[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002184427A - Proton conductive substance - Google Patents

Proton conductive substance

Info

Publication number
JP2002184427A
JP2002184427A JP2000376772A JP2000376772A JP2002184427A JP 2002184427 A JP2002184427 A JP 2002184427A JP 2000376772 A JP2000376772 A JP 2000376772A JP 2000376772 A JP2000376772 A JP 2000376772A JP 2002184427 A JP2002184427 A JP 2002184427A
Authority
JP
Japan
Prior art keywords
conductive substance
proton conductive
polymer
proton
proton conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376772A
Other languages
Japanese (ja)
Other versions
JP4582740B2 (en
JP2002184427A5 (en
Inventor
Tatsuo Fujinami
達雄 藤波
An Meta Mary
メリー・アン・メータ
Masahiro Watanabe
政廣 渡辺
Unsho Yo
云松 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000376772A priority Critical patent/JP4582740B2/en
Publication of JP2002184427A publication Critical patent/JP2002184427A/en
Publication of JP2002184427A5 publication Critical patent/JP2002184427A5/ja
Application granted granted Critical
Publication of JP4582740B2 publication Critical patent/JP4582740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate many disadvantages of a proton conductive substance usable in a polymer solid electrolyte of a fuel cell that proton conductivity of a conventional fluoride hydrocarbon polymer electrolyte material is markedly reduced in low humidity atmosphere or at a temperature of 100 deg.C, the suppression of the permeation property of fuel such as methanol, namely, crossover is difficult, and the proton conductive substance is very expensive. SOLUTION: The inventor of this invention finds that the proton conductive substance has a boron containing part, the dissociation property of sulfonic acid of a sulfo group containing part is promoted, and as a result, proton conductivity is improved. Moreover, this invention relates to a fuel cell constituted by the proton conductive substance and the proton conductive substance composed of polymer stable under acid condition and a film composed of the proton conductive substance and having a thickness of 10 to 500 μm by nipping and holding the film between a fuel electrode and an oxidant electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はプロトン導電性物
質に関し、より詳細には燃料電池の高分子固体電解質等
に用いることができるプロトン導電性物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a proton conductive substance, and more particularly to a proton conductive substance which can be used for a polymer solid electrolyte of a fuel cell.

【0002】[0002]

【従来の技術】代表的プロトン導電性高分子電解質膜で
あるフッ化炭化水素系高分子電解質材料は、低湿度雰囲
気あるいは100℃以上の高温ではプロトン導電率が著
しく低下すること、メタノール等の燃料の透過性すなわ
ちクロスオーバーの抑制が困難であること、極めて高価
であることなどの多くの欠点を有している。一方、通常
の炭化水素系ポリマーのスルホン化物(T. Kobayashi,
M. Rikukawa, K. Sanui,and N. Ogata, Solid State Io
nics, Vol. 106, 219(1998))や、有機・無機ハイブリ
ッド型プロトン導電性材料としてケイ素上にスルホニル
ベンジル基を有するシロキサンポリマー(I. Gautier,
A. Denoyelle, J. Y. Sanchez, and C. Poinsignon, El
ectrochimica Acta, Vol. 37, 1615(1992))及びシロキ
サンと有機ポリマーとがウレタン結合で重合化された有
機・無機ハイブリッドポリマー(I.Honma, S. Hirakaw
a, K. Yamada, and J. M. Bae, Solid State Ionics, V
ol.118, 29(1999))が報告されているが、合成法が複雑
であったり、プロトン導電率がやや低い問題がある。ま
た、ケイ素上にメチル基を有するボロシロキサン構造を
有する有機・無機ハイブリッド物質が報告されているが
(G. D. Soraru, N.Dallabona, C. Gervais, and F. Ba
bonneau, Chem. Mater. Vol. 11, 910(1999))、プロト
ン導電性ではない。
2. Description of the Related Art Fluorohydrocarbon-based polymer electrolyte materials, which are typical proton-conductive polymer electrolyte membranes, exhibit a significant decrease in proton conductivity in a low-humidity atmosphere or at a high temperature of 100 ° C. or higher, and require a fuel such as methanol. Have many drawbacks, such as difficulty in suppressing the permeability, that is, crossover, and being extremely expensive. On the other hand, a sulfonated product of a normal hydrocarbon polymer (T. Kobayashi,
M. Rikukawa, K. Sanui, and N. Ogata, Solid State Io
nics, Vol. 106, 219 (1998)) and a siloxane polymer having a sulfonylbenzyl group on silicon as an organic / inorganic hybrid proton conductive material (I. Gautier,
A. Denoyelle, JY Sanchez, and C. Poinsignon, El
ectrochimica Acta, Vol. 37, 1615 (1992)) and an organic-inorganic hybrid polymer obtained by polymerizing a siloxane and an organic polymer through a urethane bond (I. Honma, S. Hirakaw)
a, K. Yamada, and JM Bae, Solid State Ionics, V
ol. 118, 29 (1999)), but there are problems that the synthesis method is complicated and the proton conductivity is somewhat low. An organic-inorganic hybrid material having a borosiloxane structure having a methyl group on silicon has been reported (GD Soraru, N. Dallabona, C. Gervais, and F. Ba
bonneau, Chem. Mater. Vol. 11, 910 (1999)), not proton conductive.

【0003】プロトン導電性高分子の応用例の一つであ
る燃料電池は、燃料と酸素との電気化学反応から生じる
エネルギーを利用する電池であり、燃料電極及び酸化電
極の間にプロトン導電性の電解質膜を挟んだ構造が知ら
れている(特開2000−277123、特開2000
−285933、特開平11−45733、特開平6−
251780等)。これらは一般に、厚さが50〜20
0μm程度の電解質膜の両側に白金等の電極を密着させ
たセルを複層重ねて燃料電池を構成し、その一方から酸
素及び他方から水素を流し込み適度な温度で適度な背圧
をかけることにより、これを電池として機能させるもの
である。しかし、ここに引用した公報等のように、この
電解質膜として一般にスルホン酸基を有するパーフルオ
ロカーボン重合体(例えば、Nafion(E.I.D
upont社の登録商標))が用いられているため、上
記の問題を有している。
[0003] A fuel cell, which is one of the applications of the proton conductive polymer, is a battery that utilizes energy generated from an electrochemical reaction between fuel and oxygen, and has a proton conductive property between a fuel electrode and an oxidation electrode. Known structures sandwiching an electrolyte membrane (JP-A-2000-277123 and JP-A-2000-277123)
-285933, JP-A-11-45733, JP-A-6-1994
251780 etc.). These generally have a thickness of 50-20.
By constructing a fuel cell by stacking multiple layers of cells in which electrodes such as platinum are closely attached to both sides of an electrolyte membrane of about 0 μm, flowing oxygen from one side and hydrogen from the other side and applying an appropriate back pressure at an appropriate temperature. This makes this function as a battery. However, as in the publications cited herein, this electrolyte membrane is generally used as a perfluorocarbon polymer having a sulfonic acid group (for example, Nafion (EID).
The above problem is caused by the use of a trademark of Upon Inc.)).

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題を
解決すべく、プロトン導電率の高い電解質材料及びその
簡便な製造方法を提供することを目的とする。高いプロ
トン導電率を得るために、本発明ではスルホン酸の解離
性を促進する構造としてボロシロキサン骨格に注目し、
製造法が容易な加水分解縮合法によるボロシロキサン重
合体の調製とそのスルホン化方法について研究した結
果、高いプロトン導電率を有する有機・無機ハイブリッ
ド型プロトン導電体を得た。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolyte material having high proton conductivity and a simple method for producing the same in order to solve the above problems. In order to obtain high proton conductivity, the present invention focuses on the borosiloxane skeleton as a structure that promotes the dissociation of sulfonic acid,
As a result of studying the preparation of a borosiloxane polymer by a hydrolysis-condensation method and its sulfonation method, an organic-inorganic hybrid proton conductor having high proton conductivity was obtained.

【0005】[0005]

【課題を解決するための手段】本発明者らは、プロトン
導電性物質がホウ素含有部分(BO3/2)を持つこと
により、スルホン酸基含有部分(Si(X−SOH)
(4−x)/2)のスルホン酸の解離性が促進さ
れ、その結果プロトン導電性が向上することを見出し
て、本発明を完成させたものである。即ち、本発明の目
的は、次式 (SiR (4−x)/2(BO3/2(S
iR (4−y)/ で表されるプロトン導電性物質(式中、Rは−X−S
Hを表し(式中、Xは炭素数が2〜18の二価の炭
化水素基を表す。)、Rは炭素数が1〜18の一価の
炭化水素基を表し、xは0より大きく2以下、yは0以
上2以下、a及びbはa+bに対してそれぞれ10%以
上90%以下であり、cはa+b+cに対して0%以上
80%以下である。)を提供することである。このプロ
トン導電性物質はリン酸をドープすることにより性能の
向上を図ることができる。また、本発明の別の目的は、
これらのプロトン導電性物質及び酸性条件で安定な高分
子から成るプロトン導電性物質を提供することである。
本発明の更に別の目的は、このプロトン導電性物質から
成る厚さが10〜500μmの膜、及びこの膜を燃料電
極及び酸化剤電極の間に挟持して構成される燃料電池を
提供することである。
Means for Solving the Problems The present inventors have proposed a proton
When the conductive material is a boron-containing portion (BO3/2Having)
To form a sulfonic acid group-containing portion (Si (X-SO3H)
xO(4-x) / 2) The dissociation of sulfonic acid is promoted
Found that the proton conductivity improved as a result.
Thus, the present invention has been completed. That is, the eye of the present invention
The target is given by the following formula (SiR1 xO(4-x) / 2)a(BO3/2)b(S
iR2 yO(4-y) / 2)c  (In the formula, R1Is -X-S
O3Represents H (wherein X is a divalent carbon having 2 to 18 carbon atoms)
Represents a hydride group. ), R2Is a monovalent of 1 to 18 carbon atoms
Represents a hydrocarbon group, x is greater than 0 and 2 or less, y is 0 or more
Above 2 or less, a and b are each 10% or less with respect to a + b
Above 90% or less, c is 0% or more with respect to a + b + c
80% or less. ). This professional
Tons of conductive materials can improve performance by doping phosphoric acid.
Improvement can be achieved. Another object of the present invention is to
These proton conductive materials and stable
It is an object of the present invention to provide a proton conductive material composed of protons.
Still another object of the present invention is to provide a proton conductive material
And a membrane having a thickness of 10 to 500 μm, and
A fuel cell sandwiched between the electrode and the oxidant electrode
To provide.

【0006】[0006]

【発明の実施の形態】本発明のプロトン導電性物質(又
は、有機・無機ハイブリッド型プロトン導電体)は、ボ
ロシロキサン構造とスルホン酸基とを有し、次式 (SiR (4−x)/2(BO3/2(S
iR (4−y)/ で表される。これらの必須成分である(SiR
(4−x)/2)部分及び(BO3/2)部分並びに任意
成分である(SiR (4−y)/2)部分は当該
式の順にブロックを構成する必要はなく、ランダムに分
散してポリマーを構成してよい。即ち、上式は単に構成
成分とその量比を示すに過ぎない。プロトン導電性をよ
り向上させるためには、ホウ素含有部分(BO3/2
とスルホン酸基含有部分(SiR
(4−x)/2)とがより近接してポリマーを構
成しているほうが好ましいと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The proton conductive substance of the present invention (or
Is an organic / inorganic hybrid proton conductor)
Having a siloxane structure and a sulfonic acid group, and having the following formula (SiR1 xO(4-x) / 2)a(BO3/2)b(S
iR2 yO(4-y) / 2)c  It is represented by These essential components (SiR1 xO
(4-x) / 2) Part and (BO)3/2) Part and optional
Component (SiR2 yO(4-y) / 2) Part is applicable
There is no need to construct blocks in the order of the expressions,
The polymer may be dispersed. That is, the above equation is simply a configuration
It merely shows the components and their ratios. Proton conductivity
In order to improve the boron content, a boron-containing portion (BO3/2)
And a sulfonic acid group-containing portion (SiR
1 xO(4-x) / 2) Is closer to the polymer
It is considered that the above is more preferable.

【0007】上式のRは−X−SOHを表し、Xは
炭素数が2〜18、好ましくは2〜8の二価の炭化水素
基を表し、二価の炭化水素基であれば特に他に制限はな
い。またRは炭素数が1〜18、好ましくは1〜8、
より好ましくは2〜6の一価の炭化水素基を表し、一価
の炭化水素基であれば特に他に制限はない。即ち、X及
びRは直鎖若しくは分枝であっても又は不飽和結合を
有するものであってもよく、また芳香環又は脂環を有す
るものであってもよい。これらの炭素数が大きくなる
と、例えば、高分子と混合した場合の相溶性が増すこと
になり、フィルム等を作成する場合に有利になるが、一
方プロトン導電性は下がることになるため、目的によっ
て適宜選択すればよい。
In the above formula, R 1 represents -X-SO 3 H, and X represents a divalent hydrocarbon group having 2 to 18 carbon atoms, preferably 2 to 8 carbon atoms. There are no other restrictions. R 2 has 1 to 18 carbon atoms, preferably 1 to 8 carbon atoms;
More preferably, it represents a monovalent hydrocarbon group of 2 to 6, and there is no particular limitation as long as it is a monovalent hydrocarbon group. That is, X and R 2 may be linear or branched, or may have an unsaturated bond, and may have an aromatic ring or an alicyclic ring. When these carbon numbers are large, for example, the compatibility when mixed with a polymer is increased, which is advantageous in producing a film or the like, but on the other hand, the proton conductivity is reduced, so depending on the purpose. What is necessary is just to select suitably.

【0008】xは0より大きく2以下、好ましくは0.
01以上1.5以下、より好ましくは0.1以上1.1
以下であり、yは0以上2以下、好ましくは0.01以
上1.5以下、より好ましくは0.1以上1.1以下で
ある。またa及びbはa+bに対してそれぞれ10%以
上90%以下、好ましくは30%以上70%以下、より
好ましくは40%以上60%以下である。またcはa+
b+cに対して0%以上80%以下、好ましくは10%
以上60%以下、20%以上50%以下である。これら
の数値は、プロトン導電性物質中のスルホン酸基が0.
1〜20ミリ等量/g、特に1〜5ミリ等量/gとなる
よう適宜選択されることが好ましい。また、本発明のプ
ロトン導電性物質はリン酸をドープすることによって、
高温(約100〜約180℃、特に約100〜約150
℃)でのプロトン導電性を向上させることができる。好
ましいリン酸のドープ量はプロトン導電性物質に対して
0.1〜50ミリモル/g、特に1〜10ミリモル/g
である。
X is greater than 0 and less than or equal to 2, preferably 0.
01 or more and 1.5 or less, more preferably 0.1 or more and 1.1 or less
Y is 0 or more and 2 or less, preferably 0.01 or more and 1.5 or less, and more preferably 0.1 or more and 1.1 or less. A and b are each 10% or more and 90% or less, preferably 30% or more and 70% or less, and more preferably 40% or more and 60% or less with respect to a + b. C is a +
0% or more and 80% or less, preferably 10% with respect to b + c
Not less than 60% and not less than 20% and not more than 50%. These figures indicate that the sulfonic acid group in the proton conductive substance is 0.1%.
It is preferable that the amount is appropriately selected so as to be 1 to 20 milliequivalents / g, particularly 1 to 5 milliequivalents / g. The proton conductive material of the present invention is doped with phosphoric acid,
High temperature (about 100 to about 180 ° C, especially about 100 to about 150
C) can be improved. The preferred phosphoric acid doping amount is 0.1 to 50 mmol / g, particularly 1 to 10 mmol / g, based on the proton conductive substance.
It is.

【0009】本発明のプロトン導電性物質の製法につい
ては特に制限はなく公知の方法で作成してよい。その製
法の例を図1(反応機構1)及び図2(反応機構2)に
示す。これら図に示した化合物は単なる例に過ぎず、本
発明はこれらに限定されない。反応機構1においては、
チオール基を有するアルコキシシラン誘導体とホウ酸エ
ステルとを加水分解反応させることにより重合体を生成
させ、チオール基を酸化することにより、スルホン酸基
を有するボロシロキサンポリマーを生成させる。また、
反応機構2においては、炭化水素基を有するアルコキシ
シラン誘導体とホウ酸エステルとを加水分解反応させる
ことにより重合体を生成させ、炭化水素基をスルホン化
することにより、スルホン酸基を有するボロシロキサン
ポリマーを生成させる。即ち、本発明のプロトン導電性
物質は、アルコキシシラン誘導体とホウ酸エステルとの
加水分解、縮合反応に続いてスルホン化することによっ
て簡便に製造できるが、後述の実施例で示されるように
適当な反応条件を採用することによってより高いプロト
ン導電率を得ることができる。即ち、反応機構1におい
て酸化反応時の温度は90℃以下が好ましく、特に70
±5℃が好ましい。
The method for producing the proton conductive substance of the present invention is not particularly limited, and may be prepared by a known method. An example of the production method is shown in FIG. 1 (reaction mechanism 1) and FIG. 2 (reaction mechanism 2). The compounds shown in these figures are merely examples, and the present invention is not limited thereto. In reaction mechanism 1,
A polymer is produced by a hydrolysis reaction between an alkoxysilane derivative having a thiol group and a borate ester, and a borosiloxane polymer having a sulfonic acid group is produced by oxidizing the thiol group. Also,
In the reaction mechanism 2, a polymer is formed by a hydrolysis reaction of an alkoxysilane derivative having a hydrocarbon group and a borate ester, and the borosiloxane polymer having a sulfonic acid group is formed by sulfonating the hydrocarbon group. Is generated. That is, the proton conductive substance of the present invention can be easily produced by hydrolysis of an alkoxysilane derivative and a borate ester, followed by sulfonation, followed by sulfonation. Higher proton conductivity can be obtained by employing reaction conditions. That is, in the reaction mechanism 1, the temperature at the time of the oxidation reaction is preferably 90 ° C. or less, particularly 70 ° C.
± 5 ° C is preferred.

【0010】本発明のプロトン導電体を適当な高分子に
分散させたブレンド系は良好な膜を形成できる。この高
分子としては酸性条件下で安定、即ち分解等の劣化を起
こさないければ、他の特性は特に問わない。これら高分
子は、熱可塑性高分子でもよいし熱硬化性高分子であっ
てもよく、有機高分子及び無機高分子を含む。例えば、
ポリスチレンやポリオレフィン等の付加重合系ポリマー
等が適したものとして挙げられ、重縮合系ポリマーの一
部には酸性条件で不安定なものがある。好ましい高分子
としては例えば、ポリスチレンスルホン酸、橋かけポリ
スチレンスルホン酸、あるいは非プロトン導電性高分子
であるポリエチレンオキシド、スチレン・イソプレン・
スチレンブロック共重合体、ポリフッ化ビニリデン、シ
リコン樹脂等が挙げられる。これら高分子は構造材とし
て機能する。これら高分子は目的、例えばフィルムを作
成するならばその製造に適した高分子と適宜選択すれば
よい。また、これらポリマーに当該プロトン導電体を公
知の方法で混合してもよいし、モノマーに当該プロトン
導電体を分散させた後に重合させてもよい。
The blend system in which the proton conductor of the present invention is dispersed in a suitable polymer can form a good film. As long as this polymer is stable under acidic conditions, that is, it does not cause degradation such as decomposition, other characteristics are not particularly limited. These polymers may be thermoplastic polymers or thermosetting polymers, and include organic polymers and inorganic polymers. For example,
Suitable examples include addition polymerization polymers such as polystyrene and polyolefin, and some of the polycondensation polymers are unstable under acidic conditions. Preferred polymers include, for example, polystyrene sulfonic acid, cross-linked polystyrene sulfonic acid, or a non-proton conductive polymer such as polyethylene oxide, styrene isoprene.
Styrene block copolymer, polyvinylidene fluoride, silicon resin and the like can be mentioned. These polymers function as structural materials. These polymers may be appropriately selected for a purpose, for example, a polymer suitable for the production of a film if a film is prepared. The proton conductor may be mixed with these polymers by a known method, or the polymer may be polymerized after dispersing the proton conductor in a monomer.

【0011】また、プロトン導電性高分子である、スル
ホン酸基を有するパーフルオロカーボン重合体(例え
ば、Nafion)を構造材として用いてもよい。この
パーフルオロカーボン重合体に本発明のプロトン導電性
物質を混合することにより、更にプロトン導電性を向上
させることが可能になり、そのため高価なパーフルオロ
カーボン重合体の使用量を減らすことも可能になる。高
分子中の本発明のプロトン導電性物質の含量は、用いる
高分子の種類に依存するが、一般にその含量が高いほう
がプロトン導電率が高いが、膜強度をよくしようとする
場合にはポリマーの割合を増やした方がよい。その兼ね
合いでは50〜90%が好ましい。スルホン酸基を有す
る重合体を用いる場合には50%でもよく、スルホン酸
基を有しないポリマーでは70〜90%がよい。またメ
タノールクロスオーバー制御や寸法安定性等の要求に応
じ、橋かけ構造を導入することも可能である。
Further, a perfluorocarbon polymer having a sulfonic acid group (for example, Nafion) which is a proton conductive polymer may be used as a structural material. By mixing the proton conductive substance of the present invention with the perfluorocarbon polymer, the proton conductivity can be further improved, and therefore, the amount of expensive perfluorocarbon polymer used can be reduced. The content of the proton conductive substance of the present invention in the polymer depends on the type of the polymer to be used.In general, the higher the content is, the higher the proton conductivity is. It is better to increase the ratio. In view of this, 50 to 90% is preferable. When a polymer having a sulfonic acid group is used, the content may be 50%, and for a polymer having no sulfonic acid group, the content may be 70 to 90%. In addition, it is also possible to introduce a cross-linking structure according to requirements such as methanol crossover control and dimensional stability.

【0012】本発明のプロトン導電性物質は優れたプロ
トン導電性を有することから、燃料電池の電解質膜とし
て用いることができる。この膜は上記のように本発明の
プロトン導電性物質及び高分子から構成してもよく、そ
の膜厚は通常10〜500μm、好ましくは50〜20
0μmである。この膜の両側に白金等の燃料電極及び酸
化電極を密着させたセルを必要に応じて複層重ねて燃料
電池を構成し、その一方から酸素及び他方から水素等の
燃料を流し込み適度な温度で適度な背圧をかけることに
より、電池として機能させることができる。
Since the proton conductive substance of the present invention has excellent proton conductivity, it can be used as an electrolyte membrane for a fuel cell. This film may be composed of the proton conductive substance and the polymer of the present invention as described above, and has a thickness of usually 10 to 500 μm, preferably 50 to 20 μm.
0 μm. A cell in which a fuel electrode such as platinum and an oxidation electrode are adhered to both sides of this membrane is laminated as necessary to form a fuel cell, and a fuel such as oxygen and a fuel such as hydrogen are poured from one of them and the other at an appropriate temperature. By applying an appropriate back pressure, the battery can function as a battery.

【0013】[0013]

【実施例】以下、実施例により本発明を例証するが、こ
れらは本発明を制限することを意図したものではない。
なお、プロトン導電率は、ACインピーダンス法により
測定した。サンプルはボロシロキサンポリマーを100
℃で1時間加熱することで作成し、スペーサーによって
面積1.0×1.0cm、厚さ0.4mmの正方形状
に制御した。電極には白金板を用いた。測定に用いた装
置の概略図を図3に示す。これに10mVの交流を印加
し、周波数を8 MHz〜0.0001 Hzへと変化さ
せ、得られたコール-コールプロットからバルク抵抗
(R)を等価回路を用いてカーブフィットすることに
より求めた。イオン導電率σ (S/cm)は、次式で
示すように、電極間距離d(cm)を膜の断面積S(c
)と抵抗(S−1(=Ω))の積で割って算出し
た。 σ = d/RS プロトン導電率は数値が大きいほど好ましく、通常のス
ルホン酸基を有するパーフルオロカーボン重合体のプロ
トン導電率は0.1 S/cm程度であり、燃料電池と
して用いる場合には0.1 S/cm以上のプロトン導
電率が好ましいとされている。
The following examples illustrate the present invention but are not intended to limit the invention.
The proton conductivity was measured by an AC impedance method. The sample is 100 borosiloxane polymer
This was prepared by heating at 1 ° C. for 1 hour, and was controlled to have a square shape with an area of 1.0 × 1.0 cm 2 and a thickness of 0.4 mm by a spacer. A platinum plate was used as an electrode. FIG. 3 shows a schematic diagram of the apparatus used for the measurement. An alternating current of 10 mV was applied thereto, the frequency was changed from 8 MHz to 0.0001 Hz, and the bulk resistance ( Rb ) was obtained from the obtained Cole-Cole plot by curve fitting using an equivalent circuit. . The ion conductivity σ (S / cm) is obtained by changing the distance d (cm) between the electrodes to the cross-sectional area S (c
m 2 ) and the product of the resistance (S −1 (= Ω)). σ = d / R b S The proton conductivity is preferably as large as possible, and the proton conductivity of a general sulfonic acid group-containing perfluorocarbon polymer is about 0.1 S / cm. It is said that a proton conductivity of 0.1 S / cm or more is preferable.

【0014】実施例1 図1に示す反応機構1に従って、ボロシロキサン電解質
を作成した。3−メルカプトトリエトキシシラン4.9
6g (25.3ミリモル)、ホウ酸トリイソプロピル
4.77g (25.3ミリモル)、n−ヘキシルトリメ
トキシシラン10.3g (49.9ミリモル)をメタノ
ール100ml中に溶解させた。その溶液に0.04N
HCl水溶液3.59g (199ミリモル)を加え、室
温で24時間攪拌させた後、60℃で48時間攪拌し、
さらに加熱還流を5時間行った。溶媒を室温で減圧除去
し、さらに90℃で24時間減圧乾燥させると、透明な
柔らかい固体ポリマーが得られた(収量10.4g)。
調製したポリマー1.04gが入っているフラスコに、
30% H溶液を5ml加え、70℃(酸化反応
温度)で1時間攪拌した。攪拌終了後、溶媒を減圧除去
し、さらに室温で24時間減圧乾燥した。この生成物を
「サンプル70」と呼ぶ。酸化反応温度を90℃にして
同様の操作を繰り返し、得た生成物を「サンプル90」
と呼ぶ。得られたポリマーは粉末であった。さらに得ら
れたポリマーの一部を酸化途中で生成した硫酸を取り除
くためにジエチルエーテルで6回超音波洗浄及び濾過を
行い、ボロシロキサン電解質を得た。洗浄前後の試料の
収量及び収率を表1に示す。なお、後述の図4及び5に
おいて、洗浄サンプルとは洗浄後のサンプルを示し、サ
ンプルとは洗浄前のサンプルを示す。
[0014]Example 1  According to the reaction mechanism 1 shown in FIG.
It was created. 3-mercaptotriethoxysilane 4.9
6 g (25.3 mmol), triisopropyl borate
4.77 g (25.3 mmol), n-hexyl trime
10.3 g (49.9 mmol) of toxic silane
Dissolved in 100 ml. 0.04N in the solution
 An aqueous HCl solution (3.59 g, 199 mmol) was added, and the
After stirring at temperature for 24 hours, stirring at 60 ° C. for 48 hours,
Further, heating and refluxing were performed for 5 hours. Solvent removed under reduced pressure at room temperature
And further dried under reduced pressure at 90 ° C. for 24 hours,
A soft solid polymer was obtained (yield 10.4 g).
In a flask containing 1.04 g of the prepared polymer,
30% H2O2Add 5 ml of the solution, and add
Temperature) for 1 hour. After completion of stirring, the solvent is removed under reduced pressure
The mixture was further dried at room temperature under reduced pressure for 24 hours. This product
Called “sample 70”. Set the oxidation reaction temperature to 90 ° C
The same operation was repeated, and the obtained product was designated as “Sample 90”.
Call. The obtained polymer was a powder. Get more
Of sulfuric acid generated during oxidation of part of the polymer
6 times ultrasonic cleaning and filtration with diethyl ether
Performed to obtain a borosiloxane electrolyte. Before and after cleaning
The yield and yield are shown in Table 1. 4 and 5 described later.
In this context, a washed sample refers to a sample after washing,
The sample indicates a sample before washing.

【0015】[0015]

【表1】 [Table 1]

【0016】なお、3−メルカプトトリエトキシシラ
ン、ホウ酸トリイソプロピルを出発原料として、ヘキシ
ル基を含まないボロシロキサン電解質を得、高湿度下
で、10 −1 Scm−1オーダーのプロトン導電率を
示したが、高分子とブレンドして膜を生成しようとする
と膜形成性が低く、さらに潮解性があった。サンプル9
0及びサンプル70について、洗浄前後のプロトン導電
率σを比較し、25℃での相対湿度とプロトン導電率と
の関係を図4に示し、相対湿度95%でのプロトン導電
率の温度依存性を図5に示す。これらの図から分かるよ
うに、90℃で酸化すると、チオール基がスルホン酸へ
の酸化で留まらず、一部硫酸にまで酸化されてしまうた
め、洗浄によって硫酸を除去すると、プロトン導電率の
かなりの低下が観測された。しかし、70℃で酸化した
試料については洗浄によってプロトン導電率はわずかし
か低下しなかった。すなわち、酸化反応温度は70℃が
適当であることが明らかである。また、本発明のプロト
ン導電性物質のプロトン導電率はかなり高いことが示さ
れた。
In addition, 3-mercaptotriethoxysila
Hexane starting with triisopropyl borate
Borosiloxane electrolyte containing no hydroxyl group
And 10 -1 Scm-1On the order of proton conductivity
As shown, attempts to form film by blending with polymer
And the film forming property was low, and there was deliquescence. Sample 9
0 and sample 70, proton conductivity before and after washing
Rate σ, relative humidity at 25 ° C. and proton conductivity
FIG. 4 shows the relationship between proton conductivity and relative humidity at 95%.
FIG. 5 shows the temperature dependence of the ratio. You can see from these figures
When oxidized at 90 ° C, the thiol group is converted to sulfonic acid.
Is not oxidized and partially oxidized to sulfuric acid.
The sulfuric acid is removed by washing,
A significant drop was observed. However, it oxidized at 70 ° C
The proton conductivity of the sample was reduced by washing.
Did not decrease. That is, the oxidation reaction temperature is 70 ° C.
Obviously it is appropriate. In addition, the prototype of the present invention
Proton conductivity of conductive materials is shown to be quite high
Was.

【0017】実施例2 3−メルカプトトリエトキシシラン4.91g (25ミ
リモル)、ホウ酸トリイソプロイル4.73g (25.
1ミリモル)、n−ヘキシルトリメトキシシラン10.
4g (50.5ミリモル)を2−プロパノール50ml
中に溶解させた。その溶液に0.04N HCl水溶
液、テトラエチルアンモニウムテトラフルオロボレート
0.25g (1.15ミリモル)及びリン酸(0.5モル
/リットル)100ml(50ミリモル)を加え、室温で
24時間攪拌させた。溶媒を室温で減圧除去し、140
℃で2時間加熱処理を行った。加熱処理後、90℃で2
4時間減圧乾燥した。得られたポリマーをすり鉢で粉末
状に粉砕した後、フラスコに移し、30% H
液50mlを加え、70℃で1時間攪拌した。攪拌終了
後、溶媒を減圧除去し、さらに室温で24時間減圧乾燥
し、リン酸をドープした白色粉末のボロシロキサン電解
質を得た。空気中でのプロトン導電率の温度依存性を図
6に示す。100℃(1000/T=約2.68)以上
でもプロトン導電率の低下は小さく、リン酸ドープによ
って高温での高いプロトン導電率を達成できた。
[0017]Example 2  4.91 g of 3-mercaptotriethoxysilane (25
Rimole), 4.73 g of triisoproyl borate (25.
1 mmol), n-hexyltrimethoxysilane
4 g (50.5 mmol) in 2-propanol 50 ml
Dissolved in. 0.04N HCl aqueous solution
Liquid, tetraethylammonium tetrafluoroborate
0.25 g (1.15 mmol) and phosphoric acid (0.5 mol
/ L) and add 100 ml (50 mmol) at room temperature
The mixture was stirred for 24 hours. The solvent was removed under reduced pressure at room temperature and 140
Heat treatment was performed at 2 ° C. for 2 hours. After heat treatment, 2 at 90 ° C
It dried under reduced pressure for 4 hours. Powder the obtained polymer in a mortar
After crushed into a shape, it is transferred to a flask, and 30% H2O2Dissolution
50 ml of the liquid was added, and the mixture was stirred at 70 ° C. for 1 hour. End of stirring
Thereafter, the solvent was removed under reduced pressure, and further dried under reduced pressure at room temperature for 24 hours.
And borosiloxane electrolysis of white powder doped with phosphoric acid
Got the quality. Diagram of temperature dependence of proton conductivity in air
6 is shown. 100 ° C (1000 / T = about 2.68) or higher
However, the decrease in proton conductivity is small,
As a result, a high proton conductivity at a high temperature could be achieved.

【0018】実施例3 図2に示す反応機構2に従って、ケイ素上にスルホン化
フェニル基を有するボロシロキサンポリマーを合成し
た。トリメトキシフェニルシラン6.29g (31.7
ミリモル)、ホウ酸トリイソプロピル5.87g (3
1.2ミリモル)そして水(0.1N HCl) 1.92
g (96ミリモル)を30mlフラスコに入れた。溶媒
としてアセトニトリル100mlを加え、室温で5時間
攪拌した。次に、温度を60℃に上げて65時間攪拌
し、さらに85℃で還流を3時間行った。溶媒を真空中
で80℃、24時間の乾燥によって取り除き、ボロシロ
キサンポリマーを得た。合成したボロシロキサンポリマ
ーを砕き、砕いたポリマー0.202gを10ml二口
フラスコに移し、Nをフローしながらジクロロメタン
3mlに溶かした。そして、ゆっくりとクロロ硫酸(C
lSOH)0.1mlを加えスルホン化した。混合物
を0℃で3時間攪拌し、溶媒を留去後、未反応の硫酸を
洗い流すためにジエチルエーテルによって数回超音波洗
浄器を用いて洗浄した。そして、室温、真空中で24時
間乾燥し、スルホン化されたボロシロキサン電解質を得
た。なお、詳細は示さないが、トリメトキシフェニルシ
ランの代わりにトリメトキシベンジルシランを原料とし
て同様の操作を繰り返すことにより、同様の性質を有す
るボロシロキサン電解質を得た。
[0018]Example 3  Sulfonation on silicon according to reaction scheme 2 shown in FIG.
Synthesis of borosiloxane polymer having phenyl group
Was. 6.29 g of trimethoxyphenylsilane (31.7
Mmol), 5.87 g of triisopropyl borate (3
1.2 mmol) and water (0.1 N HCl) 1.92
g (96 mmol) was placed in a 30 ml flask. solvent
100 ml of acetonitrile was added as the
Stirred. Next, raise the temperature to 60 ° C and stir for 65 hours
The mixture was refluxed at 85 ° C. for 3 hours. Solvent in vacuum
And removed by drying at 80 ° C for 24 hours.
A xane polymer was obtained. Synthesized borosiloxane polymer
Crushed and 0.202 g of crushed polymer in 10 ml
Transfer to flask and add N2While flowing dichloromethane
Dissolved in 3 ml. Then slowly add chlorosulfuric acid (C
lSO3H) 0.1 ml was added for sulfonation. mixture
Was stirred at 0 ° C. for 3 hours. After the solvent was distilled off, unreacted sulfuric acid was removed.
Ultrasonic washing several times with diethyl ether to wash away
It was washed using a purifier. And at room temperature in a vacuum for 24 hours
Drying to obtain a sulfonated borosiloxane electrolyte
Was. Although details are not shown, trimethoxyphenylsilane
Using trimethoxybenzylsilane instead of orchid
Have the same properties by repeating the same operation
A borosiloxane electrolyte was obtained.

【0019】実施例4 トリメトキシフェニルシラン6.27g (31.6ミリ
モル)、ホウ酸トリイソプロピル5.91g (31.4
ミリモル)、及びスチレン1.287g (12.36ミ
リモル)を300mlフラスコに入れ、溶媒にはアセト
ニトリル100mlを用いた。さらに、水(0.1N H
Cl) 2.51g (139.4ミリモル)と再結晶した
AIBN 0.64g (3.90ミリモル)を加え、室温
で5時間攪拌した。そして、温度を60℃に上げて1週
間攪拌し、さらに3時間還流を行った。溶媒を真空中で
80℃、24時間の乾燥によって取り除き、黄色の均一
の固体ポリマーを得た。この固体ポリマーはボロシロキ
サンポリマーとポリスチレンとの相互侵入網目構造(I
PN)を構成していると考えられる。合成したポリマー
を砕き、砕いたポリマー0.501gを10ml二口フ
ラスコに移し、窒素ガスを流しながらジクロロメタン5
mlに溶かした。そして、ゆっくりとクロロ硫酸(Cl
SOH)0.3mlを加えスルホン化した。混合物を
0℃で3時間攪拌し、溶媒を留去後、未反応の硫酸を洗
い流すためにジエチルエーテルによって数回超音波洗浄
器を用いて洗浄した。室温、真空中で24時間乾燥し、
ボロシロキサン電解質とポリスチレンとのハイブリッド
ポリマーを得た。なお、スチレンの比率を変えた試料、
ジビニルベンゼン(DVB)を添加して橋かけしたポリス
チレンスルホン酸とボロシトキサンとのハイブリッド
系、テトラエトキシシラン(TEOS)を添加することに
よってボロシロキサンを橋かけさせた系も調製した。
[0019]Example 4  6.27 g of trimethoxyphenylsilane (31.6 mm
Mol), 5.91 g of triisopropyl borate (31.4
Mmol) and 1.287 g of styrene (12.36
Lmol) into a 300 ml flask, and the solvent
100 ml of nitrile was used. Further, water (0.1N H
(Cl) 2.51 g (139.4 mmol)
0.64 g (3.90 mmol) of AIBN was added, and room temperature was added.
For 5 hours. Then raise the temperature to 60 ° C for one week
The mixture was stirred for another 3 hours and refluxed for 3 hours. Solvent in vacuum
Removed by drying at 80 ° C for 24 hours, yellow uniform
Was obtained as a solid polymer. This solid polymer is borosiloki
Interpenetrating Network Structure of Sun Polymer and Polystyrene (I
PN). Synthesized polymer
And crushed polymer (0.501 g) in 10 ml
Transfer to Lasco and dilute dichloromethane 5 with flowing nitrogen gas.
Dissolved in ml. Then, slowly add chlorosulfuric acid (Cl
SO3H) 0.3 ml was added for sulfonation. The mixture
Stir at 0 ° C for 3 hours, evaporate the solvent and wash unreacted sulfuric acid.
Several times ultrasonic cleaning with diethyl ether to flush
It was washed using a vessel. Dried in vacuum at room temperature for 24 hours,
Hybrid of borosiloxane electrolyte and polystyrene
A polymer was obtained. In addition, the sample which changed the ratio of styrene,
Polices crosslinked by adding divinylbenzene (DVB)
Hybrid of Tylenesulfonic acid and Borocitoxane
System, adding tetraethoxysilane (TEOS)
Therefore, a system in which borosiloxane was crosslinked was also prepared.

【0020】実施例3及び4で得られたボロシロキサン
電解質のプロトン導電率を図7に示す。図7において、
「A」は化1の構造式でa:b:c:m=1:1:0:
4のポリスチレンスルホン酸とボロシロキサンとのハイ
ブリッド系電解質、「B」は化1の構造式でa:b:
c:m=1:1:0:0のポリスチレンスルホン酸とボ
ロシロキサンとのハイブリッド系電解質、「C」は化1
の構造式でa:b:c:m=1:1:0:1のポリスチ
レンスルホン酸とボロシロキサンとのハイブリッド系電
解質、「DVB−10」は化1の構造式でa:b:c:
m=1:1:0:4のジビニルベンゼン(DVB)10%
で橋かけした電解質、及び「TEOS−0.2」は化1
の構造式でa:b:c:m=1:1:0.2:4のテト
ラエトキシシラン(TEOS)20%で橋かけした電解質
材料を表す。
FIG. 7 shows the proton conductivity of the borosiloxane electrolytes obtained in Examples 3 and 4. In FIG.
“A” is a structural formula of a: b: c: m = 1: 1: 1: 0:
4, a hybrid electrolyte of polystyrene sulfonic acid and borosiloxane, “B” is a structural formula of a: b:
c: m = 1: 1: 0: 0: a hybrid electrolyte of polystyrenesulfonic acid and borosiloxane, where “C” is
A hybrid electrolyte of polystyrenesulfonic acid and borosiloxane having a: b: c: m = 1: 1: 1: 0: 1 in the structural formula of “DVB-10” is a: b: c:
m = 1: 1: 1: 0: 4% of divinylbenzene (DVB) 10%
Electrolyte and TEOS-0.2 are chemical formula 1
Represents an electrolyte material cross-linked with 20% of tetraethoxysilane (TEOS) with a: b: c: m = 1: 1: 0.2: 4.

【化1】 図7から本発明のプロトン導電性物質がかなり高いプロ
トン導電率を示すことがわかる。
Embedded image FIG. 7 shows that the proton conductive material of the present invention shows a considerably high proton conductivity.

【0021】実施例5 実施例1で調製したヘキシル基を含まないボロシロキサ
ン電解質生成物に、10重量%のスチレン−イソプレン
−スチレンブロック共重合体(SIS)をブレンドした
電解質を次の方法で調製した。SIS 0.036gを
トルエン溶媒(1ml)中に均一な溶液になるまで溶かし
た。すり鉢上でかき混ぜながらボロシロキサン電解質
0.324gにSISのトルエン溶液を加えた。フラス
コに移し室温で24時間減圧乾燥させるとゴム状で硬い
固体ブレンド電解質が得られた。ボロシロキサン電解質
とSISとのブレンド系のプロトン導電率を図8に示
す。高湿度条件下でかなり高いプロトン導電率を示すこ
とがわかる。また、詳細は示さないが、SISの代わり
にポリエチレンオキシド、ポリプロピレンオキシド、ナ
フィオンまたはフッ化ビニリデン等の高分子を用いて同
様の操作を繰り返すことにより、これらとボロシロキサ
ン電解質とのブレンド系電解質を得た。これらは同様に
優れたプロトン導電率を示した。
[0021]Example 5  Hexyl-free borosiloxa prepared in Example 1
10% by weight of styrene-isoprene
-Blend styrene block copolymer (SIS)
The electrolyte was prepared in the following manner. SIS 0.036g
Dissolve in toluene solvent (1 ml) until a homogeneous solution is obtained.
Was. Borosiloxane electrolyte while stirring on a mortar
0.324 g of a SIS toluene solution was added. Frass
Transfer to a glass and dried under reduced pressure at room temperature for 24 hours.
A solid blend electrolyte was obtained. Borosiloxane electrolyte
Fig. 8 shows the proton conductivity of the blend system of
You. Shows fairly high proton conductivity under high humidity conditions
I understand. Although details are not shown, instead of SIS
Polyethylene oxide, polypropylene oxide,
Using a polymer such as fion or vinylidene fluoride
By repeating these operations, the borosiloxa
Thus, a blend-type electrolyte with the electrolyte was obtained. These are likewise
Excellent proton conductivity was shown.

【0022】[0022]

【発明の効果】本発明のプロトン導電性物質は、ルイス
酸性ホウ素の導入によってスルホン酸基の解離が促進さ
れ高いプロトン導電性を有する。更にリン酸をドープす
ることにより高温(約100〜約180℃、特に約10
0〜約150℃)でのプロトン導電性を上げることがで
きる。本発明のプロトン導電性物質は、有機ケイ素アル
コキシド、ホウ酸エステルから簡便に合成できる。さら
に本発明のプロトン導電性物質は他の高分子とブレンド
系を容易に調製でき、プロトン導電性物質に導入した炭
化水素基を適当に選択することにより高分子との相溶性
は向上し、膜の生成が容易になる。橋かけ構造導入も可
能である。また、生成した膜は燃料電池用電解質膜とし
て用いることができる。
The proton conductive substance of the present invention has high proton conductivity because the dissociation of the sulfonic acid group is promoted by the introduction of Lewis acidic boron. Further, by doping with phosphoric acid, a high temperature (about 100 to about 180 ° C., particularly about 10 ° C.) can be obtained.
0 to about 150 ° C.). The proton conductive substance of the present invention can be easily synthesized from an organosilicon alkoxide and a borate. Furthermore, the proton conductive substance of the present invention can be easily prepared as a blend system with another polymer, and by appropriately selecting the hydrocarbon group introduced into the proton conductive substance, the compatibility with the polymer is improved, and the membrane is improved. Can be easily generated. It is also possible to introduce a bridge structure. Further, the formed membrane can be used as an electrolyte membrane for a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプロトン導電性物質の生成反応の一例
を示す図である(反応機構1)。
FIG. 1 is a diagram showing an example of a reaction for producing a proton conductive substance of the present invention (reaction mechanism 1).

【図2】本発明のプロトン導電性物質の生成反応の別の
例を示す図である(反応機構2)。
FIG. 2 is a diagram showing another example of the reaction for producing a proton conductive substance of the present invention (reaction mechanism 2).

【図3】プロトン導電率の測定装置を示す図である。FIG. 3 is a diagram showing an apparatus for measuring proton conductivity.

【図4】25℃におけるプロトン導電率の相対湿度依存
性を示す図である。
FIG. 4 is a diagram showing the relative humidity dependence of proton conductivity at 25 ° C.

【図5】相対湿度95%下におけるプロトン導電率の温
度依存性を示す図である。
FIG. 5 is a diagram showing temperature dependence of proton conductivity under a relative humidity of 95%.

【図6】リン酸をドープしたボロシロキサン電解質の空
気中でのプロトン導電率の温度依存性を示す図である。
FIG. 6 is a diagram showing the temperature dependence of proton conductivity in air of a borosiloxane electrolyte doped with phosphoric acid.

【図7】ベンゼンスルホニル基を有するボロシロキサン
電解質の空気中でのプロトン導電率の相対湿度依存性を
示す図である。
FIG. 7 is a diagram showing the relative humidity dependence of proton conductivity in air of a borosiloxane electrolyte having a benzenesulfonyl group.

【図8】ボロシロキサン電解質とISIとのブレンド系
の25℃におけるプロトン導電率の相対湿度依存性を示
す図である。
FIG. 8 is a graph showing relative humidity dependence of proton conductivity at 25 ° C. of a blend system of a borosiloxane electrolyte and ISI.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 楊 云松 静岡県浜松市蜆塚町3−22−1 国際交流 会館413 Fターム(参考) 4F071 AA01 AA12X AA22 AA22X AA26 AA51 AA67 AA68 AA75 AA78 AB25 AH15 BC01 BC12 4J002 BB00X BC03X BC12X BD14X BP01X CH02X CP03X CP19W DH026 FB07W GQ00 GQ02 4J035 BA02 BA04 BA12 BA14 CA01N CA261 HA04 LA03 LB20 5H026 AA06 CX04 EE18 HH03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/10 H01M 8/10 (72) Inventor Yang Yunmatsu International House 413 F-Term (Reference) 4F071 AA01 AA12X AA22 AA22X AA26 AA51 AA67 AA68 AA75 AA78 AB25 AH15 BC01 BC12 4J002 BB00X BC03X BC12X BD14X BP01X CH02X CP03X CP19W DH026BA04 BA04 BA04 BA04 BA04 G04 BA00 EE18 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次式 (SiR (4−x)/2(BO3/2(S
iR (4−y)/ で表されるプロトン導電性物質(式中、Rは−X−S
Hを表し(式中、Xは炭素数が2〜18の二価の炭
化水素基を表す。)、Rは炭素数が1〜18の一価の
炭化水素基を表し、xは0より大きく2以下、yは0以
上2以下、a及びbはa+bに対してそれぞれ10%以
上90%以下であり、cはa+b+cに対して0%以上
80%以下である。)。
1. The following formula (SiR)1 xO(4-x) / 2)a(BO3/2)b(S
iR2 yO(4-y) / 2)c  (In the formula, R1Is -X-S
O3Represents H (wherein X is a divalent carbon having 2 to 18 carbon atoms)
Represents a hydride group. ), R2Is a monovalent of 1 to 18 carbon atoms
Represents a hydrocarbon group, x is greater than 0 and 2 or less, y is 0 or more
Above 2 or less, a and b are each 10% or less with respect to a + b
Above 90% or less, c is 0% or more with respect to a + b + c
80% or less. ).
【請求項2】 リン酸をドープした請求項1に記載のプ
ロトン導電性物質。
2. The proton conductive substance according to claim 1, doped with phosphoric acid.
【請求項3】 請求項1又は2に記載のプロトン導電性
物質及び酸性条件で安定な高分子から成るプロトン導電
性物質。
3. A proton conductive substance comprising the proton conductive substance according to claim 1 and a polymer stable under acidic conditions.
【請求項4】 請求項3に記載のプロトン導電性物質か
ら成る厚さが10〜500μmの膜。
4. A membrane having a thickness of 10 to 500 μm, comprising the proton conductive substance according to claim 3.
【請求項5】 請求項4に記載の膜を燃料電極及び酸化
剤電極の間に挟持して構成される燃料電池。
5. A fuel cell comprising the membrane according to claim 4 interposed between a fuel electrode and an oxidant electrode.
JP2000376772A 2000-12-12 2000-12-12 Proton conductive material Expired - Fee Related JP4582740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376772A JP4582740B2 (en) 2000-12-12 2000-12-12 Proton conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376772A JP4582740B2 (en) 2000-12-12 2000-12-12 Proton conductive material

Publications (3)

Publication Number Publication Date
JP2002184427A true JP2002184427A (en) 2002-06-28
JP2002184427A5 JP2002184427A5 (en) 2006-06-08
JP4582740B2 JP4582740B2 (en) 2010-11-17

Family

ID=18845591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376772A Expired - Fee Related JP4582740B2 (en) 2000-12-12 2000-12-12 Proton conductive material

Country Status (1)

Country Link
JP (1) JP4582740B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
WO2004070738A1 (en) * 2003-02-06 2004-08-19 Sekisui Chemical Co., Ltd. Proton conducting film, method for producing the same, and fuel cell using the same
JP2004241391A (en) * 2003-02-08 2004-08-26 Samsung Sdi Co Ltd Composite electrolyte membrane and fuel cell employing the same
JP2005135752A (en) * 2003-10-30 2005-05-26 Japan Science & Technology Agency Oxygen reduction catalyst for fuel cell
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
JP2007517076A (en) * 2003-07-04 2007-06-28 ナノン アクティーゼルスカブ Method for producing interpenetrating polymer network, interpenetrating polymer network and use thereof
WO2008108302A1 (en) 2007-03-02 2008-09-12 Sekisui Chemical Co., Ltd. Proton conductive film, membrane-electrode assembly, and solid polymer electrolyte fuel cell
CN100424116C (en) * 2002-11-21 2008-10-08 株式会社日立制作所 Boron-containing compound, ino-conductive polymer and polyelectrolyte for electrochemical devices
JP2009144084A (en) * 2007-12-17 2009-07-02 Shin Etsu Chem Co Ltd Polyamide film-forming composition and transparent polyamide film
US7642295B2 (en) 2003-06-10 2010-01-05 Canon Kabushiki Kaisha Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same
US7838616B2 (en) 2006-11-02 2010-11-23 Shin-Etsu Chemical Co., Ltd. Perfluoropolyether rubber composition and ion-conducting polymer electrolyte membrane
WO2012098712A1 (en) 2011-01-20 2012-07-26 昭和電工株式会社 Catalyst carrier production method, composite catalyst production method, composite catalyst, fuel cell using same
WO2013021681A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
JP2014189732A (en) * 2013-03-28 2014-10-06 Ngk Insulators Ltd Organic-inorganic composite, structure, and method for manufacturing organic-inorganic composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179800A (en) * 2000-12-08 2002-06-26 Toyota Motor Corp Ion conductive polymer and ion conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179800A (en) * 2000-12-08 2002-06-26 Toyota Motor Corp Ion conductive polymer and ion conductor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
CN100424116C (en) * 2002-11-21 2008-10-08 株式会社日立制作所 Boron-containing compound, ino-conductive polymer and polyelectrolyte for electrochemical devices
WO2004070738A1 (en) * 2003-02-06 2004-08-19 Sekisui Chemical Co., Ltd. Proton conducting film, method for producing the same, and fuel cell using the same
EP1592025A1 (en) * 2003-02-06 2005-11-02 Sekisui Chemical Co., Ltd. Proton conducting film, method for producing the same, and fuel cell using the same
KR100701549B1 (en) * 2003-02-06 2007-03-30 세키스이가가쿠 고교가부시키가이샤 Proton conducting film, method for producing the same, and fuel cell using the same
EP1592025A4 (en) * 2003-02-06 2007-12-05 Sekisui Chemical Co Ltd Proton conducting film, method for producing the same, and fuel cell using the same
JP2004241391A (en) * 2003-02-08 2004-08-26 Samsung Sdi Co Ltd Composite electrolyte membrane and fuel cell employing the same
US7642295B2 (en) 2003-06-10 2010-01-05 Canon Kabushiki Kaisha Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same
JP2007517076A (en) * 2003-07-04 2007-06-28 ナノン アクティーゼルスカブ Method for producing interpenetrating polymer network, interpenetrating polymer network and use thereof
JP2005135752A (en) * 2003-10-30 2005-05-26 Japan Science & Technology Agency Oxygen reduction catalyst for fuel cell
JP4679815B2 (en) * 2003-10-30 2011-05-11 独立行政法人科学技術振興機構 Direct fuel cell
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
US7838616B2 (en) 2006-11-02 2010-11-23 Shin-Etsu Chemical Co., Ltd. Perfluoropolyether rubber composition and ion-conducting polymer electrolyte membrane
WO2008108302A1 (en) 2007-03-02 2008-09-12 Sekisui Chemical Co., Ltd. Proton conductive film, membrane-electrode assembly, and solid polymer electrolyte fuel cell
JP2009144084A (en) * 2007-12-17 2009-07-02 Shin Etsu Chem Co Ltd Polyamide film-forming composition and transparent polyamide film
WO2012098712A1 (en) 2011-01-20 2012-07-26 昭和電工株式会社 Catalyst carrier production method, composite catalyst production method, composite catalyst, fuel cell using same
US9318749B2 (en) 2011-01-20 2016-04-19 Showa Denko K.K. Process for producing catalyst carrier, process for producing composite catalyst, composite catalyst, and fuel cell using same
US9640801B2 (en) 2011-01-20 2017-05-02 Showa Denko K.K. Process for producing catalyst carrier, process for producing composite catalyst, composite catalyst, and fuel cell using same
WO2013021681A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
KR20140053284A (en) 2011-08-09 2014-05-07 쇼와 덴코 가부시키가이샤 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
US9379390B2 (en) 2011-08-09 2016-06-28 Showa Denko K.K. Process for producing catalyst for direct-liquid fuel cell, catalyst produced by the process and uses thereof
JP2014189732A (en) * 2013-03-28 2014-10-06 Ngk Insulators Ltd Organic-inorganic composite, structure, and method for manufacturing organic-inorganic composite

Also Published As

Publication number Publication date
JP4582740B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
EP2110875B1 (en) Polymer electrolyte membrane, method for producing the same, membrane-electrode assembly and solid polymer fuel cell
JP2002184427A (en) Proton conductive substance
JP2013168368A (en) Polymer electrolyte membrane for fuel cell, method of preparing the same, and fuel cell system including the same
JP2008311226A (en) Polymer electrolyte composite membrane, membrane-electrode assembly and fuel cell
CN1871736A (en) Composite electrolyte with crosslinking agents
JP2003036856A (en) Gas diffusion electrode and polymer electrolyte fuel cell having its electrode
KR101441411B1 (en) Electrolyte membrane for fuel cell, the method for preparing the same, and the fuel cell comprising the membrane
ES2617572T3 (en) Preparation procedure for proton-conducting inorganic particles
JP5591254B2 (en) Novel interpenetrating polymer network and its use
JP5555636B2 (en) Organic-inorganic composite electrolyte, electrolyte membrane, membrane-electrode assembly, and fuel cell
KR100843569B1 (en) Proton conductive composite triblock polymer electrolyte membrane and preparation method thereof
EP1619692B1 (en) Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
Gan et al. The zwitterion effect in proton exchange membranes as synthesised by polymerisation of bicontinuous microemulsions
CN101297001A (en) Ion-conductive material, solid polymer electrolyte membrane, and fuel battery
US8987407B2 (en) Fuel cell catalyst layer having sulfonated poly(arylene ether)s and manufacturing method thereof
TWI439473B (en) Maleimide derivatives, maleimide-derived copolymers and compositions, films and cells comprising the derivatives or copolymers
JP3922162B2 (en) Proton conducting material
US9065109B2 (en) Method for preparing a composite material comprising a polymeric matrix and a filler consisting in ion exchange inorganic particles
CN1998107A (en) Water insoluble additive for improving conductivity of an ion exchange membrane
KR100600150B1 (en) Composite electrolyte membrane permeated by nano scale dendrimer and the method of preparing the same
JP5616324B2 (en) Superconducting electrolytic hybrid material and method for producing and using the same
KR101304240B1 (en) Process of preparing hybrid membranes comprising functional material by sol-gel process and thus prepared hybrid membranes
JP2009123436A (en) Electrolyte membrane for polymer electrolyte fuel cell
EP2568524A2 (en) Electrolyte material, and proton conductive polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP3572302B2 (en) Solid electrolyte and solid electrolyte fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees