[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002173748A - Method for producing high purity aluminum foil - Google Patents

Method for producing high purity aluminum foil

Info

Publication number
JP2002173748A
JP2002173748A JP2000368087A JP2000368087A JP2002173748A JP 2002173748 A JP2002173748 A JP 2002173748A JP 2000368087 A JP2000368087 A JP 2000368087A JP 2000368087 A JP2000368087 A JP 2000368087A JP 2002173748 A JP2002173748 A JP 2002173748A
Authority
JP
Japan
Prior art keywords
foil
annealing
intermediate annealing
cold rolling
purity aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000368087A
Other languages
Japanese (ja)
Inventor
Masahiko Kawai
正彦 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000368087A priority Critical patent/JP2002173748A/en
Publication of JP2002173748A publication Critical patent/JP2002173748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method by which high purity aluminum foil having stable and high cubic orientation ratio can stably be obtained. SOLUTION: A high purity aluminum material having purity of >=99.9% is subjected to primary intermediate annealing at 200 deg.C to 400 deg.C, is thereafter cold-rolled at a working ratio of 5 to 50%, is subsequently subjected to secondary intermediate annealing at 180 deg.C to 350 deg.C, is thereafter cold-rolled at a working ratio of 5 to 30%, and is subsequently subjected to final annealing. The generation of variation in the cubic orientation ratio caused by the difference in the contents of trace impurities in the material and in the production conditions is prevented, so that the aluminum foil having stable and high cubic orientation ratio can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム電解
コンデンサ陽極用箔等に用いられる高い立方体方位率を
有する高純度アルミニウム箔の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity aluminum foil having a high cubic azimuth ratio and used for an anode foil of an aluminum electrolytic capacitor.

【0002】[0002]

【従来の技術】電解コンデンサ用陽極箔は一般に99.
9%以上の高純度アルミニウムが使用されているが、普
通、箔メーカーで最終圧延、焼鈍の終了した箔(プレー
ン箔)はそのままでは使用されず、後処理がなされる。
コンデンサメーカーでは、このプレーン箔に化学処理あ
るいは電気化学処理を施して粗面化処理を行い実用に供
している。粗面化処理を行う理由は、粗面化処理により
格段に大きくなった表面積が、そのままコンデンサの特
性である静電容量に比例し、高い静電容量が得られるか
らであり、この粗面化処理はコンデンサの品質を決める
最大のポイントであると言える。また周知のように粗面
化された箔は陽極酸化、即ち誘電体皮膜を被覆して陽極
として用いられる。中高圧用コンデンサはこの化成電圧
が250V以上と高く、従って誘電体皮膜は厚く(>
0.3μm)、粗面化処理により形成された凹凸が非常
に微細(<0.3μm)であると、陽極酸化膜に埋もれ
てしまい、有効な表面積は低くなってしまう。
2. Description of the Related Art An anode foil for an electrolytic capacitor is generally 99.
Although high-purity aluminum of 9% or more is used, the foil (final foil) which has been finally rolled and annealed by a foil maker is not used as it is, but post-treated.
Capacitor manufacturers apply the chemical treatment or the electrochemical treatment to the plain foil to roughen it and use it for practical use. The reason for performing the surface roughening is that the surface area significantly increased by the surface roughening is directly proportional to the capacitance which is a characteristic of the capacitor, and a high capacitance can be obtained. Processing can be said to be the biggest point that determines the quality of a capacitor. As is well known, the roughened foil is used as an anode by anodizing, that is, coating a dielectric film. The medium and high voltage capacitors have a high formation voltage of 250 V or more, and therefore have a thick dielectric film (>
If the irregularities formed by the surface roughening treatment are very fine (<0.3 μm), they will be buried in the anodic oxide film and the effective surface area will be reduced.

【0003】このため、中高圧用の粗面化処理は直流電
解エッチングにより行い、比較的太いピットの形成を得
ているのが通常である。直流電解エッチングで形成され
るピットは、いわゆるキャピラリー状ピットであり、そ
の進行方向は結晶学的に定まった方向に直線的に進行す
る。その方向は立方晶の軸に平行な方向即ち<001>
方向である。たとえば箔の再結晶集合組織が立方体方位
であるとすると、直流電解エッチングで形成されるピッ
トの方向は、箔面に垂直に内部に向かって進むことにな
る。したがって立方体方位以外の面に形成されるピット
は、箔面の垂線に対し傾斜したピットが直線的に形成さ
れる。粗面化率はおおよそ形成されるピットの密度と長
さに比例するが(ピット径が同じであれば)、経験上当
該技術者らは周知の事実から立方体方位が粗面化率が最
も高い方位であることを知っている。この理由は先述の
粗面化率に及ぼす因子のうち立方体方位に形成されるピ
ット密度が他の方位より高いためと考えられる。このよ
うな理由により箔メーカーでは、従来より高い立方体方
位を得る製造方法の研究を行って来た。現在では、特公
昭54−11242号公報に記された技術が通常用いら
れていると考えてよい。この技術は、冷間加工度が90
%以上の材料を低温(200℃前後で)で部分焼鈍し、
その後、低歪加工を行なって最終焼鈍を行うものであ
る。
For this reason, the surface roughening treatment for medium and high pressures is usually performed by direct current electrolytic etching to obtain relatively thick pits. The pits formed by the DC electrolytic etching are so-called capillary-shaped pits, and the traveling direction proceeds linearly in a crystallographically determined direction. The direction is parallel to the axis of the cubic crystal, ie, <001>
Direction. For example, assuming that the recrystallized texture of the foil has a cubic orientation, the direction of the pits formed by direct current electrolytic etching proceeds inward perpendicularly to the foil surface. Therefore, pits formed on a plane other than the cubic orientation are formed linearly with pits inclined with respect to the normal to the foil surface. Although the surface roughening rate is approximately proportional to the density and length of the pits to be formed (if the pit diameter is the same), it is empirically known by those skilled in the art that the cubic orientation has the highest surface roughening rate. Know that it is a bearing. It is considered that the reason for this is that the pit density formed in the cubic orientation is higher than the other orientations among the factors affecting the surface roughening rate described above. For this reason, foil manufacturers have been studying manufacturing methods for obtaining a higher cubic orientation than before. At present, it may be considered that the technique described in Japanese Patent Publication No. 54-11242 is generally used. This technology has a cold working degree of 90
% Of the material is partially annealed at a low temperature (around 200 ° C),
After that, final annealing is performed by performing low distortion processing.

【0004】[0004]

【発明が解決しようとする課題】上記従来法は、それ以
前の工程に比べ、立方体方位率が増し、粗面化率が向上
するとして現在迄使用されて来た。しかしながら以下の
問題点が残されている。 1.高純度99.992%純度のものにつき立方体方位
率が90〜99%とバラツキが大きい。要するに、製造
工程あるいは、微量不純物量のわずかな違いにより、得
られる立方体方位率が変わり、安定しない。 2.さらに99.9%グレードの純度になると70〜9
0%位の立方体方位率しか得られない。即ち、Fe,S
iが100ppm以上になると上記従来方法では高い立
方体方位率が得られない。 以上の欠点が見られた。
The above-mentioned conventional method has been used until now, as compared with the previous process, in which the cubic azimuth ratio is increased and the surface roughening ratio is improved. However, the following problems remain. 1. The cubic azimuth ratio of the high-purity 99.992% -purity has a large variation of 90 to 99%. In short, the obtained cubic azimuthal ratio changes due to a slight difference in the manufacturing process or the amount of trace impurities, and is not stable. 2. Further, when the purity reaches 99.9% grade, it becomes 70 to 9
Only a cubic orientation ratio of about 0% can be obtained. That is, Fe, S
When i is 100 ppm or more, a high cubic orientation ratio cannot be obtained by the above conventional method. The above disadvantages were found.

【0005】本発明は、上記事情を背景としてなされた
ものであり、材料に依る立方体方位率のばらつきが小さ
く、また、比較的純度が低い材料においても良好な立方
体方位率が得られる高純度アルミニウム箔の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made of a high-purity aluminum having a small variation in cubic azimuth ratio depending on the material, and a good cubic azimuth ratio can be obtained even in a material having relatively low purity. It is an object to provide a method for producing a foil.

【0006】[0006]

【課題を解決するための手段】この技術が得られた背景
は次の研究成果に基づいて得られた。高立方体方位率が
得られる結晶組織学的条件を詳細に研究した結果次の事
柄が明らかになった。高立方体方位率を得るための、最
終圧延前の組織は、 1)立方体方位粒が少なくとも5%以上存在すること。 2)立方体方位粒以外の方位(R−方位)粒は、出来る
だけ少ない(<5%)こと。 3)最終焼鈍前の加工集合組織であるS−方位中の歪量
は十分大きいこと。 上記の3条件が必要条件であるという結論を得た。
The background that this technique was obtained was obtained based on the following research results. A detailed study of the crystallographic conditions for obtaining a high cubic orientation rate revealed the following. In order to obtain a high cubic orientation ratio, the structure before final rolling is as follows: 1) Cubic orientation grains are present in at least 5% or more. 2) The orientation (R-direction) grains other than the cubic orientation grains should be as small as possible (<5%). 3) The strain amount in the S-orientation, which is the work texture before final annealing, is sufficiently large. It was concluded that the above three conditions were necessary.

【0007】従来法に於ては、上記低温加工、低温焼鈍
は1回のみ行うものであるがこれでは、製品のロット毎
にアルミ中に含有している微量成分の差(Fe、Ga、
など)により、中間焼鈍時の立方体方位の核生成量、あ
るいはR−方位、及びS−方位の歪量が変化し、最終高
温焼鈍時の立方体方位率のバラツキが生じ、安定的に立
方体方位率が得られなかった。しかしながら本発明によ
る最終段階での連続したパス前の一次の中間焼鈍及びそ
の後に行う低加工率圧延により、一次中間焼鈍、その後
の低加工率圧延でのバラツキを、二次中間焼鈍、その後
の低加工率圧延で打消すことになり、非常に安定して高
立方体方位率が得られるようになったと言える。
In the conventional method, the low-temperature processing and the low-temperature annealing are performed only once. However, in this method, the difference between the trace components contained in aluminum (Fe, Ga,
), The amount of nucleation in the cubic orientation during the intermediate annealing or the amount of strain in the R-orientation and the S-orientation changes, causing a variation in the cubic orientation during the final high-temperature annealing. Was not obtained. However, the primary intermediate annealing before the continuous pass in the final stage according to the present invention and the low reduction rate rolling to be performed thereafter reduce the variation in the primary intermediate annealing and the subsequent low reduction rate rolling, the secondary intermediate annealing, and the subsequent low reduction rate rolling. It can be said that a high cubic azimuth ratio can be obtained very stably by canceling out by the rolling reduction.

【0008】さらに詳しくは、一次の中間焼鈍で1%し
か立方体方位が発生していない場合でも、二次の中間焼
鈍で10%に迄成長することになること、また、S−方
位の加工率も2回のパスが入ることにより低下しないこ
とが、純度の低い材料でも高い立方体方位率が得られ、
且つ安定したものと思われる。実際の実施では、99.
993%純度の材料と99.9%では、中間焼鈍条件、
加工率がわずかに異なる。99.9%のものは、99.
993%に比べ高温、高圧下率側にシフトする。この理
由は、Fe,Si等が増えると等温のIAにより生成す
る立方体方位粒子も少なくなるため高温側に、また、高
い歪加工により、立方体方位の成長を促進させるためで
ある。そして、前記のような従来技術の欠点を無くし、
99.993%純度で98%以上、また99.90%純
度でも90%以上の立方体方位率の得られる製造方法は
以下の工程で解決されたと言える。
More specifically, even when only 1% of the cubic orientation is generated in the primary intermediate annealing, the cubic orientation is grown to 10% in the secondary intermediate annealing. Is not reduced by two passes, a high cubic azimuth ratio can be obtained even with a material of low purity,
And it seems to be stable. In actual practice, 99.
For 993% pure material and 99.9%, intermediate annealing conditions,
Processing rates are slightly different. Those with 99.9% are 99.9%.
It shifts to a higher temperature and a higher pressure reduction side than 993%. The reason for this is that, when the amount of Fe, Si, etc. increases, the number of cubic orientation particles generated by the isothermal IA also decreases, so that the growth of the cubic orientation is promoted toward the high temperature side and by high strain processing. And eliminating the disadvantages of the prior art as described above,
It can be said that the production method capable of obtaining a cubic orientation ratio of 98% or more at 99.993% purity and 90% or more at 99.90% purity was solved by the following steps.

【0009】すなわち、本発明の高純度アルミニウム箔
の製造方法のうち第1の発明は、純度99.9%以上の
高純度アルミニウム材を冷間圧延により所定厚さの箔に
圧延し、その後、該箔に最終焼鈍を施す高純度アルミニ
ウム箔の製造方法において、前記高純度アルミニウム材
に200℃〜400℃に加熱する一次中間焼鈍を施した
後、5〜50%の加工率で冷間圧延をし、さらに、その
後、180℃〜350℃に加熱する二次中間焼鈍を施し
た後、5〜30%の加工率で冷間圧延をして所定厚さの
箔にし、その後、該箔に最終焼鈍を施すことを特徴とす
る。
That is, the first invention of the method for producing a high-purity aluminum foil of the present invention is to roll a high-purity aluminum material having a purity of 99.9% or more into a foil having a predetermined thickness by cold rolling. In the method for producing a high-purity aluminum foil in which final annealing is performed on the foil, after performing a primary intermediate annealing of the high-purity aluminum material at 200 to 400 ° C., cold rolling is performed at a processing rate of 5 to 50%. Then, after performing a secondary intermediate annealing of heating to 180 ° C. to 350 ° C., cold rolling is performed at a processing rate of 5 to 30% to form a foil having a predetermined thickness. It is characterized by performing annealing.

【0010】第2の発明の高純度アルミニウム箔の製造
方法は、第1の発明において、前記二次中間焼鈍から冷
間圧延に至る工程を2回以上繰り返して前記所定厚さの
箔にした後、最終焼鈍を行うことを特徴とする。第3の
発明の高純度アルミニウム箔の製造方法は、第1または
第2の発明において、前記最終焼鈍を500℃以上に加
熱して行うことを特徴とする。
[0010] The method for producing a high-purity aluminum foil according to the second invention is the method according to the first invention, wherein the step from the secondary intermediate annealing to the cold rolling is repeated at least twice to obtain the foil having the predetermined thickness. And performing final annealing. A method for producing a high-purity aluminum foil according to a third aspect of the present invention is the method according to the first or second aspect, wherein the final annealing is performed by heating to 500 ° C. or more.

【0011】本発明は、上記したように、最終高温焼鈍
に先立ち、第1次中間焼鈍および所定加工率の冷間圧延
と、その後の1回以上の第2次中間焼鈍および所定加工
率の冷間圧延を行うことを要件とするものである。以下
に、本発明で規定した内容について説明する。
[0011] As described above, prior to the final high-temperature annealing, the present invention comprises a first intermediate annealing and a cold rolling at a predetermined working rate, followed by one or more secondary intermediate annealings and a cold rolling at a predetermined working rate. It is required to perform cold rolling. Hereinafter, the contents specified in the present invention will be described.

【0012】高純度アルミニウム材:純度99.9%以
上 本発明では、被圧延材として純度が99.9%以上の高
純度アルミニウム材を用いる。高純度アルミニウム材に
おいても、Fe、Si等は製造上不可避な不純物として
微量含まれているが、本発明では、上記純度が満たされ
る限りにおいて、個々の不純物の種別、含有量について
は特に限定されない。
High-purity aluminum material: purity of 99.9% or more In the present invention, a high-purity aluminum material having a purity of 99.9% or more is used as a material to be rolled. Even in high-purity aluminum materials, trace amounts of Fe, Si, etc. are contained as unavoidable impurities in production, but in the present invention, as long as the above purity is satisfied, the type and content of each impurity are not particularly limited. .

【0013】一次中間焼鈍:200℃〜400℃(加熱
温度) 上記した高純度アルミニウム材に対しては、冷間圧延工
程において一次中間焼鈍を行う。一次中間焼鈍では、立
方体方位となる結晶粒の核を生成させる。このとき焼鈍
時の加熱温度が200℃未満であると、前記核の生成が
十分になされず、一方、400℃を越えて加熱すると、
再結晶化によって核が消失してしまうため、一次中間焼
鈍の加熱温度は200〜400℃に限定する。また、上
記と同様の理由で下限を220℃、上限を350℃とす
るのが望ましい。
Primary intermediate annealing: 200 ° C. to 400 ° C. (heating temperature) The above-mentioned high-purity aluminum material is subjected to primary intermediate annealing in a cold rolling step. In the first intermediate annealing, nuclei of crystal grains having a cubic orientation are generated. At this time, if the heating temperature during annealing is less than 200 ° C., the nuclei are not sufficiently generated.
Since the nuclei disappear by recrystallization, the heating temperature of the first intermediate annealing is limited to 200 to 400 ° C. For the same reason as above, it is desirable to set the lower limit to 220 ° C. and the upper limit to 350 ° C.

【0014】なお、該焼鈍では、上記作用が十分に得ら
れる加熱時間を選定する必要がある。焼鈍時の加熱は、
昇温が緩やかなバッチ炉の他、昇温を急速に行う連続炉
であってもよく、例えばバッチ炉の場合1時間以上の加
熱を行うのが望ましい。これは、1時間未満では結晶組
織が安定領域に達しないためである。また数時間で安定
領域に入るため、それ以上長い時間加熱しても生産上好
ましくなく、したがって、実用上は加熱時間として10
時間を上限とするのが望ましい。ただし、本発明として
は、10時間を超えて加熱するものを排除するものでは
ない。また、連続炉においてはより短時間の加熱により
行うことができる。
[0014] In the annealing, it is necessary to select a heating time during which the above effect is sufficiently obtained. Heating during annealing
In addition to a batch furnace with a gradual rise in temperature, a continuous furnace that raises the temperature quickly may be used. For example, in the case of a batch furnace, it is desirable to perform heating for 1 hour or more. This is because the crystal structure does not reach the stable region in less than one hour. In addition, since it enters the stable region within several hours, it is not preferable in terms of production even if heating is performed for a longer time.
It is desirable to set the time as the upper limit. However, the present invention does not exclude heating for more than 10 hours. In a continuous furnace, the heating can be performed by heating for a shorter time.

【0015】冷間圧延(一次中間焼鈍後):5〜50%
(加工率) 一次中間焼鈍後、二次中間焼鈍前の冷間圧延では、材料
に加工歪みを与えて、前記核が最終焼鈍で立方体方位の
結晶粒として成長するのを促し、また、二次中間焼鈍で
新たな核が生成されるのを促す。この冷間圧延での加工
率が5%未満であると、上記作用が得られず、一方、5
0%を越えると、折角形成された立方体方位核が他の方
位に変化してしまうため、この冷間工程での加工率を5
〜50%に限定する。また、上記と同様の理由で下限を
10%、上限を25%とするのが望ましい。なお、この
冷間圧延工程での圧延パス数は特に限定されるものでは
なく、上記加工率が満たされる限りにおいてはパス数は
1以上で任意に選定することができる。
Cold rolling (after primary intermediate annealing): 5 to 50%
(Working ratio) In the cold rolling after the primary intermediate annealing and before the secondary intermediate annealing, a work strain is given to the material to promote the nuclei to grow as cubic crystal grains in the final annealing. It promotes the formation of new nuclei during intermediate annealing. If the working ratio in this cold rolling is less than 5%, the above-mentioned effects cannot be obtained.
If it exceeds 0%, the cubic orientation nucleus formed at an angle changes to another orientation.
Limited to ~ 50%. For the same reason as above, it is desirable to set the lower limit to 10% and the upper limit to 25%. Note that the number of rolling passes in the cold rolling step is not particularly limited, and the number of passes can be arbitrarily set to one or more as long as the above-mentioned working ratio is satisfied.

【0016】二次中間焼鈍:180℃〜350℃(加熱
温度) 上記した一次中間焼鈍および所定の加工率での冷間圧延
後に、二次中間焼鈍を行う。一次中間焼鈍では、上記し
たように立方体方位の結晶粒となる核の生成を行うが、
材料のそれ以前の製造工程や微量不純物の含有量のわず
かな違いによって材料により核の生成程度にばらつきが
生じることは避けられない。二次中間焼鈍では、一次中
間焼鈍で生成された核は維持したままで、生地中からの
新たな核生成を促す。これにより上記ばらつきによって
一次中間焼鈍での核生成が十分でなかった材料において
も二次中間焼鈍において十分な核が存在することにな
る。また、一次中間焼鈍で十分に核生成がなされた材料
では、上記のように二次中間焼鈍でこの核の存在が維持
されるので、結果的に、材料に依る核の生成程度のばら
つきが解消されることになる。
Secondary intermediate annealing: 180 ° C. to 350 ° C. (heating temperature) After the above-described primary intermediate annealing and cold rolling at a predetermined working ratio, secondary intermediate annealing is performed. In the primary intermediate annealing, as described above, nuclei that become cubic crystal grains are generated.
It is inevitable that the degree of nucleation varies depending on the material due to the earlier manufacturing process of the material or the slight difference in the content of trace impurities. In the secondary intermediate annealing, the nuclei generated in the primary intermediate annealing are maintained, and new nuclei are generated from the dough. As a result, even in a material in which nucleation in the primary intermediate annealing is not sufficient due to the above-mentioned variation, sufficient nuclei exist in the secondary intermediate annealing. In addition, in the material in which nucleation is sufficiently performed in the first intermediate annealing, the presence of the nucleus is maintained in the second intermediate annealing as described above, and as a result, the variation in the degree of nucleation depending on the material is eliminated. Will be done.

【0017】なお、この二次中間焼鈍での加熱温度が1
80℃未満であると、上記作用が得られず、一方、35
0℃を越えると、一次中間焼鈍で生成された核に影響が
現れ、S方位中の歪量の確保、更にはR方位成長抑制の
ため、二次中間焼鈍での加熱温度を180〜350℃に
限定する。さらに、上記と同様の理由で下限を220
℃、上限を280℃とするのが望ましい。
The heating temperature in this secondary intermediate annealing is 1
If the temperature is lower than 80 ° C., the above effect cannot be obtained.
When the temperature exceeds 0 ° C., the nuclei generated in the primary intermediate annealing appear, and the heating temperature in the secondary intermediate annealing is set to 180 to 350 ° C. in order to secure the strain amount in the S orientation and further suppress the R orientation growth. Limited to. Further, the lower limit is set to 220 for the same reason as described above.
° C, and the upper limit is desirably 280 ° C.

【0018】また、一次中間焼鈍と同様に、焼鈍におけ
る加熱時間は、上記作用が十分に得られる時間を選定す
る必要があり、焼鈍時の加熱は、バッチ炉でも連続炉で
もよい。また、一次焼鈍の場合と同様に、バッチ炉の場
合1時間以上の加熱を行うのが望ましい。1時間未満で
は結晶組織が安定領域に達しないためであり、また数時
間で安定領域に入るため、それ以上、過度の時間加熱を
継続しても生産上好ましくないため、実用上は10時間
を上限とするのが望ましい。ただし、本発明としては、
10時間を超えて加熱するものを排除するものではな
い。また、連続炉においてはより短時間の加熱により行
うことができる。
Further, as in the case of the primary intermediate annealing, it is necessary to select a heating time in the annealing so that the above-mentioned effect can be sufficiently obtained. The heating during the annealing may be performed in a batch furnace or a continuous furnace. Also, as in the case of the primary annealing, it is desirable to perform heating for one hour or more in the case of a batch furnace. This is because the crystal structure does not reach the stable region in less than 1 hour, and the crystal structure enters the stable region in several hours. It is desirable to set the upper limit. However, as the present invention,
It does not preclude heating over 10 hours. In a continuous furnace, the heating can be performed by heating for a shorter time.

【0019】冷間圧延(二次中間焼鈍後):5〜30%
(加工率) 二次中間焼鈍後の冷間圧延では、材料に加工歪みを与え
て、一次及び二次中間焼鈍で生成された前記核が最終焼
鈍で立方体方位の結晶粒として成長するのを促す。この
冷間圧延での加工率が5%未満であると、上記作用が十
分に得られず、一方、30%を越えると、立方体方位粒
が回転し過ぎて元にもどり難くなるため、この冷間工程
での加工率を5〜30%に限定する。また、上記と同様
の理由で下限を10%、上限を20%とするのが望まし
い。更に上限を15%とするのが一層望ましい。なお、
上記した二次中間焼鈍およびその後の冷間圧延は、これ
ら処理を一連の工程として、該工程を繰り返すことも可
能であり、その場合、各工程において、上記した条件
(焼鈍温度、加工率)を満たすことが必要である。
Cold rolling (after secondary intermediate annealing): 5 to 30%
(Working ratio) In the cold rolling after the secondary intermediate annealing, a work strain is given to the material, and the nuclei generated in the primary and secondary intermediate annealings are promoted to grow as cubic crystal grains in the final annealing. . If the working ratio in this cold rolling is less than 5%, the above effect cannot be sufficiently obtained. On the other hand, if it exceeds 30%, the cubic orientation grains rotate too much, making it difficult to return to the original state. The processing rate in the intermediate step is limited to 5 to 30%. For the same reason as above, it is desirable to set the lower limit to 10% and the upper limit to 20%. More preferably, the upper limit is set to 15%. In addition,
In the above-mentioned secondary intermediate annealing and the subsequent cold rolling, it is also possible to repeat these steps as a series of these steps, in which case, in each step, the above-mentioned conditions (annealing temperature, working ratio) It is necessary to meet.

【0020】最終焼鈍 上記した1回以上の二次中間焼鈍および冷間圧延後に最
終焼鈍を行う。最終焼鈍では、前記一次及び二次中間焼
鈍で生成された核によって立方体方位の結晶粒が成長
し、高い立方体方位率を有する高純度アルミニウム箔が
得られる。この最終焼鈍の温度は、上記作用を十分に得
るために500℃以上が望ましい。ただし、本発明とし
ては、500℃未満で行う最終焼鈍を排除するものでは
ない。
Final Annealing After one or more of the above-mentioned secondary intermediate annealing and cold rolling, final annealing is performed. In the final annealing, crystal grains having a cubic orientation grow by the nuclei generated by the primary and secondary intermediate annealings, and a high-purity aluminum foil having a high cubic orientation ratio is obtained. The temperature of the final annealing is desirably 500 ° C. or higher in order to sufficiently obtain the above-mentioned effect. However, the present invention does not exclude final annealing performed at less than 500 ° C.

【0021】[0021]

【発明の実施の形態】以下に本発明の一実施形態を説明
する。純度99.9%以上となるように調製された高純
度アルミニウム材は、常法により得ることができ、本発
明としては特にその製造方法が限定されるものではな
い。例えば、半連続鋳造によって得たスラブを熱間圧延
したものを用いることができるし、その他に連続鋳造に
より得られる高純度アルミニウム材を対象とするもので
あってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. A high-purity aluminum material prepared to have a purity of 99.9% or more can be obtained by a conventional method, and the production method is not particularly limited in the present invention. For example, a hot rolled slab obtained by semi-continuous casting can be used, or a high-purity aluminum material obtained by continuous casting can be used.

【0022】上記高純度アルミニウム材は、冷間圧延工
程において一次中間焼鈍が施される。この一次中間焼鈍
が施されるアルミニウム材は、以降の冷間圧延での加工
率および圧延最終段階での箔の厚さ等を考慮した板厚を
有するものであればよく、本発明としては特定の板厚に
限定されるものではなく、冷間圧延工程のいかなる時期
に一次中間焼鈍を行うかは、本発明の条件を満たす限り
においては任意に選定することができる。ただし、立方
体方位率の高い箔をより安定的に得るためには、一次中
間焼鈍前の冷間圧延(一または二以上の圧延パス)にお
ける加工率が90%以上であるのが望ましい。また箔を
製造する過程での冷間圧延は、一般に薄板圧延と箔圧延
とで構成されるが、本発明における冷間圧延は、上記し
たいずれかの圧延に限定されるものではなく、例えば箔
圧延にのみ属するものであってもよく、また、薄板圧延
と箔圧延とが両方含まれるものであってよい。すなわ
ち、本発明としては、最終焼鈍に先立つ冷間圧延である
ことを満たすものであればよい。
The high-purity aluminum material is subjected to a first intermediate annealing in a cold rolling step. The aluminum material to be subjected to the primary intermediate annealing is not limited as long as it has a sheet thickness that takes into account the working ratio in the subsequent cold rolling and the thickness of the foil at the final stage of rolling. The thickness of the sheet is not limited to this, and the timing of the primary intermediate annealing in the cold rolling step can be arbitrarily selected as long as the conditions of the present invention are satisfied. However, in order to more stably obtain a foil having a high cubic orientation ratio, it is desirable that the working ratio in the cold rolling (one or more rolling passes) before the first intermediate annealing is 90% or more. Further, cold rolling in the process of manufacturing the foil is generally composed of sheet rolling and foil rolling, but the cold rolling in the present invention is not limited to any of the above-mentioned rolling, for example, foil It may be one that belongs only to rolling, or one that includes both sheet rolling and foil rolling. That is, the present invention only needs to satisfy cold rolling prior to final annealing.

【0023】一次中間焼鈍では、前述した温度範囲にお
いて加熱処理をする。加熱処理は、バッチ炉、連続炉の
いずれであってもよく、加熱時間は、炉の形態等を考慮
して、前記作用が十分に得られ、かつ工業性を有するこ
とを考慮して選定する。上記一次中間焼鈍後には、前記
した所定の加工率で冷間圧延を行う。該圧延での圧延パ
ス数は、本発明規定の加工率を確保する限りにおいては
前述したように任意である。複数の圧延パス数からなる
場合には、冷間圧延前と冷間圧延後を基準として加工率
が論じられる。
In the first intermediate annealing, heat treatment is performed in the above-mentioned temperature range. The heat treatment may be any of a batch furnace and a continuous furnace, and the heating time is selected in consideration of the form of the furnace and the like, in consideration of the above-mentioned effects being sufficiently obtained, and having industrial properties. . After the primary intermediate annealing, cold rolling is performed at the above-described predetermined working ratio. The number of rolling passes in the rolling is arbitrary as described above as long as the processing rate specified in the present invention is secured. In the case of a plurality of rolling passes, the working ratio is discussed on the basis of before and after cold rolling.

【0024】上記した冷間圧延後には二次中間焼鈍を行
う。二次中間焼鈍においても前述した温度範囲において
加熱処理をする。加熱処理は、一次中間焼鈍と同様に、
バッチ炉、連続炉のいずれでもよく、加熱時間は、炉の
形態等を考慮して、前記作用が十分に得られ、かつ工業
性を有することを考慮して選定する。なお、一次中間焼
鈍と二次中間焼鈍とで異種の炉を用いて加熱するもので
あってもよい。上記二次中間焼鈍後には、本発明規定の
加工率で冷間圧延を行う。該圧延での圧延パス数は、所
定の加工率を確保する限りにおいては前述したように任
意である。複数の圧延パス数からなる場合には、冷間圧
延前と冷間圧延後を基準として加工率が論じられる。
After the above cold rolling, secondary intermediate annealing is performed. Heat treatment is also performed in the above-mentioned temperature range in the secondary intermediate annealing. The heat treatment is similar to the primary intermediate annealing,
Either a batch furnace or a continuous furnace may be used, and the heating time is selected in consideration of the form of the furnace and the like in view of the fact that the above-mentioned action is sufficiently obtained and that the furnace is industrial. Note that heating may be performed using different furnaces for the primary intermediate annealing and the secondary intermediate annealing. After the secondary intermediate annealing, cold rolling is performed at a working ratio specified in the present invention. The number of rolling passes in the rolling is arbitrary as described above as long as a predetermined processing rate is secured. In the case of a plurality of rolling passes, the working ratio is discussed on the basis of before and after cold rolling.

【0025】二次中間焼鈍から冷間圧延に至る一連の工
程は、前述したように繰り返し行うこともでき、その繰
り返し数も適宜選定することができる。この場合、加熱
温度および加工率は、各工程において、本発明規定の条
件により行われる。上記した二次中間焼鈍から冷間圧延
に至る一連の工程を1回または2回以上行うことにより
所定の厚さの箔が得られる。この箔の厚さは本発明とし
ては特に限定されるものではなく、最終製品の箔として
要求される厚さに応じて圧延するものであればよい。
A series of steps from the secondary intermediate annealing to the cold rolling can be repeated as described above, and the number of repetitions can be appropriately selected. In this case, the heating temperature and the processing rate are performed in each step under the conditions specified in the present invention. By performing the above-described series of steps from the secondary intermediate annealing to the cold rolling once or twice or more, a foil having a predetermined thickness can be obtained. The thickness of the foil is not particularly limited as the present invention, and may be any thickness as long as the foil is rolled in accordance with the thickness required for the foil of the final product.

【0026】上記により所定の厚さにまで圧延されたア
ルミニウム箔には、最終焼鈍が施される。最終焼鈍での
加熱方法も特に限定されるものではなく、バッチ炉、連
続炉を適宜選定することができる。本発明では、該最終
焼鈍の加熱温度は特に限定されるものではないが、前記
したように500℃以上が望ましい。該最終焼鈍によっ
て、立方体方位の結晶粒が多数存在することになり、高
い立方体方位率が得られる。
The aluminum foil rolled to a predetermined thickness as described above is subjected to final annealing. The heating method in the final annealing is not particularly limited, and a batch furnace or a continuous furnace can be appropriately selected. In the present invention, the heating temperature of the final annealing is not particularly limited, but is preferably 500 ° C. or higher as described above. By the final annealing, a large number of crystal grains having a cubic orientation are present, and a high cubic orientation ratio is obtained.

【0027】上記により最終焼鈍がなされたアルミニウ
ム箔に対しては、所定の用途に応じて後処理を施すこと
ができる。電解コンデンサ電極用箔として使用する場合
には、上記最終焼鈍後に、粗面化処理、化成処理等がな
される。これら処理は常法により行うことができる。な
お、本発明としては、最終焼鈍後の工程の内容は特に限
定されるものではなく、用途等に従って必要に応じた処
理を適宜行うことができる。
The aluminum foil that has been finally annealed as described above can be subjected to a post-treatment depending on the intended use. When used as an electrolytic capacitor electrode foil, a roughening treatment, a chemical conversion treatment, or the like is performed after the final annealing. These treatments can be performed by a conventional method. Note that, in the present invention, the contents of the steps after the final annealing are not particularly limited, and processing as needed can be appropriately performed according to the use and the like.

【0028】なお、本発明の製造方法によって得られた
高純度アルミニウム箔は、上述した製造過程により高い
立方体方位率を有しているため、これに粗面化処理を行
った場合にはエッチングピットが高密度で均一に形成さ
れることになり、高い粗面化率を有することになる。し
たがってこれをコンデンサの電極として用いれば、面積
当たりの静電容量が高いコンデンサを得ることができ
る。したがって、本発明の製造方法により得られるアル
ミニウム箔の用途としては電解コンデンサ電極用箔が好
適である。
The high-purity aluminum foil obtained by the manufacturing method of the present invention has a high cubic azimuthal rate by the above-described manufacturing process. Are uniformly formed at a high density, and have a high surface roughening rate. Therefore, if this is used as a capacitor electrode, a capacitor having a high capacitance per area can be obtained. Therefore, as a use of the aluminum foil obtained by the production method of the present invention, a foil for an electrolytic capacitor electrode is suitable.

【0029】[0029]

【実施例】純度99.9%または99.995%のAl
地金を用い、特に99.995%地金についてはFe:
10ppm、Si:10ppm、Cu:50ppmに調
整し、ほぼ99.993%になるように成分を調整し
た。通常の製造(鋳造、熱間圧延)で6mm厚の圧延材
を得た。この圧延材を所定の加工率で冷間圧延した後、
表1に示す条件で、一次中間焼鈍、冷間圧延(表中PF
Pと記す)、二次中間焼鈍、冷間圧延(表中FPと記
す)を行って最終厚み100μmの高純度アルミニウム
箔を得た。なお、一部では、上記二次中間焼鈍およびそ
の後の冷間圧延を二回繰り返して行った。上記製造工程
により得られた高純度アルミニウム箔に対し、不活性ガ
ス中で550℃で5時間加熱する最終焼鈍を施して箔試
片を得た。これらの箔試片について、HCl、HNO
の混酸60℃中で腐食し、エッチング表面が鏡面の場合
は立方体方位、エッチング表面が白く、乱反射をする場
合はそれ以外の方位として、それぞれの面積率を粒子ア
ナライザーで計算して立方体方位率を算出した。以下に
その結果をまとめて次表に示す。
EXAMPLE Al with a purity of 99.9% or 99.995%
Using ingots, especially for 99.995% ingots, Fe:
The components were adjusted to 10 ppm, Si: 10 ppm, and Cu: 50 ppm, and the components were adjusted to be approximately 99.993%. A rolled material having a thickness of 6 mm was obtained by ordinary production (casting, hot rolling). After cold rolling this rolled material at a predetermined processing rate,
Under the conditions shown in Table 1, primary intermediate annealing and cold rolling (PF in the table)
P), secondary intermediate annealing, and cold rolling (denoted as FP in the table) to obtain a high-purity aluminum foil having a final thickness of 100 µm. In some cases, the above-mentioned secondary intermediate annealing and subsequent cold rolling were repeated twice. The high-purity aluminum foil obtained by the above manufacturing process was subjected to final annealing by heating at 550 ° C. for 5 hours in an inert gas to obtain a foil specimen. For these foil specimens, HCl, HNO 3
Corrosion in mixed acid at 60 ° C. If the etched surface is a mirror surface, the cubic orientation, if the etched surface is white and diffusely reflected, the other orientation, calculate the area ratio of each with a particle analyzer and calculate the cubic orientation ratio. Calculated. The following table summarizes the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表から明らかなように、本発明の製造方法
により得られた試片は、純度が高い材料を用いた場合、
非常に高い立方体方位率を有するアルミニウム箔が得ら
れている。また、比較的純度が低い材料を用いた場合に
おいても、安定して高い立方体方位率が得られている。
一方、本発明の条件を外れる従来法、比較法により得ら
れた箔試片は、立方体方位率が明らかに劣っている。
As is clear from the table, the test piece obtained by the production method of the present invention shows that when a highly pure material is used,
Aluminum foils with very high cube orientation have been obtained. Even when a material having a relatively low purity is used, a high cubic azimuth ratio is stably obtained.
On the other hand, the foil specimens obtained by the conventional method and the comparative method which deviate from the conditions of the present invention are clearly inferior in cubic azimuth.

【0033】[0033]

【発明の効果】以上説明したように、本発明の高純度ア
ルミニウム箔の製造方法によれば、純度99.9%以上
の高純度アルミニウム材を冷間圧延により所定厚さの箔
に圧延し、その後、該箔に最終焼鈍を施す高純度アルミ
ニウム箔の製造方法において、前記高純度アルミニウム
材に200℃〜400℃に加熱する一次中間焼鈍を施し
た後、5〜50%の加工率で冷間圧延をし、さらに、そ
の後、180℃〜350℃に加熱する二次中間焼鈍を施
した後、5〜30%の加工率で冷間圧延を1回以上行っ
て所定厚さの箔にし、その後、該箔に最終焼鈍を施すの
で、材料の微量不純物量の違いや製造条件の相違によっ
て立方体方位率がばらつくことがなく、安定して高い立
方体方位率を有するアルミニウム箔を得ることができ
る。このアルミニウム箔を電解コンデンサ電極用として
用いれば、高い粗面化率によって静電容量に優れたコン
デンサを得ることができる。
As described above, according to the method for producing a high-purity aluminum foil of the present invention, a high-purity aluminum material having a purity of 99.9% or more is rolled into a foil having a predetermined thickness by cold rolling. Thereafter, in the method for producing a high-purity aluminum foil in which the foil is subjected to final annealing, the high-purity aluminum material is subjected to primary intermediate annealing at 200 ° C. to 400 ° C., and then cold-processed at a working rate of 5 to 50%. Rolling, and then, after subjecting to a secondary intermediate annealing heating to 180 ° C ~ 350 ° C, cold rolling at a working rate of 5-30% at least once to give a foil of a predetermined thickness, Since the foil is finally annealed, the cubic azimuth does not vary due to the difference in the amount of trace impurities in the material or the difference in the manufacturing conditions, and an aluminum foil having a high cubic azimuth can be obtained stably. If this aluminum foil is used for an electrode of an electrolytic capacitor, a capacitor having a high surface roughness and excellent capacitance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 622 C22F 1/00 661Z 661 682 682 685Z 685 686B 686 691B 691 694A 694 H01G 9/04 346 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 純度99.9%以上の高純度アルミニウ
ム材を冷間圧延により所定厚さの箔に圧延し、その後、
該箔に最終焼鈍を施す高純度アルミニウム箔の製造方法
において、前記高純度アルミニウム材に200℃〜40
0℃に加熱する一次中間焼鈍を施した後、5〜50%の
加工率で冷間圧延をし、さらに、その後、180℃〜3
50℃に加熱する二次中間焼鈍を施した後、5〜30%
の加工率で冷間圧延をして所定厚さの箔にし、その後、
該箔に最終焼鈍を施すことを特徴とする高純度アルミニ
ウム箔の製造方法
1. A high-purity aluminum material having a purity of 99.9% or more is rolled into a foil having a predetermined thickness by cold rolling.
In the method for producing a high-purity aluminum foil in which the foil is subjected to final annealing,
After the first intermediate annealing at 0 ° C., cold rolling is performed at a working ratio of 5 to 50%, and then 180 ° C. to 3%.
After performing the secondary intermediate annealing heated to 50 ° C, 5-30%
Cold rolling at a processing rate of to a foil of a predetermined thickness,
A method for producing a high-purity aluminum foil, comprising subjecting the foil to final annealing.
【請求項2】 前記二次中間焼鈍から冷間圧延に至る工
程を2回以上繰り返して前記所定厚さの箔にした後、最
終焼鈍を行うことを特徴とする請求項1記載の高純度ア
ルミニウム箔の製造方法
2. The high-purity aluminum according to claim 1, wherein the step of repeating from the secondary intermediate annealing to the cold rolling is repeated twice or more to obtain the foil having the predetermined thickness, and then the final annealing is performed. Manufacturing method of foil
【請求項3】 前記最終焼鈍は500℃以上に加熱して
行うことを特徴とする請求項1または2に記載の高純度
アルミニウム箔の製造方法
3. The method for producing a high-purity aluminum foil according to claim 1, wherein the final annealing is performed by heating to 500 ° C. or higher.
JP2000368087A 2000-12-04 2000-12-04 Method for producing high purity aluminum foil Pending JP2002173748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368087A JP2002173748A (en) 2000-12-04 2000-12-04 Method for producing high purity aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368087A JP2002173748A (en) 2000-12-04 2000-12-04 Method for producing high purity aluminum foil

Publications (1)

Publication Number Publication Date
JP2002173748A true JP2002173748A (en) 2002-06-21

Family

ID=18838401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368087A Pending JP2002173748A (en) 2000-12-04 2000-12-04 Method for producing high purity aluminum foil

Country Status (1)

Country Link
JP (1) JP2002173748A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2005174949A (en) * 2003-11-18 2005-06-30 Toyo Aluminium Kk Method of producing aluminum foil for electrolytic capacitor
JP2006036305A (en) * 2004-07-29 2006-02-09 Toyo Aluminium Kk Packaging material, and package using the same
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN100360249C (en) * 2006-06-30 2008-01-09 郑州铝业股份有限公司 Short process production technology of ultrathin aluminium foil
JP2019085596A (en) * 2017-11-01 2019-06-06 株式会社Uacj Aluminum foil for electrolytic capacitor, and manufacturing method therefor
CN111876701A (en) * 2020-06-29 2020-11-03 河南科源电子铝箔有限公司 Finished product annealing method for improving cubic texture of high-voltage anode electronic aluminum foil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP2005174949A (en) * 2003-11-18 2005-06-30 Toyo Aluminium Kk Method of producing aluminum foil for electrolytic capacitor
JP2006036305A (en) * 2004-07-29 2006-02-09 Toyo Aluminium Kk Packaging material, and package using the same
JP4562449B2 (en) * 2004-07-29 2010-10-13 東洋アルミニウム株式会社 Packaging material and package using the same
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) * 2004-10-19 2011-03-16 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN100360249C (en) * 2006-06-30 2008-01-09 郑州铝业股份有限公司 Short process production technology of ultrathin aluminium foil
JP2019085596A (en) * 2017-11-01 2019-06-06 株式会社Uacj Aluminum foil for electrolytic capacitor, and manufacturing method therefor
JP7000121B2 (en) 2017-11-01 2022-02-04 株式会社Uacj Aluminum foil for electrolytic capacitors and its manufacturing method
CN111876701A (en) * 2020-06-29 2020-11-03 河南科源电子铝箔有限公司 Finished product annealing method for improving cubic texture of high-voltage anode electronic aluminum foil

Similar Documents

Publication Publication Date Title
JP4300041B2 (en) Aluminum material for electrolytic capacitor electrode and electrolytic capacitor
JPH06181146A (en) Aluminum foil for electrolytic capacitor anode and manufacture thereof
JP2002173748A (en) Method for producing high purity aluminum foil
JPH07235457A (en) Aluminum foil for forming electrode of electrolytic capacitor and etching method therefor
JP3308456B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH07180006A (en) Production of aluminum foil for electrolytic capacitor electrode
JPH1136054A (en) Production of aluminum foil for electrode of electrolytic capacitor
JP2003193260A (en) Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JPH04179110A (en) Aluminum alloy foil for electrolytic capacitor electrode
JPH06145923A (en) Manufacture of aluminum foil for electrolytic condenser anode
JPH10265879A (en) Aluminum foil for electrolytic capacitor
JPH0372703B2 (en)
JPH0489118A (en) Production of aluminum foil for electrolytic capacitor anode
JP3496160B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor electrode
JP3594858B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPS62228456A (en) Manufacture of aluminum foil for use in high plate voltage of electrolytic capacitor
JPH0581164B2 (en)
JP4707045B2 (en) Aluminum foil for electrolytic capacitor electrode
JPH11290906A (en) Manufacture of aluminum foil for electrode of electrolytic capacitor
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode
JPH08337833A (en) Aluminum foil for electrode of electrolytic capacitor
JPS6037185B2 (en) Aluminum electrolytic capacitor - manufacturing method of aluminum foil for cathode
JPH0192347A (en) Manufacture of aluminum foil for electrolytic capacitor anode