[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002177734A - Ultra-short pulse high voltage applying-type gas cleaning apparatus - Google Patents

Ultra-short pulse high voltage applying-type gas cleaning apparatus

Info

Publication number
JP2002177734A
JP2002177734A JP2000382055A JP2000382055A JP2002177734A JP 2002177734 A JP2002177734 A JP 2002177734A JP 2000382055 A JP2000382055 A JP 2000382055A JP 2000382055 A JP2000382055 A JP 2000382055A JP 2002177734 A JP2002177734 A JP 2002177734A
Authority
JP
Japan
Prior art keywords
voltage
gas
corona discharge
ultra
short pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000382055A
Other languages
Japanese (ja)
Other versions
JP4828693B2 (en
Inventor
Shunsuke Hosokawa
俊介 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000382055A priority Critical patent/JP4828693B2/en
Publication of JP2002177734A publication Critical patent/JP2002177734A/en
Application granted granted Critical
Publication of JP4828693B2 publication Critical patent/JP4828693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably operate and obtain high cleaning performance without causing generation of sparks or the like even when an electric discharge inhibitory substance, such as moisture, exists in an exhaust gas while securing discharge electric power with which gaseous contaminants in the exhaust gas can be sufficiently cleaned in an ultra-short pulse high voltage applying-type gas cleaning apparatus. SOLUTION: When corona discharge is generated in a corona discharge system 8 having a discharge distance d, the discharge electric power to be charged per one ultra-short pulse high voltage is set to be >=d/200 (J) and <=d/5 (J) per unit length of corona discharge line and at least 90% of the discharge electric power is charged within 100 d (nanosecond) after applying pulse and thereafter the residual voltage in the corona discharge system 8 is allowed to be <=5 d (kV).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴミ焼却施設、ボ
イラー、焼結炉、塗装ブース、排水処理施設等からの排
ガス中に含まれる窒素酸化物、硫黄酸化物、ダイオキシ
ン、揮発性有機物、悪臭等のガス状汚染物質を除去する
ための極短パルス高電圧加電式ガス浄化装置に関するも
のである。
The present invention relates to nitrogen oxides, sulfur oxides, dioxins, volatile organic substances, volatile odors, and odors contained in exhaust gas from waste incineration facilities, boilers, sintering furnaces, painting booths, wastewater treatment facilities, and the like. The present invention relates to an ultra-short pulse high-voltage electrified gas purifier for removing gaseous pollutants such as.

【0002】[0002]

【従来の技術】従来の極短パルス高電圧加電式ガス浄化
装置は、その浄化装置における高圧極短パルス電源のパ
ルス巾を1μs以下とし、0℃・1気圧におけるガスの
密度を1としたときの前記ガスを浄化する際の温度・気
圧におけるガスの相対密度をdとした際、印加する極短
パルス高電圧の波高値電圧Vpを、前記コロナ放電極と
対向電極間に、化学的活性種(ラヂカル)を大量に発生
せしめるための臨界の値を示す該コロナ放電極と、該対
向電極間の距離的平均電界強度をEp0とすると、Ep0
=8d(kV/cm)以上となるようにしている(特許
第2649340)。しかし、排ガスの組成、特に、排
ガス中の水分濃度の影響でパルスを印加することで発生
するコロナ放電が阻害されることになり、放電によりガ
スに注入する電力が低下する。
2. Description of the Related Art In a conventional ultrashort pulse high-voltage electrified gas purifier, the pulse width of a high-voltage ultrashort pulse power supply in the purifier is 1 μs or less, and the gas density at 0 ° C. and 1 atm is 1. When the relative density of the gas at the temperature and pressure at which the gas is purified is d, the peak voltage Vp of the extremely short pulse high voltage to be applied is changed between the corona discharge electrode and the counter electrode by chemical activity. and said corona discharge electrode showing the value of the critical for allowing generating a large amount of seeds (radical), and a distance mean electric field strength between the counter electrode and Ep 0, Ep 0
= 8d (kV / cm) or more (Japanese Patent No. 2649340). However, the corona discharge generated by applying a pulse is inhibited by the influence of the composition of the exhaust gas, particularly, the moisture concentration in the exhaust gas, and the electric power injected into the gas by the discharge decreases.

【0003】また、放電電力を上げようとパルス電圧を
上げると、残留する電圧でスパークが発生し、結局放電
電力を上げられなかった。
Further, when the pulse voltage is increased to increase the discharge power, a spark is generated at the remaining voltage, and the discharge power cannot be increased after all.

【0004】その結果、ガス状汚染物質をコロナ放電で
処理するための十分な放電電力が注入できず、処理性能
が劣化してしまった。
[0004] As a result, sufficient discharge power for treating gaseous pollutants by corona discharge cannot be injected, resulting in deterioration of treatment performance.

【0005】特に、スパークの頻発を防止するための手
段を具備しない場合、スパークがより強烈になり、パル
スを印加する度にスパークが発生してしまい、運転不能
となってしまう。
[0005] In particular, when a means for preventing frequent occurrence of sparks is not provided, the spark becomes more intense, and a spark is generated every time a pulse is applied, so that operation becomes impossible.

【0006】また、処理すべきガスをそのまま放電部に
導入した場合、放電電力を大きく保たないと処理性能が
得られず、電気代などのランニングコストが大きかっ
た。
In addition, when the gas to be treated is directly introduced into the discharge section, the processing performance cannot be obtained unless the discharge power is kept large, and the running cost such as electricity cost is high.

【0007】また、パルス印加回数を増やすことで、コ
ロナ電極系反応器の単位体積当たりの処理ガス量を増や
すと排ガスの反応器での滞留時間(通過時間)を短くす
ることができるが、滞留時間が短いため、ガス状汚染物
質の種類によっては酸化分解反応が十分進行しない場合
があった。
[0007] In addition, by increasing the number of pulse applications to increase the amount of processing gas per unit volume of the corona electrode-based reactor, the residence time (passage time) of the exhaust gas in the reactor can be shortened. Due to the short time, the oxidative decomposition reaction may not proceed sufficiently depending on the type of gaseous pollutant.

【0008】[0008]

【発明が解決しようとする課題】この発明の目的は、前
述の極短パルス高電圧加電式ガス浄化装置で排ガス中の
ガス状汚染物質を十分浄化できる放電電力を確保しつ
つ、その排ガス中の水分などの放電阻害物質が存在して
もスパークなどを発生させないで安定に運転し、高い浄
化性能を得ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas purifying apparatus for an ultra-short pulse high-voltage power supply system as described above, while ensuring discharge power sufficient to purify gaseous pollutants in exhaust gas. It is intended to operate stably without generating a spark or the like even if a discharge inhibiting substance such as moisture exists, and to obtain high purification performance.

【0009】他の目的は、前記排ガス中に印加する放電
電圧を上げる際、該排ガス浄化装置中に残留する電圧に
よって発生するスパークに妨げられない臨界点まで上げ
て、ガス状汚染物質をコロナ放電で処理するに充分な放
電電力が注入できるようにすることである。
Another object is to increase the discharge voltage applied to the exhaust gas to a critical point which is not hindered by sparks generated by the voltage remaining in the exhaust gas purifying apparatus, and to reduce gaseous pollutants by corona discharge. So that sufficient discharge power can be injected for the treatment.

【0010】又、他の目的は、前記極短パルス高電圧加
電式ガス浄化装置において、特にスパークの発生防止装
置を設けなくても、前記パルス高電圧を印加する度に発
生するスパークによって運転を不能にする恐れがないよ
うにすることである。
Another object of the present invention is to provide an ultra-short pulse high-voltage charged gas purifying apparatus which operates by a spark generated every time the pulse high voltage is applied, without providing a spark preventing device. So that there is no fear of disabling.

【0011】更に他の目的は、処理すべき排ガスを放電
部に導入するに排ガスを調温、前処理、酸化剤添加を行
うことで、単位排ガス流量に注入する放電電力を小さく
しても充分な処理性能を得られるようにして、そのラン
ニングコストを低下することである。
Still another object is to control the temperature of the exhaust gas, perform pretreatment, and add an oxidizing agent to introduce the exhaust gas to be treated into the discharge section, so that the discharge power injected into the unit exhaust gas flow rate can be sufficiently reduced. That is, the running cost is reduced by obtaining a high processing performance.

【0012】[0012]

【課題を解決するための手段】この発明の極短パルス高
電圧加電式ガス浄化装置は、浄化前の排ガスを導入する
ためのガス入口と、浄化後の排ガスを排出するためのガ
ス出口を備えたケーシング内のガス通路に、コロナ放電
極とこれに対向する対向電極を相互に絶縁して配設し、
該ケーシングの外部からコロナ放電極に給電するための
ブッシングを具備したコロナ電極系反応器と、該コロナ
放電極と対向電極との間にパルス巾の極めて短い極短パ
ルス高電圧を印加するための高圧極短パルス電線を設け
たガス浄化装置において、前記コロナ放電電極と対向電
極の距離(放電距離)をd(cm)とした場合に、コロ
ナ放電を発生させることでコロナ電極系に注入する放電
電力を1回の極短パルス高電圧につき、コロナ放電線の
単位電極長当りd/200(J)以上で、d/5(J)
以下とし、かつ、該放電電力の90%以上がパルス印加
後100d(ナノ秒)以内に注入するとともに、それ以
後にコロナ放電極と対向電極間に残留する電圧を5d
(kV)以下とするものである。
An ultra-short pulse high-voltage electrified gas purifying apparatus according to the present invention comprises a gas inlet for introducing exhaust gas before purification and a gas outlet for discharging exhaust gas after purification. In the gas passage in the provided casing, a corona discharge electrode and a counter electrode facing the corona discharge electrode are arranged insulated from each other,
A corona electrode-based reactor equipped with a bushing for supplying power to the corona discharge electrode from outside the casing, and an extremely short pulse high voltage having a very short pulse width between the corona discharge electrode and the counter electrode. In a gas purification apparatus provided with a high-voltage ultrashort pulse electric wire, when a distance (discharge distance) between the corona discharge electrode and the counter electrode is d (cm), a corona discharge is generated to generate a discharge injected into the corona electrode system. The electric power is d / 200 (J) or more per unit electrode length of the corona discharge wire per one extremely short pulse high voltage, and d / 5 (J).
And at least 90% of the discharge power is injected within 100 d (nanosecond) after the pulse is applied, and thereafter, the voltage remaining between the corona discharge electrode and the counter electrode is reduced by 5 d.
(KV) or less.

【0013】[0013]

【発明の実施の形態】図1に示す如く、浄化前の排ガス
1を導入するためのガス入口2と、浄化後の排ガスを排
出するためのガス出口3を備えたケーシング4内のガス
通路5に、コロナ放電極6とこれに対向する対向電極7
を相互に絶縁して配設し、該ケーシング4の外部からコ
ロナ放電極6に給電するためのブッシング9を具備した
コロナ電極系反応器11と、該コロナ放電極6と対向電
極7との間にパルス巾の極めて短い極短パルス高電圧V
pを印加するための高圧極短パルス電源10を設けたガ
ス浄化装置において、前記コロナ放電電極6と対向電極
7の距離(放電距離)をd(cm)とした場合に、コロ
ナ放電を発生させる際、コロナ電極系8に注入する放電
電力Pを1回の極短パルス高電圧Vpにつき、コロナ放
電極6の単位電極長当りd/200(J)以上で、d/
5(J)以下とし、かつ、該放電電力Pの90%以上が
パルス印加後100d(ナノ秒)以内に注入するととも
に、それ以後にコロナ放電極6と対向電極7間に残留す
る電圧を5d(kV)以下とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a gas passage 2 in a casing 4 having a gas inlet 2 for introducing exhaust gas 1 before purification and a gas outlet 3 for discharging exhaust gas after purification. A corona discharge electrode 6 and a counter electrode 7 opposed thereto.
Between the corona discharge electrode 6 and the counter electrode 7 with a bushing 9 for supplying power to the corona discharge electrode 6 from the outside of the casing 4. Very short pulse high voltage V with extremely short pulse width
In a gas purification apparatus provided with a high-voltage ultrashort pulse power supply 10 for applying p, a corona discharge is generated when the distance (discharge distance) between the corona discharge electrode 6 and the counter electrode 7 is d (cm). At this time, the discharge power P to be injected into the corona electrode system 8 is not less than d / 200 (J) per unit electrode length of the corona discharge electrode 6 per one extremely short pulse high voltage Vp.
5 J or less, and 90% or more of the discharge power P is injected within 100 d (nanoseconds) after pulse application, and the voltage remaining between the corona discharge electrode 6 and the counter electrode 7 after that is reduced by 5 d. (KV) or less.

【0014】また上記コロナ電極系反応器11は、図1
に示す如く、四角形の箱状を形成しており、その手前側
にガス出口3を、後側にガス入口2を設け、そのガス入
口2から浄化前の排ガス1を供給し、ガス出口3から浄
化後の浄化ガス12を排出するものである。
The corona electrode type reactor 11 is shown in FIG.
As shown in the figure, a rectangular box shape is formed, a gas outlet 3 is provided on the front side, a gas inlet 2 is provided on the rear side, and the exhaust gas 1 before purification is supplied from the gas inlet 2, and the gas outlet 3 The purified gas 12 after the purification is discharged.

【0015】勿論、コロナ電極系反応器11の形状は四
角形の箱状のみならず、円筒構造など、任意の形状のも
のでよい。
Of course, the shape of the corona electrode type reactor 11 is not limited to a square box, but may be any shape such as a cylindrical structure.

【0016】前記コロナ電極系反応器11には、カバー
ダクト13を介して前記高圧極短パルス電源10を設
け、その高圧極短パルス電源10内にパルス形成回路1
4を設け、その出力側にパルス電流検出器15及びパル
ス電圧検出器16を順次接続すると共に、該パルス電流
検出器15の出力側と前述のコロナ放電極6とを電線ブ
ッシング17及び前記ブッシング9とを貫通する高圧配
線18で接続する。
The corona electrode type reactor 11 is provided with the high-voltage ultra-short pulse power supply 10 via a cover duct 13, and the pulse forming circuit 1 is provided in the high-voltage ultra-short pulse power supply 10.
A pulse current detector 15 and a pulse voltage detector 16 are sequentially connected to the output side, and the output side of the pulse current detector 15 and the corona discharge electrode 6 are connected to the electric wire bushing 17 and the bushing 9. Are connected by a high-voltage wiring 18 penetrating through.

【0017】図1に示す如く、コロナ放電極系反応器1
1の底部内面には、支持碍子19,20を、上部内面に
は、光検出器21と音検出器22及び支持碍子23を夫
々設け、更に該コロナ放電極系反応器11のガス入口2
には図8の排ガス1の排ガスダクト26を、ガス出口3
には図8の浄化ガスダクト29を設ける。
As shown in FIG. 1, a corona discharge electrode type reactor 1
1 is provided with support insulators 19 and 20 on the inner surface at the bottom, and a photodetector 21, a sound detector 22 and a support insulator 23 are provided on the inner surface at the top, respectively.
The exhaust gas duct 26 of the exhaust gas 1 shown in FIG.
Is provided with a purification gas duct 29 shown in FIG.

【0018】図2中のdは、直線状のコロナ放電極6と
平板状の対向電極7とからなるコロナ電極系8における
放電距離であるが、本発明のコロナ放電極系8は、この
実施の形態だけに限定されるものでなく、図3に示す如
く、直線状のコロナ放電極6aとその外周に放電距離d
を隔てて同心的に配置した円筒状の対向電極7aとから
なるコロナ放電極系8aにしたり、或いは図4に示す如
く、直線状のコロナ放電極6aとその外周に放電距離d
を隔てて配置した多角形筒状対向電極7bとを放電距離
dを隔てて配置したコロナ放電極系8bにすることも可
能である。
In FIG. 2, d denotes the discharge distance in the corona electrode system 8 composed of the linear corona discharge electrode 6 and the plate-shaped counter electrode 7, and the corona discharge electrode system 8 of the present invention is used in this embodiment. However, as shown in FIG. 3, the discharge distance d is formed between the linear corona discharge electrode 6a and the outer periphery thereof.
Or a corona discharge electrode system 8a composed of a cylindrical counter electrode 7a concentrically spaced apart from each other or, as shown in FIG. 4, a discharge distance d between a linear corona discharge electrode 6a and its outer periphery.
It is also possible to form a corona discharge electrode system 8b, which is arranged at a distance of discharge distance d from the polygonal cylindrical counter electrode 7b, which is arranged at an interval.

【0019】図1の極短パルス高電圧加電式ガス浄化装
置において、パルス形成回路14の出力側からコロナ放
電極系8に対し、パルス巾の極めて短い極短パルス高電
圧Vpを印加するが、極短パルスの電圧波形ならびに電
流波形は、パルス形成回路14の構成、極短パルス高電
圧供給方法、コロナ放電極系8の構成、排ガスの温度と
性状に大きく影響される。
In the ultrashort-pulse high-voltage charged gas purifying apparatus shown in FIG. 1, an ultrashort-pulse high voltage Vp having a very short pulse width is applied to the corona discharge electrode system 8 from the output side of the pulse forming circuit 14. The voltage waveform and current waveform of the ultrashort pulse are greatly affected by the configuration of the pulse forming circuit 14, the method of supplying the ultrashort pulse high voltage, the configuration of the corona discharge electrode system 8, and the temperature and properties of the exhaust gas.

【0020】しかしながら、排ガスの温度と性状に拘わ
らず、極短パルス高電圧加電式ガス浄化装置においても
コロナ放電電極6と対向電極7の距離(放電距離)をd
(cm)とした場合に、コロナ放電を発生させる際、コ
ロナ電極系8に注入する放電電力Pを1回の極短パルス
高電圧Vpにつき、コロナ放電極6の単位電極長当りd
/200(J)以上で、d/5(J)以下とし、かつ、
該放電電力Pの90%以上がパルス印加後100d(ナ
ノ秒)以内に注入するとともに、それ以後にコロナ放電
極6と対向電極7間に残留する電圧を5d(kV)以下
とするようにパルス形成回路14の構成、極短パルス高
電圧供給方法、コロナ放電極系8の構成を選ぶことでス
パーク頻発を防止し、かつ、ガス浄化性能が達成される
ことを見いだした。
However, irrespective of the temperature and properties of the exhaust gas, the distance (discharge distance) between the corona discharge electrode 6 and the counter electrode 7 is d even in the ultrashort pulse high voltage electrified gas purifier.
(Cm), when corona discharge is generated, the discharge power P injected into the corona electrode system 8 is increased by d per unit electrode length of the corona discharge electrode 6 per one extremely short pulse high voltage Vp.
/ 200 (J) or more and d / 5 (J) or less, and
A pulse is applied so that 90% or more of the discharge power P is injected within 100 d (nanosecond) after application of the pulse, and thereafter, the voltage remaining between the corona discharge electrode 6 and the counter electrode 7 is 5 d (kV) or less. It has been found that by selecting the configuration of the formation circuit 14, the method of supplying an extremely short pulse high voltage, and the configuration of the corona discharge electrode system 8, frequent occurrence of sparks can be prevented and gas purification performance can be achieved.

【0021】すなわち、図5においてパルス電圧波形V
(t)、パルス電流波形I(t)、とすると、時間累積
放電電力P(t)は、
That is, in FIG. 5, the pulse voltage waveform V
(T) and the pulse current waveform I (t), the time accumulated discharge power P (t) is

【数1】 で表現されるが、このP(t)は急速に立ち上がった
後、ほぼ平坦な一定の値になる。このほぼ一定になった
値を1パルスあたりの放電電力とする。この1パルスあ
たりの放電電力を放電線長(m)で割った値がd/20
0(J)以上、d/5(J)以下とし、かつ、P(t)
が1パルスあたりの放電電力の90%になるのに要する
時間を100d(ナノ秒)以下とし、さらに、100d
(ナノ秒)後のV(t)の値、V(100d)を5d
(kV)以下とするわけである。
(Equation 1) This P (t) rises rapidly and then becomes a substantially flat and constant value. This substantially constant value is defined as discharge power per pulse. The value obtained by dividing the discharge power per pulse by the discharge line length (m) is d / 20.
0 (J) or more and d / 5 (J) or less, and P (t)
Is less than 100d (nanoseconds) until the discharge power becomes 90% of the discharge power per pulse.
The value of V (t) after (nanosecond), V (100d) is 5d
(KV) or less.

【0022】ここで、dが大きい程、コロナ放電極の単
位電極長当たりの放電電力は大きくでき、処理できる排
ガス量も大きくできるが、必要な極端パルス高電圧Vp
の波高値も大きくする必要があり、処理ガスの種類と量
に応じたdを選択する必要がある。また、極短パルス高
電圧Vpの立ち上がり時間をできる限り小さくすること
でP(t)が1パルスあたりの放電電力の90%になる
のに要する時間を100d(ナノ秒)以下とすることが
可能となるが、dが小さいほど立ち上がり時間を小さく
し放電をすばやく終了させないと、スパークなどの電極
間短絡に移行しやすい。また、極短パルス高電圧Vpの
保有するエネルギーと放電の強度により残留するパルス
電圧は変化するが、100d(ナノ秒)後のV(t)の
値、V(100d)を5d(kV)以下とすると、スパ
ークなどの電極間短絡を防止できる。
Here, as d increases, the discharge power per unit electrode length of the corona discharge electrode can be increased, and the amount of exhaust gas that can be treated can be increased.
Needs to be increased, and it is necessary to select d according to the type and amount of the processing gas. Further, by making the rising time of the extremely short pulse high voltage Vp as short as possible, the time required for P (t) to become 90% of the discharge power per pulse can be made 100 d (nanosecond) or less. However, as d is smaller, the rise time is made shorter and the discharge is not terminated quickly. The remaining pulse voltage changes depending on the energy possessed by the ultrashort pulse high voltage Vp and the intensity of the discharge, but the value of V (t) after 100d (nanosecond), V (100d) is 5d (kV) or less. Then, a short circuit between electrodes such as a spark can be prevented.

【0023】特に、図5に示すバイアス電圧を制御する
ことで前記諸条件を満足させつつV(100d)=5d
(kV)以下とすることができる。
In particular, by controlling the bias voltage shown in FIG. 5, V (100d) = 5d while satisfying the above conditions.
(KV) or less.

【0024】パルス印加回数は多いほどコロナ放電極系
反応器を小さくできるが、コロナ放電終了後も放電空間
に残留するイオンが緩和(再結合や電極に吸収によって
消滅)されないと次の極短パルス高電圧Vpが印加され
た場合に正常なコロナ放電が発生せず、スパークに至り
やすい。そのため、極短パルス高電圧Vpの印加を毎秒
200/d(回)以上20,000/d(回)以下とす
ると残留イオンは緩和され、スパークを抑制できる。
The larger the number of times of pulse application, the smaller the corona discharge electrode type reactor can be. When the high voltage Vp is applied, normal corona discharge does not occur, and a spark is likely to occur. Therefore, when the application of the extremely short pulse high voltage Vp is set to 200 / d (times) or more and 20,000 / d (times) or less per second, the residual ions are relaxed and the spark can be suppressed.

【0025】前述のように排ガス中のガス状汚染物質を
十分浄化できる放電電力を確保しつつ、その排ガス中の
水分などの放電阻害物質が存在してもスパークなどを発
生させないような構成としても、排ガス処理においては
偶発的なスパークなどの電極間短絡はさけれれない。そ
こで、まずリーダ、スパーク、アークなどによる電極間
短絡を検出するために図1のパルス電流検出器15やパ
ルス電圧検出器16のいずれか1つ、もしくは、両方を
高圧極短パルス電源10に設けると良い。勿論、高圧極
短パルス電源10の外部の電源ブッシング17とブッシ
ング9の間の高圧配線やコロナ電極系反応器11に設け
ることも可能である。リーダ、スパーク、アークなどに
よる電極間短絡が発生すると、その瞬間にパルス電圧が
瞬時に低下し0となったり、異常に高いパルス電流が観
測され、電極間短絡を検出することができる。
As described above, it is possible to secure a discharge power sufficient for purifying gaseous pollutants in exhaust gas, and to prevent a spark or the like from being generated even if a discharge inhibitor such as moisture in the exhaust gas is present. In the exhaust gas treatment, accidental short circuit between electrodes such as sparks cannot be avoided. Therefore, first, one or both of the pulse current detector 15 and the pulse voltage detector 16 of FIG. 1 are provided in the high-voltage ultrashort pulse power supply 10 in order to detect a short circuit between the electrodes due to a reader, spark, arc, or the like. And good. Of course, it is also possible to provide the high voltage wiring between the power supply bushing 17 and the bushing 9 outside the high voltage ultrashort pulse power supply 10 and the corona electrode system reactor 11. When a short circuit between the electrodes due to a reader, spark, arc, or the like occurs, the pulse voltage instantaneously drops to zero at that moment, or an abnormally high pulse current is observed, and the short circuit between the electrodes can be detected.

【0026】その他の電極間短絡検出法として電極間短
絡によって発生する閃光や音を認識する方法がある。例
えば、図1の光検出器21や音検出器22をにコロナ電
極系反応器11に設置し、電極間短絡によって正常運転
時の放電光よりはるかに強い発生する閃光を検出した
り、電極間短絡によって正常運転時の放電音よりもはる
かに大きい発生する衝撃音を検出することができる。
As another method of detecting a short circuit between electrodes, there is a method of recognizing a flash or a sound generated by a short circuit between electrodes. For example, the photodetector 21 and the sound detector 22 shown in FIG. 1 are installed in the corona electrode-based reactor 11 to detect a flash which is much stronger than the discharge light during normal operation due to a short circuit between the electrodes. It is possible to detect an impulsive sound generated by the short circuit, which is much larger than the discharge sound during normal operation.

【0027】リーダ、スパーク、アークなどによる電極
間短絡直後に極短パルス高電圧Vpの印加を通常設定の
間隔、すなわち、図6のtで行うと再度電極間短絡が発
生する場合が多い。電極間短絡はリーダによる軽度、つ
まり、電極間短絡を生じせしめているプラズマチャンネ
ルのプラズマ温度が比較的低い段階から、スパーク、ア
ークと強力な電極間短絡になるにつれ、プラズマチャン
ネルのプラズマ温度は高くなり導電性経路がガス中に形
成されてしまう。その結果、極短パルス高電圧Vpを印
加する度にアークが発生する傾向が強まる。そこで、図
6に示すが如く、短絡が発生した場合、それを前記検出
手段で検出し、通常設定間隔tよりも大きい休止期間t
1(秒)の間極短パルス高電圧Vpの印加を停止するす
る。この休止期間t1(秒)を設けることでこのプラズ
マチャンネルのプラズマ温度が比較的低い段階で、完全
にプラズマチャンネルが冷却されるわけである。さら
に、安全策として、休止期間t1(秒)の直後の極短パ
ルス高電圧Vpで再度電極間短絡が発生すると、t1
(秒)以上の休止期間t2(秒)を設けて連続する電極
間短絡を防止するわけである。
Immediately after a short circuit between electrodes due to a leader, a spark, an arc, or the like, if the application of the ultrashort pulse high voltage Vp is performed at a normally set interval, that is, at t in FIG. The short-circuit between the electrodes is mild by the reader, that is, from the stage where the plasma temperature of the plasma channel causing the short-circuit between the electrodes is relatively low, to the spark, arc and strong short-circuit between the electrodes, the plasma temperature of the plasma channel becomes high. Therefore, a conductive path is formed in the gas. As a result, each time the extremely short pulse high voltage Vp is applied, the tendency of arc generation increases. Therefore, as shown in FIG. 6, when a short circuit occurs, the short circuit is detected by the detecting means, and the idle period t longer than the normal set interval t is set.
The application of the extremely short pulse high voltage Vp is stopped for 1 (second). By providing the pause period t1 (second), the plasma channel is completely cooled when the plasma temperature of the plasma channel is relatively low. Further, as a safety measure, if the inter-electrode short circuit occurs again at the extremely short pulse high voltage Vp immediately after the pause period t1 (second), t1
The pause period t2 (second) longer than (second) is provided to prevent a continuous short circuit between the electrodes.

【0028】また、継続して電極間短絡が発生すること
を防止する方法として、図7に示すように一定の期間T
1(秒)にN(回)以上の電極間短絡を検出した場合に
t1(秒)休止させる方法もある。この場合、図6の場
合と同様に安全策として、休止期間t1(秒)の直後の
極短パルス高電圧Vpで再度電極間短絡が発生すると、
t1(秒)以上の休止期間t2(秒)を設けて連続する
電極間短絡を防止すればよい。
As a method for preventing the occurrence of a continuous short circuit between the electrodes, as shown in FIG.
There is also a method of pausing at t1 (second) when N (times) or more short-circuits between electrodes are detected at 1 (second). In this case, as in the case of FIG. 6, as a safety measure, if the inter-electrode short circuit occurs again at the extremely short pulse high voltage Vp immediately after the pause period t1 (second),
A pause t2 (second) longer than t1 (second) may be provided to prevent a continuous short circuit between the electrodes.

【0029】極短パルス高電圧Vpを印加してガス処理
を行う場合、コロナ放電系反応器11での、コロナ放電
特性の改善ならびにコロナ放電で発生するラジカルの増
大を計るために、コロナ放電極系反応器11の前段に、
調温装置24や前処理装置25、添加ガス注入装置27
を置くと良い。
When gas treatment is performed by applying a very short pulse high voltage Vp, a corona discharge electrode is used to improve the corona discharge characteristics in the corona discharge system reactor 11 and to measure the increase of radicals generated by corona discharge. Before the system reactor 11,
Temperature control device 24, pretreatment device 25, additive gas injection device 27
It is good to put.

【0030】例えば、ガス状ダイオキシン類の分解では
ガス温度は150℃〜230℃程度の酸露点以上でガス
温度で処理することが高効率で分解できることがわかっ
ている。そのため、排ガスの温度をガス−ガス熱交換
器、水スプレー減温塔などの調温装置24で冷却すれば
良い。また、浄化槽やばっき槽からの排ガス中の悪臭な
どを分解除去する場合、排ガス中の湿度が高くそのま
ま、コロナ放電極系反応器11に導入すると結露し、電
極間短絡が発生したり悪臭が露に吸着してしまう場合が
あるが、この場合にはヒーターやバーナーを調温装置2
4として用いて排ガスを加熱すれば良い。
For example, in the decomposition of gaseous dioxins, it has been found that treatment at a gas temperature above the acid dew point of about 150 ° C. to 230 ° C. can be performed with high efficiency. Therefore, the temperature of the exhaust gas may be cooled by a temperature control device 24 such as a gas-gas heat exchanger or a water spray cooling tower. Further, when decomposing and removing odors and the like in the exhaust gas from the septic tank or the tank, when the humidity in the exhaust gas is high and introduced into the corona discharge electrode type reactor 11 as it is, dew condensation occurs, and a short circuit between the electrodes occurs or the odor is reduced. In some cases, it may be adsorbed by dew.
Exhaust gas may be heated by using it as 4.

【0031】また、排ガス中に粒子状物質が存在する場
合には、スパークなどの電極間短絡が発生しやすくな
る。そこで、前処理装置25としてバグフィルター、電
気集塵装置、ミストセパレータなどを置いて粒子状物質
を除去した後に、排ガスをコロナ電極系反応器11に導
入すると良い。
When particulate matter is present in the exhaust gas, a short circuit between the electrodes such as a spark is likely to occur. Therefore, after removing particulate matter by placing a bag filter, an electrostatic precipitator, a mist separator, or the like as the pretreatment device 25, it is preferable to introduce the exhaust gas into the corona electrode system reactor 11.

【0032】さらに、プロパンやブタンなどの炭化水素
ガスを添加ガス注入装置27より、コロナ放電極系反応
器11の前段で排ガスに注入するとOHラジカルの生成
が促進され、コロナ放電極系反応器11で投入する排ガ
ス単位流量当たりの放電電力(kwh/Nm3)を小さ
くできる。すなわち、同じ極短高圧パルス電源14とコ
ロナ放電極系反応器11を用いても処理できる排ガス量
を大幅に増大することが可能である。
Further, when a hydrocarbon gas such as propane or butane is injected into the exhaust gas from the additive gas injection device 27 in a stage preceding the corona discharge electrode reactor 11, generation of OH radicals is promoted, and the corona discharge electrode reactor 11 , The discharge power (kwh / Nm 3 ) per unit flow of exhaust gas can be reduced. That is, it is possible to greatly increase the amount of exhaust gas that can be treated using the same ultrashort high-voltage pulse power supply 14 and corona discharge system reactor 11.

【0033】また、処理すべきガス状汚染物質の種類に
よっては、オゾンや過酸化水素などの酸化剤を投入し、
コロナ放電極系反応器11で生成されるラジカルとの共
存状態で処理する方が、コロナ放電極系反応器11によ
る単独処理よりも経済的である場合がある。すなわち、
ラジカルによる非常に短い時間の反応と前記酸化剤の比
較的長い時間の反応を共存させる効果が得られる。その
結果、極短高圧パルス電源14とコロナ放電極系反応器
11を小さくできると同時に、使用する電気料を低減で
きる。
Depending on the type of gaseous pollutants to be treated, an oxidizing agent such as ozone or hydrogen peroxide is added,
In some cases, the treatment in the coexistence state with the radicals generated in the corona discharge electrode system reactor 11 is more economical than the single treatment by the corona discharge electrode system reactor 11. That is,
The effect of coexisting the reaction of the oxidizing agent for a relatively short time with the reaction of the radical for a very short time is obtained. As a result, the ultrashort high-voltage pulse power supply 14 and the corona discharge electrode system reactor 11 can be reduced in size, and at the same time, the amount of electricity used can be reduced.

【0034】コロナ放電極系反応器11でのガス状汚染
物質とラジカルとの反応は気相反応であるため反応定数
は大幅に大きくすることが難しい。そこで、コロナ放電
極系反応器11の下流に酸化/還元反応を促進するため
の反応促進層30を設けることで、ガス状汚染物質の分
解・除去性能を向上させると良い。
The reaction between gaseous pollutants and radicals in the corona discharge electrode type reactor 11 is a gas phase reaction, so that it is difficult to greatly increase the reaction constant. Therefore, it is preferable to improve the performance of decomposing and removing gaseous pollutants by providing a reaction promoting layer 30 for promoting an oxidation / reduction reaction downstream of the corona discharge electrode type reactor 11.

【0035】この反応促進層30として、触媒、活性
炭、添着炭、触媒担持活性炭、ゼオライト、誘電体ペレ
ット、誘電体ファイバー、金属ペレット、金属ファイバ
ーなどの表面反応場を提供するための材料を充填した充
填層などを用いることができる。また、水酸化カルシウ
ムや水酸化マグネシウムなどの水溶液やスラリーを散布
するスプレー塔を反応促進層30とすることも可能であ
る。
The reaction promoting layer 30 was filled with a material for providing a surface reaction field such as a catalyst, activated carbon, impregnated carbon, activated carbon carrying a catalyst, zeolite, dielectric pellets, dielectric fibers, metal pellets and metal fibers. A packed layer or the like can be used. Further, a spray tower for spraying an aqueous solution or slurry of calcium hydroxide, magnesium hydroxide, or the like can be used as the reaction promoting layer 30.

【0036】さらに、対象とするガス状汚染物質の種
類、例えば、ジベンゾフランやPCBなどを処理する場
合には、反応促進層30を単に、反応時間を提供するた
めのダクトや空間としても良い。
Further, when treating the type of gaseous pollutants to be treated, for example, dibenzofuran or PCB, the reaction promoting layer 30 may be simply a duct or space for providing a reaction time.

【0037】[0037]

【発明の効果】本発明は上述のとおりコロナ放電を発生
させることで、コロナ電極系に注入する放電電力を1回
の極短パルス高電圧につきコロナ放電線の単位長当りd
/200(J)以上d/5(J)以下とし、かつ、該放
電電力の90%以上がパルス印加後100d(ナノ秒)
以内に注入されるとともに、それ以後にコロナ放電極と
対向電極間に残留する電圧が5d(kV)以下となるよ
うにしているので、 排ガス中のガス状汚染物質を十分
浄化できる放電電力を確保しつつ、その排ガス中の水分
などの放電阻害物質が存在してもスパークなどを発生さ
せないで安定に運転し、高い浄化性能を得ることができ
る。また、バイアス電圧を変化させることで、コロナ放
電極系8に残留する電圧により発生するスパークなどの
電極間短絡により妨げられない臨界点まで印可する放電
電圧を上げて、十分な放電電力を注入することができ
る。また、偶発的なスパーク発生時には休止期間の後に
極短パルス高電圧Vpの印加を再開するため、継続して
電極間短絡が発生することを防止できるため、安定な運
転を行うことができる。さらに、調温装置、前処理装
置、添加ガス注入装置、反応促進層などをコロナ放電極
系反応器と組み合わせることにより浄化性能の向上を図
ると共に、放電電力低減に繋がり電気代などのランニン
グコストを低減することが可能となる。
According to the present invention, as described above, the corona discharge is generated so that the discharge power to be injected into the corona electrode system is reduced by d per unit length of the corona discharge wire per one extremely short pulse high voltage.
/ 200 (J) or more and d / 5 (J) or less, and 90% or more of the discharge power is 100 d (nanosecond) after pulse application.
In addition, the voltage remaining between the corona discharge electrode and the counter electrode is set to 5 d (kV) or less after that, so that discharge power enough to purify gaseous pollutants in exhaust gas is secured. In addition, even if a discharge inhibiting substance such as moisture in the exhaust gas is present, stable operation can be performed without generating a spark or the like, and high purification performance can be obtained. Further, by changing the bias voltage, the discharge voltage applied to a critical point that is not hindered by a short circuit between the electrodes such as a spark generated by the voltage remaining in the corona discharge electrode system 8 is increased, and sufficient discharge power is injected. be able to. In addition, when an accidental spark occurs, the application of the extremely short pulse high voltage Vp is restarted after the pause period, so that it is possible to prevent the occurrence of a short circuit between the electrodes continuously, so that stable operation can be performed. Furthermore, by combining a temperature control device, a pretreatment device, an additive gas injection device, a reaction accelerating layer, etc. with a corona discharge electrode type reactor, purification performance is improved, and running costs such as electricity costs are reduced by reducing discharge power. It becomes possible to reduce.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の極短パルス高電圧加電式ガス浄化装
置の実施の形態を示す正面図である。
FIG. 1 is a front view showing an embodiment of an ultrashort pulse high voltage electrified gas purifying apparatus according to the present invention.

【図2】図1の一部分の斜面図である。FIG. 2 is a perspective view of a part of FIG. 1;

【図3】図2に相当する部分の他の実施の形態を示す斜
面図である。
FIG. 3 is a perspective view showing another embodiment corresponding to FIG. 2;

【図4】図3に相当する部分の他の実施の形態を示す斜
面図である。
FIG. 4 is a perspective view showing another embodiment corresponding to FIG. 3;

【図5】図1のガス浄化装置に加電する極短パルス高圧
電源のパルス電圧波形(Vt)、パルス電流波形I
(t)及び時間累積放電電力P(t)の加電時間に対す
る変化を示す曲線図である。
FIG. 5 shows a pulse voltage waveform (Vt) and a pulse current waveform I of an ultrashort pulse high voltage power supply for applying electric power to the gas purification apparatus of FIG.
FIG. 7 is a curve diagram showing changes in (t) and time accumulated discharge power P (t) with respect to the heating time.

【図6】図1のガス浄化装置の極短パルス高圧電源の加
電時間に対するパルス電圧変化を示す線図である。
FIG. 6 is a diagram showing a pulse voltage change with respect to an application time of an extremely short pulse high voltage power supply of the gas purification apparatus of FIG. 1;

【図7】図6の他の状態を示す線図である。FIG. 7 is a diagram showing another state of FIG. 6;

【図8】図1のガス浄化装置の使用状態を示す側面図で
ある。
FIG. 8 is a side view showing a use state of the gas purification device of FIG. 1;

【符号の説明】[Explanation of symbols]

1 排ガス 2 ガス入口 3 ガス出口 4 ケーシング 5 ガス通路 6 コロナ放電極 7 対向電極 8 コロナ放電系 9 ブッシング 10 高圧極短パルス電源 11 コロナ電極系反応器 12 浄化ガス 14 パルス形成回路 15 パルス電流検出器 16 パルス電圧検出器 17 電線ブッシング 18 高圧配線 19 支持碍子 20 支持碍子 21 光検出器 22 音検出器 23 支持碍子 24 調温装置 25 前処理装置 26 排ガスダクト 27 添加ガス注入装置 28 添加ガス注入 29 浄化ガスダクト 30 反応促進層 31 ブロワー 32 スタック 33 清浄ガス DESCRIPTION OF SYMBOLS 1 Exhaust gas 2 Gas inlet 3 Gas outlet 4 Casing 5 Gas passage 6 Corona discharge electrode 7 Counter electrode 8 Corona discharge system 9 Bushing 10 High voltage ultra-short pulse power supply 11 Corona electrode system reactor 12 Purified gas 14 Pulse forming circuit 15 Pulse current detector Reference Signs List 16 pulse voltage detector 17 electric wire bushing 18 high voltage wiring 19 support insulator 20 support insulator 21 photodetector 22 sound detector 23 support insulator 24 temperature control device 25 pretreatment device 26 exhaust gas duct 27 additive gas injection device 28 additive gas injection 29 purification Gas duct 30 Reaction promoting layer 31 Blower 32 Stack 33 Clean gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/44 B01D 53/34 117E 53/70 117Z 53/86 134E B01J 19/08 53/36 B Fターム(参考) 4D002 AA02 AA12 AA21 AB02 AB03 AC01 AC02 AC04 AC10 BA07 BA12 BA13 BA14 CA13 DA51 DA52 DA56 EA02 GA01 GA02 GB20 4D048 AA02 AA06 AA11 AA22 AB01 AB02 BA05X CC38 CD08 DA01 DA03 DA20 EA03 4G075 AA03 AA37 AA62 BA01 BA05 BD13 BD14 CA02 CA03 CA18 CA54 CA57 DA01 DA02 DA05 EB01 EC01 EC13 EC21 EE01 EE02 EE07 EE12 FC20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/44 B01D 53/34 117E 53/70 117Z 53/86 134E B01J 19/08 53/36 B F term (Reference) 4D002 AA02 AA12 AA21 AB02 AB03 AC01 AC02 AC04 AC10 BA07 BA12 BA13 BA14 CA13 DA51 DA52 DA56 EA02 GA01 GA02 GB20 4D048 AA02 AA06 AA11 AA22 AB01 AB02 BA05X CC38 CD08 DA01 DA03 DA20 EA03 4G075 AA03 CA03 A03 A03 CA54 CA57 DA01 DA02 DA05 EB01 EC01 EC13 EC21 EE01 EE02 EE07 EE12 FC20

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物、硫黄酸化物、ダイオキシ
ン、揮発性有機物、悪臭等のガス状汚染物質を含む浄化
すべきガスを導入するためのガス入口と、浄化後のガス
を排出するためのガス出口を備えたケーシング内のガス
通路に、コロナ放電極とこれに対向した対向電極を相互
に絶縁の上配設し、ケーシングの外部からコロナ放電極
に給電するためのブッシングを具備したコロナ電極系反
応器と、該コロナ放電極と対向電極との間にパルス巾の
極めて短い極短パルス高電圧を印加するための高圧極短
パルス電源を設けたガス浄化装置において、コロナ放電
極と対向電極の距離(放電距離)をd(cm)とした場
合に、コロナ放電を発生させることでコロナ電極系に注
入する放電電極を1回の極短パルス高電圧につきコロナ
放電線の単位電極長当りd/200(J)以上で、d/
5(J)以下とし、かつ、該放電電力の90%以上がパ
ルス印加後100d(ナノ秒)以内に注入されるととも
に、それ以降にコロナ放電極と対向電極間に残留する電
圧が5d(kV)以下となることを特徴とする極短パル
ス高電圧加電式ガス浄化装置。
1. A gas inlet for introducing a gas to be purified containing gaseous pollutants such as nitrogen oxides, sulfur oxides, dioxins, volatile organic substances, and foul odors, and a gas inlet for discharging the purified gas. A corona discharge electrode and a counter electrode facing the corona discharge electrode are disposed in a gas passage in a casing having a gas outlet so as to be insulated from each other, and a bushing for supplying power to the corona discharge electrode from outside the casing is provided. System reactor, and a gas purification apparatus provided with a high-voltage ultra-short pulse power supply for applying a very short pulse high voltage having a very short pulse width between the corona discharge electrode and the counter electrode, the corona discharge electrode and the counter electrode When the distance (discharge distance) is d (cm), the discharge electrode to be injected into the corona electrode system is generated by corona discharge so that the unit electrode length of the corona discharge wire per one extremely short pulse high voltage. D / 200 (J) or more, d /
5 (J) or less, and 90% or more of the discharge power is injected within 100 d (nanosecond) after the pulse application, and the voltage remaining between the corona discharge electrode and the counter electrode thereafter becomes 5 d (kV). 3.) An ultra-short pulse high-voltage electrified gas purifier characterized by the following.
【請求項2】 請求項1に記載の装置において、パルス
印加回数を毎秒200/d(回)以上20,000/d
(回)以下とすることを特徴とする極短パルス高電圧加
電式ガス浄化装置。
2. The apparatus according to claim 1, wherein the number of times of pulse application is 200 / d (times) per second or more and 20,000 / d.
(Time) An ultra-short pulse high-voltage electrified gas purifier characterized by the following.
【請求項3】 請求項1から2に記載の装置において、
コロナ電極系反応器、高圧配線、もしくは高圧極短パル
ス電源にパルス電圧とパルス電流のいずれか1つ、また
は両方を計測する手段を具備することを特徴とする極短
パルス高電圧加電式ガス浄化装置。
3. Apparatus according to claim 1, wherein:
A corona electrode-based reactor, a high-voltage wiring, or a high-voltage ultra-short pulse power supply, equipped with means for measuring one or both of a pulse voltage and a pulse current; Purification device.
【請求項4】 請求項3に記載の装置において、コロナ
放電がリーダ、スパーク、アークなどによる電極間短絡
が発生したことを、パルス電圧の異常低下もしくはパル
ス電流の異常電流値で検出することを特徴とする極短パ
ルス高電圧加電式ガス浄化装置。
4. The apparatus according to claim 3, wherein the occurrence of the short circuit between the electrodes due to the corona discharge caused by the reader, spark, arc or the like is detected by detecting an abnormal decrease in pulse voltage or an abnormal current value of the pulse current. Characteristic ultra-short pulse high voltage electrified gas purifier.
【請求項5】 請求項1から4に記載の装置において、
コロナ放電がリーダ、スパーク、アークなどによる電極
間短絡が発生したことを、電極間短絡により生ずる閃
光、音を検出するセンサーをコロナ電極系反応器に設置
したことを特徴とする極短パルス高電圧加電式ガス浄化
装置。
5. The apparatus according to claim 1, wherein:
Ultra-short pulse high voltage, characterized by installing a sensor in the corona electrode system reactor to detect the occurrence of short circuit between electrodes due to corona discharge due to reader, spark, arc, etc. Electrified gas purifier.
【請求項6】 請求項4から5に記載の装置において、
該電極間短絡が発生した時に休止時間t1(秒)の間極
短パルス高電圧のコロナ放電極への印加を停止させる制
御回路を具備した高圧極短パルス電源を用いることを特
徴とする極短パルス高電圧加電式ガス浄化装置。
6. The apparatus according to claim 4, wherein
A high-voltage ultra-short pulse power supply having a control circuit for stopping application of an ultra-short pulse high voltage to the corona discharge electrode during a pause time t1 (second) when the inter-electrode short circuit occurs. Pulse high voltage electrified gas purifier.
【請求項7】 請求項4から5に記載の装置において、
一定時間T1(秒)にN(回)以上の該電極間短絡を検
出した場合に休止時間t1(秒)の間極短パルス高電圧
のコロナ放電極への印加を停止させる制御回路を具備し
た高圧極短パルス電源を用いることを特徴とする極
7. The device according to claim 4, wherein
A control circuit is provided for stopping application of a very short pulse high voltage to the corona discharge electrode during a pause time t1 (second) when a short circuit between the electrodes is detected N times or more during a predetermined time T1 (second). A pole characterized by using a high-voltage ultrashort pulse power supply
【請求項8】 請求項6から7に記載の装置において、
t1(秒)の休止時間の後に最初の極短パルス高電圧の
コロナ放電極への印加で再度該電極間短絡が発生した場
合、t1以上の休止時間t2(秒)をおくような制御回
路を具備した高圧極短パルス電源を用いることを特徴と
する極短パルス高電圧加電式ガス浄化装置。
8. The apparatus according to claim 6, wherein
If a short circuit between the electrodes occurs again by applying the first extremely short pulse high voltage to the corona discharge electrode after the pause time of t1 (second), a control circuit for providing a pause time t2 (second) of t1 or more is provided. An ultra-short pulse high-voltage electrified gas purifier characterized by using a high-voltage ultra-short pulse power supply provided.
【請求項9】 請求項1から8に記載の極短パルス高電
圧加電式ガス浄化装置において、該装置の上流にコロナ
放電による反応に適したガス温度にするための調温装
置、及び/または、コロナ放電を安定に行わせるため前
処理装置を具備することを特徴とする極短パルス高電圧
加電式ガス浄化装置。
9. The ultra-short pulse high voltage electrified gas purifying apparatus according to claim 1, wherein a temperature control device is provided upstream of the apparatus for adjusting a gas temperature suitable for a reaction by corona discharge, and / or Alternatively, an ultrashort-pulse high-voltage electrified gas purifier is provided with a pretreatment device for stably performing corona discharge.
【請求項10】 請求項9に記載の調温装置がガス―ガ
ス熱交換器、水スプレー減温塔、ヒーターやバーナーに
よる加熱装置であることを特徴とする極短パルス高電圧
加電式ガス浄化装置。
10. The ultrashort pulse high-voltage electrified gas, wherein the temperature control device according to claim 9 is a gas-gas heat exchanger, a water spray cooling tower, a heating device using a heater or a burner. Purification device.
【請求項11】 請求項9に記載の前処理装置がバグフ
ィルター、電気集塵装置、ミストセパレータなどの粒子
状物質除去装置であることを特徴とする極短パルス高電
圧加電式ガス浄化装置。
11. An ultra-short pulse high-voltage electrified gas purifying apparatus, wherein the pretreatment apparatus according to claim 9 is a particulate matter removing apparatus such as a bag filter, an electrostatic precipitator, and a mist separator. .
【請求項12】 請求項1から12に記載の極短パルス
高電圧加電式ガス浄化装置において、該装置の上流に窒
素酸化物、硫黄酸化物、ダイオキシン、揮発性有機物、
悪臭等のガス状汚染物質をコロナ放電による酸化を促進
するためにプロパン、ブタンなどの炭化水素ガス、及び
/または、オゾンや過酸化水素などの酸化剤を添加する
事を特徴とする極短パルス高電圧加電式ガス浄化装置。
12. The ultra-short pulse high-voltage charged gas purifying apparatus according to claim 1, wherein a nitrogen oxide, a sulfur oxide, a dioxin, a volatile organic substance,
Ultrashort pulse characterized by adding hydrocarbon gas such as propane and butane and / or oxidizing agent such as ozone and hydrogen peroxide to promote oxidation of gaseous pollutants such as odors by corona discharge High voltage charged gas purifier.
【請求項13】 請求項1から12に記載の極短パルス
高電圧加電式ガス浄化装置において、該装置の下流に窒
素酸化物、硫黄酸化物、ダイオキシン、揮発性有機物等
のガス状汚染物質の酸化、及び/または、還元反応を促
進するための反応促進層を設けたことを特徴とする極短
パルス高電圧加電式ガス浄化装置。
13. The gas purifying apparatus according to claim 1, wherein gaseous pollutants such as nitrogen oxides, sulfur oxides, dioxins, and volatile organic substances are provided downstream of the apparatus. An ultra-short pulse high-voltage electrified gas purifier characterized by comprising a reaction accelerating layer for accelerating the oxidation and / or reduction reaction of a gas.
【請求項14】 請求項13記載の反応促進層が、触
媒、活性炭、添着炭、触媒担持活性炭、ゼオライト、誘
電体ペレット、誘電体ファイバー、金属ペレット、金属
ファイバーなどの表面反応場を提供するための材料を充
填した充填層であることを特徴とする極短パルス高電圧
加電式ガス浄化装置。
14. The reaction promoting layer according to claim 13, which provides a surface reaction field for a catalyst, activated carbon, impregnated carbon, activated carbon carrying a catalyst, zeolite, dielectric pellet, dielectric fiber, metal pellet, metal fiber and the like. An ultra-short pulse high-voltage electrified gas purifying apparatus characterized in that it is a packed bed filled with the above materials.
【請求項15】 請求項13記載の反応促進層が、水酸
化カルシウムや水酸化マグネシウムなどの水溶液やスラ
リーを散布するスプレー塔であることを特徴とする極短
パルス高電圧加電式ガス浄化装置。
15. The ultra-short pulse high-voltage electrified gas purifying apparatus according to claim 13, wherein the reaction promoting layer is a spray tower for spraying an aqueous solution or a slurry of calcium hydroxide, magnesium hydroxide, or the like. .
【請求項16】 請求項13記載の反応促進層が、反応
時間を提供するためのダクトや空間であることを特徴と
する極短パルス高電圧加電式ガス浄化装置。
16. An ultra-short pulse high-voltage charged gas purifying apparatus, wherein the reaction promoting layer according to claim 13 is a duct or a space for providing a reaction time.
JP2000382055A 2000-12-15 2000-12-15 Ultra-short pulse high voltage applied gas purification method Expired - Fee Related JP4828693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382055A JP4828693B2 (en) 2000-12-15 2000-12-15 Ultra-short pulse high voltage applied gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382055A JP4828693B2 (en) 2000-12-15 2000-12-15 Ultra-short pulse high voltage applied gas purification method

Publications (2)

Publication Number Publication Date
JP2002177734A true JP2002177734A (en) 2002-06-25
JP4828693B2 JP4828693B2 (en) 2011-11-30

Family

ID=18849954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382055A Expired - Fee Related JP4828693B2 (en) 2000-12-15 2000-12-15 Ultra-short pulse high voltage applied gas purification method

Country Status (1)

Country Link
JP (1) JP4828693B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232306A (en) * 2005-02-23 2006-09-07 Suntory Ltd Can lid, and can container equipped with the same
US7700051B2 (en) 2003-06-27 2010-04-20 Ngk Insulators, Ltd. Apparatus and method of treating exhaust gas
JP2010162435A (en) * 2009-01-13 2010-07-29 Japan Ae Power Systems Corp Pulse discharge method for exhaust gas treatment, and apparatus therefor
CN101496986B (en) * 2009-01-20 2011-04-27 浙江工商大学 Method for simultaneously removing PM2.5 granules, SO2 and NOx from flue gas and recycling by-product
KR101432489B1 (en) 2013-04-12 2014-08-27 한국에너지기술연구원 Coal Characteristic Measuring Apparatus with Pressurized Reactors for Rapid Heating
CN105056717A (en) * 2015-07-17 2015-11-18 佛山市城市森林净化科技有限公司 Decomposing device for gaseous pollutants
CN106678866A (en) * 2015-11-09 2017-05-17 上饶市江心锅炉有限公司 Method for pretreating air or fuel gas through high-voltage electrostatic field
CN106678862A (en) * 2015-11-09 2017-05-17 上饶市江心锅炉有限公司 Method for oxygen-rich film and high-voltage electrostatic field combined combustion supporting
CN108298506A (en) * 2018-04-09 2018-07-20 贵州电网有限责任公司 Oil immersed type sulfur hexafluoride degradation treatment device based on medium discharge and processing method
JP2018136583A (en) * 2018-06-11 2018-08-30 マクセル株式会社 Imaging lens system and imaging apparatus
US10710909B2 (en) 2016-09-08 2020-07-14 Mitsubishi Electric Corporation Pulse discharge power supply and pulse discharge generating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147671A (en) * 1977-05-30 1978-12-22 Chiyoda Chem Eng & Constr Co Ltd Method of oxidizing nitric monoxide in waste gas of combustion
JPS62277022A (en) * 1986-05-22 1987-12-01 株式会社東芝 Corona detector of on-load tap changer
JPH04197418A (en) * 1990-11-28 1992-07-17 Senichi Masuda Gas purifying apparatus
JPH0622561A (en) * 1992-07-06 1994-01-28 Senichi Masuda Ultrashort pulse high-voltage power source
JPH07265654A (en) * 1994-03-31 1995-10-17 Hitachi Zosen Corp Plasma producing method in plasma-process waste gas purifying device
JPH11267453A (en) * 1998-03-23 1999-10-05 Takuma Co Ltd Waste gas treating method and device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147671A (en) * 1977-05-30 1978-12-22 Chiyoda Chem Eng & Constr Co Ltd Method of oxidizing nitric monoxide in waste gas of combustion
JPS62277022A (en) * 1986-05-22 1987-12-01 株式会社東芝 Corona detector of on-load tap changer
JPH04197418A (en) * 1990-11-28 1992-07-17 Senichi Masuda Gas purifying apparatus
JPH0622561A (en) * 1992-07-06 1994-01-28 Senichi Masuda Ultrashort pulse high-voltage power source
JPH07265654A (en) * 1994-03-31 1995-10-17 Hitachi Zosen Corp Plasma producing method in plasma-process waste gas purifying device
JPH11267453A (en) * 1998-03-23 1999-10-05 Takuma Co Ltd Waste gas treating method and device therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700051B2 (en) 2003-06-27 2010-04-20 Ngk Insulators, Ltd. Apparatus and method of treating exhaust gas
JP2006232306A (en) * 2005-02-23 2006-09-07 Suntory Ltd Can lid, and can container equipped with the same
JP4490847B2 (en) * 2005-02-23 2010-06-30 サントリーホールディングス株式会社 Can lid and can container equipped with the same
JP2010162435A (en) * 2009-01-13 2010-07-29 Japan Ae Power Systems Corp Pulse discharge method for exhaust gas treatment, and apparatus therefor
CN101496986B (en) * 2009-01-20 2011-04-27 浙江工商大学 Method for simultaneously removing PM2.5 granules, SO2 and NOx from flue gas and recycling by-product
KR101432489B1 (en) 2013-04-12 2014-08-27 한국에너지기술연구원 Coal Characteristic Measuring Apparatus with Pressurized Reactors for Rapid Heating
CN105056717A (en) * 2015-07-17 2015-11-18 佛山市城市森林净化科技有限公司 Decomposing device for gaseous pollutants
CN106678866A (en) * 2015-11-09 2017-05-17 上饶市江心锅炉有限公司 Method for pretreating air or fuel gas through high-voltage electrostatic field
CN106678862A (en) * 2015-11-09 2017-05-17 上饶市江心锅炉有限公司 Method for oxygen-rich film and high-voltage electrostatic field combined combustion supporting
US10710909B2 (en) 2016-09-08 2020-07-14 Mitsubishi Electric Corporation Pulse discharge power supply and pulse discharge generating method
CN108298506A (en) * 2018-04-09 2018-07-20 贵州电网有限责任公司 Oil immersed type sulfur hexafluoride degradation treatment device based on medium discharge and processing method
JP2018136583A (en) * 2018-06-11 2018-08-30 マクセル株式会社 Imaging lens system and imaging apparatus

Also Published As

Publication number Publication date
JP4828693B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
Masuda et al. Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics
KR101005636B1 (en) Purification system for removing noxious gases and all maloder by using underwater plasma generation apparatus
Mizuno Industrial applications of atmospheric non-thermal plasma in environmental remediation
KR930008083B1 (en) Reactive bed plasma air purification
Kim Nonthermal plasma processing for air‐pollution control: a historical review, current issues, and future prospects
US5236672A (en) Corona destruction of volatile organic compounds and toxics
Liang et al. Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide
WO2008062554A1 (en) Gas purifying device, gas purifying system and gas purifying method
JP2002177734A (en) Ultra-short pulse high voltage applying-type gas cleaning apparatus
WO2008055337A1 (en) Apparatus and method for destroying organic compounds in commercial and industrial large volume air emissions
CA2543777A1 (en) Apparatus and method for destroying volatile organic compounds that may be odorous and/or organic particulate contaminants in commercial and/or industrial air streams and/or gas emissions
Lu et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma
CN111530281A (en) Method and equipment for removing ammonia gas through low-temperature plasma concerted catalysis
JP2002336653A (en) Plasma catalytic reactor, air cleaning apparatus, nitrogen oxide cleaning apparatus, waste combustion gas cleaning apparatus, dioxine decomposing apparatus and fluorocarbon gas decomposing apparatus
KR100949303B1 (en) High efficiency plasma reactor and stench removal system using it
JP3632579B2 (en) Air purification device
US20040093853A1 (en) System and method for using nonthermal plasma reactors
KR20180129490A (en) High-voltage pulsed power, Plasma reactor, apparatus and method for removing contamination air
CA2506787C (en) Industrial equipment for environmental protection by random streamer discharge plasmas and its applications
JP2001314730A (en) METHOD AND DEVICE FOR REDUCING NOx
KR101005679B1 (en) Purification method for removing noxious gases and all maloder by using underwater plasma generation apparatus
KR100875882B1 (en) Exhaust gas treatment system
ES2333420T3 (en) VOC SUPPRESSION METHOD IN EXHAUST GASES BY CROWN PULSE EFFECT VIA HUMEDA.
Li et al. Decomposition of toluene by using a streamer discharge reactor combined with catalysts
KR20100081600A (en) A device treating air pollutants with plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees