JP2002168174A - Linear motor compressor - Google Patents
Linear motor compressorInfo
- Publication number
- JP2002168174A JP2002168174A JP2000366827A JP2000366827A JP2002168174A JP 2002168174 A JP2002168174 A JP 2002168174A JP 2000366827 A JP2000366827 A JP 2000366827A JP 2000366827 A JP2000366827 A JP 2000366827A JP 2002168174 A JP2002168174 A JP 2002168174A
- Authority
- JP
- Japan
- Prior art keywords
- axial direction
- yoke
- coil
- permanent magnet
- linear motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 claims abstract description 22
- 238000007906 compression Methods 0.000 claims abstract description 22
- 230000002093 peripheral effect Effects 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 230000004907 flux Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/001—Gas cycle refrigeration machines with a linear configuration or a linear motor
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リニアモータ圧縮
機に係り、特に、シリンダ内のピストンとして機能する
可動コイルを2組設け、これらを対向配置して往復可動
するリニアモータ圧縮機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor compressor, and more particularly, to a linear motor compressor in which two sets of movable coils functioning as pistons in a cylinder are provided, and these are arranged to face each other and reciprocate.
【0002】[0002]
【従来の技術】従来より冷凍機用ガス圧縮機として、ケ
ース内に2組のリニアモータを対向配置して、中央部に
圧縮室を配してその両端にシリンダを設け、各ピストン
をリニアモータの可動コイルに連結して圧縮室内の冷媒
ガスを圧縮するリニアモータ圧縮機が知られている。2. Description of the Related Art Conventionally, as a gas compressor for a refrigerator, two sets of linear motors are arranged opposite to each other in a case, a compression chamber is arranged in the center, cylinders are provided at both ends thereof, and each piston is connected to a linear motor. A linear motor compressor that compresses refrigerant gas in a compression chamber by connecting to a movable coil is known.
【0003】この種の圧縮機は、主にスターリング冷凍
装置に組み込まれシリンダ内に挿入されたピストンを高
速で往復駆動させることによる圧力の脈動で圧縮ガスを
コールヘッドに供給するようになっている。近年、携帯
端末の普及により、小型でしかも高効率のスターリング
冷凍装置が検討されており、例えば、携帯端末の基地局
に使用される超電導コイルの冷却用に使用すること等が
検討対象になっている。ここではスターリング冷凍装置
の原理については説明を省略する。[0003] This type of compressor mainly supplies a compressed gas to a coal head by pressure pulsation caused by reciprocatingly driving a piston inserted into a cylinder, which is mainly incorporated in a Stirling refrigerating apparatus. . In recent years, with the spread of portable terminals, a small and highly efficient Stirling refrigerating device is being studied. For example, the use of a Stirling refrigerating device for cooling a superconducting coil used in a base station of a portable terminal has been studied. I have. Here, description of the principle of the Stirling refrigerating apparatus is omitted.
【0004】図3は、従来より一般的に使用されている
リニアモータ圧縮機の一例である。このリニアモータ圧
縮機10は、シリンダ20を形成する磁性体で形成され
た内筒ヨークと、シリンダ20との間に圧縮室29を形
成するようにシリンダ20内に配されたピストン21
と、シリンダ20の外側を包みように配された実質内筒
ヨークと一体である磁性体で形成された外筒ヨーク22
とを備え、当該外筒ヨーク22はリニアモータ圧縮機の
外側ケースも兼ねている。FIG. 3 shows an example of a conventional linear motor compressor generally used. The linear motor compressor 10 includes an inner cylinder yoke formed of a magnetic material forming the cylinder 20 and a piston 21 arranged in the cylinder 20 so as to form a compression chamber 29 between the cylinder 20 and the inner cylinder yoke.
And an outer cylinder yoke 22 made of a magnetic material integral with a substantially inner cylinder yoke arranged to wrap the outside of the cylinder 20.
The outer cylinder yoke 22 also serves as an outer case of the linear motor compressor.
【0005】ピストン21は図示のように可動コイル2
5に連結されている。ここでピストン21の可動機構に
ついて説明する。ピストン21は、シリンダ20と同心
状に配された外筒ヨーク22により形成された環状空間
の内壁に設けられた環状の永久磁石24及び、この永久
磁石24に対向して設けられ、前記環状空間内を軸方向
に可動するよう配された環状の可動コイル25と連結さ
れている。各可動コイル25の外側には外筒ヨーク22
の内壁と接するコイルバネ27が設けられている。[0005] The piston 21 has a movable coil 2 as shown in the figure.
5. Here, the movable mechanism of the piston 21 will be described. The piston 21 includes an annular permanent magnet 24 provided on an inner wall of an annular space formed by an outer cylinder yoke 22 arranged concentrically with the cylinder 20, and is provided to face the permanent magnet 24. It is connected to an annular movable coil 25 which is arranged to move in the axial direction inside. An outer cylinder yoke 22 is provided outside each movable coil 25.
Is provided with a coil spring 27 which is in contact with the inner wall.
【0006】このように形成された磁気回路内に配され
た可動コイル25の電機子コイル26に所定の電流を印
可することにより、磁界とコイルバネ27と圧縮室内の
ガスとの共振作用により可動コイル25が図中水平方向
に高速で往復運動し、圧縮室29内の冷媒ガスを効率よ
く圧縮する。30はピストンシールを示し、32はリー
ド線、28は電源端子を示す。[0006] By applying a predetermined current to the armature coil 26 of the movable coil 25 disposed in the magnetic circuit formed as described above, the movable coil is resonated by the magnetic field, the coil spring 27 and the gas in the compression chamber. 25 reciprocates at high speed in the horizontal direction in the figure, and efficiently compresses the refrigerant gas in the compression chamber 29. 30 indicates a piston seal, 32 indicates a lead wire, and 28 indicates a power supply terminal.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前述し
たリニアモータ圧縮機10は、磁気回路内において永久
磁石24とコイル26が一対一対応であることから、交
番磁束の影響が大きく、ヨーク20,22内に鉄損が生
じて発熱量が大きくなり、ここでエネルギー損失が発生
し、このことが圧縮効率の低下を招く主原因となってい
た。また、発熱は永久磁石の熱特性により磁力の低下を
引き起こすため、ピストン21の可動効率を低下させる
ので、圧縮効率が悪化することから、電機子コイル26
に常に必要以上に電流を流せず、結果的に高効率化でき
るものは提供できないという不都合があった。However, in the linear motor compressor 10 described above, since the permanent magnet 24 and the coil 26 are in one-to-one correspondence in the magnetic circuit, the influence of the alternating magnetic flux is large, and the yokes 20 and 22 are not provided. The heat loss increases due to iron loss therein, and energy loss occurs here, and this has been the main cause of lowering the compression efficiency. In addition, the heat generation causes a decrease in magnetic force due to the thermal characteristics of the permanent magnet, and thus lowers the moving efficiency of the piston 21. As a result, the compression efficiency deteriorates.
However, there is a disadvantage that a current that cannot always flow more than necessary cannot be provided, and as a result, a device that can improve the efficiency cannot be provided.
【0008】本発明は、このような従来の難点を解決す
るためになされたもので、鉄損によるエネルギー損失を
抑え、永久磁石の熱特性の低下を防ぎ、圧縮効率の低下
を防ぐことができるリニアモータ圧縮機を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and can suppress energy loss due to iron loss, prevent a decrease in thermal characteristics of a permanent magnet, and prevent a decrease in compression efficiency. It is an object to provide a linear motor compressor.
【0009】[0009]
【課題を解決するための手段】このような目的を達成す
るために、本発明は、 1.それ自身の内周面に円筒形状の中空部をもつ外筒ヨ
ークを設け、その内側にそれ自身の中央部に圧縮室を有
するシリンダとして機能する内筒ヨークを設け、その圧
縮室を挟んで両側に軸方向に往復移動するピストンを設
けて、各ピストンを電機子可動コイルに連結してヨーク
の内側に設けた永久磁石との間で磁気回路を形成して、
各ピストンを軸方向に往復移動させてなるリニアモータ
圧縮機であって、各ヨークに設けた永久磁石は軸方向に
所定の空間を空けた環状の3分割構造で、また、可動コ
イルの電機子コイルは、永久磁石に対応して軸方向に所
定の空間を空けた3分割構造であり、軸方向の磁気回路
幅をLとすれば、各永久磁石と電機子コイルの中央の部
材の軸方向の寸法はL/2、両端の部材の寸法は各々L
/4とした。In order to achieve such an object, the present invention provides: An outer cylinder yoke having a cylindrical hollow portion is provided on its own inner peripheral surface, and an inner cylinder yoke functioning as a cylinder having a compression chamber is provided in the center of the outer cylinder yoke. A piston that reciprocates in the axial direction is provided, and each piston is connected to the armature moving coil to form a magnetic circuit between the permanent magnet provided inside the yoke,
A linear motor compressor in which each piston is reciprocated in the axial direction. A permanent magnet provided in each yoke has an annular three-part structure with a predetermined space in the axial direction. The coil has a three-part structure in which a predetermined space is provided in the axial direction corresponding to the permanent magnet. If the magnetic circuit width in the axial direction is L, the axial direction of the central member of each permanent magnet and armature coil Is L / 2 and the dimensions of the members at both ends are L
/ 4.
【0010】2.それ自身の内周面に円筒形状の中空部
をもつ外筒ヨークを設け、その内側にそれ自身の中央部
に圧縮室を有するシリンダを設け、そのシリンダ内にピ
ストンを配し当該ピストンを外筒ヨークの内側設けた可
動コイルに連結して、当該ピストンを軸方向に往復移動
させてなるリニアモータ圧縮機であって、外筒ヨークに
設けた永久磁石は軸方向に所定の空間を空けた環状の3
分割構造で、また、可動コイルに設けた電機子コイル
は、永久磁石に対応して、軸方向に所定の空間を空けた
3分割構造であり、軸方向の電機子コイル幅をLとすれ
ば、各永久磁石と電機子コイルの中央部材の軸方向寸法
はL/2、両端部材の寸法は各々L/4とした。[0010] 2. An outer cylinder yoke having a cylindrical hollow portion is provided on its own inner peripheral surface, a cylinder having a compression chamber is provided in the center of the outer cylinder yoke, a piston is disposed in the cylinder, and the piston is disposed in an outer cylinder. A linear motor compressor in which a piston is reciprocated in an axial direction by being connected to a movable coil provided inside a yoke, and a permanent magnet provided in an outer cylinder yoke has an annular shape having a predetermined space in an axial direction. 3
The armature coil provided in the movable coil has a three-part structure in which a predetermined space is provided in the axial direction corresponding to the permanent magnet, and the armature coil width in the axial direction is L. The axial dimension of the central member of each permanent magnet and armature coil was L / 2, and the dimensions of both end members were L / 4.
【0011】3.各電機子コイルの巻数は、中央の電機
子コイルの巻数を「N」とすれば、両側の巻数は「N/
2」とした。3. Assuming that the number of turns of the armature coil at the center is “N”, the number of turns on both sides is “N /
2 ".
【0012】以上のような構成により課題を解決した。The problem has been solved by the above configuration.
【0013】[0013]
【発明の実施形態】以下、本発明に係る、リニアモータ
圧縮機1を図1に基づいて説明する。ここで、前述した
従来のリニアモータ圧縮機10と同一の部材には同一の
符号を付すものとする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A linear motor compressor 1 according to the present invention will be described below with reference to FIG. Here, the same members as those of the conventional linear motor compressor 10 described above are denoted by the same reference numerals.
【0014】このリニアモータ圧縮機1は、シリンダ2
0を形成する磁性体からなる内筒ヨークと、シリンダ2
0との間に圧縮室29を形成するようにシリンダ20内
に配されたピストン21と、シリンダ20の外側を包み
ように配された内筒ヨークと実質一体化された磁性体で
形成された外筒ヨーク12とを備え、当該外筒ヨーク1
2とを備えている。The linear motor compressor 1 includes a cylinder 2
0, an inner cylindrical yoke made of a magnetic material, and a cylinder 2
The piston 21 is arranged in the cylinder 20 so as to form a compression chamber 29 between the cylinder 20 and the inner cylinder yoke arranged to wrap the outside of the cylinder 20. An outer cylinder yoke 12;
2 is provided.
【0015】21はピストンを示し、図示のように可動
コイル3に連結されている。Reference numeral 21 denotes a piston, which is connected to the movable coil 3 as shown.
【0016】ここでピストン21の可動機構について説
明する。ピストン21は、シリンダ20と同心状に配さ
れた外筒ヨーク12により形成された環状空間の内壁に
設けられた所定の間隔S,Sを空けて3組の環状の永久
磁石14,15,15及び、各永久磁石14,15,1
5に対向して設けられた電機子コイル34,35,35
を備え、前記環状空間内を軸方向に可動するよう配され
た環状の可動コイル3と連結されている。Here, the movable mechanism of the piston 21 will be described. The piston 21 is provided with three sets of annular permanent magnets 14, 15, 15 at predetermined intervals S, S provided on the inner wall of an annular space formed by the outer cylinder yoke 12 arranged concentrically with the cylinder 20. And each of the permanent magnets 14, 15, 1
5, armature coils 34, 35, 35
And connected to an annular movable coil 3 arranged to be movable in the annular space in the axial direction.
【0017】各可動コイル3の外側にはヨーク12の内
壁と接するコイルバネ27が設けられている。A coil spring 27 that contacts the inner wall of the yoke 12 is provided outside each movable coil 3.
【0018】このように形成された磁気回路内に配され
た可動コイル3の電機子コイル34,35,35に所定
の電流を印可することにより、磁界とコイルバネ27の
相互作用により可動コイル3が図中水平方向に往復運動
し、圧縮室内の冷媒ガスを効率よく圧縮する。By applying a predetermined current to the armature coils 34, 35, 35 of the movable coil 3 arranged in the magnetic circuit thus formed, the movable coil 3 is actuated by the interaction between the magnetic field and the coil spring 27. It reciprocates in the horizontal direction in the figure to efficiently compress the refrigerant gas in the compression chamber.
【0019】30はピストンシールを示し、32はリー
ド線、28は電源端子を示す。今、リニアモータ圧縮機
1の右半分の動作を端的に説明する。すなわち、コイル
バネ27は、ピストン21を中立位置に保つ機能があ
り、電機子コイル34,35,35に交流電流を印可す
ると、正方向サイクルでは、図中右側(外側)に移動
し、最高点に到達するコイルバネ27によりピストン2
1は図中左方向(内側)に中立位置に押し戻され、負方
向サイクルでは図中左方向(内側)に最高点まで移動
し、次にバネコイル27により右方向(外側)に中立位
置に引き戻される。Reference numeral 30 indicates a piston seal, 32 indicates a lead wire, and 28 indicates a power supply terminal. Now, the operation of the right half of the linear motor compressor 1 will be briefly described. That is, the coil spring 27 has a function of keeping the piston 21 at the neutral position, and when an alternating current is applied to the armature coils 34, 35, 35, in the forward cycle, the coil spring 27 moves to the right (outside) in the figure and reaches the highest point. The piston 2 is moved by the arriving coil spring 27.
1 is pushed back to the neutral position in the left direction (inside) in the figure, moves to the highest point in the left direction (inside) in the figure in the negative direction cycle, and is then pulled back to the right position (outside) by the spring coil 27 to the neutral position. .
【0020】この動作の繰り返しによりスターリングサ
イクル、つまり冷媒ガスの等温圧縮、等容移送、等温膨
張、等容移送の4行程に対応している。本実施例では永
久磁石14,15,15は3組の構成であり、従来例の
永久磁石24の軸方向の寸法をLとすれば、永久磁石1
4はL/2,永久磁石15,15は各々L/4となって
いる。そして磁極の方向は永久磁石14と、永久磁石1
5,15とは逆磁性となるようにヨーク12内に貼り付
けられている。The repetition of this operation corresponds to a Stirling cycle, that is, four strokes of isothermal compression, isothermal transfer, isothermal expansion, and isostatic transfer of refrigerant gas. In this embodiment, the permanent magnets 14, 15, and 15 have three sets, and if the dimension of the permanent magnet 24 of the conventional example in the axial direction is L, the permanent magnet 1
4 is L / 2, and the permanent magnets 15 and 15 are each L / 4. The directions of the magnetic poles are the permanent magnet 14 and the permanent magnet 1
5 and 15 are adhered inside the yoke 12 so as to be reverse magnetic.
【0021】また、同様に従来例の電機子コイル26の
軸線方向の寸法をLとすれば、電機子コイル34がL/
2,電機子コイル35,35がL/4となっている。こ
の永久磁石14,15,15と電機子コイル34,3
5,35は中立位置では各々対向する位置に来るように
コイルバネ27のバネ定数を選択することにより調整さ
れている。Similarly, if the dimension of the conventional armature coil 26 in the axial direction is L, the armature coil 34 is L / L.
2. The armature coils 35, 35 are L / 4. The permanent magnets 14, 15, 15 and the armature coils 34, 3
5 and 35 are adjusted by selecting the spring constant of the coil spring 27 so as to come to the positions facing each other in the neutral position.
【0022】永久磁石14,15及びこれに対応する電
機子コイル34,35の間隔Sは、ピストン21の軸線
方向のストロークによりその距離は適宜決められる。The distance S between the permanent magnets 14 and 15 and the corresponding armature coils 34 and 35 is appropriately determined by the stroke of the piston 21 in the axial direction.
【0023】電機子コイル34と35の巻数Nの関係
は、電機子コイル34の巻数をNとすれば電機子コイル
35の巻数は略N/2となるようになっており、電機子
コイル34と、35は電流印加時に、逆磁性となるよう
になっている。The relationship between the number of turns N of the armature coils 34 and 35 is such that when the number of turns of the armature coil 34 is N, the number of turns of the armature coil 35 is approximately N / 2. And 35 are made to be reverse magnetic when a current is applied.
【0024】このように、配置された磁気回路では、磁
束永久磁石14からの磁束B1は、両サイドの永久磁石
35,35側に分岐する。In the magnetic circuit arranged as described above, the magnetic flux B1 from the magnetic flux permanent magnet 14 branches to the permanent magnets 35 on both sides.
【0025】これにより、ヨーク12内を通過する磁束
を従来例の1/4にできるので、ヨークの断面積、図中
Dを小さくできる。これによりヨーク12を薄くできる
ので軽量ができる。As a result, the magnetic flux passing through the yoke 12 can be reduced to 1/4 of that of the conventional example, so that the sectional area of the yoke and D in the figure can be reduced. As a result, the yoke 12 can be made thin, so that the weight can be reduced.
【0026】また、各電機子コイル34,35,35か
らの交番磁束は、 B0=B1−(B2/2+B2/2)=0 となるのでヨーク12内の鉄損を略0にすることができ
る。The alternating magnetic flux from each of the armature coils 34, 35, 35 is given by B0 = B1− (B2 / 2 + B2 / 2) = 0, so that the iron loss in the yoke 12 can be made substantially zero. .
【0027】これにより、圧縮効率低下の主原因である
鉄損によるエネルギー損失を防げ、しかも、ヨーク12
の発熱を抑えることができるので、永久磁石の14,1
5,15の熱特性による磁束の変化がなくなり、安定し
たリニアモータ駆動が維持でき、従来例のリニアモータ
圧縮機10と略同一の能力を得る場合には、消費電力を
少なくでき、しかもヨークを薄くできるので小型軽量化
でき、加えて、圧縮効率のよいリニアモータ圧縮機を提
供できる。As a result, it is possible to prevent energy loss due to iron loss, which is a main cause of a decrease in compression efficiency, and to prevent the yoke 12
The heat generated by the permanent magnets can be reduced.
No change in magnetic flux due to the thermal characteristics of Nos. 5 and 15 can be achieved, stable linear motor drive can be maintained, and when substantially the same performance as the conventional linear motor compressor 10 is obtained, power consumption can be reduced and the yoke can be reduced. Since it can be made thinner, it can be made smaller and lighter, and in addition, a linear motor compressor with good compression efficiency can be provided.
【0028】尚、本発明はこれに限るものではなく、リ
ニアモータ機構を可動鉄心型として同様の構成を実現し
てもよく、シリンダさらに永久磁石を設けて可動コイル
3を挟むような磁気回路としてもよい。The present invention is not limited to this, and a similar structure may be realized by using a linear motor mechanism as a movable iron core type, and a magnetic circuit in which a cylinder and a permanent magnet are provided to sandwich the movable coil 3 is provided. Is also good.
【0029】図2は、本発明に係る他の実施例を示すも
のである。ここで、上述したリニアモータ圧縮機1と同
一の部材には同一の符号を付すものとする。FIG. 2 shows another embodiment according to the present invention. Here, the same members as those of the above-described linear motor compressor 1 are denoted by the same reference numerals.
【0030】図2に示す、リニアモータ圧縮機11は、
ピストン21の駆動をリニアモータ1台で行う構成で、
その駆動原理は図1に示すリニアモータ圧縮機1と同様
であるのでここでは説明を省略する。The linear motor compressor 11 shown in FIG.
With a configuration in which the piston 21 is driven by one linear motor,
The driving principle is the same as that of the linear motor compressor 1 shown in FIG.
【0031】尚、ピストンとシリンダの関係はこれに限
らず、ピストンを可動コイルで駆動する構造であればよ
い。The relationship between the piston and the cylinder is not limited to this, and any structure may be used as long as the piston is driven by a movable coil.
【0032】[0032]
【発明の効果】本発明は、以上のように構成されている
ので、ヨークに発生する鉄損を抑える留ことができ、圧
縮効率がよく、しかも小型軽量化することができるリニ
アモータ圧縮機を提供できる。As described above, according to the present invention, there is provided a linear motor compressor capable of suppressing iron loss generated in a yoke, improving compression efficiency, and reducing the size and weight. Can be provided.
【図1】本発明のリニアモータ圧縮機の概要を示す説明
図。FIG. 1 is an explanatory diagram showing an outline of a linear motor compressor of the present invention.
【図2】本発明の他の実施例に係るリニアモータ圧縮機
の概要を示す説明図。FIG. 2 is an explanatory diagram showing an outline of a linear motor compressor according to another embodiment of the present invention.
【図3】従来のリニアモータ圧縮機の概要を示す説明
図。 1、11(10)・・・・ リニアモータ圧縮機 3 ・・・・・・・ 可動コイル 12 ・・・・・・・ 外筒ヨーク 14,15・・・・・・・ 永久磁石 20 ・・・・・・・ シリンダ(内筒ヨーク) 21 ・・・・・・・ ピストン 27 ・・・・・・・ コイルバネ 29 ・・・・・・・ 圧縮室 34,35・・・・・・・ 電機子コイルFIG. 3 is an explanatory view showing an outline of a conventional linear motor compressor. 1, 11 (10) ··· Linear motor compressor 3 ····· Moving coil 12 ······ Outer cylinder yoke 14, 15 ····· Permanent magnet 20 ··· ······ Cylinder (inner cylinder yoke) 21 ······ Piston 27 ····· Coil spring 29 ····· Compression chamber 34, 35 ····· Electric machine Child coil
───────────────────────────────────────────────────── フロントページの続き (72)発明者 成吉 郁馬 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線 電纜株式会社内 (72)発明者 赤間 助広 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線 電纜株式会社内 Fターム(参考) 3H076 AA03 AA40 BB21 BB38 CC06 CC28 CC31 5H633 BB09 BB10 GG03 GG05 GG07 GG17 HH02 HH07 HH08 HH10 HH13 HH16 HH17 JA02 JA04 JA05 JA10 JB06 JB07 JB09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ikuma Nariyoshi 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. No. 1-1, Showa Electric Wire & Cable Co., Ltd. F-term (reference)
Claims (3)
つ外筒ヨークを設け、その内側にそれ自身の中央部に圧
縮室を有するシリンダとして機能する内筒ヨークを設
け、その圧縮室を挟んで両側に軸方向に往復移動するピ
ストンを設けて、各ピストンを可動コイルに連結して外
筒ヨークの内側に設けた永久磁石との間で磁気回路を形
成して、各ピストンを軸方向に往復移動させてなるリニ
アモータ圧縮機であって、 外筒ヨークに設けた永久磁石は軸方向に所定の空間を空
けた環状の3分割構造で、また、可動コイルに設けた電
機子コイルは、永久磁石に対応して、軸方向に所定の空
間を空けた3分割構造であり、軸方向の電機子コイル幅
をLとすれば、各永久磁石と電機子コイルの中央部材の
軸方向寸法はL/2、両端部材の寸法は各々L/4であ
ることを特徴とするリニアモータ圧縮機。An outer cylinder yoke having a cylindrical hollow portion is provided on an inner peripheral surface of the outer cylinder yoke, and an inner cylinder yoke functioning as a cylinder having a compression chamber is provided in a central portion of the outer cylinder yoke inside the outer cylinder yoke. Pistons that reciprocate in the axial direction are provided on both sides of the chamber, and each piston is connected to a movable coil to form a magnetic circuit with a permanent magnet provided inside the outer cylinder yoke. A linear motor compressor reciprocating in an axial direction, wherein a permanent magnet provided on an outer cylinder yoke has an annular three-part structure having a predetermined space in an axial direction, and an armature provided on a movable coil. The coil has a three-part structure in which a predetermined space is provided in the axial direction corresponding to the permanent magnet. If the armature coil width in the axial direction is L, the axis of the central member of each permanent magnet and the armature coil is set. The direction dimension is L / 2, and the dimensions of both end members are L / 4. A linear motor compressor according to claim 4.
つ外筒ヨークを設け、その内側にそれ自身の中央部に圧
縮室を有するシリンダを設け、そのシリンダ内にピスト
ンを配し当該ピストンを外筒ヨークの内側設けた可動コ
イルに連結して、当該ピストンを軸方向に往復移動させ
てなるリニアモータ圧縮機であって、 外筒ヨークに設けた永久磁石は軸方向に所定の空間を空
けた環状の3分割構造で、また、可動コイルに設けた電
機子コイルは、永久磁石に対応して、軸方向に所定の空
間を空けた3分割構造であり、軸方向の電機子コイル幅
をLとすれば、各永久磁石と電機子コイルの中央部材の
軸方向寸法はL/2、両端部材の寸法は各々L/4であ
ることを特徴とするリニアモータ圧縮機。2. An outer cylinder yoke having a cylindrical hollow portion is provided on an inner peripheral surface of the cylinder, and a cylinder having a compression chamber is provided in the center of the outer cylinder yoke, and a piston is disposed in the cylinder. A linear motor compressor in which the piston is connected to a movable coil provided inside an outer cylinder yoke, and the piston is reciprocated in the axial direction, wherein a permanent magnet provided in the outer cylinder yoke has a predetermined axial direction. The armature coil provided in the movable coil has a three-part structure in which a predetermined space is provided in the axial direction in correspondence with the permanent magnet. Assuming that the coil width is L, the axial dimension of the central member of each permanent magnet and armature coil is L / 2, and the dimensions of both end members are L / 4.
子コイルの巻数を「N」とすれば、両側の巻数は「N/
2」とすることを特徴とする請求項1乃至2記載のリニ
アモータ圧縮機。3. The number of turns of each armature coil is “N / N” where the number of turns of a central armature coil is “N”.
3. The linear motor compressor according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000366827A JP2002168174A (en) | 2000-12-01 | 2000-12-01 | Linear motor compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000366827A JP2002168174A (en) | 2000-12-01 | 2000-12-01 | Linear motor compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002168174A true JP2002168174A (en) | 2002-06-14 |
Family
ID=18837374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000366827A Pending JP2002168174A (en) | 2000-12-01 | 2000-12-01 | Linear motor compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002168174A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100855828B1 (en) | 2005-06-21 | 2008-09-01 | 마츠시다 덴코 가부시키가이샤 | Vibration type actuator |
JP2010500856A (en) * | 2006-08-09 | 2010-01-07 | ウィスパー テック リミテッド | Reciprocating piston type machine with oscillating counter rotor |
KR20150123563A (en) * | 2014-04-25 | 2015-11-04 | (주)파트론 | Linear vibration motor |
CN105262298A (en) * | 2015-08-25 | 2016-01-20 | 同济大学 | Linear motor and compressor equipped with same |
CN105781934A (en) * | 2014-12-19 | 2016-07-20 | 珠海格力节能环保制冷技术研究中心有限公司 | Cylinder piston assembly and linear compressor |
CN107294340A (en) * | 2017-05-27 | 2017-10-24 | 宁波奇尘电子科技有限公司 | A kind of cylinder type linear motor |
CN108462353A (en) * | 2018-01-29 | 2018-08-28 | 广东工业大学 | A kind of full magnetic double-piston electromagnetic engine of single cylinder |
CN116221065A (en) * | 2023-05-08 | 2023-06-06 | 瑞纳智能设备股份有限公司 | Compressor power component and compressor with same |
-
2000
- 2000-12-01 JP JP2000366827A patent/JP2002168174A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100855828B1 (en) | 2005-06-21 | 2008-09-01 | 마츠시다 덴코 가부시키가이샤 | Vibration type actuator |
JP2010500856A (en) * | 2006-08-09 | 2010-01-07 | ウィスパー テック リミテッド | Reciprocating piston type machine with oscillating counter rotor |
KR20150123563A (en) * | 2014-04-25 | 2015-11-04 | (주)파트론 | Linear vibration motor |
KR101580647B1 (en) * | 2014-04-25 | 2015-12-30 | (주)파트론 | Linear vibration motor |
CN105781934A (en) * | 2014-12-19 | 2016-07-20 | 珠海格力节能环保制冷技术研究中心有限公司 | Cylinder piston assembly and linear compressor |
CN105262298A (en) * | 2015-08-25 | 2016-01-20 | 同济大学 | Linear motor and compressor equipped with same |
CN107294340A (en) * | 2017-05-27 | 2017-10-24 | 宁波奇尘电子科技有限公司 | A kind of cylinder type linear motor |
CN108462353A (en) * | 2018-01-29 | 2018-08-28 | 广东工业大学 | A kind of full magnetic double-piston electromagnetic engine of single cylinder |
CN116221065A (en) * | 2023-05-08 | 2023-06-06 | 瑞纳智能设备股份有限公司 | Compressor power component and compressor with same |
CN116221065B (en) * | 2023-05-08 | 2023-08-15 | 瑞纳智能设备股份有限公司 | Compressor power component and compressor with same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6879064B2 (en) | Linear motor and linear-motor based compressor | |
TWI459690B (en) | Protruding-pole type linear motor and reciprocal double piston compressor with a protruding-pole type linear motor | |
JPH01164256A (en) | Linear generator | |
EP1674725A2 (en) | Reciprocating compressor | |
JP4184273B2 (en) | Electric converter, linear compressor and wireless transmission antenna | |
US20060087180A1 (en) | Bi-directional operating compressor using transverse flux linear motor | |
JP2001330329A (en) | Linear compressor | |
JP2010200522A (en) | Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor | |
JP2002168174A (en) | Linear motor compressor | |
KR100582754B1 (en) | Linera motor compressor | |
CN111742475B (en) | Linear motor and linear compressor provided with same | |
KR20180083240A (en) | moving core type recyprocating motor and recyprocating compressor having the same | |
JP2004056988A (en) | Moving coil linear motor, compressor, and refrigerator | |
KR20180000600A (en) | Recyprocating motor and recyprocating compressor having the same | |
JP2010213431A (en) | Linear electromagnetic device | |
JP2001224157A (en) | Electromagnetic reciprocal drive mechanism | |
US6700233B2 (en) | Brushless electric motor | |
WO2002027899A1 (en) | Improvements in linear alternators for use with stirling engines | |
KR100733043B1 (en) | Linear motor and compressor having the linear motor | |
JP2002339863A (en) | Linear compressor | |
JP2867414B2 (en) | Linear generator | |
JP2009041791A (en) | Linear compressor for cold storage refrigerating machine | |
JPH10336994A (en) | Linear motor and reciprocal compressor employing it | |
JP2010178484A (en) | Linear electromagnetic driving device | |
JP2626364B2 (en) | Linear motor compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050819 |