[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002173313A - Method for manufacturing silicon tetrachloride - Google Patents

Method for manufacturing silicon tetrachloride

Info

Publication number
JP2002173313A
JP2002173313A JP2000368081A JP2000368081A JP2002173313A JP 2002173313 A JP2002173313 A JP 2002173313A JP 2000368081 A JP2000368081 A JP 2000368081A JP 2000368081 A JP2000368081 A JP 2000368081A JP 2002173313 A JP2002173313 A JP 2002173313A
Authority
JP
Japan
Prior art keywords
reactor
chlorine
silicon
reaction
silicon tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000368081A
Other languages
Japanese (ja)
Inventor
Minetaka Kobayashi
峯登 小林
Yasushi Matsuo
靖史 松尾
Kenichiro Nishiwaki
建一郎 西脇
Kazuhiko Ono
和彦 小野
Keiji Yamamoto
啓二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000368081A priority Critical patent/JP2002173313A/en
Publication of JP2002173313A publication Critical patent/JP2002173313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing silicon tetrachloride by reacting metal silicon with chlorine. SOLUTION: Silicon tetrachloride is manufactured by supplying chlorine whose volume is increased by three to ten by diluting with an inert gas to the lower part of a reactor and reacting the supplied chlorine with metal silicon of a semi-fluidized (slagging) state at 450-800 deg.C. The metal silicon having <=5 mm particle size and >=90% purity is preferably used. It is preferable to spray silicon tetrachloride from the upper part of the reactor for the purpose of removing the reaction heat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属珪素と塩素を反
応させて四塩化珪素を得る製造方法に関する。
The present invention relates to a method for producing silicon tetrachloride by reacting metallic silicon with chlorine.

【0002】[0002]

【従来の技術】四塩化珪素を製造するに固定床でSi含
量の高くないフェロシリコンと塩素および塩酸を原料と
する方法がある(特公昭52−38518)。この方法
は残査分が多く、特に塩化鉄は潮解性があるために排出
口を詰まらせるトラブルが多い。また塩素との反応は激
しく、反応は局部的に進行することが多く、均一に進行
させることは難しかった。塩素の偏流を生じ、しばしが
塩素が反応器の外で検出される。一方流動床では局所反
応はないが、ガス量が多く、反応器外で検出されること
は止む終えないという特徴を有している。余分な塩素の
分離除去には多大なコストがかかるので塩素の反応率
は、極力高いことが望ましい。その他の製造方法として
は、例えば微粉炭化珪素を塩素化して得る方法(特開昭
63−117907号)、珪石をコークスと混合して塩
素化する方法(特公昭60−118623号)などがあ
る。
2. Description of the Related Art To produce silicon tetrachloride, there is a method using ferrosilicon having a low Si content and chlorine and hydrochloric acid as raw materials in a fixed bed (JP-B-52-38518). This method has a lot of residue, especially iron chloride is deliquescent, so there are many troubles that clog the outlet. Further, the reaction with chlorine was intense, the reaction often proceeded locally, and it was difficult to proceed uniformly. Chlorine drift occurs, and often chlorine is detected outside the reactor. On the other hand, the fluidized bed has no local reaction, but has a characteristic that the amount of gas is large and detection outside the reactor does not stop. Since a great deal of cost is required to separate and remove excess chlorine, it is desirable that the chlorine conversion be as high as possible. Other production methods include, for example, a method of chlorinating finely divided silicon carbide (JP-A-63-117907) and a method of mixing silica stone with coke to chlorinate (Japanese Patent Publication No. 60-118623).

【0003】[0003]

【発明が解決しようとする課題】本発明は反応熱の除去
を容易にし、反応の制御および塩素の偏流を防止する新
規な四塩化珪素の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a novel method for producing silicon tetrachloride which facilitates the removal of heat of reaction, controls the reaction and prevents the drift of chlorine.

【0004】[0004]

【課題を解決するための手段】本発明は、不活性なガス
で3〜10倍(体積比)に希釈し反応器下部から供給す
る塩素と、金属珪素を半流動状態(スラッギング)で反
応温度450℃から800℃で反応させる四塩化珪素の
製造方法である。金属珪素は粒度が5mm以下、純度が
90%以上のものが好ましく、また反応熱の除去には四
塩化珪素を反応器の上部より噴霧することが好ましい。
反応の制御および塩素の偏流防止には、塩素を不活性な
ガスである例えば四塩化珪素あるいは窒素ガスで希釈し
て導入し、金属珪素を半流動状態で反応させることで反
応は均一化状態で進行し、反応を良好に制御することが
できる。
According to the present invention, chlorine supplied from the lower part of the reactor after being diluted 3 to 10 times (by volume) with an inert gas and metallic silicon are reacted at a reaction temperature in a semi-fluid state (slugging). This is a method for producing silicon tetrachloride which is reacted at 450 ° C. to 800 ° C. The metal silicon preferably has a particle size of 5 mm or less and a purity of 90% or more, and it is preferable to spray silicon tetrachloride from the upper part of the reactor to remove reaction heat.
In order to control the reaction and prevent the drift of chlorine, chlorine is diluted with an inert gas such as silicon tetrachloride or nitrogen gas and introduced, and the metal silicon is allowed to react in a semi-fluid state, so that the reaction is performed in a uniform state. Progress and the reaction can be well controlled.

【0005】[0005]

【発明の実施の形態】金属珪素は半流動状態(スラッギ
ング)となることが必要であり、そうであればその大き
さ、形状、充填量等には特に限定されないが、大きさは
好ましくは粒度5mm以下、更に好ましくは350〜6
00μmの範囲のものである。大きいと金属珪素は流動
しにくく、半流動状態が得にくく塩素の偏流を起こしや
すくなる。また、小さいと350μm未満では飛散しや
すく、ダストとなってロスしやすくなる。金属珪素は反
応器に20〜800mmの厚さで充填されるのが好まし
く、更に好ましくは200〜500mmの範囲である。
20mm未満では塩素が反応器の外で検出されるように
なり、800mmを越すと金属珪素は流動化(スラッギ
ング)し難くなる。なおここで厚さとは静置状態でのそ
れを意味する。金属珪素は粒状であることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is necessary that metallic silicon be in a semi-fluid state (slugging), and if so, its size, shape, filling amount, etc. are not particularly limited, but the size is preferably a particle size. 5 mm or less, more preferably 350 to 6
It is in the range of 00 μm. If it is large, metallic silicon is less likely to flow, and it is difficult to obtain a semi-fluid state, which tends to cause chlorine drift. On the other hand, if it is smaller than 350 μm, it is liable to be scattered and to be easily lost as dust. Preferably, the metallic silicon is filled in the reactor in a thickness of 20 to 800 mm, more preferably in the range of 200 to 500 mm.
If it is less than 20 mm, chlorine will be detected outside the reactor, and if it exceeds 800 mm, it will be difficult for the metallic silicon to fluidize (slag). Here, the thickness means that in a stationary state. The metallic silicon is preferably in the form of particles.

【0006】金属珪素の純度は90%以上であることが
好ましく、残査を少なくすることができる。残査の成分
はTi、Fe、Alなどの塩化物であり、これらの物質
は多量に存在すると、反応器や配管の内面に付着し、閉
塞を起こす原因となる。気流の終末速度に相当するまで
反応して小さくかつ軽くなった残査は上部へ飛散する。
それは反応器に続くサイクロンで捕集され、系外へ排出
される。湿式捕集でないと残査の乾燥などの処理は不要
となる。純度が低いものや、粒度の大きい金属珪素であ
っても、その量が前述の好ましい粒度、形状、純度の金
属珪素全体の20%以下であって、スラッギングが可能
であり、四塩化珪素の純度が目的とする用途において要
求される範囲であるなら使用することができる。
[0006] The purity of metallic silicon is preferably 90% or more, and the residue can be reduced. The components of the residue are chlorides such as Ti, Fe, and Al. If these substances are present in a large amount, they adhere to the inner surfaces of the reactor and pipes, causing a blockage. Residues which have become small and light in response to the terminal velocity of the air flow are scattered upward.
It is collected in a cyclone following the reactor and discharged out of the system. If it is not wet collection, processing such as drying of the residue becomes unnecessary. Even if the purity of the silicon metal is low or the particle size is large, the amount thereof is 20% or less of the whole metal silicon having the above-mentioned preferable particle size, shape and purity, slugging is possible, and the purity of silicon tetrachloride is high. Can be used if is within the range required for the intended use.

【0007】不活性なガスで3〜10倍(体積比)に希
釈し反応器下部から供給する塩素と、金属珪素は半流動
状態(スラッギング)で反応温度450℃から800℃
で反応させる。ここで反応温度とは金属珪素層の温度を
意味する。反応温度は450℃以上が必要であり、60
0〜800℃の範囲であることが好ましい。450℃未
満では反応が極めて遅い。また、反応温度が高い分につ
いては問題はないが、反応器の材質的に耐食性のあるも
のがない。従って800℃以下がよい。
[0007] Chlorine and metal silicon diluted from 3 to 10 times (volume ratio) with an inert gas and supplied from the lower part of the reactor have a reaction temperature of 450 ° C to 800 ° C in a semi-fluid state (slugging).
To react. Here, the reaction temperature means the temperature of the metal silicon layer. The reaction temperature must be 450 ° C. or higher,
The temperature is preferably in the range of 0 to 800 ° C. If the temperature is lower than 450 ° C., the reaction is extremely slow. Although there is no problem with the high reaction temperature, none of the reactor materials has corrosion resistance. Therefore, the temperature is preferably 800 ° C. or less.

【0008】金属珪素と塩素との反応は膨大な発熱反応
である。この反応熱を除去するため四塩化珪素を反応器
上部よりシャワー状にして噴霧し、その蒸発熱でもって
反応熱を除去することが好ましい。直接シャワー状にし
て噴霧することが好ましい。噴霧する四塩化珪素は生成
した四塩化珪素を用いることができその量は特に限定さ
れないが、生成量の70〜90%の範囲が好ましい。
The reaction between metallic silicon and chlorine is a huge exothermic reaction. In order to remove this heat of reaction, it is preferable to spray silicon tetrachloride from the upper part of the reactor in the form of a shower, and remove the heat of reaction by the heat of evaporation. It is preferable to spray directly in the form of a shower. As the silicon tetrachloride to be sprayed, the generated silicon tetrachloride can be used, and the amount thereof is not particularly limited, but is preferably in the range of 70 to 90% of the generated amount.

【0009】反応は極めて急速に進行する。塩素と接す
る部分でしばしば局所反応となり、金属珪素は赤熱し、
反応温度は部分的に1000℃を超えることがある。局
所過熱防止のため反応はスラッギング状態で行う。ここ
でスラッギンング状態とは、金属珪素の粒子全体が浮遊
することなく流動化し飛散しない状態をいう。この時入
り口付近の急速な反応を避けるため、塩素は塩素と反応
しない不活性なガスにより3〜10倍(体積比)に希釈
することが好ましい、不活性なガスとしては例えばガス
化した四塩化珪素、窒素ガス等がある。希釈された塩素
は反応器の下部から導入される。
The reaction proceeds very rapidly. Often a local reaction occurs in contact with chlorine, metallic silicon glows red,
The reaction temperature can partially exceed 1000 ° C. The reaction is performed in a slugging state to prevent local overheating. Here, the slugging state refers to a state in which the entire metal silicon particles are fluidized without floating and do not scatter. At this time, in order to avoid a rapid reaction near the entrance, chlorine is preferably diluted 3 to 10 times (by volume) with an inert gas that does not react with chlorine. As the inert gas, for example, gasified tetrachloride is used. There are silicon, nitrogen gas and the like. Diluted chlorine is introduced from the bottom of the reactor.

【0010】反応器は金属珪素がスラッギング状態を維
持できるものであれば特に限定されないが、固定床反応
器を好適に用いることができる。反応器の底部に炭素製
の目皿(デストリビューター)を置き、目皿の下部には
塩素の導入装置を置く。反応器は高温塩素に耐える断熱
材、例えばアルミナ、炭素、炭化珪素等を材料とし、こ
の外部に鋼製のケースより成る容器を用いる。また安定
したスラッギング状態を生成するため目皿の上にピッチ
#50〜200mmの格子を入れた。
[0010] The reactor is not particularly limited as long as the metal silicon can maintain a slugging state, but a fixed bed reactor can be suitably used. A carbon plate (distributor) is placed at the bottom of the reactor, and a chlorine introducing device is placed at the bottom of the plate. The reactor is made of a heat insulating material that can withstand high-temperature chlorine, for example, alumina, carbon, silicon carbide, or the like, and a vessel made of a steel case is used outside the reactor. In addition, a grid having a pitch of # 50 to 200 mm was placed on the perforated plate to generate a stable slugging state.

【0011】塩素は極めて高い反応率となり、99.9
%以上に達する場合がある。そのため精製する場合に四
塩化珪素と未反応塩素との分離が容易であり、また分離
した塩素の処理設備も小さくて済む。更に高い反応率を
得るために、シャワー部分の上に450℃以上に加熱し
た粗い粒径の金属珪素を入れた層を置くとよい。
Chlorine has a very high conversion rate of 99.9.
% Or more. Therefore, in the case of purification, separation of silicon tetrachloride and unreacted chlorine is easy, and the equipment for treating the separated chlorine can be small. In order to obtain a higher reaction rate, a layer containing metal silicon having a coarse particle diameter heated to 450 ° C. or higher may be placed on the shower portion.

【0012】[0012]

【実施例】実施例1 反応器1に金属珪素を充填する。反応して生成した四塩
化珪素は冷却器2により冷却される。その後ガス中に同
伴したTi、Fe、Alなどの金属塩化物および、反応
して小さくなり、反応器1より飛散した未反応金属珪素
粒子はサイクロン3にて捕集し、その下部より排出す
る。サイクロン3にて固形分を分離された四塩化珪素ガ
スは凝縮器4にて凝縮され、反応液タンク5に蓄えられ
る。反応液5の液の一部は10のシャワーへといき反応
器1の冷却のために使われる。また蒸発器8にてガス化
し、反応器1内に、導入される塩素を希釈するためにも
用いられる。内径200mmの反応器1内に、粒度35
0〜600μm、純度99.6%の金属珪素(不純物の
主成分Fe420ppm、Al=920ppm、Ca4
50ppm)を300mmの厚さ(2.0kg)で充填
する。ヒーターで600℃まで予熱しておく。そこに塩
素6.0dm3/minを、蒸発器にてガス化した四塩
化珪素ガス80dm3/minにて希釈した混合ガスを
反応器の下部より吹き込むことで反応が開始する。この
ときの反応器入口圧力は0.03kPaである。さらに
反応器の上部より120cm3/minの四塩化珪素液
を噴霧する。反応温度は、金属珪素の層の温度を熱電対
にて測定し、600℃に保った。13.6kg/hrの
四塩化珪素が生成した。このときの反応残査量は9g
(残査率として0.44%)であった。塩素の反応率は
99.9%以上であった。
EXAMPLE 1 A reactor 1 is filled with metallic silicon. The silicon tetrachloride generated by the reaction is cooled by the cooler 2. Thereafter, metal chlorides such as Ti, Fe, and Al entrained in the gas and unreacted metal silicon particles which have become smaller by reaction and scattered from the reactor 1 are collected by the cyclone 3 and discharged from the lower part thereof. The silicon tetrachloride gas from which the solid content has been separated in the cyclone 3 is condensed in the condenser 4 and stored in the reaction liquid tank 5. A part of the reaction solution 5 goes to 10 showers and is used for cooling the reactor 1. It is also used for diluting chlorine introduced into the reactor 1 by gasification in the evaporator 8. In a reactor 1 having an inner diameter of 200 mm, a particle size of 35
0 to 600 μm, 99.6% pure metal silicon (main component of impurities: Fe 420 ppm, Al = 920 ppm, Ca 4
50 ppm) with a thickness of 300 mm (2.0 kg). Preheat to 600 ° C with a heater. There chlorine 6.0dm 3 / min, the reaction by blowing from the bottom of the reactor a mixed gas prepared by diluting with silicon tetrachloride gas 80dm 3 / min gasified starts in the evaporator. At this time, the reactor inlet pressure is 0.03 kPa. Further, a silicon tetrachloride solution of 120 cm 3 / min is sprayed from the upper part of the reactor. The reaction temperature was maintained at 600 ° C. by measuring the temperature of the metal silicon layer with a thermocouple. 13.6 kg / hr of silicon tetrachloride was produced. At this time, the residual reaction amount was 9 g.
(Residual rate: 0.44%). The reaction rate of chlorine was 99.9% or more.

【0013】実施例2 実施例1と金属珪素の純度が90%のものを用いて行っ
た。反応状況は実施例1とほぼ同じであるが、残査量は
約200gであり、得られた四塩化珪素は12.2kg
/hであった。塩素の反応率は99.9%以上であっ
た。
Example 2 Example 1 was carried out using a metal silicon having a purity of 90%. The reaction situation was almost the same as in Example 1, but the residual amount was about 200 g, and the obtained silicon tetrachloride weighed 12.2 kg.
/ H. The reaction rate of chlorine was 99.9% or more.

【0014】比較例1 実施例と試験条件は同じで、反応器下部からは塩素のみ
を導入し、四塩化珪素で希釈せずに行った。塩素と珪素
とが接する付近は赤熱し、部分的に反応は進行し、しば
らくすると塩素の偏流が起こり、反応器出口からは塩素
が1%検出された。
Comparative Example 1 The test conditions were the same as those of the example, and only chlorine was introduced from the lower part of the reactor, and the test was carried out without dilution with silicon tetrachloride. The vicinity of the contact between chlorine and silicon glowed red, the reaction partially proceeded, and after a while, chlorine drift occurred, and 1% of chlorine was detected from the reactor outlet.

【0015】[0015]

【発明の効果】本発明により次のような効果が得られ
る。 1.反応器内塩素入口付近での急速な局所反応を回避で
き、反応器中の金属珪素層全体で均一な反応が得られ
る。 2.金属珪素粒子を十分に反応させることができるので
非常に残査が少ない。 3.塩素の反応率99%以上と極めて高い反応率が得ら
れる。 4.原料中の不純物に由来するTi、Fe、Alなどの
金属珪素塩化物などの副反応物や反応器から飛散する未
反応の金属シリコン粒子を乾式のサイクロンで捕集する
ので、湿式捕集のように残査の乾燥などの処理は不要で
ある。 5.特別な精製装置がなくとも高純度の四塩化珪素が得
られる。
According to the present invention, the following effects can be obtained. 1. A rapid local reaction near the chlorine inlet in the reactor can be avoided, and a uniform reaction can be obtained in the entire metal silicon layer in the reactor. 2. Since the silicon metal particles can be sufficiently reacted, there is very little residue. 3. An extremely high conversion of 99% or more of chlorine is obtained. 4. It collects by-products such as metal silicon chlorides such as Ti, Fe and Al originating from impurities in the raw materials and unreacted metallic silicon particles scattered from the reactor with a dry cyclone. No treatment such as drying of the residue is required. 5. High-purity silicon tetrachloride can be obtained without special purification equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反応装置FIG. 1 Reaction apparatus

【図2】反応器FIG. 2 Reactor

【図3】反応器FIG. 3 Reactor

【図4】反応器FIG. 4 Reactor

【符号の説明】[Explanation of symbols]

1:反応器 2:冷却器 3:サイクロン 4:凝縮器 5:反応液タンク 6、7:ポンプ 8:蒸発器 9:排出弁 10:スプレーノズル 11、12:流量調節弁 16:カーボン製目皿 17:反応器断熱材 18:ケース 21:金属珪素 22:目皿 31:格子 1: Reactor 2: Cooler 3: Cyclone 4: Condenser 5: Reaction liquid tank 6, 7: Pump 8: Evaporator 9: Discharge valve 10: Spray nozzle 11, 12: Flow control valve 16: Carbon plate 17: Insulation material for reactor 18: Case 21: Metallic silicon 22: Plate 31: Grid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 和彦 新潟県西頸城郡青海町大字青海2209番地 電気化学工業株式会内 (72)発明者 山本 啓二 新潟県西頸城郡青海町大字青海2209番地 電気化学工業株式会内 Fターム(参考) 4G072 AA12 BB05 GG03 HH01 JJ06 MM38 RR17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiko Ono 2209 Aomi, Aomi-cho, Nishikubiki-gun, Niigata Prefecture Inside the Electrochemical Industry Co., Ltd. F-term in stock association (reference) 4G072 AA12 BB05 GG03 HH01 JJ06 MM38 RR17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】不活性なガスで3〜10倍(体積比)に希
釈し反応器下部から供給する塩素と、金属珪素を半流動
状態(スラッギング)で反応温度450℃から800℃
で反応させる四塩化珪素の製造方法。
1. A reaction temperature of 450 ° C. to 800 ° C. in a semi-fluid state (slugging) of chlorine and metal silicon diluted from 3 to 10 times (volume ratio) with an inert gas and supplied from the lower part of the reactor.
For producing silicon tetrachloride.
【請求項2】粒度が5mm以下、純度が90%以上の金
属珪素である請求項1の四塩化珪素の製造方法。
2. The method for producing silicon tetrachloride according to claim 1, wherein the metal silicon has a particle size of 5 mm or less and a purity of 90% or more.
【請求項3】以下の要件の一以上を具備する請求項1ま
たは請求項2の四塩化珪素の製造方法。 1.四塩化珪素を反応器上部より金属珪素に噴霧する 2.反応器が炭素製の目皿(デストリビューター)を有
する 3.反応器が高温塩素に耐える断熱材とこれを囲う鋼製
のケースを有する 4.金属珪素が固定床反応装置に20〜800mm充填
されている
3. The method for producing silicon tetrachloride according to claim 1, wherein one or more of the following requirements are satisfied. 1. 1. Spray silicon tetrachloride onto metal silicon from the top of the reactor 2. The reactor has a carbon plate (distributor) 3. The reactor has high temperature chlorine-resistant insulation and a steel case surrounding it. Metal silicon is packed in a fixed bed reactor in 20 to 800 mm
JP2000368081A 2000-12-04 2000-12-04 Method for manufacturing silicon tetrachloride Pending JP2002173313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368081A JP2002173313A (en) 2000-12-04 2000-12-04 Method for manufacturing silicon tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368081A JP2002173313A (en) 2000-12-04 2000-12-04 Method for manufacturing silicon tetrachloride

Publications (1)

Publication Number Publication Date
JP2002173313A true JP2002173313A (en) 2002-06-21

Family

ID=18838396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368081A Pending JP2002173313A (en) 2000-12-04 2000-12-04 Method for manufacturing silicon tetrachloride

Country Status (1)

Country Link
JP (1) JP2002173313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120996A1 (en) * 2007-04-02 2008-10-09 Norsk Hydro Asa Process for production of silicon tetrachloride by reaction of silicon metal and chlorine with internal cooling
WO2013089014A1 (en) 2011-12-16 2013-06-20 東亞合成株式会社 Method for producing high-purity chloropolysilane
CN103449445A (en) * 2013-08-19 2013-12-18 浙江富士特集团有限公司 Production device of silicon tetrachloride by use of direct method
CN109467091A (en) * 2018-12-25 2019-03-15 天津中科拓新科技有限公司 A kind of energy saver and method of silicon tetrachloride synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120996A1 (en) * 2007-04-02 2008-10-09 Norsk Hydro Asa Process for production of silicon tetrachloride by reaction of silicon metal and chlorine with internal cooling
WO2013089014A1 (en) 2011-12-16 2013-06-20 東亞合成株式会社 Method for producing high-purity chloropolysilane
US9085465B2 (en) 2011-12-16 2015-07-21 Toagosei Co. Ltd. Manufacturing method of high-purity chloropolysilane
CN103449445A (en) * 2013-08-19 2013-12-18 浙江富士特集团有限公司 Production device of silicon tetrachloride by use of direct method
CN103449445B (en) * 2013-08-19 2015-11-18 浙江富士特集团有限公司 A kind of direct method produces the production equipment of silicon tetrachloride
CN109467091A (en) * 2018-12-25 2019-03-15 天津中科拓新科技有限公司 A kind of energy saver and method of silicon tetrachloride synthesis

Similar Documents

Publication Publication Date Title
JP3816141B2 (en) Method for producing lithium sulfide
US20110297884A1 (en) Method of producing trichlorosilane (TCS) rich chlorosilane product stably from a fluidized gas phase reactor (FBR) and the structure of the reactor -II
JP5635004B2 (en) Apparatus and process for hydrogenation of silicon tetrahalides and silicon to trihalosilanes
CN100489128C (en) Method for producing titanium from titanium tetrachloride and magnesium reaction in fluid bed reactor
KR20110110196A (en) Processes and systems for producing silicon tetrafluoride from fluorosilicates in a fluidized bed reactor
US6602482B2 (en) Separation of metal chlorides from their suspensions in chlorosilanes
JPH04308011A (en) Manufacture of tungsten powder using fluidized bed
US4044109A (en) Process for the hydrochlorination of elemental silicon
EP2540666B1 (en) Method for manufacturing trichlorosilane
US20060086310A1 (en) Production of high grade silicon, reactor, particle recapture tower and use of the aforementioned
JPH0264006A (en) Production of solar silicon
US20140050648A1 (en) Preparation of chlorosilanes from very finely divided ultra-pure silicon
JP2002173313A (en) Method for manufacturing silicon tetrachloride
JPS61286211A (en) Manufacture of chlorosilane
JPH0222004B2 (en)
WO2013089014A1 (en) Method for producing high-purity chloropolysilane
JPS6221706A (en) Recycling production of silicon or silicon compound via trichlorosilane
RU2176993C2 (en) Method of preparing 1,2-dichloroethane and device for carrying it out
US3148035A (en) Apparatus for the continuous production of silicon chloroform and/or silicon tetrachloride
JPH07206421A (en) Production of silicon tetrachloride
US3207579A (en) Process for producing hydrogen fluoride
JPH10139786A (en) Production of vinyltrichlorosilane
JP2855578B2 (en) Method for producing disilicon hexachloride
JPS59195519A (en) Manufacture of hexachlorodisilane
WO1997021628A1 (en) Process for simultaneously preparing anhydrous aluminum chloride and zinc