[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002173744A - SLAB FOR R-Fe-B-C BASED MAGNET ALLOY HAVING EXCELLENT CORROSION RESISTANCE - Google Patents

SLAB FOR R-Fe-B-C BASED MAGNET ALLOY HAVING EXCELLENT CORROSION RESISTANCE

Info

Publication number
JP2002173744A
JP2002173744A JP2001309701A JP2001309701A JP2002173744A JP 2002173744 A JP2002173744 A JP 2002173744A JP 2001309701 A JP2001309701 A JP 2001309701A JP 2001309701 A JP2001309701 A JP 2001309701A JP 2002173744 A JP2002173744 A JP 2002173744A
Authority
JP
Japan
Prior art keywords
slab
alloy
grain size
magnet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001309701A
Other languages
Japanese (ja)
Other versions
JP3953768B2 (en
Inventor
Hiroki Tokuhara
宏樹 徳原
Naoyuki Ishigaki
尚幸 石垣
Junichiro Baba
順一郎 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001309701A priority Critical patent/JP3953768B2/en
Publication of JP2002173744A publication Critical patent/JP2002173744A/en
Application granted granted Critical
Publication of JP3953768B2 publication Critical patent/JP3953768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an R-Fe-B-C based magnet alloy slab in which the reduction of the degree of orientation, pulverization in grinding in its making into a magnet, and the oxidation of the powder can be prevented, and which has excellent corrosion resistance and magnetic properties for solving the problems of the slab obtained from the molten metal of a magnet alloy by rapidly cooling rollers. SOLUTION: The molten metal of an R-Fe-B-C based alloy in which B+C=6 to 10 at.% (wherein, B: 2 to 6 at.%, and C: 4 to 8 at.%) is melted. After that, the molten metal is subjected to primary cooling by rapid cooling rollers at a specified cooling rate, and subsequently, the slab removed from the rollers is subjected to secondary cooling to a solidus temperature or lower at a specified cooling rate to obtain a rapidly cooled slab with a homogeneous structure in which R2Fe14(B1-xCx) type dendritic or columnar crystals having a minor axis grain size with specified dimensions and a minor axis grain size distribution and a specified R rich phase are finely dispersed, so that the R-Fe-B-C based magnet alloy slab having excellent corrosion resistance and magnetic properties can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、耐食性のすぐれ、且
つすぐれた磁気特性を有するR−Fe−B−C系磁石合
金用鋳片に係り、R−Fe−B−C系合金溶湯を急冷ロ
ールにて急冷凝固した特定厚みの鋳片を特定条件の2段
冷却法にて冷却して、特定の微細に分散した均質組織か
らなる鋳片を得て、耐食性と磁気特性のすぐれたR−F
e−B−C系磁石を得るためのR−Fe−B−C系磁石
合金用鋳片に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab for an R-Fe-BC-based magnet alloy having excellent corrosion resistance and excellent magnetic properties, and quenches a molten R-Fe-BC-based alloy. A slab of specific thickness rapidly solidified by a roll is cooled by a two-stage cooling method under specific conditions to obtain a slab having a specific finely dispersed homogenous structure, which has excellent corrosion resistance and magnetic properties. F
The present invention relates to a slab for an R-Fe-BC-based magnet alloy for obtaining an e-B-C-based magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高い磁石特性が得られ、一般家庭の各種電器製品
から大型コンピュータの周辺機器まで幅広い分野で使用
され、用途に応じた種々の磁石特性を発揮するよう種々
の組成のR−Fe−B系永久磁石が提案されている。
2. Description of the Related Art Today, a typical high performance permanent magnet R
-Fe-B based permanent magnet (JP-A-59-46008)
Has high magnetic properties in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, and is used in a wide range of fields from various household electrical appliances to peripherals of large computers, and is used in various fields. R-Fe-B permanent magnets of various compositions have been proposed to exhibit various magnet properties.

【0003】前記R−Fe−B系永久磁石は極めてすぐ
れた磁気特性を有するが、耐食性、温度特性の点で問題
があり、従来よりR−Fe−B系永久磁石の耐食性の改
善のため、磁石表面に耐食性金属膜や樹脂膜を被覆する
方法が提案され(特開昭60−54406号公報、特開
昭60−63901号公報)、また磁石の磁気特性の温
度特性の改善のため、磁石組成のFeの一部をCoにて
置換することが提案(特開昭59−64733号公報)
されているが、未だ十分でなく、且つ、磁石のコスト上
昇を招来する問題があった。
Although the R-Fe-B permanent magnet has extremely excellent magnetic properties, it has problems in corrosion resistance and temperature characteristics. A method of coating the surface of a magnet with a corrosion-resistant metal film or a resin film has been proposed (Japanese Patent Application Laid-Open Nos. 60-54406 and 60-63901). It is proposed to replace a part of Fe in the composition with Co (Japanese Patent Laid-Open No. 59-64733).
However, there has been a problem that it is not yet sufficient, and the cost of the magnet is increased.

【0004】最近、R−Fe−B系磁石のBの一部をC
で置換して耐食性のすぐれた境界相を生成させて、耐食
性の改善向上、温度特性の向上を図ったR−Fe−B−
C系磁石が提案(特開平3−82744号公報)されて
いる。
Recently, a part of B of an R—Fe—B magnet has been changed to C
To form a boundary phase having excellent corrosion resistance, thereby improving the corrosion resistance and improving the temperature characteristics.
A C-based magnet has been proposed (Japanese Patent Application Laid-Open No. 3-82744).

【0005】前記R−Fe−B−C系磁石は、B量は2
at%以下であることと多量のCを含有することを特徴
としている。すなわち、Bの一部をCにて置換すると、
主相のR2Fe14B正方晶はBの一部がCにて置換され
たR2Fe14(B1-xx)正方晶になるが、結晶構造は
同じであり、また粒界相はRリッチ相から耐食性の良好
なるRリッチ相(R−Fe−C相)に変化しする。
The R—Fe—BC system magnet has a B content of 2
at% or less and containing a large amount of C. That is, when part of B is replaced with C,
The main phase of R 2 Fe 14 B tetragonal becomes R 2 Fe 14 (B 1-x C x ) tetragonal in which a part of B is substituted by C, but the crystal structure is the same and the grain boundary The phase changes from an R-rich phase to an R-rich phase (R-Fe-C phase) having good corrosion resistance.

【0006】また、Feの一部をCoで置換したR−F
e−Co−B−C系磁石では、主相はR2Fe14B正方
晶と同一結晶構造のR2(Fe1-xCox14(B
1-yy)正方晶になり、また粒界相はRリッチ相から耐
食性の良好なるRリッチ相(R−Fe−Co−C相)に
変化するが、磁石中に多量のCを含有するとCはR(希
土類元素)と反応して、R−C(希土類炭化物)が形成
しやすく、原料合金中や焼結磁石中にR−Cが生成され
る。
[0006] Further, R-F in which a part of Fe is substituted with Co.
The e-Co-B-C magnet, the main phase is R 2 (Fe 1-x Co x) of R 2 Fe 14 B tetragonal same crystal structure 14 (B
1-y C y ) It becomes tetragonal, and the grain boundary phase changes from the R-rich phase to the R-rich phase (R-Fe-Co-C phase) having good corrosion resistance, but contains a large amount of C in the magnet. Then, C reacts with R (rare earth element) to easily form RC (rare earth carbide), and RC is generated in the raw material alloy and the sintered magnet.

【0007】要するに、前記R−Fe−B−C系磁石
は、RがCと反応してR−Cとなり、Rが消費されるた
め所要の磁気特性を得るためにはR−Fe−B系よりも
多量のRを必要とする。そのため、磁気特性に寄与しな
いR−Cが多いため、主相の存在量が低下してR−Fe
−B系よりもBrが低下し、また高価なRを多量に必要
とするため、コストアップを招来すると共に、含有酸素
量の増加にともなって磁気特性の劣化、バラツキを招来
する問題があった。
[0007] In short, the R-Fe-B-C magnet is an R-Fe-B-based magnet in which R reacts with C to become R-C, and R is consumed. More R is required. Therefore, since there are many RCs that do not contribute to the magnetic properties, the abundance of the main phase is reduced and the R-Fe
Br is lower than that of the -B type, and a large amount of expensive R is required. This causes a problem that the cost is increased and the magnetic properties are deteriorated and varied with an increase in the oxygen content. .

【0008】また、前記R−Fe−B−C系磁石は、合
金溶湯を鋳型に鋳込んで鋳塊を作製後、該鋳塊を粉砕、
粉末化、成型、焼結、時効処理する粉末冶金法により磁
石化したり、あるいは前記鋳塊または鋳塊の粉砕後の粗
粉を溶体化処理後、粉砕して、前記の粉末冶金法により
磁石化して、耐食性及び温度特性の改善向上を図った
が、R−Fe−B−C系磁石の磁気特性は(BH)ma
xがたかだか38MGOe程度であった。さらに、前記
R−Fe−B−C系磁石は、減磁曲線の角型性が極めて
悪く、同一寸法形状のR−Fe−B系磁石と比較する
と、温度や逆磁界に対して減磁しやすい問題があった。
Further, the R-Fe-BC-based magnet is prepared by casting a molten alloy into a mold to form an ingot, and then pulverizing the ingot.
Powdering, molding, sintering, or magnetizing by the powder metallurgy method of aging treatment, or, after solution treatment of the ingot or coarse powder after pulverization of the ingot, pulverized, and magnetized by the powder metallurgy method described above To improve the corrosion resistance and temperature characteristics, the magnetic characteristics of the R-Fe-BC-based magnet are (BH) ma
x was at most about 38 MGOe. Furthermore, the R-Fe-BC magnet has a very poor squareness of the demagnetization curve, and is demagnetized with respect to temperature and reverse magnetic field as compared with the R-Fe-B magnet having the same dimensions and shape. There was an easy problem.

【0009】また、鋳塊粉砕法によるR−Fe−B系合
金粉末の欠点たる結晶粒の粗大化、α−Feの残留、偏
析を防止するために、R−Fe−B系合金溶湯を双ロー
ル法により、0.03mm〜10mm板厚の鋳片とな
し、前記鋳片を通常の粉末冶金法に従って、鋳片をスタ
ンプミル・ジョークラッシャーなどで粗粉砕後、さらに
ディスクミル、ボールミル、アトライター、ジェットミ
ルなどの粉砕法により平均粒径が3〜5μmの粉末に微
粉砕後、磁場中プレス、焼結、時効処理して、高性能化
を図る製造方法が提案(特開昭63−317643号公
報)されている。
Further, in order to prevent coarsening of crystal grains, α-Fe retention and segregation, which are disadvantages of the R-Fe-B alloy powder by the ingot pulverization method, the R-Fe-B alloy is melted by a twin method. By a roll method, a slab having a thickness of 0.03 mm to 10 mm was formed. The slab was coarsely pulverized by a stamp mill, a jaw crusher or the like according to a usual powder metallurgy method, and then a disc mill, a ball mill, and an attritor were obtained. A method is proposed in which a powder having an average particle size of 3 to 5 μm is finely pulverized by a pulverization method such as a jet mill and then pressed, sintered and aged in a magnetic field to improve performance (JP-A-63-317643). No.).

【0010】また、R−Fe−B系合金溶湯を片ロール
を用いて、横注ぎストリップキャスト法により永久磁石
用急冷鋳片を製造する方法として、タンディッシュ先端
部の水平方向に所要幅のノズルを設け、このノズルに隣
接させて片ロールを水平方向に軸支配置し、高周波溶解
炉にて溶解した溶湯をタンディッシュに収容後、該ノズ
ルから溶湯を水平配置されて連続回転する片ロール面に
注湯して、急冷凝固させて急冷鋳片を製造する方法が提
案(特開平5−222488号公報、特開平6−846
24号公報)されている。
A method of manufacturing a quenched cast for a permanent magnet by a side-cast strip casting method using a single roll of an R-Fe-B-based alloy melt has been proposed by using a nozzle having a required width in the horizontal direction at the tip of a tundish. Is provided adjacent to this nozzle, and a single roll is horizontally supported and placed in a tundish after the molten metal melted in the high-frequency melting furnace. And quenched and solidified to produce a quenched cast slab (JP-A-5-222488, JP-A-6-846).
No. 24).

【0011】さらに、R−Fe−B系磁石合金溶湯を急
冷ロールにて鋳造した磁石合金用鋳片として、R、T、
及びBを主成分とし、実質的にR2Fe14B相から構成
された平均径が3〜50μmの柱状結晶粒とRリッチ相
を主体とする結晶粒界相からなり、冷却方向の厚さが
0.1〜2mmである磁石合金用鋳片が提案(特開平5
−295490号公報)されている。
Further, as a slab for a magnet alloy obtained by casting a molten R-Fe-B magnet alloy with a quenching roll, R, T,
And B as a main component, substantially composed of R 2 Fe 14 B phase, and composed of columnar crystal grains having an average diameter of 3 to 50 μm and a grain boundary phase mainly composed of an R-rich phase, and a thickness in a cooling direction. Of a magnet alloy having a thickness of 0.1 to 2 mm is proposed (Japanese Patent Laid-Open No.
-295490).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、R−F
e−B系永久磁石材料に対するコストダウンの要求が強
く、効率よく高性能永久磁石を製造することが極めて重
要になっている。このため、極限に近い特性を引き出す
ための製造条件の改良が必要となっている。また、今日
の電気、電子機器の小型・軽量化ならびに(BH)ma
x40MGOe以上の高性能化の要求は強く、減磁曲線
の角型性にすぐれ、且つ表面処理等が不要な耐食性の改
善向上も要求され、R−Fe−B系永久磁石のより一層
の高機能化とコストダウンが要求されている。
However, the R-F
There is a strong demand for cost reduction for eB-based permanent magnet materials, and it is extremely important to efficiently manufacture high-performance permanent magnets. For this reason, it is necessary to improve the manufacturing conditions in order to bring out characteristics close to the limit. In addition, miniaturization and weight reduction of today's electric and electronic devices and (BH) ma
There is a strong demand for high performance of x40MGOe or higher, and it is also required that the demagnetization curve has excellent squareness, and that an improvement in corrosion resistance without surface treatment or the like is required. And cost reduction are required.

【0013】そこで、従来のごとき、鋳塊、あるいは粉
砕粒への溶体化熱処理工程の削減および粉砕性改善によ
るコストダウンと磁気特性の高性能等について、発明者
は種々検討した。すなわち、この発明は、耐食性ならび
に磁石特性のすぐれたR−Fe−B−C系焼結磁石を得
るための合金鋳片を、生産性よく効率よい微粉砕を可能
にし、かつ微粉化に伴う粉末の酸化を防止でき、減磁曲
線の角型性ならびに各結晶粒の磁化容易方向の配向度を
高めて耐食性のすぐれた高性能R−Fe−B−C系焼結
磁石が得られる耐食性のすぐれたR−Fe−B−C系磁
石合金用鋳片の提供を目的としている。
In view of the above, the inventor has made various studies on the reduction of the solution heat treatment step for ingots or pulverized grains, the reduction in cost by improving the pulverizability, the high performance of magnetic properties, and the like as in the prior art. That is, the present invention enables efficient and efficient pulverization of an alloy slab for obtaining an R-Fe-BC-based sintered magnet having excellent corrosion resistance and magnet properties, and a powder which accompanies pulverization. Of high-quality R-Fe-BC sintered magnets with high corrosion resistance by increasing the squareness of the demagnetization curve and the degree of orientation of each crystal grain in the direction of easy magnetization. It is another object of the present invention to provide a cast slab for an R-Fe-BC-based magnet alloy.

【0014】[0014]

【課題を解決するための手段】発明者らは、耐食性のす
ぐれたR−Fe−B−C系焼結磁石用合金鋳片をストリ
ップキャスト法により作製したところ、初晶のFe、F
xCo1-xは殆どなく、微粉砕性が改善され、従来の鋳
型溶製合金に比較すると微粉砕能率が約2倍以上向上す
ることを確認した。しかしながら鋳片の鋳造組織につい
て、詳細に調査したところ、鋳造条件により、鋳造組織
が大きく変化し、磁石化の際の粉砕時の微粉化に伴う粉
末の酸化、および焼結磁石の配向度の低下が起こり、磁
気特性に大きな影響を及ぼしていることを知見した。
Means for Solving the Problems The inventors of the present invention prepared an alloy slab for an R-Fe-BC based sintered magnet having excellent corrosion resistance by strip casting, and found that primary crystals of Fe, F
e x Co 1-x is little, milling property is improved, compared to the milling efficiency of the conventional mold melted alloy was confirmed to be improved about twice or more. However, when the casting structure of the slab was examined in detail, the casting structure changed significantly depending on the casting conditions, and the powder was oxidized due to pulverization during pulverization during magnetization, and the degree of orientation of the sintered magnet decreased. Was found to have a significant effect on magnetic properties.

【0015】また、発明者らは、R−Fe−B−C系磁
石合金用鋳片組織と焼結磁石の磁気特性の関係を種々検
討した結果、前記鋳片には種々の大きさや方向を有する
樹枝状もしくは柱状結晶が存在し、微細な樹枝状もしく
は柱状結晶が、磁石化の際の粉砕時の微粉化に伴う粉末
の酸化および焼結磁石の配向度の低下に大きな影響を及
ぼし、前記鋳片内の微細樹枝状もしくは柱状結晶を低減
することが重要であることを知見した。
The inventors of the present invention have conducted various studies on the relationship between the structure of the cast slab for the R-Fe-BC-based magnet alloy and the magnetic characteristics of the sintered magnet. As a result, the cast slab has various sizes and directions. There is a dendritic or columnar crystal having, the fine dendritic or columnar crystal has a great effect on the oxidation of the powder and the decrease in the degree of orientation of the sintered magnet due to the pulverization at the time of pulverization at the time of magnetization, It has been found that it is important to reduce fine dendritic or columnar crystals in the slab.

【0016】発明者らは、更に検討したところ、かかる
鋳片内の微細樹枝状もしくは柱状結晶を低減した鋳片を
得るためには、特定温度の合金溶湯をノズルより急冷ロ
ールに注湯して、特定の冷却速度にて1次冷却した後、
ロールを離間した鋳片を固相線温度以下に特定の冷却速
度にて2次冷却する2段冷却が重要であることを知見し
た。さらに、合金組成と減磁曲線の角型性を種々検討し
た結果、B量とC量を最適化することにより、前記角型
性を大幅に改善できることを見出し、この発明を完成し
た。
The inventors have further studied and found that in order to obtain a slab in which the fine dendritic or columnar crystals in the slab are reduced, a molten alloy at a specific temperature is poured from a nozzle into a quenching roll. , After primary cooling at a specific cooling rate,
It has been found that it is important to perform two-stage cooling in which the slab having the rolls separated is secondarily cooled at a specific cooling rate below the solidus temperature. Furthermore, as a result of various studies on the alloy composition and the squareness of the demagnetization curve, it was found that the squareness can be greatly improved by optimizing the amounts of B and C, and the present invention was completed.

【0017】すなわち、この発明は、R12〜18at
%、B+C=6〜10at%(但しB:2〜6at%、
C:4〜8at%)、残部Fe(但しFeの一部をC
o、Niの1種または2種にて置換)を主成分とし、短
軸結晶粒径が1.0μm未満の微細結晶を10%以下含
有する平均短軸結晶粒径3μm〜15μm、且つ短軸結
晶粒度分布が0.01μm〜40μmのR2Fe14(B
1-xx)型樹枝状あるいは柱状結晶と、10μm以下の
R−リッチ相とが、微細に分散した均質組織からなり、
鋳片厚みが0.01mm〜1.0mmからなることを特
徴とする耐食性ならびに磁石特性、特に減磁曲線の角型
性のすぐれたR−Fe−B−C系磁石合金用鋳片であ
る。
That is, the present invention relates to R12-18at.
%, B + C = 6 to 10 at% (B: 2 to 6 at%,
C: 4 to 8 at%), the balance Fe (a part of Fe is C
o, Ni) (substituted by one or two of Ni), and has an average minor axis crystal grain diameter of 3 to 15 μm containing 10% or less of fine crystals having a minor axis crystal grain diameter of less than 1.0 μm, and a minor axis. R 2 Fe 14 (B having a grain size distribution of 0.01 μm to 40 μm
1-x C x ) type dendritic or columnar crystals and an R-rich phase of 10 μm or less have a finely dispersed homogeneous structure,
An R-Fe-BC-based magnet alloy slab having excellent corrosion resistance and magnet properties, particularly having a square shape of a demagnetization curve, characterized by having a slab thickness of 0.01 mm to 1.0 mm.

【0018】[0018]

【発明の実施の形態】この発明は、R−Fe−B−C系
合金溶湯を真空溶解炉にて溶解した後、タンディシュ先
端部のノズルより急冷ロールに注湯し、溶湯を急冷ロー
ルにて特定の冷却速度にて特定の温度まで1次冷却後、
ロールより離脱した鋳片を固相線温度以下に特定の冷却
速度にて2次冷却することにより、特定寸法の短軸結晶
粒径及び結晶粒度分布を有するR2Fe14(B1-xx
型樹枝状結晶あるいは柱状結晶と特定のRリッチ相とが
微細に分散した均質組織からなる特定厚の急冷鋳片を得
ることを特徴とする。なお、R2Fe14(B1-xx)化
合物はR2Fe14B化合物のBの一部がCで置換された
もので、R2Fe14B化合物と同じ正方晶構造を有す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a molten R-Fe-BC alloy is melted in a vacuum melting furnace, then poured into a quenching roll from a nozzle at the tip of a tundish, and the molten metal is quenched with a chilling roll. After primary cooling to a specific temperature at a specific cooling rate,
By subjecting the slab separated from the roll to secondary cooling at a specific cooling rate below the solidus temperature, R 2 Fe 14 (B 1-x C x )
It is characterized in that a quenched slab of a specific thickness having a homogeneous structure in which a dendritic crystal or a columnar crystal and a specific R-rich phase are finely dispersed is obtained. The R 2 Fe 14 (B 1-x C x ) compound is obtained by substituting a part of B in the R 2 Fe 14 B compound with C, and has the same tetragonal structure as the R 2 Fe 14 B compound.

【0019】この発明の製造方法を具体的に説明する
と、R12〜18at%、B+C=6〜10at%(但
しB:2〜6at%、C:4〜8at%)、残部Fe
(但しFeの一部をCo、Niの1種または2種にて置
換できる)を主成分とする磁石合金溶湯を、合金の液相
線温度(凝固開始温度)+5℃〜+300℃の温度よ
り、急冷ロールにて、例えば2×103℃/sec〜7
×103℃/secの1次冷却速度にて鋳片温度700
℃〜1000℃に冷却後、ロール離脱後に前記鋳片を合
金の固相線温度(凝固完了温度)以下に、例えば50℃
/min〜2×103℃/minの2次冷却速度にて冷
却し、短軸結晶粒径が1.0μm未満の微細結晶を10
%以下含有する平均短軸結晶粒径3μm〜15μm、且
つ短軸結晶粒度分布が0.01μm〜40μmのR2
14(B1-xx)型樹枝状あるいは柱状結晶と、10μ
m以下のRリッチ相とが、微細に分散した均質組織から
なり、例えば鋳片厚みが0.01mm〜1.0mmから
なる磁石合金用鋳片を得ることを特徴とする耐食性なら
びに磁石特性、特に減磁曲線の角型性のすぐれたR−F
e−B−C系磁石合金用鋳片の製造方法である。
The production method of the present invention will be described in detail. R12-18 at%, B + C = 6-10 at% (B: 2-6 at%, C: 4-8 at%), the balance Fe
(However, a part of Fe can be replaced by one or two types of Co and Ni.) A melt of a magnetic alloy mainly composed of a liquidus temperature (solidification starting temperature) of the alloy + 5 ° C. to + 300 ° C. Quenching roll, for example, 2 × 10 3 ° C./sec to 7
Slab temperature 700 at primary cooling rate of × 10 3 ° C / sec.
After cooling to about 1000 ° C. to 1000 ° C., and then removing the roll, the slab is cooled to a temperature equal to or lower than the solidus temperature (solidification completion temperature) of the alloy, for example, 50 ° C.
/ Min to 2 × 10 3 ° C./min. At a secondary cooling rate of 10 μm.
% R 2 F having an average minor axis crystal grain size of 3 μm to 15 μm and a minor axis crystal grain size distribution of 0.01 μm to 40 μm.
e 14 (B 1-x C x ) type dendritic or columnar crystal and 10μ
m or less R-rich phase, has a finely dispersed homogeneous structure, for example, corrosion resistance and magnet properties, characterized by obtaining a slab for a magnet alloy having a slab thickness of 0.01 mm to 1.0 mm, especially R-F with excellent squareness of demagnetization curve
This is a method for producing a cast for e-B-C magnet alloy.

【0020】すなわち、冷却鋳片の鋳造組織は、溶湯が
冷却ロールに接触した瞬間に決定され、溶湯と冷却ロー
ルの接触長が短く、ロール周速が速い程、板厚は薄くな
り微細化されるが、現実には急冷ロールを離れる時点で
の鋳片の温度およびその後の冷却速度によって、鋳造組
織が変化することを見出した。
That is, the casting structure of the cooling slab is determined at the moment when the molten metal comes into contact with the cooling roll, and the shorter the contact length between the molten metal and the cooling roll and the higher the roll peripheral speed, the thinner the plate becomes and the finer the structure becomes. However, in reality, it has been found that the cast structure changes depending on the temperature of the slab at the time of leaving the quenching roll and the subsequent cooling rate.

【0021】一般に合金溶湯は液相線温度で凝固が開始
し、固相線温度で凝固が完了する。しかし、この液相線
から固相線温度までの固液共存領域を通過する時間が長
いと鋳造組織は粗大化する。R−Fe−B−C系合金で
は前記液相線温度と固相線温度の差が約500℃と大き
いため、特に前記粗大化は顕著である。
Generally, solidification of the molten alloy starts at the liquidus temperature and is completed at the solidus temperature. However, if the time for passing through the solid-liquid coexistence region from the liquidus to the solidus temperature is long, the cast structure becomes coarse. In the case of an R-Fe-BC-based alloy, the difference between the liquidus temperature and the solidus temperature is as large as about 500 ° C, so that the coarsening is particularly remarkable.

【0022】すなわち、急冷ロールを離間した直後の鋳
片温度が固相線以上でも、その後の冷却が十分速ければ
微細組織が得られるが、その後の冷却速度が遅く、固液
共存領域を通過する時間が長くなると、結晶粒は成長
し、焼結磁石のiHcの低下を招来する。
That is, even if the slab temperature immediately after the quenching roll is separated is equal to or higher than the solidus temperature, a fine structure can be obtained if the subsequent cooling is sufficiently fast, but the subsequent cooling rate is slow and the material passes through the solid-liquid coexistence region. As the time increases, the crystal grains grow, leading to a decrease in iHc of the sintered magnet.

【0023】発明者らが前記通過時間と結晶粒径の関係
を調べた結果、固液共存領域の通過時間が僅か数分でも
結晶粒径が成長し、例えば800℃から固相線温度まで
の通過時間が3分の場合、結晶粒径は20〜30μmに
成長する。
As a result of examination of the relationship between the passing time and the crystal grain size by the inventors, the crystal grain size grows even when the passing time in the solid-liquid coexistence region is only a few minutes, for example, from 800 ° C. to the solidus temperature. When the passage time is 3 minutes, the crystal grain size grows to 20 to 30 μm.

【0024】また、ロールでの冷却を強化して、ロール
離脱時の鋳片を固相線温度以下にすることができるが、
この場合、前記結晶粒の粗大化は起こらないが、ロール
による冷却の速度が速すぎ結晶が微細化されすぎて、焼
結磁石のBrの低下を招来する。
In addition, the cooling of the roll can be strengthened to reduce the temperature of the slab when the roll is removed to the solidus temperature or lower.
In this case, the crystal grains are not coarsened, but the cooling rate by the roll is too fast, and the crystals are too fine, resulting in a decrease in Br of the sintered magnet.

【0025】すなわち、鋳片の結晶粒径を微細化させす
ぎないためには、合金溶湯を急冷ロールにて特定の冷却
速度で特定の温度まで1次冷却し、さらにその後、急冷
ロールより離脱した鋳片をその微細組織を粗大化させな
いためには固相線温度以下に特定の冷却速度で2次冷却
する2段階冷却法が重要であることを知見したのであ
る。
That is, in order to prevent the crystal grain size of the slab from being excessively reduced, the molten alloy is primarily cooled at a specific cooling rate to a specific temperature by a quenching roll, and then separated from the quenching roll. It has been found that a two-stage cooling method of performing secondary cooling at a specific cooling rate below the solidus temperature is important in order to prevent the slab from coarsening its fine structure.

【0026】この発明の鋳片の製造方法において、急冷
ロールにて冷却凝固する合金溶湯の温度を液相線温度
(凝固開始温度)+5℃〜+300℃に限定した理由
は、液相線温度+5℃未満ではノズル部で合金溶湯が凝
固して、ノズルづまりを起こし、鋳造できなくなるので
好ましくなく、また、液相線温度+300℃を越える
と、溶湯温度が高すぎて、ロールでの冷却が不十分とな
り、平均短軸結晶粒径が15μmを越え、また、ロール
に接触する溶湯温度が高いため、冷却ロールの寿命が短
くなるので、好ましくない。
In the method for producing a cast slab according to the present invention, the reason for limiting the temperature of the molten alloy to be cooled and solidified by the quenching roll to the liquidus temperature (solidification starting temperature) + 5 ° C. to + 300 ° C. is that the liquidus temperature is + 5 ° C. If the temperature is lower than 0 ° C., the alloy melt solidifies in the nozzle portion, causing clogging of the nozzle, making casting impossible. If the temperature exceeds the liquidus temperature + 300 ° C., the temperature of the molten metal is too high, and cooling with rolls is insufficient. The average short-axis crystal grain size exceeds 15 μm, and the temperature of the molten metal in contact with the roll is high, so that the life of the cooling roll is shortened.

【0027】この発明において、1次冷却速度は{(ロ
ール接触する溶湯温度)−(ロール離脱時の鋳片温
度)}/(ロール接触時間)、にて定義され、1次冷却
速度が2×103℃/sec未満ではロールによる溶湯
の冷却が不十分で、平均短軸結晶粒径が15μmを越え
て好ましくなく、また、7×103℃/secを越える
と、平均短軸結晶粒径が3μm未満と微細になり、また
平均短軸結晶粒径が3μm以上でも、粒径1μm以下の
微細結晶が10%を越えるので好ましくない。また、1
次冷却速度の好ましい範囲は、3×103℃/sec〜
6×103℃/secである。
In the present invention, the primary cooling rate is defined by {(the temperature of the molten metal in contact with the roll) − (the temperature of the slab at the time of roll detachment)} / (the contact time of the roll), and the primary cooling rate is 2 × 10 3 ° C. / is less than sec insufficient molten metal by the roll cooling, average minor axis crystal grain size undesirably beyond 15 [mu] m, also exceeds 7 × 10 3 ℃ / sec, average minor axis grain size Is less than 3 μm, and even if the average short-axis crystal grain size is 3 μm or more, it is not preferable because fine crystals having a grain size of 1 μm or less exceed 10%. Also, 1
The preferable range of the secondary cooling rate is 3 × 10 3 ° C./sec or more.
6 × a 10 3 ℃ / sec.

【0028】1次冷却後の鋳片温度を700℃〜100
0℃に限定した理由は、700℃未満では平均短軸結晶
粒径が3μm未満と微細になり、また、平均短軸結晶粒
径が3μm以上でも、1μm以下の微細結晶が10%を
越えるため好ましくなく、さらに、1000℃を超える
と、鋳片のロール離脱後、固相線温度以下まで冷却する
時間が長くなり平均短軸結晶粒径が15μmを超えて、
粗大化し、又固相線温度以下に短時間に冷却するために
は設備費のかさむ2次冷却装置が必要となるので、好ま
しくない。更に、好ましい1次冷却後の鋳片温度範囲
は、700℃〜900℃である。
After the primary cooling, the temperature of the slab is 700 ° C. to 100 ° C.
The reason for limiting the temperature to 0 ° C. is that if the temperature is less than 700 ° C., the average short-axis crystal grain size becomes fine as less than 3 μm, and even if the average short-axis crystal grain size is 3 μm or more, fine crystals of 1 μm or less exceed 10%. Undesirably, further, when the temperature exceeds 1000 ° C., after the rolls of the slab are released, the cooling time to the solidus temperature or less increases, and the average short-axis crystal grain size exceeds 15 μm.
It is not preferable to use a secondary cooling device which requires a large equipment cost in order to increase the size of the material and to cool it to a temperature not higher than the solidus temperature in a short time. Further, a preferable temperature range of the slab after the primary cooling is 700 ° C to 900 ° C.

【0029】この発明において、ロール離脱後の鋳片の
冷却を固相線温度以下に限定した理由は、固相線温度を
超えた固液共存領域では、Rリッチな液相が存在し、僅
か数分の保持でも結晶が成長し粗大化して、磁石特性、
特に保磁力を低下させるので、結晶が成長しない、すな
わち、液相が全く存在しない固相線温度以下まで冷却す
る必要がある。
In the present invention, the reason for limiting the cooling of the slab after the roll has been separated to the solidus temperature or lower is that in the solid-liquid coexistence region exceeding the solidus temperature, an R-rich liquid phase exists, Even after holding for several minutes, the crystal grows and coarsens,
In particular, since the coercive force is reduced, it is necessary to cool to a temperature below the solidus temperature at which no crystal grows, that is, no liquid phase exists.

【0030】この発明において、2次冷却速度は、
{(ロール離脱時鋳片温度)−(固相線温度)}/(冷
却時間〕、にて定義づけられ、2次冷却速度が50℃/
min未満では固液共存領域を通過に要する時間が長く
なり、結晶が成長し粗大化するため好ましくない。ま
た、2次冷却速度は速ければ速い程、固液共存領域の通
過に要する時間が短くなり好ましいが、量産的には設備
コスト等を考慮して、2×103℃/min以内が好ま
しい。また、2次冷却速度の好ましい範囲は、100〜
2×103℃/minである。
In the present invention, the secondary cooling rate is
{(Cast temperature at roll separation)-(solidus temperature)} / (cooling time), the secondary cooling rate is 50 ° C /
If it is less than min, the time required to pass through the solid-liquid coexistence region becomes longer, and the crystal grows and becomes coarse, which is not preferable. The higher the secondary cooling rate is, the shorter the time required for passing through the solid-liquid coexistence region is, which is preferable. However, from the viewpoint of mass production, it is preferable to be within 2 × 10 3 ° C./min. The preferred range of the secondary cooling rate is 100 to
It is 2 × 10 3 ° C./min.

【0031】この発明における2次冷却は、急冷ロール
と鋳片収容箱間にてArガス等の不活性ガス冷却、ある
いはコンベア又はベルトにて移送中にて冷却したり、更
に鋳片収容箱内にて不活性ガス冷却して調節することが
でき、また、2対の回転するベルトによって、鋳片を挟
んで冷却したり、液体Arに直接投入する方法などがあ
り、これらの方法の組合せでもよい。また、充分な2次
冷却速度を実現するためには、冷却ロールと鋳片収容箱
間の距離を十分とる必要があり、その距離はロール周速
度の1/20以上が好ましい。例えば、ロール周速度が
100m/minの場合は5m以上である。
In the present invention, the secondary cooling is performed by cooling an inert gas such as Ar gas between the quenching roll and the slab storage box, or cooling during transfer by a conveyor or a belt, and further cooling the slab storage box. It can be adjusted by cooling with an inert gas at a temperature, and there is a method of cooling by sandwiching a slab by two pairs of rotating belts, or a method of directly charging the liquid Ar, and a combination of these methods is also available. Good. In order to realize a sufficient secondary cooling rate, it is necessary to provide a sufficient distance between the cooling roll and the slab storage box, and the distance is preferably 1/20 or more of the roll peripheral speed. For example, when the roll peripheral speed is 100 m / min, it is 5 m or more.

【0032】この発明の磁石合金用鋳片において、短軸
結晶粒径は樹枝状もしくは柱状結晶の長軸方向に対して
垂直な方向の短軸の長さを意味する。
In the magnet alloy slab of the present invention, the minor axis grain size means the length of the minor axis in a direction perpendicular to the major axis direction of the dendritic or columnar crystal.

【0033】磁石合金用鋳片のR2Fe14(B1-xx
型樹枝状もしくは柱状結晶の平均短軸結晶粒径を3μm
〜15μmに限定した理由は、3μm未満では粉末化し
た時に酸化しやすくなり、磁気特性の劣化を招来し、ま
た粉末化した合金粉末が多結晶体となり、プレス成形時
の配向度が乱れ、磁石のBrの低下を招来し、さらに、
15μmを超えると焼結磁石の結晶粒径が大きくなり、
保磁力が低下するとともに減磁曲線の角型性が低下する
ため、好ましくない。
R 2 Fe 14 (B 1-x C x ) of magnet alloy slab
Average short-axis crystal grain size of dendritic or columnar crystals is 3 μm
The reason for limiting to 15 μm is that if it is less than 3 μm, it tends to be oxidized when powdered, leading to deterioration of magnetic properties, and the powdered alloy powder becomes polycrystalline, the degree of orientation during press molding is disturbed, Br is lowered, and
If it exceeds 15 μm, the crystal grain size of the sintered magnet increases,
This is not preferable because the coercive force decreases and the squareness of the demagnetization curve decreases.

【0034】また、短軸結晶粒径分布を0.01μm〜
40μmに限定した理由は、0.01μm未満では結晶
が非晶質化しやすく、また、40μmを越えると磁石の
保磁力が低下するとともに減磁曲線の角型性が低下する
ので好ましくない。
The short axis crystal grain size distribution is set to 0.01 μm or less.
The reason why the thickness is limited to 40 μm is not preferable because if it is less than 0.01 μm, the crystal is likely to be amorphous, and if it exceeds 40 μm, the coercive force of the magnet is reduced and the squareness of the demagnetization curve is reduced.

【0035】また、短軸結晶粒径が1.0μm未満の微
細結晶の含有を10%以下に限定した理由は、10%を
越える含有では粉末化した合金粉末中の多結晶体の割合
が増加し、プレス成形時の配向度が乱れ、磁石のBrが
低下するので好ましくない。
The reason why the content of fine crystals having a minor axis crystal grain size of less than 1.0 μm is limited to 10% or less is that if the content exceeds 10%, the proportion of polycrystals in the powdered alloy powder increases. However, the degree of orientation during press molding is disturbed, and Br of the magnet is undesirably reduced.

【0036】この発明の磁石合金用鋳片の微細に分散し
た均質組織における、R2Fe14(B1-xx)型樹枝状
結晶または柱状結晶とRリッチ相の各量比率は、R2
14(B1-xx)型樹枝状結晶もしくは柱状結晶は90
%以上が好ましく、更に好ましくは95%以上であり、
又Rリッチ相は3〜10%が好ましい。この発明におい
て、固相線温度はR−Fe−B−C系磁石組成により変
動するが、磁石組成が15Nd−78Fe−2.5B−
4.5Cat%磁石の場合は、固相線温度は660℃で
ある。
In the finely dispersed homogenous structure of the slab for a magnet alloy of the present invention, each ratio of the R 2 Fe 14 (B 1-x C x ) type dendritic crystal or columnar crystal and the R-rich phase is R 2 F
e 14 (B 1-x C x ) type dendritic or columnar crystal is 90
% Or more, more preferably 95% or more,
The R-rich phase is preferably 3 to 10%. In the present invention, the solidus temperature fluctuates depending on the composition of the R-Fe-BC-based magnet, but when the magnet composition is 15Nd-78Fe-2.5B-
For a 4.5 Cat% magnet, the solidus temperature is 660 ° C.

【0037】以下にこの発明によるR−Fe−B−C系
永久磁石を製造する合金鋳片の合金組成について説明す
る。
The alloy composition of the alloy slab for producing the R-Fe-BC permanent magnet according to the present invention will be described below.

【0038】この発明の永久磁石用合金鋳片に含有され
る希土類元素Rはイットリウム(Y)を包含し、軽希土
類及び重希土類を包含する希土類元素である。また通常
Rのうち1種もって足りるが、実用上は2種類以上の混
合物(ミッシュメタル、ジジム等)を入手上の便宜等の
理由により用いることができ、Sm,Y,La,Ce,
Gd等は他のR、特にNd,Pr等との混合物として用
いることができる。なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差し支えない。
The rare earth element R contained in the alloy slab for a permanent magnet of the present invention is a rare earth element containing yttrium (Y) and including light rare earth elements and heavy rare earth elements. In general, one kind of R is sufficient, but in practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining, and Sm, Y, La, Ce,
Gd and the like can be used as a mixture with other R, especially Nd, Pr and the like. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0039】Rは、R−Fe−B−C系永久磁石を製造
する合金鋳片の必須元素であって、12原子%未満では
高磁気特性、特に高保磁力が得られず、18原子%を越
えると残留磁束密度(Br)が低下して、すぐれた特性
の永久磁石が得られない。よって、Rは12原子%〜1
8原子%の範囲とする。好ましくはRは13原子%〜1
7原子%である。
R is an essential element of the alloy slab for producing the R—Fe—BC permanent magnet. If it is less than 12 atomic%, high magnetic properties, especially high coercive force cannot be obtained, and 18 atomic% If it exceeds, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 12 atomic% to 1
The range is 8 atomic%. Preferably, R is between 13 atomic% and 1
7 atomic%.

【0040】B及びCは、R−Fe−B−C系永久磁石
を製造する合金鋳片の必須元素であってB+Cが6原子
%未満では高い保磁力(iHc)が得られず、10原子
%を超えると残留磁束密度(Br)が低下するため、す
ぐれた永久磁石が得られない。また、Bが2at%未満
では残留磁束密度が低下するとともに減磁曲線の角型性
が劣化し、Bが6at%を越えると耐食性が低下するの
で好ましくない。Cが4at%未満では耐食性が低下す
るので好ましくなく、Cが8at%を越えるとR−C量
が増加し、残留磁束密度が低下するとともに減磁曲線の
角型性が劣化するため好ましくない。よって、B+Cは
6原子%〜10原子%(但し、B2〜6at%、C4〜
8at%)の範囲とする。好ましいB+Cの範囲は6〜
8at%である。
B and C are essential elements of alloy slabs for producing R—Fe—BC permanent magnets. If B + C is less than 6 atomic%, a high coercive force (iHc) cannot be obtained and 10 atomic atoms are not obtained. %, The residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. If B is less than 2 at%, the residual magnetic flux density is reduced and the squareness of the demagnetization curve is degraded. If B exceeds 6 at%, the corrosion resistance is undesirably reduced. If C is less than 4 at%, the corrosion resistance deteriorates, which is not preferable. If C exceeds 8 at%, the RC amount increases, the residual magnetic flux density decreases, and the squareness of the demagnetization curve deteriorates. Therefore, B + C is 6 at% to 10 at% (however, B 2 to 6 at%, C 4 to
8 at%). The preferred range of B + C is 6 to
8 at%.

【0041】Feは、R−Fe−B−C系永久磁石を製
造する合金鋳片の必須元素であって、72原子%未満で
は残留磁束密度(Br)が低下し、82%原子を超える
と高い保磁力が得られないので、Feは72原子%〜8
2原子%に限定する。また、Feの一部をCo、Niの
1種又は2種で置換可能であり、これは永久磁石の温度
特性を向上させる効果及びさらに耐食性を向上させる効
果が得られるためであるが、Co、Niの1種又は2種
はFeの50%を越えると高い保磁力が得られず、すぐ
れた永久磁石が得られない。よって、Co、Niの1種
又は2種の置換量はFeの50%を上限とする。
Fe is an essential element of alloy slabs for producing R—Fe—BC permanent magnets. If it is less than 72 atomic%, the residual magnetic flux density (Br) decreases. Since a high coercive force cannot be obtained, the content of Fe is 72 atomic% to 8 atomic%.
Limited to 2 atomic%. Further, a part of Fe can be replaced by one or two of Co and Ni, which is because the effect of improving the temperature characteristics of the permanent magnet and the effect of further improving the corrosion resistance can be obtained. When one or two kinds of Ni exceed 50% of Fe, a high coercive force cannot be obtained and an excellent permanent magnet cannot be obtained. Therefore, the upper limit of the substitution amount of one or two of Co and Ni is 50% of Fe.

【0042】この発明による合金鋳片において、高い残
留磁束密度と高い保磁力ならびにすぐれた減磁曲線の角
型性、高耐食性を共に有するすぐれた永久磁石を得るた
めには、R13原子%〜17原子%、B+C6原子%〜
8原子%、但し、B2〜4at%、C4〜6at%、F
e75原子%〜81原子%が好ましい。
In order to obtain an excellent permanent magnet having both high residual magnetic flux density, high coercive force, excellent squareness of demagnetization curve, and high corrosion resistance in the alloy slab according to the present invention, R13 at. Atomic%, B + C6 atomic% ~
8 atomic%, provided that B2 to 4 at%, C4 to 6 at%, F
e 75 at% to 81 at% is preferred.

【0043】また、この発明による合金鋳片は、R、
B、Fe、Cの他、酸素、Ca、Mgなどの工業的生産
上不可避的不純物の存在を許容できるが、B+Cの一部
を3.5原子%以下のP、2.5原子%以下のS、3.
5原子%以下のCuのうち少なくとも1種、合計量で
4.0原子%以下で置換することにより、磁石合金の製
造性改善、低価格化が可能である。
The alloy slab according to the present invention has R,
In addition to B, Fe, and C, the presence of unavoidable impurities such as oxygen, Ca, and Mg in industrial production can be tolerated. However, a part of B + C is reduced to 3.5 atomic% or less of P and 2.5 atomic% or less. S, 3.
By replacing at least one of Cu of 5 atomic% or less with a total amount of 4.0 atomic% or less, it is possible to improve the productivity of the magnet alloy and reduce the cost.

【0044】さらに、前記R、B、C、Fe合金あるい
はCo、Niの1種または2種を含有するR−Fe−B
−C合金に、9.5原子%以下のAl、4.5原子%以
下のTi、9.5原子%以下のV、8.5原子%以下の
Cr、8.0原子%以下のMn、5原子%以下のBi、
12.5原子%以下のNb、10.5原子%以下のT
a、9.5原子%以下のMo、9.5原子%以下のW、
2.5原子%以下のSb、7原子%以下のGe、7at
%以下のGa、3.5原子%以下のSn、5.5原子%
以下のZr、5.5原子%以下のHfのうち少なくとも
1種添加含有させることにより、永久磁石合金の高保磁
力が可能になる。
Further, R-Fe-B containing one or two of R, B, C, and Fe alloys or Co and Ni.
A 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, V of 9.5 atomic% or less, Cr of 8.5 atomic% or less, Mn of 8.0 atomic% or less, Bi of 5 atomic% or less,
Nb of 12.5 atomic% or less, T of 10.5 atomic% or less
a, 9.5 atomic% or less of Mo, 9.5 atomic% or less of W,
2.5 atomic% or less of Sb, 7 atomic% or less of Ge, 7 at
% Or less of Ga, 3.5 atomic% or less of Sn, 5.5 atomic%
By adding at least one of the following Zr and 5.5 atomic% or less of Hf, a high coercive force of the permanent magnet alloy can be obtained.

【0045】この発明のR−Fe−B−C系永久磁石に
おいて、結晶相は主相が正方晶であることが不可欠であ
り、特に、微細で均一な合金粉末を得て、すぐれた磁気
特性を有する焼結永久磁石を作製するのに効果的であ
る。
In the R-Fe-BC permanent magnet according to the present invention, it is indispensable that the main phase of the crystal phase is tetragonal, and in particular, a fine and uniform alloy powder is obtained, and excellent magnetic properties are obtained. This is effective for producing a sintered permanent magnet having

【0046】この発明において、樹枝状あるいは柱状結
晶とR−リッチ相とが微細に分散した均質組織を有する
磁石合金鋳片の板厚を0.01mm〜1.0mmに限定
した理由は、0.01mm未満では急冷効果が大とな
り、平均短軸結晶粒径が3μmより小となり、粉末化し
た際に酸化しやすくなるため、磁気特性の劣化を招来す
るとともに、微粉砕後の粒子が多結晶となり配向度が低
下しBrが低下するので好ましくなく、また1.0mm
を越えると、冷却速度が遅くなり、α−FeやFe1〜x
Coxが晶出しやすく、結晶粒径が大となり、Ndリッ
チ相の偏在も生じるため、磁気特性、特に保磁力ならび
に減磁曲線の角型性が低下するので好ましくないことに
よる。より好ましくは板厚0.05mm〜0.8mmで
ある。
In the present invention, the reason why the plate thickness of the magnet alloy slab having a homogeneous structure in which dendritic or columnar crystals and the R-rich phase are finely dispersed are limited to 0.01 mm to 1.0 mm is as follows. If it is less than 01 mm, the quenching effect is large, the average short-axis crystal grain size is smaller than 3 μm, and it is easy to be oxidized when powdered, so that the magnetic properties are deteriorated and the finely pulverized particles become polycrystalline. Since the degree of orientation decreases and Br decreases, it is not preferable.
, The cooling rate decreases, and α-Fe and Fe 1 to x
This is because Co x is easily crystallized, the crystal grain size becomes large, and the Nd-rich phase is unevenly distributed, so that the magnetic properties, particularly the coercive force and the squareness of the demagnetization curve are deteriorated, which is not preferable. More preferably, the thickness is 0.05 mm to 0.8 mm.

【0047】この発明のストリップキャスティング法に
より得られた特定組成のR−Fe−B−C系合金の断面
組織は、主相のR2Fe14(B1-xx)結晶が従来の鋳
型に鋳造して得られた鋳塊のものに比べて、約1/10
以上も微細であるが、前述のごとく短軸結晶粒径が1.
0μm未満の微細結晶を10%以下含有する平均短軸結
晶粒径が3μm〜15μmである。
The cross-sectional structure of the R-Fe-BC-based alloy having a specific composition obtained by the strip casting method of the present invention is such that the main phase R 2 Fe 14 (B 1-x C x ) crystal is a conventional mold. About 1/10 of the ingot obtained by casting
Although the above is fine, the short axis crystal grain size is 1.
The average short axis crystal grain size containing 10% or less of fine crystals of less than 0 μm is 3 μm to 15 μm.

【0048】[0048]

【実施例】実施例1 Ar減圧600torr雰囲気で溶湯温度1300℃の
第1表に示した組成(液相線温度1175℃)の合金溶
湯を、ノズルより回転数120rpmの外径300μm
の水冷Cu片ロール表面に、1次冷却速度5×103
/secにて鋳片温度800℃に冷却後、ロール離脱後
に急冷ロールと鋳片収容箱間(距離8m)で鋳片の上下
から圧力5kg/cm2、流量500l/minのAr
ガスを吹きつけ、さらに鋳片収容箱内にて圧力5kg/
cm2、流量500l/minのArガスを吹きつけ、
鋳片を610℃(固相線温度650℃)まで200℃/
minの2次冷却速度にてガス冷却して組成1では厚み
0.40mmの鋳片、組成2では厚み0.38mmの鋳
片を得た。
EXAMPLE 1 An alloy melt having a composition shown in Table 1 (liquidus temperature of 1175 ° C.) at a melt temperature of 1300 ° C. in an atmosphere of Ar reduced pressure of 600 torr and an outer diameter of 300 μm at a rotation speed of 120 rpm from a nozzle.
Primary cooling rate 5 × 10 3
After cooling to a slab temperature of 800 ° C./sec, and after the roll is separated, Ar with a pressure of 5 kg / cm 2 and a flow rate of 500 l / min from above and below the slab between the quenching roll and the slab storage box (distance 8 m).
Gas is blown, and the pressure is 5kg /
cm 2, blowing Ar gas at a flow rate of 500l / min,
Cast slab to 610 ° C (solidus temperature 650 ° C) at 200 ° C /
Gas cooling was performed at a secondary cooling rate of min to obtain a slab of 0.40 mm in thickness for composition 1 and a slab of 0.38 mm in thickness for composition 2.

【0049】得られた鋳片の断面を鏡面研摩して光学顕
微鏡(倍率400倍)で観察し、結晶500個について
短軸結晶粒径を線分法にて測定した結果、組成1では表
2のごとく短軸結晶粒径が1.0μm以下の微細結晶を
3.7%含有の平均短軸結晶粒径4.5μmで短軸結晶
粒径分布が0.3μm〜12.0μmの正方晶構造のR
2Fe14(B1-xx)型樹枝状結晶と10μm以下のR
−リッチ相が微細に分散した均質組織を有し、組成2で
は短軸結晶粒径が1.0μm以下の微細結晶を4.3%
含有の平均短軸結晶粒径4.3μmで短軸結晶粒径分布
が0.3μm〜11.6μmの正方晶R2Fe14(B1-x
x)型樹枝状結晶と10μm以下のR−リッチ相が微
細に分散した均質組織を有していた。
The section of the obtained slab was mirror-polished and observed with an optical microscope (400-fold magnification), and the minor axis crystal grain size of 500 crystals was measured by the line segment method. As described above, a tetragonal structure having an average short-axis crystal grain size of 4.5 μm and a short-axis crystal grain size distribution of 0.3 μm to 12.0 μm containing 3.7% of fine crystals having a short-axis crystal size of 1.0 μm or less. R
2 Fe 14 (B 1-x C x ) dendritic crystal and R of 10 μm or less
-Having a homogeneous structure in which the rich phase is finely dispersed, and in composition 2, 4.3% of fine crystals having a minor axis crystal grain size of 1.0 μm or less
Containing tetragonal R 2 Fe 14 (B 1-x) having an average short axis crystal grain size of 4.3 μm and a short axis crystal grain size distribution of 0.3 μm to 11.6 μm.
Cx ) type dendrites and an R-rich phase of 10 μm or less had a finely dispersed homogeneous structure.

【0050】得られた鋳片を粗粉砕後、ジェットミル粉
砕にて微粉砕してそれぞれ平均粉末粒径3.0μmの微
粉末を得た。前記粉末を磁場強度15kOeにてプレス
圧1ton/cm2にて成型後、真空にて1040℃に
4時間焼結後、900℃に1時間の時効処理を行い、得
られた試験片の磁気特性及び平均結晶粒径と耐食性試験
結果を表3に示す。耐食性試験は80℃×90%RH×
500時間の条件で単位面積当たりの酸化増量で表す。
なお、表3において、Hkは減磁曲線上でIが0.9×
Brになるときの逆磁界の強さである。
The obtained slab was coarsely pulverized and then finely pulverized by jet mill pulverization to obtain fine powder having an average powder particle size of 3.0 μm. The powder was molded at a magnetic field strength of 15 kOe under a press pressure of 1 ton / cm 2 , sintered in vacuum at 1040 ° C. for 4 hours, and then subjected to an aging treatment at 900 ° C. for 1 hour. Table 3 shows the average crystal grain size and the results of the corrosion resistance test. Corrosion resistance test is 80 ℃ × 90% RH ×
Expressed in terms of increased oxidation per unit area under the condition of 500 hours.
In Table 3, Hk is 0.9 × I on the demagnetization curve.
This is the strength of the reverse magnetic field when Br is reached.

【0051】比較例1 実施例1と同一組成の合金溶湯を用い、実施例1と同一
ロールを使用し、1次冷却速度7500℃/secにて
冷却し、ロール離脱時の鋳片温度は640℃であった。
さらに、ロール離脱後の鋳片を200℃/minの2次
冷却速度にてガス冷却して正方晶構造のR2Fe14(B
1-xx)型樹枝状結晶と10μm以下のRリッチ相が微
細に分散した均一組織を有する鋳片を得た。
Comparative Example 1 Using a molten alloy having the same composition as in Example 1, using the same rolls as in Example 1, and cooling at a primary cooling rate of 7500 ° C./sec. ° C.
Further, the slab after the roll was separated was gas-cooled at a secondary cooling rate of 200 ° C./min to obtain a tetragonal structure of R 2 Fe 14 (B
A cast piece having a uniform structure in which 1-x C x ) type dendritic crystals and an R-rich phase of 10 μm or less were finely dispersed was obtained.

【0052】得られた鋳片の厚みと実施例1と同一方法
にて短軸結晶粒径を測定した結果を表2に示す。また、
得られた鋳片をそれぞれ平均粉末粒径2.8μmに微粉
砕する以外は実施例1と同一条件にて焼結磁石を得た。
磁気特性及び平均結晶粒径の測定結果と耐食性試験結果
を表3に示す。
Table 2 shows the thickness of the obtained slab and the result of measuring the short-axis crystal grain size by the same method as in Example 1. Also,
A sintered magnet was obtained under the same conditions as in Example 1 except that each of the obtained cast pieces was finely pulverized to an average powder particle size of 2.8 μm.
Table 3 shows the measurement results of the magnetic properties and the average crystal grain size and the results of the corrosion resistance test.

【0053】比較例2 実施例1と同一組成の合金溶湯を用い、実施例1と同一
ロールを使用し、1次冷却速度1600℃/secで冷
却し、鋳片温度は1120℃であった。さらに、ロール
離脱後の鋳片を600℃まで100℃/minの2次冷
却速度でガス冷却して鋳片を得た。
Comparative Example 2 Using a molten alloy having the same composition as in Example 1, using the same roll as in Example 1, and cooling at a primary cooling rate of 1600 ° C./sec, the slab temperature was 1120 ° C. Further, the slab after the roll was separated was gas cooled at a secondary cooling rate of 100 ° C./min to 600 ° C. to obtain a slab.

【0054】得られた鋳片の厚みと実施例1と同一方法
にて短軸結晶粒径を測定した結果を表2に示す。また、
得られた鋳片をそれぞれ平均粉末粒径3.2μmに微粉
砕する以外は実施例1と同一条件にて焼結磁石を得た。
磁気特性及び平均結晶粒径の測定結果と耐食性試験結果
を表3に示す。
Table 2 shows the thickness of the obtained cast slab and the result of measuring the minor axis crystal grain size by the same method as in Example 1. Also,
A sintered magnet was obtained under the same conditions as in Example 1 except that each of the obtained cast pieces was finely pulverized to an average powder particle size of 3.2 μm.
Table 3 shows the measurement results of the magnetic properties and the average crystal grain size and the results of the corrosion resistance test.

【0055】比較例3 実施例1と同一組成の合金溶湯を用い、実施例1と同一
のロールを使用し、2次冷却速度を20℃/minにす
る以外は実施例1と同一の製造条件にて鋳片を得た。
Comparative Example 3 The same manufacturing conditions as in Example 1 were used, except that a molten alloy having the same composition as in Example 1 was used, the same roll as in Example 1 was used, and the secondary cooling rate was 20 ° C./min. To obtain a slab.

【0056】得られた鋳片の厚みと実施例1と同一方法
にて短軸結晶粒径を測定した結果を表2に示す。また、
得られた鋳片をそれぞれ平均粉末粒径3.4μmに微粉
砕する以外は実施例1と同一条件にて焼結磁石を得た。
焼結磁石の磁気特性及び平均結晶粒径の測定結果と耐食
性試験結果を表3に示す。
Table 2 shows the thickness of the obtained cast slab and the result of measuring the minor axis crystal grain size by the same method as in Example 1. Also,
A sintered magnet was obtained under the same conditions as in Example 1 except that each of the obtained cast pieces was finely pulverized to an average powder particle size of 3.4 μm.
Table 3 shows the measurement results of the magnetic properties and the average crystal grain size of the sintered magnet and the results of the corrosion resistance test.

【0057】比較例4 実施例1と同一組成の合金溶湯、及び同一のロールを使
用し、2次冷却速度250℃/minで750℃までガ
ス冷却した後、600℃まで20℃/minで冷却する
以外は実施例1と同一の製造条件にて鋳片を得た。
COMPARATIVE EXAMPLE 4 Using a molten alloy having the same composition as in Example 1 and the same roll, gas-cooled to 750 ° C. at a secondary cooling rate of 250 ° C./min, and then cooled to 600 ° C. at 20 ° C./min. A slab was obtained under the same manufacturing conditions as in Example 1 except that the casting was performed.

【0058】得られた鋳片の厚みと実施例1と同一方法
にて短軸結晶粒径を測定した結果を表2に示す。また、
得られた鋳片をそれぞれ平均粉末粒径3.3μmに微粉
砕する以外は実施例1と同一条件にて焼結磁石を得た。
得られた焼結磁石の磁気特性及び平均結晶粒径の測定結
果と耐食性試験結果を表3に示す。
Table 2 shows the thickness of the obtained cast slab and the result of measuring the minor axis crystal grain size by the same method as in Example 1. Also,
A sintered magnet was obtained under the same conditions as in Example 1 except that each of the obtained cast pieces was finely pulverized to an average powder particle size of 3.3 μm.
Table 3 shows the measurement results of the magnetic properties and the average crystal grain size and the corrosion resistance test results of the obtained sintered magnet.

【0059】比較例5 12.8Nd−1.5Dy−10Co−1.0B−6.
4C−68.3Fe組成の合金溶湯を寸法30mm×1
00mm×200mmの鋳型に鋳込んで得られた鋳塊を
50mm角以下に破断して、不活性ガス雰囲気で900
℃×10時間の溶体化処理をした。溶体化処理後の鋳塊
の結晶粒径を測定した結果を表2に示す。Rリッチ相は
局部的に70μmの大きさで点在していた。前記破断片
を平均粉末粒径3.2μmに微粉砕する以外は実施例1
と同一条件にて焼結磁石を得た。焼結磁石の磁気特性及
び平均結晶粒径の測定結果と耐食性試験結果を表3に示
す。
Comparative Example 5 12.8Nd-1.5Dy-10Co-1.0B-6.
A 4C-68.3Fe composition molten alloy was sized 30 mm x 1
The ingot obtained by casting into a 00 mm × 200 mm mold is broken into 50 mm square or less, and 900 mm in an inert gas atmosphere.
A solution treatment was performed at 10 ° C. × 10 hours. Table 2 shows the results of measuring the crystal grain size of the ingot after the solution treatment. The R-rich phase was locally scattered at a size of 70 μm. Example 1 except that the broken fragments were finely pulverized to an average powder particle size of 3.2 μm.
Under the same conditions as above, a sintered magnet was obtained. Table 3 shows the measurement results of the magnetic properties and the average crystal grain size of the sintered magnet and the results of the corrosion resistance test.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【発明の効果】この発明は、R−Fe−B−C系合金溶
湯を真空溶解炉にて溶解した後、タンディシュ先端部の
ノズルより急冷ロールに注湯し、溶湯を急冷ロールにて
特定の冷却速度にて1次冷却後、ロールより離脱した鋳
片を固相線温度以下に特定の冷却速度にて2次冷却する
ことにより、特定寸法の短軸結晶粒径且つ結晶粒径分布
を有する正方晶構造のR2Fe14(B1-xx)型樹枝状
結晶あるいは柱状結晶と特定のRリッチ相とが微細に分
散した均質組織からなる特定厚の急冷鋳片を得るもの
で、配向度の低下及び磁石化の際の粉砕時の微粉化、粉
末の酸化を防止でき、耐食性のすぐれ磁気特性の優れた
R−Fe−B−C系磁石合金鋳片が得られる。
According to the present invention, after the molten R-Fe-BC alloy is melted in a vacuum melting furnace, the molten metal is poured from a nozzle at the tip of the tundish into a quenching roll, and the molten metal is specified by the quenching roll. After the primary cooling at the cooling rate, the slab separated from the rolls is secondarily cooled at a specific cooling rate below the solidus temperature to have a short-axis crystal grain size and crystal grain size distribution of a specific size. A quenched slab of a specific thickness having a homogeneous structure in which a R 2 Fe 14 (B 1-x C x ) type dendritic or columnar crystal having a tetragonal structure and a specific R-rich phase are finely dispersed is obtained. It is possible to prevent the reduction of the degree of orientation, the pulverization at the time of pulverization at the time of magnetizing, and the oxidation of the powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 順一郎 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 Fターム(参考) 5E040 AA04 CA01 HB17 NN01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Junichiro Baba 2- 15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works F-term (reference) 5E040 AA04 CA01 HB17 NN01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R12〜18at%、B+C=6〜10
at%(但しB:2〜6at%、C:4〜8at%)、
残部Fe(但し、Feの一部をCo、Niの1種または
2種にて置換できる)を主成分とし、短軸結晶粒径が
1.0μm未満の微細結晶を10%以下含有する平均短
軸結晶粒径3μm〜15μm、且つ短軸結晶粒径分布が
0.01μm〜40μmのR2Fe14(B1-xx)型樹
枝状あるいは柱状結晶と、10μm以下のR−リッチ相
とが、微細に分散した均質組織からなり、鋳片厚みが
0.01mm〜1.0mmからなることを特徴とする耐
食性のすぐれたR−Fe−B−C系磁石合金用鋳片。
1. R12-18 at%, B + C = 6-10
at% (B: 2 to 6 at%, C: 4 to 8 at%),
Average short-term content of 10% or less of fine crystals whose main component is the remainder Fe (however, a part of Fe can be replaced by one or two of Co and Ni) and the minor axis crystal diameter is less than 1.0 μm. R 2 Fe 14 (B 1-x C x ) type dendritic or columnar crystals having an axial crystal grain size of 3 μm to 15 μm and a short axis crystal grain size distribution of 0.01 μm to 40 μm, and an R-rich phase of 10 μm or less. Is a slab for an R-Fe-BC-based magnet alloy having excellent corrosion resistance, which has a finely dispersed homogeneous structure and a slab thickness of 0.01 mm to 1.0 mm.
JP2001309701A 2001-10-05 2001-10-05 R-Fe-B-C magnet alloy slab with excellent corrosion resistance Expired - Lifetime JP3953768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309701A JP3953768B2 (en) 2001-10-05 2001-10-05 R-Fe-B-C magnet alloy slab with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309701A JP3953768B2 (en) 2001-10-05 2001-10-05 R-Fe-B-C magnet alloy slab with excellent corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18841995A Division JP3479168B2 (en) 1995-06-30 1995-06-30 Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2002173744A true JP2002173744A (en) 2002-06-21
JP3953768B2 JP3953768B2 (en) 2007-08-08

Family

ID=19128804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309701A Expired - Lifetime JP3953768B2 (en) 2001-10-05 2001-10-05 R-Fe-B-C magnet alloy slab with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3953768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156181A1 (en) * 2013-03-29 2014-10-02 中央電気工業株式会社 Starting-material alloy for r-t-b type magnet and process for producing same
JP2020155633A (en) * 2019-03-20 2020-09-24 Tdk株式会社 R-t-b based permanent magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156181A1 (en) * 2013-03-29 2014-10-02 中央電気工業株式会社 Starting-material alloy for r-t-b type magnet and process for producing same
CN105121682A (en) * 2013-03-29 2015-12-02 中央电气工业株式会社 Raw material alloy for R-T-B magnet and method for producing same
JP6005257B2 (en) * 2013-03-29 2016-10-12 和歌山レアアース株式会社 Raw material alloy for RTB-based magnet and method for producing the same
US10262779B2 (en) 2013-03-29 2019-04-16 Santoku Corporation R-T-B-based magnet material alloy and method for producing the same
US11145443B2 (en) 2013-03-29 2021-10-12 Santoku Corporation R-T-B-based magnet material alloy and method for producing the same
JP2020155633A (en) * 2019-03-20 2020-09-24 Tdk株式会社 R-t-b based permanent magnet
JP7387992B2 (en) 2019-03-20 2023-11-29 Tdk株式会社 RTB series permanent magnet

Also Published As

Publication number Publication date
JP3953768B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US7056393B2 (en) Method of making sintered compact for rare earth magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
US8182618B2 (en) Rare earth sintered magnet and method for producing same
JP4106099B2 (en) Method for producing slab for R-Fe-B magnet alloy
JP3449166B2 (en) Alloy for rare earth magnet and method for producing the same
JPH07176414A (en) Manufacture of permanent magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
WO2005031023A1 (en) Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JP3479168B2 (en) Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JP2003213383A (en) Rare earth alloy, production method therefor and permanent magnet
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPH01706A (en) Rare earth magnet manufacturing method
JPH04345003A (en) Manufacture of rare earth-transient metal base magnet
JPS63216947A (en) Sintered-type rare-earth magnet material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071004

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

EXPY Cancellation because of completion of term