[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002110124A - Separator for sealed lead-acid battery - Google Patents

Separator for sealed lead-acid battery

Info

Publication number
JP2002110124A
JP2002110124A JP2000295765A JP2000295765A JP2002110124A JP 2002110124 A JP2002110124 A JP 2002110124A JP 2000295765 A JP2000295765 A JP 2000295765A JP 2000295765 A JP2000295765 A JP 2000295765A JP 2002110124 A JP2002110124 A JP 2002110124A
Authority
JP
Japan
Prior art keywords
glass
separator
mass
sealed lead
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000295765A
Other languages
Japanese (ja)
Other versions
JP4897994B2 (en
Inventor
Yoshinobu Kakizaki
芳信 柿崎
Takaaki Matsunami
敬明 松波
Masahiro Kawachi
正浩 川地
Takuo Mitani
拓生 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2000295765A priority Critical patent/JP4897994B2/en
Publication of JP2002110124A publication Critical patent/JP2002110124A/en
Application granted granted Critical
Publication of JP4897994B2 publication Critical patent/JP4897994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the occurrence of a fracture in a bending part and preclude deterioration due to weathering phenomenon found in an ultrafine glass fiber by increasing durability and preventing deterioration of a separator for a sealed lead-acid battery. SOLUTION: The separator for a sealed lead-acid battery contains, as a main body, glass composition including, by mass%, SiO2 of 63.0-66.0, Al2O3 of 4.0-5.1, B2O3 of 5.5-7.5, Na2O+K2O of 14.6-18.2, MgO of 2.7-3.7, CaO of 3.7-5.3, BaO of 0-0.3, and 0-0.2 others, which constitutes an ultrafine glass fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、密閉型鉛蓄電池用セパ
レータに関する。
The present invention relates to a separator for a sealed lead-acid battery.

【0002】[0002]

【従来の技術】従来密閉型鉛蓄電池用セパレータに使用
されるガラス繊維の組成は、質量%で表示して下記成分
のとおりである。 SiO 67.0 Al23 2.0 B23 7.0 NaO+KO 15.0 MgO 3.0 CaO 5.0 BaO 0.1 その他 0.9 前記ガラス組成とした理由は、次の通りである。 (1)密閉型鉛蓄電池の電解液は硫酸のため、耐酸性の
含アルカリガラスが好適であることから、アルカリ成分
(NaO+KO)を15.0質量%とする。 (2)ガラスの骨格を成すSiO成分は、耐酸性を考
慮すると多いほうがよいが、ガラスの液相温度が上昇し
作業性が劣るため、67.0質量%を設定する。 (3)平均繊維径が0.7μmと細く、比表面積が大き
いことから、空気中の水分や炭酸ガスによってアルカリ
成分が溶出して、ガラス繊維が破壊されるいわゆる風化
現象が起こるため、風化現象の防止のためB23を7.
0質量%とする。 (4)耐水性及び耐酸性等の耐久性向上のため、SiO
表面で錯塩化して保護膜として働かせるが、紡糸温度
が高くなり繊維化が難しくなることから、Al23
2.0質量%とする。 (5)SiOと混合加熱され、ガラスの融点を下げて
溶けやすくする作用が低くなり、作業性は向上するが、
耐水性、耐酸性を悪くするので、MgO+CaO+Ba
O総量で8.1質量%とする。
2. Description of the Related Art The composition of glass fiber conventionally used for a separator for a sealed lead-acid battery is represented by the following components in terms of% by mass. SiO 2 67.0 Al 2 O 3 2.0 B 2 O 3 7.0 Na 2 O + K 2 O 15.0 MgO 3.0 CaO 5.0 BaO 0.1 Others 0.9 Is as follows. (1) Since the electrolyte solution of the sealed lead-acid battery is sulfuric acid, an acid-resistant alkali-containing glass is suitable. Therefore, the alkali component (Na 2 O + K 2 O) is set to 15.0% by mass. (2) The amount of the SiO 2 component constituting the skeleton of the glass is preferably large in consideration of acid resistance. However, since the liquidus temperature of the glass is increased and workability is poor, 67.0% by mass is set. (3) Since the average fiber diameter is as thin as 0.7 μm and the specific surface area is large, a so-called weathering phenomenon occurs in which alkali components are eluted by moisture or carbon dioxide gas in the air and glass fibers are destroyed. B 2 O 3 for the prevention of the 7.
0 mass%. (4) To improve durability such as water resistance and acid resistance, use SiO
Although complexation occurs on the two surfaces to act as a protective film, the spinning temperature is high and fiberization is difficult, so Al 2 O 3 is 2.0% by mass. (5) It is mixed and heated with SiO 2 to lower the melting point of the glass and reduce the effect of melting, thereby improving workability.
MgO + CaO + Ba as it deteriorates water resistance and acid resistance
The total amount of O is set to 8.1% by mass.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のガラ
ス組成の密閉型鉛蓄電池用セパレータは、夏季など高温
多湿時条件下で2ヶ月程度の保管後に使用する場合、ガ
ラス繊維の風化(劣化)を生じて、セパレータを電池に
組込む際に、折り曲げ部で割れて電池生産ができなくな
ったり、ロール裁断面が接着したりすることがある。更
に、極板を包んで使用する密閉電池の場合、割れのため
短絡を生じる問題があるので、在庫時には冷暗所で密閉
し、乾燥剤を入れて保管する必要があるなどの問題があ
る。また、劣化したガラス繊維は折れやすくなるため、
所定加圧をかけて組立てた密閉電池が長期の使用時に圧
力が保てず、極板とセパレータの密着性が低下し、電池
容量が出なくなり電池の寿命を短くする問題がある。こ
のため、本発明は前記課題を解決することを目的とす
る。
However, the conventional separator for a sealed lead-acid battery having a glass composition, when used after storage for about two months under conditions of high temperature and high humidity, such as in summer, causes weathering (deterioration) of glass fibers. Then, when the separator is incorporated into the battery, the separator may be broken at the bent portion to make it impossible to produce the battery, or the cross section of the roll may adhere. Furthermore, in the case of a sealed battery used by enclosing an electrode plate, there is a problem that a short circuit occurs due to cracking. Therefore, there is a problem that it is necessary to seal the battery in a cool and dark place and store it with a desiccant when stocked. In addition, since the deteriorated glass fiber is easily broken,
There is a problem that the sealed battery assembled by applying a predetermined pressure cannot maintain the pressure during long-term use, the adhesion between the electrode plate and the separator is reduced, the battery capacity is lost, and the life of the battery is shortened. Therefore, an object of the present invention is to solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明の密閉型鉛蓄電池
用セパレータは、前記目的を達成するべく、請求項1に
記載の通り、質量%で表示して下記成分 SiO 63.0〜66.0 Al 4.0〜 5.1 B 5.5〜 7.5 NaO+KO 14.6〜18.2 MgO 2.7〜 3.7 CaO 3.7〜 5.3 BaO 0〜 0.3 その他 0〜 0.2 のガラス組成から成る極細ガラス繊維を主体としたこと
を特徴とする。
Means for Solving the Problems] sealed lead acid battery separator of the present invention, in order to achieve the above object, as described in claim 1, the following components SiO 2 63.0 to 66 and in wt% .0 Al 2 O 3 4.0~ 5.1 B 2 O 3 5.5~ 7.5 Na 2 O + K 2 O 14.6~18.2 MgO 2.7~ 3.7 CaO 3.7~ 5 .3 BaO 0-0.3 Others It is characterized by being mainly composed of ultra-fine glass fibers having a glass composition of 0-0.2.

【0005】[0005]

【発明の実施の形態】ガラス組成と化学的な耐久性の順
位は (1)耐水性:ZrO2>Al23>TiO2>ZnO>
MgO>CaO>BaO (2)耐酸性:ZrO2>Al23>ZnO>MgO>
CaO>TiO2>BaO であることが知られている(成瀬省著 ガラス工学、共
立出版(株)、287頁)。ZrO2とAl23は耐
水、耐酸性に対して最も優れるが、ZrO2は鉛蓄電池
用セパレータ原料として非常に高価であり工業的に採用
は難しいので、主としてAl成分を増量して改善
を図るようにした。
BEST MODE FOR CARRYING OUT THE INVENTION The order of glass composition and chemical durability are as follows: (1) Water resistance: ZrO 2 > Al 2 O 3 > TiO 2 >ZnO>
MgO>CaO> BaO (2) Acid resistance: ZrO 2 > Al 2 O 3 >ZnO>MgO>
It is known that CaO> TiO 2 > BaO (Glass Engineering, Kyoritsu Shuppan Co., Ltd., p. 287, by Naruse). ZrO 2 and Al 2 O 3 is water, although most excellent against acid resistance, ZrO 2 is so expensive industrially employed is difficult as a separator material for lead-acid batteries, primarily increasing the Al 2 O 3 component To make improvements.

【0006】本発明の密閉型鉛蓄電池用セパレータに使
用されるガラス繊維の組成は、質量%で表示して次の通
りである。 SiO 63.0〜66.0 Al 4.0〜 5.1 B 5.5〜 7.5 NaO+KO 14.6〜18.2 MgO 2.7〜 3.7 CaO 3.7〜 5.3 BaO 0〜 0.3 その他 0〜 0.2
The composition of the glass fiber used in the sealed lead-acid battery separator of the present invention is as follows, expressed by mass%. SiO 2 63.0~66.0 Al 2 O 3 4.0~ 5.1 B 2 O 3 5.5~ 7.5 Na 2 O + K 2 O 14.6~18.2 MgO 2.7~ 3. 7 CaO 3.7 to 5.3 BaO 0 to 0.3 Other 0 to 0.2

【0007】SiOはBとAlと共にガ
ラスの骨格を形成する。63質量%未満では、ガラスの
化学的耐久性が低下して好ましくない。66質量%超で
は、ガラスの溶解性が低下すると共に、ガラスの作業温
度・液相温度が上昇して好ましくない。
[0007] SiO 2 forms a glass skeleton together with B 2 O 3 and Al 2 O 3 . If it is less than 63% by mass, the chemical durability of the glass is undesirably reduced. If it exceeds 66% by mass, the solubility of the glass decreases, and the working temperature and the liquidus temperature of the glass undesirably increase.

【0008】Alは、ガラス繊維の劣化の原因の
一つである化学的耐久性特に耐水性の低下を向上する。
Alは、4.1質量%未満では、耐水性が低下し
て好ましくない。5.1質量%超では、耐水性の向上効
果が変わらないこと、更に、ガラスの作業温度・液相温
度が上昇して好ましくない。
[0008] Al 2 O 3 improves the chemical durability which is one of the causes of the deterioration of the glass fiber, especially the decrease in water resistance.
If the content of Al 2 O 3 is less than 4.1% by mass, the water resistance is undesirably reduced. If it exceeds 5.1% by mass, the effect of improving the water resistance is not changed, and furthermore, the working temperature and the liquidus temperature of the glass are undesirably increased.

【0009】Bは、ガラス繊維の劣化の原因の一
つである風化現象を防止する。風化現象とは、本発明の
セパレータに使用するガラスの平均繊維径が0.7μm
と細く比表面積が大きいことから、空気中の水分や炭酸
ガスによってアルカリ成分が溶出して、ガラス繊維が破
壊されることである。Bは、5.5質量%未満で
は、ガラスの粘度が増加し、作業温度・液相温度が上昇
して好ましくない。7.5質量%超では、ガラスの作業
温度と液相温度の改善効果は少なく、高価であるため好
ましくない。
B 2 O 3 prevents the weathering phenomenon which is one of the causes of deterioration of glass fibers. The weathering phenomenon means that the average fiber diameter of the glass used for the separator of the present invention is 0.7 μm.
Because of the small thickness and large specific surface area, alkali components are eluted by moisture or carbon dioxide in the air, and glass fibers are destroyed. If B 2 O 3 is less than 5.5% by mass, the viscosity of the glass increases, and the working temperature and the liquidus temperature increase, which is not preferable. If the content exceeds 7.5% by mass, the effect of improving the working temperature and the liquidus temperature of the glass is small, and it is not preferable because it is expensive.

【0010】CaOとMgOはガラスの融剤である。同
時にこれらはガラスの粘度曲線を適切に保つため使用さ
れ、更に、化学的耐久性を維持するためにもなる。Mg
Oは2.7〜3.7質量%の範囲で液相温度を下げるの
で、この範囲で使用する。CaOは、3.7質量%未満
では、化学的耐久性を低下させるので好ましくない。
5.3質量%超では、液相温度が上昇して好ましくな
い。
[0010] CaO and MgO are glass fluxes. At the same time, they are used to properly maintain the viscosity curve of the glass, and also to maintain chemical durability. Mg
O reduces the liquidus temperature in the range of 2.7 to 3.7% by mass, so it is used in this range. If the content of CaO is less than 3.7% by mass, the chemical durability is undesirably reduced.
If it exceeds 5.3% by mass, the liquidus temperature increases, which is not preferable.

【0011】NaOとKOはガラスの融剤である。
また、同時に密閉型鉛蓄電池の電解液は硫酸のため、耐
酸性の含アルカリガラスが好適であるため使用する。N
Oに比べて+KOは原料が高価なため、Na
を主体に使用する。NaO+KOの合計が14.6
質量%未満では、ガラスの溶解性が低下し、同時に液相
温度も上昇するので好ましくない。NaO+KOの
合計が18.2質量%超では、化学的耐久性を低下させ
るので好ましくない。KOは原料として特別に調合す
る必要はないが、珪砂、長石等のKO以外の成分を調
合するための原料に混入するので、1.5質量%を上限
とする。
Na 2 O and K 2 O are glass fluxes.
At the same time, since the electrolyte solution of the sealed lead-acid battery is sulfuric acid, an acid-resistant alkali-containing glass is preferably used. N
Since the raw material of + K 2 O is more expensive than a 2 O, Na 2 O
Is mainly used. The sum of Na 2 O + K 2 O is 14.6
If the content is less than mass%, the solubility of the glass decreases, and the liquidus temperature also increases, which is not preferable. If the total of Na 2 O + K 2 O exceeds 18.2% by mass, the chemical durability is lowered, which is not preferable. K 2 O does not need to be specially prepared as a raw material, but is mixed with a raw material for preparing components other than K 2 O, such as silica sand and feldspar, so the upper limit is 1.5% by mass.

【0012】本発明に使用するガラス繊維は、前記組成
となるように調合したものを溶融炉で溶かして、遠心
法、或いは、火炎法で紡糸して平均繊維径0.5〜1.
0μmとする。
The glass fiber used in the present invention is prepared in such a manner as to have the above-mentioned composition, melted in a melting furnace, and spun by a centrifugal method or a flame method to obtain an average fiber diameter of 0.5 to 1.
0 μm.

【0013】本発明の密閉型鉛蓄電池用セパレータは、
前記極細ガラス繊維を100質量%、或いは、5質量%
以下を平均繊維径10〜20μm、繊維長3〜5mmの
フィブリル状アクリル繊維等の有機バインダー、平均繊
維径10〜20μm、繊維長3〜5mmのポリエステル
樹脂・アクリル樹脂等の合成繊維、比表面積80〜30
0m/gのシリカ等の無機粉体、平均繊維径5〜20
μm、繊維長5〜30mmのガラス長繊維で置換して構
成することができる。
[0013] The separator for a sealed lead-acid battery of the present invention comprises:
100% by mass of the ultrafine glass fiber or 5% by mass
The following are organic binders such as fibrillar acrylic fibers having an average fiber diameter of 10 to 20 μm and a fiber length of 3 to 5 mm, synthetic fibers such as polyester resin and acrylic resin having an average fiber diameter of 10 to 20 μm and a fiber length of 3 to 5 mm, and a specific surface area of 80. ~ 30
0 m 2 / g inorganic powder such as silica, average fiber diameter 5 to 20
It can be configured by replacing with a glass long fiber having a fiber length of 5 to 30 mm.

【0014】前記構成材料を通常の抄紙技術で酸、或い
は、中性により抄造して、厚さ0.5〜3.0mm、目
付70〜500g/mの密閉型鉛蓄電池用セパレータ
を得る。また、必要に応じて、抄紙後にセパレータの表
面、或いは、内部迄浸透させて樹脂処理することができ
る。
The above-mentioned constituent material is formed by acid or neutrality by a usual paper making technique to obtain a separator for a sealed lead-acid battery having a thickness of 0.5 to 3.0 mm and a basis weight of 70 to 500 g / m 2 . Further, if necessary, after papermaking, the separator may be permeated to the surface or inside thereof to be subjected to resin treatment.

【0015】[0015]

【実施例】本発明の密閉型鉛蓄電池用セパレータの実施
例、比較例及び従来例を説明する。本発明の実施例1
は、平均繊維径0.7μmのガラス繊維を99質量%
と、ガラス繊維のバインダーとしてフィブリル状アクリ
ル繊維を1質量%の組成で、抄紙法により、厚さ2.0
mm、目付320g/mの密閉型鉛蓄電池用セパレー
タを作成した。以下、実施例2及び従来例は、ガラス組
成の内、主としてAlの配合を変えて、それ以外
は実施例1と同様にして作成した。得られた各実施例、
比較例のセパレータにつき、ガラス繊維の評価と、セパ
レータの評価を行った。各セパレータの配合、ガラス組
成、並びに評価結果を下記表に示した。
EXAMPLES Examples, comparative examples and conventional examples of the separator for a sealed lead-acid battery according to the present invention will be described. Embodiment 1 of the present invention
Is 99% by mass of glass fibers having an average fiber diameter of 0.7 μm.
And a fibril-like acrylic fiber having a composition of 1% by mass as a binder of a glass fiber having a thickness of 2.0 by a papermaking method.
A sealed type lead-acid battery separator having a thickness of 320 g / m 2 and a thickness of 320 mm was prepared. Hereinafter, Example 2 and the conventional example were prepared in the same manner as in Example 1 except that the composition of Al 2 O 3 was changed mainly in the glass composition. Each example obtained,
With respect to the separator of the comparative example, the evaluation of the glass fiber and the evaluation of the separator were performed. The following table shows the composition of each separator, the glass composition, and the evaluation results.

【0016】[0016]

【表1】 [Table 1]

【0017】ガラス繊維評価の内、ガラス繊維の劣化性
試験は次の通りである。 (1)強制劣化条件 試料を約10g採取し、ガラスマット上に置く。 50℃、95RH%に設定した恒温恒湿槽に試料を入
れ、3日間静置する。 3日後、試料を取り出し、130℃乾燥機で乾燥させ
る。
Among the evaluations of the glass fiber, the deterioration test of the glass fiber is as follows. (1) Conditions for forced deterioration A sample of about 10 g is sampled and placed on a glass mat. The sample is placed in a thermo-hygrostat set at 50 ° C. and 95 RH% and left to stand for 3 days. After 3 days, the sample is taken out and dried in a dryer at 130 ° C.

【0018】(2)「劣化性レールス維持率」の測定 乾燥後の試料を約2g採取し、水0.8リットル加
え、ミキサで100秒離解する。 離解後、メスシリンダに移し、水を加え1リットルに
する。 ショッパ型叩解度試験機(JISP8121に準拠)
に試料水を投入した後、一定の速度で円錐弁を上方に持
ち上げで流下させる。 側管からの排水が停止した後、排水量(X)を正確に
読み取る。 ショッパろ水度(SR)は次式より求める。 SR(度)=(1000−X)/10 ・・・(1)式 温度補正表よりSRを補正する。SR/レールス換算
表よりレールス(繊度)を求める。「 劣化性レールス維持率」は、強制劣化前のガラス繊維
のレールスに対する強制劣化後のレールスの変化で表
す。 劣化性レールス維持率(%)= (強制劣化後のレールス/強制劣化前のレールス)×100・・・(2)式
(2) Measurement of “Deteriorating Rails maintenance rate” About 2 g of a dried sample is collected, 0.8 liter of water is added, and the mixture is defibrated for 100 seconds. After disaggregation, transfer to a measuring cylinder and add water to make 1 liter. Shopper type beating degree tester (based on JISP8121)
After the sample water is charged into the container, the conical valve is lifted upward at a constant speed to flow down. After the drainage from the side pipe has stopped, the drainage amount (X) is accurately read. The shopper freeness (SR) is obtained from the following equation. SR (degrees) = (1000−X) / 10 (1) SR is corrected from the temperature correction table. Find the Rails (fineness) from the SR / Rails conversion table. The “deteriorating rails maintenance rate” is expressed as a change in the rails after the forced deterioration with respect to the glass fiber rails before the forced deterioration. Deteriorating Rails maintenance rate (%) = (Rails after forced deterioration / Rails before forced deterioration) x 100 ... (2)

【0019】(3)「劣化性タフネス維持率」の測定 乾燥後の試料3.33gを3回採取し、ミキサで2分
間離解後、角型タッピで抄造する。 抄造したシートを105℃で乾燥させ、幅25mm×
長さ180mmの試験片を採取し、引張強度と伸びを測
定する。タフネスは次式より求める。 タフネス(MPa%)=引張強度(MPa)×伸び(%) ・・・(3)式「 劣化性タフネス維持率」は、強制劣化前のガラス繊維
のタフネスに対する強制劣化後のタフネスの変化で表
す。 劣化性タフネス維持率(%)= (強制劣化後のタフネス/強制劣化前のタフネス)×100・・・(4)式
(3) Measurement of "deterioration toughness retention rate" 3.33 g of a dried sample is sampled three times, disintegrated with a mixer for 2 minutes, and then formed with a square tappy. The sheet thus formed was dried at 105 ° C. and had a width of 25 mm ×
A test piece having a length of 180 mm is collected, and its tensile strength and elongation are measured. Toughness is calculated by the following equation. Toughness (MPa%) = Tensile strength (MPa) × Elongation (%) Expression (3) The “deteriorating toughness maintenance ratio” is expressed by a change in toughness of glass fiber before forced deterioration and toughness after forced deterioration. . Deterioration toughness maintenance rate (%) = (Toughness after forced degradation / Toughness before forced degradation) × 100 (4)

【0020】(4)「耐酸性」の測定 試料約2gを採取し、乾燥機(105℃)で乾燥後デ
シケータで冷却後重量(W)を精秤する。 比重1.200の希硫酸200ml中にの試料を入
れ、80℃の恒温水槽中に5時間保持する。 5時間後ガラスフィルタでろ過し、蒸留水で中性にな
るまで洗浄する。 洗浄した試料を乾燥機(105℃)で乾燥、デシケー
タで冷却後重量(W1)を精秤する。 耐酸性を次式より求める。 耐酸性(%)=(W−W1)/W×100 ・・・(5) 式
(4) Measurement of “acid resistance” About 2 g of a sample is collected, dried in a drier (105 ° C.), cooled in a desiccator, and precisely weighed (W). The sample is placed in 200 ml of dilute sulfuric acid having a specific gravity of 1.200, and kept in a constant temperature water bath at 80 ° C. for 5 hours. After 5 hours, the mixture is filtered through a glass filter and washed with distilled water until neutral. The washed sample is dried in a drier (105 ° C.), cooled in a desiccator, and precisely weighed (W1). The acid resistance is determined by the following equation. Acid resistance (%) = (W−W1) / W × 100 (5)

【0021】(5)「耐水性」の測定 試料約2gを採取し、乾燥機(105℃)で乾燥後デ
シケータで冷却後重量(W)を精秤する。 純水200ml中にの試料を入れ、80℃の恒温水
槽中に5時間保持する。 5時間後ガラスフィルタでろ過し、蒸留水で洗浄す
る。 洗浄した試料を乾燥機(105℃)で乾燥、デシケー
タで冷却後重量(W1)を精秤する。 耐水性を次式より求める。 耐水性(%)=(W−W1)/W×100 ・・・(6) 式
(5) Measurement of “Water Resistance” About 2 g of a sample is collected, dried in a drier (105 ° C.), cooled in a desiccator, and precisely weighed (W). A sample is placed in 200 ml of pure water and kept in a constant temperature water bath at 80 ° C. for 5 hours. After 5 hours, the mixture is filtered through a glass filter and washed with distilled water. The washed sample is dried in a drier (105 ° C.), cooled in a desiccator, and precisely weighed (W1). The water resistance is determined by the following equation. Water resistance (%) = (W−W1) / W × 100 (6)

【0022】(6)「劣化性折曲時割れ」の測定 抄造したガラスセパレータを50℃、95RH%に設
定した恒温恒湿槽に入れ、所定日数静置する。 所定日数経過後、試料を取り出し、130℃乾燥機で
乾燥させる。 セパレータを折曲げ、曲げた個所の外側で生じる亀裂
の状態を目視で観察する。 上記表1から下記のことが判明した。 (1)従来例は、Alが2質量%と少ないことか
ら、ガラス繊維の耐久性に起因する劣化により、ガラス
繊維評価の「劣化性タフネス維持率」、「劣化性レールス
維持率」が低く、「耐酸性」、「耐水性」が大きく、セパ評
価の「劣化性折曲時割れ」では折曲げによる割れが発生し
た。 (2)これに対して実施例1は、Alが5質量%
と多いことから、ガラス繊維の耐久性に起因する劣化防
止が向上し、ガラス繊維評価の「劣化性タフネス維持
率」、「劣化性レールス維持率」が高く、「耐酸性」、「耐水
性」が従来例に比べて小さく、セパ評価の「劣化性折曲時
割れ」では折曲げによる割れがない。 (3)実施例2は、従来例に比べれば劣化防止の効果が
観られるが、実施例1に比べると劣化防止効果が少し低
下している。これはAlが2割少ないことに起因
している。 (4)比較例2は、Alが実施例1に比べて4割
少ないため、劣化防止効果が低いことがわかる。 (5)比較例1は、Alが実施例1に比べて2割
多いが、劣化防止効果は実施例1と特に変わらないが、
ガラスの作業温度・液相温度が上昇して繊維の紡糸性が
困難になり好ましくない。
(6) Measurement of "deteriorating bending crack" The glass separator thus prepared is placed in a thermo-hygrostat set at 50 ° C. and 95 RH%, and left standing for a predetermined number of days. After a lapse of a predetermined number of days, the sample is taken out and dried with a dryer at 130 ° C. The separator is bent, and the state of cracks generated outside the bent portion is visually observed. The following was found from Table 1 above. (1) In the conventional example, since Al 2 O 3 is as small as 2% by mass, the “deterioration toughness maintenance rate” and the “deterioration rails maintenance rate” of the glass fiber evaluation are deteriorated due to deterioration due to the durability of the glass fiber. And the "acid resistance" and "water resistance" were large, and in the "evaluation of cracking at the time of degrading bending" of the separation evaluation, cracking occurred due to bending. (2) On the other hand, in Example 1, Al 2 O 3 contained 5% by mass.
Therefore, the prevention of deterioration due to the durability of the glass fiber is improved, and the “deterioration toughness maintenance rate” and “deterioration rails maintenance rate” of the glass fiber evaluation are high, and “acid resistance” and “water resistance” are high. Is smaller than that of the conventional example, and there is no crack due to the bending in the “deteriorating bending cracking” in the evaluation of Sepa. (3) In the second embodiment, the effect of preventing deterioration is observed as compared with the conventional example, but the effect of preventing deterioration is slightly reduced as compared with the first embodiment. This is because Al 2 O 3 is less than 20%. (4) In Comparative Example 2, Al 2 O 3 is 40% less than that in Example 1, so that the effect of preventing deterioration is low. (5) Comparative Example 1 has 20% more Al 2 O 3 than Example 1, but the effect of preventing deterioration is not particularly different from that of Example 1, but
The working temperature and the liquidus temperature of the glass increase, and the spinnability of the fiber becomes difficult, which is not preferable.

【0023】[0023]

【発明の効果】本発明の密閉型鉛蓄電池用セパレータ
は、従来に比べてAlを倍増したため、耐水性等
の耐久性を向上でき、劣化を防止できるため、折曲げ部
の割れ発生を無くすることができる。また、本発明の密
閉型鉛蓄電池用セパレータは、Bは従来と同等で
あるため、極細ガラス繊維でみられる風化現象による劣
化を防止できる。
The sealed lead-acid battery separator of the present invention has twice the amount of Al 2 O 3 as compared with the prior art, so that the durability such as water resistance can be improved, and the deterioration can be prevented. Can be eliminated. Further, sealed lead-acid battery separator of the present invention, since B 2 O 3 is equal to that of the conventional, can prevent deterioration due to weathering phenomena seen with ultrafine glass fibers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川地 正浩 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内 (72)発明者 三谷 拓生 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内 Fターム(参考) 5H021 AA06 BB08 CC01 EE20 EE27 EE28 HH01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Kawachi 630, Tarui-cho, Fuwa-gun, Gifu Japan Inside the Inorganic Co., Ltd.Tarui Plant (72) Inventor Takuo Mitani 630, Tarui-cho, Fuwa-gun, Gifu Pref. F-term in the factory (reference) 5H021 AA06 BB08 CC01 EE20 EE27 EE28 HH01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%で表示して下記成分 SiO 63.0〜66.0 Al 4.0〜 5.1 B 5.5〜 7.5 NaO+KO 14.6〜18.2 MgO 2.7〜 3.7 CaO 3.7〜 5.3 BaO 0〜 0.3 その他 0〜 0.2 のガラス組成から成る極細ガラス繊維を主体としたこと
を特徴とする密閉型鉛蓄電池用セパレータ。
1. The following components expressed in mass%: SiO 2 63.0 to 66.0 Al 2 O 3 4.0 to 5.1 B 2 O 3 5.5 to 7.5 Na 2 O + K 2 O 14 0.6 to 18.2 MgO 2.7 to 3.7 CaO 3.7 to 5.3 BaO 0 to 0.3 Others Mainly composed of ultrafine glass fibers having a glass composition of 0 to 0.2. For sealed lead-acid batteries.
JP2000295765A 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery Expired - Lifetime JP4897994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295765A JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295765A JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2002110124A true JP2002110124A (en) 2002-04-12
JP4897994B2 JP4897994B2 (en) 2012-03-14

Family

ID=18778138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295765A Expired - Lifetime JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP4897994B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144633B2 (en) 2002-07-29 2006-12-05 Evanite Fiber Corporation Glass compositions
US7160824B2 (en) 2002-07-29 2007-01-09 Evanite Fiber Corporation Glass compositions
JP2013524418A (en) * 2010-03-29 2013-06-17 ショット アクチエンゲゼルシャフト Battery cell component having an inorganic component with low thermal conductivity
JP2018037335A (en) * 2016-09-01 2018-03-08 北越紀州製紙株式会社 Glass fiber sheet for sealed type lead storage battery separator, sealed type lead storage battery separator, and method for manufacturing glass fiber sheet for sealed type lead storage battery separator
JP2019523205A (en) * 2016-07-13 2019-08-22 サン−ゴバン イゾベール Glass fiber
CN113307499A (en) * 2021-06-11 2021-08-27 王喜才 Superfine glass microfiber and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147843A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Glass composition
JPS643972A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147843A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Glass composition
JPS643972A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-acid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144633B2 (en) 2002-07-29 2006-12-05 Evanite Fiber Corporation Glass compositions
US7160824B2 (en) 2002-07-29 2007-01-09 Evanite Fiber Corporation Glass compositions
US8012629B2 (en) 2002-07-29 2011-09-06 Hollingsworth & Vose Company Batteries containing bismuth glass compositions
US8211575B2 (en) 2002-07-29 2012-07-03 Hollingsworth & Vose Company Batteries containing bismuth glass compositions
US7939166B2 (en) 2004-07-21 2011-05-10 Hollingsworth & Vose Company Glass compositions
JP2013524418A (en) * 2010-03-29 2013-06-17 ショット アクチエンゲゼルシャフト Battery cell component having an inorganic component with low thermal conductivity
JP2019523205A (en) * 2016-07-13 2019-08-22 サン−ゴバン イゾベール Glass fiber
JP2018037335A (en) * 2016-09-01 2018-03-08 北越紀州製紙株式会社 Glass fiber sheet for sealed type lead storage battery separator, sealed type lead storage battery separator, and method for manufacturing glass fiber sheet for sealed type lead storage battery separator
JP2021036537A (en) * 2016-09-01 2021-03-04 北越コーポレーション株式会社 Glass fiber sheet for sealed type lead storage battery separator, sealed type lead storage battery separator, and method for manufacturing glass fiber sheet for sealed type lead storage battery separator
JP7005130B2 (en) 2016-09-01 2022-01-21 北越コーポレーション株式会社 A method for manufacturing a glass fiber sheet for a sealed lead-acid battery separator, a sealed lead-acid battery separator, and a glass fiber sheet for a sealed lead-acid battery separator.
CN113307499A (en) * 2021-06-11 2021-08-27 王喜才 Superfine glass microfiber and preparation method thereof

Also Published As

Publication number Publication date
JP4897994B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US6933045B2 (en) Heat-resistant glass fiber and process for the production thereof
US7160824B2 (en) Glass compositions
US6630420B1 (en) Glass with high proportion of zirconium-oxide and its uses
US4199364A (en) Glass composition
CN101687691B (en) Be applicable to the glass yarn strengthening organic/inorganic materials
KR101496475B1 (en) Glass yarns capable of reinforcing organic and/or inorganic materials
US7704902B2 (en) Glass fibre compositions
JPS5824385B2 (en) fiberglass composition
US8871662B2 (en) Compositions for mineral wool
EP1667939A1 (en) Mineral wool composition
NO144921B (en) ALKALIR RESISTANT GLASS FIBERS.
US20100184581A1 (en) Glass yarns capable of reinforcing organic and/or inorganic materials
GB2237017A (en) Alkali-resistant glass for forming glass fibres.
CA1106413A (en) Glass composition for fiberization
JP4077536B2 (en) Extra fine glass fiber
JP2002110124A (en) Separator for sealed lead-acid battery
US4142906A (en) Glass composition for alkali-resistant glass fiber
JP3132234B2 (en) Glass long fiber
JPH0461820B2 (en)
US7410672B2 (en) Water-resistant porcelain enamel coatings and method of manufacturing same
JP3801293B2 (en) Corrosion resistant glass fiber
JP3771073B2 (en) Glass fiber
JPH10231143A (en) Corrosion-resistant glass fiber
EP1522532A1 (en) Mineral wool composition
JPH11157876A (en) Corrosion resistant glass fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4897994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250