensor and fatigue damage estimation method
KR101308626B1 (en) 2006-12-22 2013-10-04 재단법인 포항산업과학연구원 Priscipal stress direction detectiong gage
JP2010019660A (en) * 2008-07-10 2010-01-28 Nippon Sharyo Seizo Kaisha Ltd Test piece for shearing fatigue test

Similar Documents

Publication Publication Date Title
JP3342467B2 (en) Crack-type fatigue detecting element, method of manufacturing the same, and damage estimation method using crack-type fatigue detecting element
JP7133162B2 (en) METHOD FOR DETECTING DAMAGE AND DEFORMATION IN STRUCTURES HAVING CFRP STRAINS FOR PRESTRAINING PRESTRESS AND CFRP STRAINS
JP4799267B2 (en) Fatigue sensor and fatigue damage degree estimation method
US5789680A (en) Sacrificial specimen for use in structural monitoring for predicting fatigue damage
JP2002536190A (en) Method and apparatus for crimping and securing a composite electrical insulator
CN113740161B (en) Effective prestress detection method for pre-tensioned prestressed concrete hollow slab steel strand
JP3128065U (en) Center-hole load transducer
CN105548360B (en) Suspension cable corrosion combined monitoring method based on stress concentration and supersonic guide-wave
JP4316283B2 (en) Tensile anchorage structure and tendon stress measurement method
JP2002122526A (en) Sacrifice test piece and fatigue loss prediction and stress information acquisition method using the same
JP3020162B1 (en) Sacrificial specimen for long-term stress monitoring of structures and method of use
Salvini et al. A procedure for fatigue life prediction of spot welded joints
JP2001318011A (en) Method of measuring strain or tensile force of tension steel member
JP6016589B2 (en) Structure and method for detecting peeling of structure
JP3897630B2 (en) Fatigue sensor
CN205484204U (en) Compound monitoring devices of suspension cable corrosion based on stress concentration and supersound guided wave
CN210401037U (en) Anchor used for drawing and sound emission test of light-circle pultruded CFRP (carbon fiber reinforced plastics) bar
JPS60209137A (en) Predicting method of fatigue damage
JPH1090085A (en) Evaluation method for welding residual stress
ZAHRAEI Cyclic strength and ductility of rusted steel members
CN114252183B (en) Method for testing bonded prestress value released after pre-reinforcement of existing structure
JPS61286734A (en) Method for measuring stress of fatigue crack
JP2004101192A (en) Fluctuation load sensor
CN216770861U (en) Anchor cable meter
CN216770856U (en) Device for measuring prestress value of bonded prestress structure reinforced by carbon fibers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412