[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002195987A - Measuring method and device for inner defect size - Google Patents

Measuring method and device for inner defect size

Info

Publication number
JP2002195987A
JP2002195987A JP2000396880A JP2000396880A JP2002195987A JP 2002195987 A JP2002195987 A JP 2002195987A JP 2000396880 A JP2000396880 A JP 2000396880A JP 2000396880 A JP2000396880 A JP 2000396880A JP 2002195987 A JP2002195987 A JP 2002195987A
Authority
JP
Japan
Prior art keywords
measured
wave
size
measuring
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000396880A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashi
高弘 林
Koichiro Kawashima
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000396880A priority Critical patent/JP2002195987A/en
Publication of JP2002195987A publication Critical patent/JP2002195987A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for inner defect size enabling measurement of a flaked defect size on an even flat plate or a laminated flat plate by using a flexuously-vibrating ultrasonic excited in a measuring body (RAM wave). SOLUTION: The characteristic of this measuring method is to excite a flexuously-vibrating ultrasonic (RAM wave) in a measuring body, measure the time difference of a repetitive wave caused by an inner defect extending in a flexuous vibration propagating direction parallel to the measuring body surface to measure the size of the inner defect on the measuring body using both the time difference and the flexuous vibration sound wave velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被測定体中に励起さ
れる屈曲振動する超音波(ラム波)を用いて、一様平板
や積層平板の剥離状欠陥寸法を測定できる内部欠陥寸法
の測定方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the size of an internal defect which can measure the size of a peeled defect of a uniform flat plate or a laminated flat plate by using an ultrasonic wave (lamb wave) having a bending vibration excited in an object to be measured. A method and an apparatus therefor.

【0002】[0002]

【従来の技術】積層された構造を有する材料等におい
て、製造工程等にける熱等の影響により層間相互の密着
性が低下し、図5に示すような剥離等の内部欠陥を生ず
ることがある。このような内部欠陥は材料の信頼性に関
する重大な問題であり、そうした内部欠陥を未然に検出
することが大切である。
2. Description of the Related Art In a material or the like having a laminated structure, the adhesion between layers is reduced due to heat or the like in a manufacturing process or the like, and internal defects such as peeling as shown in FIG. . Such internal defects are a serious problem concerning the reliability of the material, and it is important to detect such internal defects beforehand.

【0003】こうした材料の内部欠陥(剥離状欠陥)を
検出方法として従来から次の二つの方法が良く知られて
いる。第1の方法は、図6中、超音波発振器Aから超音
波を板表面に垂直に入射し、超音波発振・受信器Aを被
測定体である板全体Dに走査し、その時の板からの反射
波形を超音波発振・受信器Aで受信するか、透過波形を
反対側の受信器Eで受信することによって剥離状欠陥の
画像を得る方法である。この方法では剥離の有無だけで
なく大きさの情報も得られるが、全体を走査する手間が
かかる。 第2の方法は、図6中、超音波Bをウエッジ
W(音速は使用する固体音速に対応する。一般にアクリ
ル2700m/s〜アルミ6000m/sである)や水
(1500m/s)を媒体として被測定体Dに対して斜
めに入射することにより、音速約5000m/s〜60
00m/sで板D中を伝播する振動モードSを励起し、
伝播経路内の欠陥を検出する方法である。走査は一方向
のみで良いが、この振動モ−ドを用いると剥離状欠陥の
有無が分かるだけで、欠陥の大きさ情報は得られない。
Conventionally, the following two methods are well known as methods for detecting such internal defects (peeling defects) in a material. In the first method, in FIG. 6, ultrasonic waves are vertically incident on the plate surface from the ultrasonic oscillator A, and the ultrasonic oscillation / receiver A is scanned over the whole plate D which is the object to be measured. Is received by the ultrasonic oscillation / receiver A, or the transmitted waveform is received by the receiver E on the opposite side to obtain an image of the peeling defect. In this method, not only the presence or absence of peeling but also the size information can be obtained, but it takes time to scan the whole. In the second method, in FIG. 6, an ultrasonic wave B is applied to a wedge W (the sound speed corresponds to the solid sound speed used; generally, acryl 2700 m / s to aluminum 6000 m / s) or water (1500 m / s) as a medium. By obliquely entering the object D to be measured, the sound speed is approximately 5000 m / s to 60
Exciting the vibration mode S propagating in the plate D at 00 m / s,
This is a method of detecting a defect in a propagation path. Scanning may be performed in only one direction. However, when this vibration mode is used, only the presence / absence of a peeling-like defect can be known, but defect size information cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】被測定体に超音波を斜
め入射したときの振動モ−ド〔屈曲振動する超音波(ラ
ム波〕は前出の音速約5000m/s〜6000m/s
(学術的にはS0モ−ド)と音速の遅い500m/s〜
1500m/sモ−ド(A0モ−ド)の2種類がある。
音速の遅い振動モードを用いたとき、剥離部分で繰り返
しの反射が起こり、剥離長さの測定を行うことができ
る。しかしウエッジまたは水を用いた場合、この振動モ
−ドを励起することはできない。その理由は以下のとお
りである。入射の角度は次のスネルの法則に従う(図2
参照)。sinθ=cw/c、θは入射角、cは振動モ
−ドの板中音速、音速の大きな振動モ−ドの場合(cw
=5000m/s〜6000m/s)、アクリル(cw
=2700m/s)や水(cw=1500m/s)で充
分θが存在するが、音速の低い振動モード(cw=50
0m/s〜1500m/s)では入射角が存在しえな
い。しかし、図2(ロ)に示すように気体(例えば空気
の場合cw=340m/s)を媒体とすれば音速の低い
振動モ−ドの入射角が存在し、励起可能である。
The vibration mode when the ultrasonic wave is obliquely incident on the object to be measured (ultrasonic wave (lamb wave) that bends and vibrates) has a sound speed of about 5000 m / s to 6000 m / s.
(Academic S0 mode) and slow sound speed 500m / s ~
There are two types of 1500 m / s mode (A0 mode).
When the vibration mode having a low sound speed is used, repeated reflection occurs at the peeled portion, and the peel length can be measured. However, when wedges or water are used, this vibration mode cannot be excited. The reason is as follows. The angle of incidence obeys the following Snell's law (Fig. 2
reference). sin θ = cw / c, θ is the incident angle, c is the vibration speed in the vibration mode of the plate, and in the case of the vibration mode with a large sound speed (cw
= 5000 m / s to 6000 m / s), acrylic (cw
= 2700 m / s) or water (cw = 1500 m / s) has sufficient θ, but the vibration mode with low sound speed (cw = 50 m / s)
At 0 m / s to 1500 m / s), there is no incident angle. However, as shown in FIG. 2B, when a gas (for example, cw = 340 m / s in the case of air) is used as a medium, an incident angle of a vibration mode having a low sound velocity exists, and excitation is possible.

【0005】本発明は上記知見に基づいてなされたもの
であり、本発明は、媒体として前述した水やウエッジで
はなく空気等の気体を用い、気体中に超音波を伝播させ
斜めから超音波を板中に入射し、ウエッジや水の場合で
は入射角が存在しないような異なる振動モ−ド〔音速の
遅いモ−ド:屈曲振動する超音波(ラム波)〕を板中に
伝播させ、剥離部分での繰り返し反射を起こさせ、この
受信波形の繰り返し波束の時間間隔を利用して、板中の
剥離状欠陥を測定する新規な平板内部欠陥の寸法測定方
法およびその装置を提供するものであり、これにより上
記問題点を解決することを目的とする。
[0005] The present invention has been made based on the above findings, and the present invention uses a gas such as air instead of the water or wedge described above as a medium, propagates ultrasonic waves in the gas, and generates ultrasonic waves obliquely. A different vibration mode (mode with slow sound speed: bending-oscillating ultrasonic wave (Lamb wave)) that enters the plate and has no incident angle in the case of wedge or water propagates through the plate and separates The present invention provides a novel method and apparatus for measuring the size of a defect inside a flat plate, which causes repeated reflection at a portion and uses the time interval of the repetitive wave packet of the received waveform to measure a peeling defect in the plate. This aims to solve the above problem.

【0006】[0006]

【課題を解決するための手段】このため、本発明が採用
した技術解決手段は、被測定体中に屈曲振動する超音波
(ラム波)を励起し、被測定体表面に平行で屈曲振動伝
播方向に伸びる内部欠陥によって起こる繰り返し波の時
間差を計測し、その時間差と屈曲振動伝播速度から被測
定体内部欠陥の大きさを測定することを特徴とする内部
欠陥寸法の測定法方法である。また、前記被測定体は一
様平板および積層平板であることを特徴とする内部欠陥
寸法の測定法方法である。また、気体中伝播超音波発振
器と、受信器と、制御機器とを備え、前記気体中伝播超
音波発振器は、被測定体中に屈曲振動する超音波(ラム
波)を励起できる超音波発振器であることを特徴とする
内部欠陥寸法の測定装置である。また、気体中伝播超音
波発振器からの発生超音波は、周波数をf、被測定体の
板厚をdとした時の積fdが0.1MHzmm〜1.2
MHzmmの間に設定されていることを特徴とする請求
項3に記載の内部欠陥寸法の測定装置である。
For this reason, the technical solution adopted by the present invention is to excite an ultrasonic wave (lamb wave) which bends and vibrates in the object to be measured, and propagates the bending vibration in parallel with the surface of the object to be measured. A method for measuring the size of an internal defect, comprising measuring a time difference between repetitive waves caused by an internal defect extending in a direction, and measuring a size of the internal defect in the object to be measured from the time difference and a bending vibration propagation velocity. In addition, there is provided a method for measuring an internal defect size, wherein the object to be measured is a uniform flat plate or a laminated flat plate. Further, the apparatus includes a gas-propagating ultrasonic oscillator, a receiver, and a control device, and the gas-propagating ultrasonic oscillator is an ultrasonic oscillator that can excite an ultrasonic wave (lamb wave) that bends and vibrates in an object to be measured. An apparatus for measuring the size of an internal defect. Further, the ultrasonic wave generated from the ultrasonic wave propagating in the gas has a product fd of 0.1 MHz mm to 1.2 when the frequency is f and the plate thickness of the measured object is d.
The internal defect size measuring device according to claim 3, wherein the internal defect size is set between MHz mm.

【0007】[0007]

【実施の形態】以下、本発明に係る平板内部欠陥の寸法
測定方法およびその装置について説明すると、図1は本
発明に係る欠陥測定装置の概略構成、図2は本平板内部
欠陥の寸法測定方法の説明図、図3は繰り返し波の説明
図、図4は制御装置内でのフローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and an apparatus for measuring the size of an internal defect in a flat plate according to the present invention will be described below. FIG. 1 shows a schematic configuration of a defect measuring device according to the present invention, and FIG. FIG. 3 is an explanatory diagram of a repetitive wave, and FIG. 4 is a flowchart in the control device.

【0008】図1において、1は気体中伝播超音波発振
器、2は受信器、3は制御手段、4は表示手段、5は被
測定体、6は内部欠陥であり、気体中伝播超音波発振器
1および各受信器2は制御手段としての機器3に接続さ
れ、また同機器3は必要に応じて適宜表示手段4に接続
される。なお、気体中伝播超音波発振器1は必要に応じ
て受信機能を備えたものを使用することもできる。
In FIG. 1, reference numeral 1 denotes a gas-propagating ultrasonic oscillator, 2 denotes a receiver, 3 denotes control means, 4 denotes a display means, 5 denotes an object to be measured, and 6 denotes an internal defect. 1 and each receiver 2 are connected to a device 3 as control means, and the device 3 is connected to a display means 4 as needed. It should be noted that, as necessary, a gas-propagating ultrasonic oscillator 1 having a receiving function may be used.

【0009】気体中伝播超音波発振器1を被測定体であ
る平板の表面に斜め(入射角θ)に設置し、また気体中
伝播超音波発振器1から離れた位置に受信器2を入射角
と同じ受信角θで設置する。気体中伝播超音波発振器1
からの発生超音波は、周波数をf、被測定体の板厚をd
とした時の積fdが0.1MHzmm〜1.2MHzm
mの間に設定する。これにより、気体中伝播超音波発振
器1からの発生超音波により、被測定体内を伝播する振
動モードとして音速の早い振動モ−ドと音速の遅い振動
モ−ドの2種類を得ることができる。また、受信器2
は、図面では3個配置したが、その数は適宜増減するこ
とができる。
The ultrasonic transducer 1 in a gas is installed obliquely (at an incident angle θ) on the surface of a flat plate as an object to be measured, and the receiver 2 is placed at a position distant from the ultrasonic oscillator 1 in a gas in accordance with the incident angle. Install at the same reception angle θ. Ultrasonic oscillator for propagation in gas 1
The frequency of the generated ultrasonic wave is f and the thickness of the measured object is d.
When the product fd is 0.1 MHzmm to 1.2 MHzm
Set between m. As a result, two types of vibration modes, a high-speed vibration mode and a low-speed vibration mode, can be obtained as the vibration modes propagating in the body to be measured by the ultrasonic waves generated from the gas-propagating ultrasonic oscillator 1. Also, receiver 2
Although three are arranged in the drawing, the number can be increased or decreased as appropriate.

【0010】上記装置を使用して被測定体の内部にある
欠陥(剥離部分)を測定方法を図2を参照して説明す
る。図2において、先ず気体中伝播超音波発振器1から
被測定体5に向けて超音波を斜めに発射し、被測定体5
内に音速の遅い振動モード〔A0モード:屈曲振動する
超音波(ラム波)〕を励起する。このA0モード振動が
被測定体5内を伝播してゆくと、剥離部分欠陥6領域の
両端で伝播する波が図2に示すように反射し、図3に示
すような繰り返し波が発生する。この繰り返し波を受信
器で受信しこの繰り返し波の時間間隔tと、被測定体内
を伝播する波の速さをもとに欠陥領域の寸法を測定し、
表示手段に表示する。
A method for measuring a defect (exfoliated portion) inside an object to be measured by using the above-described apparatus will be described with reference to FIG. In FIG. 2, first, ultrasonic waves are emitted obliquely from the gas-propagating ultrasonic oscillator 1 toward the object 5 to be measured.
A vibration mode having a low sound speed [A0 mode: an ultrasonic wave (lamb wave) that bends and vibrates] is excited in the inside. When the A0 mode vibration propagates through the object 5 to be measured, waves propagating at both ends of the peeled part defect 6 area are reflected as shown in FIG. 2, and a repetitive wave as shown in FIG. 3 is generated. The repetitive wave is received by the receiver, and the size of the defect area is measured based on the time interval t of the repetitive wave and the speed of the wave propagating in the body to be measured.
Display on display means.

【0011】制御装置内で行う測定フローを説明する。
ステップS1において気体中伝播超音波発振器1から超
音波を発振する。ステップS2において、受信器により
第1の繰り返し波の到達時間および第2の繰り返し波の
到達時間をを測定し、ステップS3においてその時間差
を演算する。そしてステップS4においてステップS3
で求めた時間差とステップS6から取り込んだ被測定体
(材料)による伝搬速度をとから振動モードの伝播速さ
を乗算し、欠陥領域の寸法をもとめ、必要に応じてステ
ップS5においてその結果を表示する。なお、被測定体
の伝播速度は、材料固有のものであり、材質が決定され
ていれば速度は決定される。即ち、基本的に材料固有の
値として縦波音速および横波音速は測定されているの
で、それらの値を用いて公知の理論式に当てはめ計算す
ることによりS0モードやA0モードの音速を求めるこ
とができる。また上記フローチャートではステップS3
とステップS4の間で伝播速度を取り込んでいるが、伝
播速度の取込みはステップS4以前であれば、どこでも
よく、たとえばプログラムスタート時に被測定体の材料
を指定することで自動的にマップから取り込むことも可
能である。
A measurement flow performed in the control device will be described.
In step S1, an ultrasonic wave is oscillated from the gas-propagating ultrasonic oscillator 1. In step S2, the arrival time of the first repetition wave and the arrival time of the second repetition wave are measured by the receiver, and the time difference is calculated in step S3. Then, in step S4, step S3
Is multiplied by the propagation speed of the vibration mode from the time difference obtained in step S5 and the propagation speed of the object (material) taken in from step S6 to determine the size of the defect region, and the result is displayed in step S5 if necessary. I do. Note that the propagation speed of the measured object is specific to the material, and the speed is determined if the material is determined. That is, since the longitudinal wave velocity and the transverse wave velocity are basically measured as the material-specific values, it is possible to obtain the sound velocity in the S0 mode or the A0 mode by performing calculation by applying these values to a known theoretical formula. it can. In the above flowchart, step S3
The propagation speed is captured between step S4 and step S4. The propagation speed may be captured anywhere before step S4. For example, the propagation speed may be automatically captured from the map by specifying the material of the measured object at the start of the program. Is also possible.

【0012】以上本発明の実施の形態について説明して
きたが、気体中伝播超音波発振器、受信器を被測定体上
に設置するための手段は適宜選択することができ、また
制御手段もパソコンあるいは専用機器を利用することが
できる。さらに本発明はその精神または主要な特徴から
逸脱することなく、他のいかなる形でも実施でき、その
ため、前述の実施形態はあらゆる点で単なる例示にすぎ
ず限定的に解釈してはならない。
Although the embodiment of the present invention has been described above, the means for installing the ultrasonic transducer in gas and the receiver on the object to be measured can be appropriately selected, and the control means can be a personal computer or a personal computer. Dedicated equipment can be used. Furthermore, the present invention may be embodied in any other form without departing from the spirit or main characteristics thereof, and thus the above embodiments are merely illustrative in all respects and should not be construed as limiting.

【0013】[0013]

【発明の効果】以上の詳細に説明した如く、本発明は、
気体中に超音波を伝播させる超音波発振器を用いて、ス
ネルの法則に従う入射角で音速の低い振動モ−ドを励起
し、音速の遅い振動モ−ドを板中に伝播させる。そして
板中の剥離部分で繰り返し反射を起こさせ、その繰り返
し波束の時間間隔を利用して、板中の剥離状欠陥を測定
する。このため、本発明によれば、板全体のセンサ−走
査必要なく、被測定体中の剥離状欠陥の大きさを効率的
に測定することが可能となった。
As described in detail above, the present invention provides:
Using an ultrasonic oscillator that propagates ultrasonic waves in a gas, a vibration mode having a low sound speed is excited at an incident angle according to Snell's law, and a vibration mode having a low sound speed is propagated through the plate. Then, reflection is repeatedly caused at a peeled portion in the plate, and a peeling defect in the plate is measured by using a time interval of the repetitive wave packet. Therefore, according to the present invention, it is possible to efficiently measure the size of the peeling defect in the object to be measured without the need for sensor scanning of the entire plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る欠陥測定装置の概略構成である。FIG. 1 is a schematic configuration of a defect measurement device according to the present invention.

【図2】本平板内部欠陥の寸法測定方法の説明図であ
る。
FIG. 2 is an explanatory view of a method for measuring the size of a defect inside the flat plate.

【図3】被測定体内で発生する繰り返し波の図である。FIG. 3 is a diagram of a repetitive wave generated in a measured object.

【図4】本制御装置内でのフローチャートである。FIG. 4 is a flowchart in the present control device.

【図5】被測定体内での内部欠陥を示す図である。FIG. 5 is a diagram showing an internal defect in a measured object.

【図6】従来の内部欠陥測定法の説明図である。FIG. 6 is an explanatory diagram of a conventional internal defect measurement method.

【図7】媒体としてウエッジを使用した場合と、気体を
使用した場合の振動モード伝播状態を説明する図であ
る。
FIG. 7 is a diagram illustrating a vibration mode propagation state when a wedge is used as a medium and when a gas is used.

【符号の説明】[Explanation of symbols]

1 気体中伝播超音波発振器 2 受信器 3 制御手段 4 表示手段 5 被測定体 6 内部欠陥 DESCRIPTION OF SYMBOLS 1 Ultrasonic oscillator propagated in gas 2 Receiver 3 Control means 4 Display means 5 Object to be measured 6 Internal defect

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年1月9日(2001.1.9)[Submission date] January 9, 2001 (2001.1.9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図3】 FIG. 3

【図5】 FIG. 5

【図2】 FIG. 2

【図4】 FIG. 4

【図6】 FIG. 6

【図7】 FIG. 7

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被測定体中に屈曲振動する超音波(ラム
波)を励起し、被測定体表面に平行で屈曲振動伝播方向
に伸びる内部欠陥によって起こる繰り返し波の時間差を
計測し、その時間差と屈曲振動伝播速度から被測定体内
部欠陥の大きさを測定することを特徴とする内部欠陥寸
法の測定法方法。
An ultrasonic wave (lamb wave) that bends and vibrates in an object to be measured is excited, and a time difference of a repetitive wave caused by an internal defect parallel to a surface of the object and extending in a propagation direction of the bending vibration is measured. A method for measuring the size of an internal defect, comprising: measuring a size of an internal defect in the object to be measured from the bending vibration propagation velocity.
【請求項2】前記被測定体は一様平板および積層平板で
あることを特徴とする請求項1に記載の内部欠陥寸法の
測定法方法。
2. The method according to claim 1, wherein the object to be measured is a uniform flat plate or a laminated flat plate.
【請求項3】気体中伝播超音波発振器と、受信器と、制
御機器とを備え、前記気体中伝播超音波発振器は、被測
定体中に屈曲振動する超音波(ラム波)を励起できる超
音波発振器であることを特徴とする内部欠陥寸法の測定
装置。
3. A gas-propagating ultrasonic oscillator, a receiver, and a control device, wherein the gas-propagating ultrasonic oscillator is capable of exciting an ultrasonic wave (lamb wave) that bends and vibrates in a measured object. An apparatus for measuring the size of an internal defect, which is an ultrasonic oscillator.
【請求項4】気体中伝播超音波発振器からの発生超音波
は、周波数をf、被測定体の板厚をdとした時の積fd
が0.1MHzmm〜1.2MHzmmの間に設定され
ていることを特徴とする請求項3に記載の内部欠陥寸法
の測定装置。
4. An ultrasonic wave generated from a gas-propagating ultrasonic oscillator has a product fd when a frequency is f and a plate thickness of an object to be measured is d.
4. The apparatus according to claim 3, wherein is set between 0.1 MHz mm and 1.2 MHz mm.
JP2000396880A 2000-12-27 2000-12-27 Measuring method and device for inner defect size Pending JP2002195987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396880A JP2002195987A (en) 2000-12-27 2000-12-27 Measuring method and device for inner defect size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396880A JP2002195987A (en) 2000-12-27 2000-12-27 Measuring method and device for inner defect size

Publications (1)

Publication Number Publication Date
JP2002195987A true JP2002195987A (en) 2002-07-10

Family

ID=18862102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396880A Pending JP2002195987A (en) 2000-12-27 2000-12-27 Measuring method and device for inner defect size

Country Status (1)

Country Link
JP (1) JP2002195987A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036934A2 (en) * 2008-09-25 2010-04-01 The Regents Of The University Of California Defect detection in objects using statistical approaches
JP2010175340A (en) * 2009-01-28 2010-08-12 Nagoya Institute Of Technology Plate thickness measuring method and plate thickness measuring apparatus
CN103926315A (en) * 2014-04-04 2014-07-16 北京工业大学 Method for obtaining elastic property of isotropous sheet material based on simplex method
JP2016166840A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Inspection device and inspection method
JP2017090201A (en) * 2015-11-09 2017-05-25 三信建材工業株式会社 Aerial ultrasonic flaw detection device and aerial ultrasonic flaw detection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036934A2 (en) * 2008-09-25 2010-04-01 The Regents Of The University Of California Defect detection in objects using statistical approaches
WO2010036934A3 (en) * 2008-09-25 2010-05-20 The Regents Of The University Of California Defect detection in objects using statistical approaches
US8626459B2 (en) 2008-09-25 2014-01-07 The Regents Of The University Of California Defect detection in objects using statistical approaches
JP2010175340A (en) * 2009-01-28 2010-08-12 Nagoya Institute Of Technology Plate thickness measuring method and plate thickness measuring apparatus
CN103926315A (en) * 2014-04-04 2014-07-16 北京工业大学 Method for obtaining elastic property of isotropous sheet material based on simplex method
JP2016166840A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Inspection device and inspection method
JP2017090201A (en) * 2015-11-09 2017-05-25 三信建材工業株式会社 Aerial ultrasonic flaw detection device and aerial ultrasonic flaw detection system

Similar Documents

Publication Publication Date Title
TWI408699B (en) Nuclear reactor vibration surveillance system and its method
CN113874721B (en) A method and device for non-destructive testing of plate materials
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
JP2002195987A (en) Measuring method and device for inner defect size
JP2009097942A (en) Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same
JP2002328119A (en) Method of estimating tube parameter, method of evaluating condition of tube material, method of inspecting tube, and device for estimating tube parameter used therefor
JP4294374B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR101877769B1 (en) Apparatus for hybrid multi-frequency ultrasound phased array imaging
JP4633268B2 (en) Ultrasonic flaw detector
JP2002243703A (en) Ultrasonic flaw detector
JP2001201487A (en) Method and apparatus using ultrasonic wave for nondestructive inspection of concrete structure
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
JPS6228869B2 (en)
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2001013118A (en) Electromagnetic ultrasonic probe
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JP4143527B2 (en) Thin plate ultrasonic flaw detector
JP2002168841A (en) Peeling inspection device at composite board interface
JPS6170433A (en) Method for detecting peeled part of wall body
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
JP2000221023A (en) Wall inspection method for liquid storing structure
JP3341824B2 (en) Electronic scanning ultrasonic flaw detector
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JPS61210947A (en) Ultrasonic defectscope
JP2000002691A (en) Method and apparatus for detecting thermal spray coating delamination on structure surface

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425