JP2002161336A - Super high tensile-strength cold-rolled steel sheet and manufacturing method therefor - Google Patents
Super high tensile-strength cold-rolled steel sheet and manufacturing method thereforInfo
- Publication number
- JP2002161336A JP2002161336A JP2001275257A JP2001275257A JP2002161336A JP 2002161336 A JP2002161336 A JP 2002161336A JP 2001275257 A JP2001275257 A JP 2001275257A JP 2001275257 A JP2001275257 A JP 2001275257A JP 2002161336 A JP2002161336 A JP 2002161336A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cold
- rolled steel
- tensile strength
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超高張力冷延鋼板
およびその製造方法に関し、特に、自動車用部品の材料
として好適な特性を有し、引張強度が880〜1170
MPa、特に980〜1080MPaの超高張力冷延鋼
板およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high tensile strength cold-rolled steel sheet and a method for producing the same, and more particularly, it has properties suitable as a material for automobile parts and has a tensile strength of 880 to 1170.
The present invention relates to an ultra-high tensile strength cold-rolled steel sheet having a MPa of 980 to 1080 MPa, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、自動車軽量化のニーズを受けて、
引張強度が880〜1170MPaの冷延鋼板が自動車
骨格部材、自動車シート骨格部材等に適用されるように
なっている。2. Description of the Related Art In recent years, in response to the need for lighter automobiles,
A cold rolled steel sheet having a tensile strength of 880 to 1170 MPa is applied to an automobile frame member, an automobile seat frame member, and the like.
【0003】自動車骨格部材等の部材はプレス加工によ
り成形されるため、その材料には高い伸びフランジ性が
要求される。しかしながら、従来、引張強度が880M
Pa以上のいわゆる超高張力鋼板は、バンパーの補強
材、ドアインパクトビーム等に用途が限られており、こ
れらの部材の成形方法はロールフォーミング等の逐次成
形であるため、必ずしも高い伸びフランジ性が求められ
ておらず、引張強度が880〜1170MPaの超高強
度鋼板の穴拡げ率は高々50%程度であり、前記自動車
骨格部材等の材料に要求される高い伸びフランジ性を満
足するものではなかった。[0003] Since members such as automobile frame members are formed by press working, their materials are required to have high stretch flangeability. However, conventionally, the tensile strength is 880 M
The so-called ultra-high-strength steel sheets of Pa or more are limited in use as bumper reinforcing materials, door impact beams, etc., and since the forming method of these members is sequential forming such as roll forming, high stretch flangeability is not necessarily required. The hole expansion ratio of the ultra-high strength steel sheet having a tensile strength of 880 to 1170 MPa, which is not required, is at most about 50%, and does not satisfy the high stretch flangeability required for the material of the automobile frame member and the like. Was.
【0004】例えば、特公平5−10418号公報には
「伸びフランジ加工性に優れたレーザ加工用鋼板」の技
術が開示されているが、この技術はレーザ切断部の伸び
フランジ性を鋼の化学成分を調整することにより向上す
るものであり、前記自動車骨格部材等の成形時における
打ち抜きまたは剪断端面の一般的な伸びフランジ性を向
上するものではない。[0004] For example, Japanese Patent Publication No. 5-10418 discloses a technique of "steel plate for laser processing excellent in stretch flangeability". It is improved by adjusting the components, and does not improve the general stretch flangeability of the punched or sheared end face during the molding of the automobile frame member or the like.
【0005】一方、上述した自動車部品用材料の高強度
化の動向と並行して、自動車用部品の組立技術において
は、従来から用いられていたスポット溶接に替えて機械
的接合が用いられ始めている。ここでいう機械的接合と
は、複数の鋼板を熱を加えることなく金属成形で接合す
るあらゆる方法を含み、その代表的なものにTOX接合
が挙げられる。また、接着等を補助的に組み合わせた接
合もある。On the other hand, in parallel with the trend of increasing the strength of materials for automobile parts as described above, in the technique of assembling automobile parts, mechanical joining has begun to be used in place of conventionally used spot welding. . The term “mechanical joining” as used herein includes any method of joining a plurality of steel sheets by metal forming without applying heat, and a typical example thereof is TOX joining. In addition, there is also a joining method in which adhesion and the like are combined in an auxiliary manner.
【0006】機械的接合は、従来、成形工程とスポット
溶接による組立工程との工程で行われていた部品製造工
程を、成形+接合の1工程で行うことを可能とする技術
であり、大幅な製造コスト削減効果がある。また、超高
張力鋼板を溶接すると、熱影響部が軟化する現象が不可
避であり、溶接部強度試験を行うと熱影響部から破断し
て高い接合強度が得られないという問題があるため、特
に超高張力鋼板からなる部品の組立技術においては熱を
加えない非溶接タイプの機械的接合を用いる利点が極め
て大きい。[0006] Mechanical joining is a technique that enables a part manufacturing process, which was conventionally performed in a molding process and an assembly process by spot welding, to be performed in a single process of molding and joining. There is a manufacturing cost reduction effect. In addition, when welding ultra-high strength steel sheets, the phenomenon that the heat-affected zone is softened is inevitable, and there is a problem that high joint strength cannot be obtained by breaking from the heat-affected zone when a weld strength test is performed. The advantage of using a non-weld type mechanical joining that does not apply heat is extremely great in the technology of assembling parts made of ultra-high strength steel sheets.
【0007】しかし、高張力鋼板を機械的接合した部品
は自動車等の構造部品に適用されつつあるものの、その
ような部品における被接合鋼材の引張強度は780MP
a以下に留まっていた。その理由は、従来の引張強度7
80MPa超の高張力鋼板を機械的接合により接合する
と、接合部にクラックが発生して接合強度および疲労強
度が十分に得られないという点にあった。このため、上
述の利点にも関わらず、超高張力鋼板からなる部品の組
立に機械的接合を用いることはできなかった。[0007] However, although parts obtained by mechanically joining high-strength steel sheets are being applied to structural parts such as automobiles, the tensile strength of steel to be joined in such parts is 780 MPa.
a or less. The reason is that the conventional tensile strength of 7
When a high-tensile steel sheet of more than 80 MPa was joined by mechanical joining, cracks occurred at the joining portion, and the joint strength and fatigue strength were not sufficiently obtained. For this reason, in spite of the above-mentioned advantages, it has not been possible to use mechanical joining for assembling parts made of ultra-high-strength steel sheets.
【0008】[0008]
【発明が解決しようとする課題】本発明は、かかる事情
に鑑みてなされたものであって、自動車構造部材、補強
部材および自動車シート骨格部材等をプレス成形するの
に最適な、鉄鋼連盟規格(JFST1001−199
6)に定める穴拡げ率が75%以上の優れた伸びフラン
ジ性を有し、かつ、自動車用部品に適用してTOX接合
等の機械的接合により組み立てるのに最適な、現存の連
続焼鈍炉で工業的に製造可能な、引張強度が880〜1
170MPa、特に980〜1080MPaの超高張力
冷延鋼板およびその製造方法を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed in accordance with the Iron and Steel Federation Standard (hereinafter referred to as "the Steel Federation") which is most suitable for press-forming automotive structural members, reinforcing members, and vehicle seat frame members. JFST1001-199
An existing continuous annealing furnace that has an excellent stretch flangeability with a hole expansion rate of 75% or more as specified in 6) and is most suitable to be applied to automotive parts and assembled by mechanical joining such as TOX joining. Industrially manufacturable, tensile strength of 880-1
An object of the present invention is to provide an ultra-high tensile strength cold-rolled steel sheet of 170 MPa, particularly 980 to 1080 MPa, and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】本発明者は、引張強度が
880〜1170MPaの超高張力鋼板において、伸び
フランジ性を穴拡げ率で75%以上にまで向上するため
の組織制御を確立すべく鋭意研究を重ねた。その結果、
マルテンサイト単相組織を実現することにより、引張強
度が880〜1170MPaの超高張力鋼板の伸びフラ
ンジ性を飛躍的に向上させることができることを見出し
た。Means for Solving the Problems The present inventor has established a control of the structure for improving the stretch flangeability of a super-high tensile strength steel sheet having a tensile strength of 880 to 1170 MPa to a hole expansion ratio of 75% or more. We continued our research. as a result,
It has been found that by realizing a martensite single phase structure, the stretch flangeability of an ultra-high tensile strength steel sheet having a tensile strength of 880 to 1170 MPa can be dramatically improved.
【0010】また、本発明者らは、機械的接合による接
合部の強度について鋭意研究を重ねた。その結果、機械
的接合の加工時における金属材料の損傷が、その後の継
ぎ手強度を支配することが明らかとなった。そして、こ
の機械的接合の加工時における金属材料の損傷の程度は
金属組織の影響が支配的で、マルテンサイトおよびフェ
ライト等のように硬度に差のある2相が存在すると2相
の加工性の違いから2相界面に歪みが集中して損傷が大
きくなることから、単相とすることが必要であることを
知見し、上記のマルテンサイト単相組織を実現すること
により優れた機械的接合性が得られることを見出した。Further, the present inventors have intensively studied the strength of the joint by mechanical joining. As a result, it was clarified that the damage of the metal material at the time of the mechanical joining process governed the joint strength thereafter. The degree of damage to the metal material during the processing of the mechanical joining is dominated by the influence of the metal structure. If two phases having different hardnesses such as martensite and ferrite are present, the workability of the two phases is reduced. Due to the difference, strain is concentrated at the two-phase interface and damage is increased, so it was found that it is necessary to use a single phase. By realizing the above-described martensitic single-phase structure, excellent mechanical bondability was obtained. Was obtained.
【0011】しかし、現存の設備で工業的に引張強度が
880〜1170MPaで、かつマルテンサイト単相組
織とすることは、以下の理由から困難である。However, it is difficult to obtain a martensitic single-phase structure with an existing facility having a tensile strength of 880 to 1170 MPa industrially for the following reasons.
【0012】従来の通常の連続焼鈍炉は、図1に示すよ
うに、鋼板を加熱する加熱帯1と、加熱した鋼板を均熱
保持する均熱帯2と、均熱保持後の鋼板を徐冷する徐冷
帯3と、徐冷後の鋼板を急冷する急冷帯4と、急冷後の
鋼板に過時効(焼戻し)処理する過時効(焼戻し)帯5
とを有しており、入側の冷延コイル7から鋼板Sを供給
し、加熱帯1、均熱帯2、徐冷帯3、急冷帯4および過
時効(焼戻し)帯5を通板させることにより、鋼板Sに
加熱、均熱保持、徐冷、急冷、過時効処理が連続的に施
され、出側で調質圧延機6により必要に応じて調質圧延
された後、巻取コイル8に巻き取られる。この際、図1
に示すように均熱帯2と急冷帯4との間には徐冷帯3が
設けられているため、そこで板温が不可避的に100℃
以上低下した後に鋼板Sは急冷帯4に進入する。このよ
うな連続焼鈍炉でマルテンサイト単相組織を得るために
は、均熱帯2でオーステナイト単相組織とし、徐冷帯3
をAr3点以上の板温で通過させ、そこから急冷する必
要があるが、このとき引張強度が低い鋼、すなわちC当
量の低い鋼ほどAr3点が高くなるため、徐冷帯3をよ
り高温で通過させる必要がある。ところが、通常の連続
焼鈍炉では前述の徐冷帯3を通過する間の温度低下等に
より、徐冷帯3を通過する温度を高くすることには限界
があるため、従来の引張強度880〜1170MPaの
鋼ではAr3点が急冷帯4の進入温度よりも高くなって
しまい、徐冷帯3でフェライトの生成を抑制することが
できず、このためマルテンサイト単相組織が得られない
のである。As shown in FIG. 1, a conventional ordinary continuous annealing furnace comprises, as shown in FIG. 1, a heating zone 1 for heating a steel sheet, a soaking zone 2 for keeping the heated steel sheet soaked, and a slow cooling of the steel sheet after the soaking. Quenching zone 3 for quenching the steel sheet after gradual cooling, and overaging (tempering) zone 5 for overaging (tempering) the quenched steel sheet.
The steel sheet S is supplied from the cold-rolled coil 7 on the entry side, and is passed through the heating zone 1, the soaking zone 2, the slow cooling zone 3, the rapid cooling zone 4, and the overaging (tempering) zone 5. The steel sheet S is continuously subjected to heating, soaking, holding, slow cooling, quenching, and overaging, and is temper-rolled as necessary by the temper rolling mill 6 on the delivery side. It is wound up. At this time, FIG.
As shown in the figure, since the slow cooling zone 3 is provided between the soaking zone 2 and the quenching zone 4, the plate temperature is inevitably 100 ° C.
After the decrease, the steel sheet S enters the rapid cooling zone 4. In order to obtain a martensitic single-phase structure in such a continuous annealing furnace, it is necessary to use an austenitic single-phase structure in the soaking zone 2 and a slow cooling zone 3.
Must be passed at a plate temperature of at least Ar 3 points and quenched from there. However, at this time, a steel having a lower tensile strength, that is, a steel having a lower C equivalent, has a higher Ar 3 point. Must pass at high temperature. However, in a normal continuous annealing furnace, there is a limit in increasing the temperature passing through the annealing zone 3 due to the temperature drop while passing through the annealing zone 3 and the like. Therefore, the conventional tensile strength of 880 to 1170 MPa In the case of the steel No. 3, the Ar 3 point becomes higher than the entry temperature of the quenching zone 4, and it is not possible to suppress the formation of ferrite in the annealing zone 3, so that a martensitic single phase structure cannot be obtained.
【0013】そこで、本発明者は引張強度が880〜1
170MPaで、かつマルテンサイト単相組織の超高張
力鋼板を現存の連続焼鈍炉で工業的に製造するための技
術を確立するためにさらに検討を重ねた。その結果、M
n、CrおよびMoの少なくとも1種を合計で1.6〜
2.5%含有させること、Bを0.0005〜0.00
50%含有させること、または、Mn、CrおよびMo
の少なくとも1種を合計で1.6〜2.5%かつBを
0.0005〜0.0050%含有させることが有効で
あることを見出した。さらに、Bを添加する場合には、
鋼に前記量のBとともにTiを48/14[N]〜3×
48/14[N]%(ただし、[N]はN量(重量%)
を示す)の範囲で複合添加することにより、B添加の効
果を高めることができることを見出した。Therefore, the present inventor has proposed that the tensile strength be 880-1.
Further studies were conducted to establish a technology for industrially producing an ultra-high-strength steel sheet of 170 MPa and having a martensitic single-phase structure in an existing continuous annealing furnace. As a result, M
at least one of n, Cr and Mo is 1.6 to
2.5%, B is 0.0005 to 0.00
50% or Mn, Cr and Mo
It has been found that it is effective to contain at least one of these in a total of 1.6 to 2.5% and B in an amount of 0.0005 to 0.0050%. Further, when B is added,
48/14 [N] to 3 ×
48/14 [N]% (where [N] is N amount (% by weight)
It is found that the effect of the addition of B can be enhanced by adding the compound in the range of (shown).
【0014】本発明はこれらの知見に基づいて完成され
たものであり、以下の(1)から(9)を提供する。 (1)重量%で、Mn、CrおよびMoの少なくとも1
種を合計で1.6〜2.5%含有し、実質的にマルテン
サイト単相(鋼板表層より深さ10μm以内の部分を除
く)であり、引張強度が880〜1170MPaである
ことを特徴とする超高張力冷延鋼板。The present invention has been completed based on these findings and provides the following (1) to (9). (1) At least 1% by weight of Mn, Cr and Mo
It contains 1.6 to 2.5% of seeds in total, is substantially a martensite single phase (excluding a portion within 10 μm in depth from the surface of the steel sheet), and has a tensile strength of 880 to 1170 MPa. Ultra-high tensile cold rolled steel sheet.
【0015】(2) 重量%で、Bを0.0005〜
0.0050%含有し、実質的にマルテンサイト単相
(鋼板表層より深さ10μm以内の部分を除く)であ
り、引張強度が880〜1170MPaであることを特
徴とする超高張力冷延鋼板。(2) B is 0.0005 to 5% by weight.
An ultra-high tensile cold-rolled steel sheet containing 0.0050%, substantially a martensite single phase (excluding a portion within 10 μm in depth from the surface layer of the steel sheet), and having a tensile strength of 880 to 1170 MPa.
【0016】(3) 重量%で、Mn、CrおよびMo
の少なくとも1種を合計で1.6〜2.5%、Bを0.
0005〜0.0050%含有し、実質的にマルテンサ
イト単相(鋼板表層より深さ10μm以内の部分を除
く)であり、引張強度が880〜1170MPaである
ことを特徴とする超高張力冷延鋼板。(3) Mn, Cr and Mo in weight%
At least one of 1.6 to 2.5% in total;
An ultra-high tensile cold-rolled steel containing 0005 to 0.0050%, substantially a martensite single phase (excluding a portion within a depth of 10 μm from the surface of a steel sheet) and a tensile strength of 880 to 1170 MPa. steel sheet.
【0017】(4) 重量%で、C:0.01〜0.0
7%、Si:0.3%以下、P:0.1%以下、S:
0.01%以下、Sol.Al:0.01〜0.1%、
N:0.0050%以下、Mn、CrおよびMoの少な
くとも1種:合計で1.6〜2.5%を含有し、残部が
実質的にFeからなり、実質的にマルテンサイト単相
(鋼板表層より深さ10μm以内の部分を除く)であ
り、引張強度が880〜1170MPaであることを特
徴とする超高張力冷延鋼板。(4) C: 0.01-0.0% by weight
7%, Si: 0.3% or less, P: 0.1% or less, S:
0.01% or less, Sol. Al: 0.01 to 0.1%,
N: 0.0050% or less, at least one of Mn, Cr, and Mo: 1.6 to 2.5% in total, the balance being substantially Fe, and substantially a martensitic single phase (steel plate) An ultra-high tensile cold-rolled steel sheet characterized by having a tensile strength of 880 to 1170 MPa, excluding a portion within a depth of 10 μm or less from the surface layer.
【0018】(5) 上記(4)において、重量%で、
B:0.0005〜0.0050%をさらに含有するこ
とを特徴とする超高張力冷延鋼板。(5) In the above (4), in weight%,
B: An ultra-high tensile cold-rolled steel sheet further containing 0.0005 to 0.0050%.
【0019】(6) 上記(2)、(3)または(5)
において、重量%で、Ti:48/14[N]〜3×4
8/14[N]%(ただし、[N]はN含有量(重量
%)を示す)をさらに含有することを特徴とする超高張
力冷延鋼板。(6) The above (2), (3) or (5)
In, by weight%, Ti: 48/14 [N] to 3 × 4
An ultra-high tensile cold-rolled steel sheet further containing 8/14 [N]% (where [N] indicates N content (% by weight)).
【0020】(7) 上記(1)から(6)のいずれか
において、重量%で、Nb:0.001〜0.04%を
さらに含有することを特徴とする超高張力冷延鋼板。(7) An ultra-high tensile cold-rolled steel sheet according to any one of the above (1) to (6), further containing 0.001 to 0.04% by weight of Nb.
【0021】(8) 上記(1)から(7)のいずれか
において、切削穴の穴拡げ率が100%以上であること
を特徴とする超高張力冷延鋼板。(8) An ultra-high tensile cold-rolled steel sheet according to any one of the above (1) to (7), wherein the hole expansion rate of the cut hole is 100% or more.
【0022】(9) 上記(1)から(7)のいずれか
に記載の成分組成を有する鋼スラブを、熱間圧延し、冷
間圧延し、連続焼鈍し、冷却する冷延鋼板の製造方法で
あって、連続焼鈍で800〜890℃に加熱、保持後、
20℃/sec以下で徐冷し、680〜750℃から1
00℃/sec超の冷却速度で200℃以下まで冷却す
ることを特徴とする引張強度が880〜1170MPa
である超高張力冷延鋼板の製造方法。(9) A method for producing a cold-rolled steel sheet in which a steel slab having the composition described in any one of (1) to (7) is hot-rolled, cold-rolled, continuously annealed, and cooled. And heating to 800 to 890 ° C. by continuous annealing and holding,
Slowly cool at 20 ° C / sec or less, and from 680-750 ° C to 1
It is cooled to 200 ° C. or less at a cooling rate of more than 00 ° C./sec.
A method for producing an ultra-high tensile cold-rolled steel sheet.
【0023】本発明と類似した化学組成、組織を有する
鋼は種々の先行技術に開示されているが、本発明のよう
にマルテンサイト単相組織にして引張強度880〜11
70MPaおよび穴拡げ率75%以上の優れた伸びフラ
ンジ性や優れた機械的接合性を有するものは存在しな
い。以下本発明の優位性をそのような先行技術と対比し
て説明する。Steels having a chemical composition and structure similar to the present invention have been disclosed in various prior arts. However, as in the present invention, a steel having a martensitic single phase structure and a tensile strength of 880-11 is used.
There is no one having an excellent stretch flangeability of 70 MPa and a hole expansion ratio of 75% or more and an excellent mechanical bonding property. The advantages of the present invention will be described below in comparison with such prior art.
【0024】特公平2−1894号公報には、本発明と
同一引張強度レベルの鋼板に関する技術が開示されてい
る。しかしながら、この技術は金属組織と伸びフランジ
性や機械的接合性との関係について何ら示唆するところ
がなく、しかも、C量が0.10〜0.20%であるた
め本発明のようにマルテンサイト単相組織を工業的に得
ることは極めて困難である。Japanese Patent Publication No. 2- 1894 discloses a technique relating to a steel sheet having the same tensile strength level as the present invention. However, this technique has no suggestion as to the relationship between the metal structure and the stretch flangeability or mechanical bondability, and furthermore, since the C content is 0.10 to 0.20%, as in the present invention, the martensitic singlet is not used. It is extremely difficult to obtain a phase structure industrially.
【0025】また、特公平8−26401号公報および
特許第2528387号公報には、それぞれ「微細なマ
ルテンサイト単相組織を有する鋼板」および「マルテン
サイト体積率が80〜97%とする技術」が開示されて
いる。しかしながら、これらの技術は、マルテンサイト
単相組織にすることにより鋼板の伸びフランジ性や機械
的接合性が極めて良好になることを示唆するものではな
い上に、引張強度1470MPa以上の鋼板を対象とし
ており、本発明とは対象とする鋼板の引張強度も相違し
ている。引張強度が1470MPa級以上の鋼板におい
てマルテンサイト単相組織を得ることは比較的容易であ
るが、本発明の対象とする880〜1170MPaの引
張強度を有する鋼板においてマルテンサイト単相組織を
得ることは極めて困難であり、このことは本発明により
はじめて、工業的に実現されたのである。また、補足す
ると1180MPa以上の引張強度においてマルテンサ
イト単相組織を得ることは比較的容易であるが、このよ
うな高強度では成形性が極めて低下するため成形用途に
は適さない。Japanese Patent Publication No. 8-26401 and Japanese Patent No. 2528387 disclose "a steel sheet having a fine martensitic single phase structure" and "a technique for setting the martensite volume ratio to 80 to 97%", respectively. It has been disclosed. However, these techniques do not suggest that the stretch flangeability and mechanical bondability of the steel sheet become extremely good by forming a martensitic single-phase structure, and in addition to the steel sheet having a tensile strength of 1470 MPa or more. Therefore, the tensile strength of the target steel sheet is different from that of the present invention. Although it is relatively easy to obtain a martensite single phase structure in a steel sheet having a tensile strength of 1470 MPa or more, it is difficult to obtain a martensite single phase structure in a steel sheet having a tensile strength of 880 to 1170 MPa, which is the object of the present invention. It is extremely difficult, and this has been achieved industrially for the first time by the present invention. In addition, it is relatively easy to obtain a martensitic single-phase structure at a tensile strength of 1180 MPa or more, but such high strength is not suitable for molding applications because moldability is extremely reduced.
【0026】さらに、特許第2826058号公報に
は、「マルテンサイト体積率70%以上」とする技術が
開示されており、この公報の実施例・表1・鋼No.2
には引張強度880〜1170MPaで、かつマルテン
サイト単相組織の鋼板が記載されている。しかしなが
ら、この技術はマルテンサイト単相組織とすることによ
り鋼板の伸びフランジ性や機械的接合性が極めて良好に
なることを示唆するものではない。さらに、この技術は
引張強度が880〜1170MPaで、かつマルテンサ
イト単相組織を工業的に得ることは全く考慮されていな
い。そのことは、上記実施例中の鋼No.2の組成は本
発明のようにMn+Cr+Mo≧1.6%ではなく、か
つ、Bを0.0005〜0.0050%含有してもいな
いこと、および、この公報の実施例・表2に示されてい
る鋼No.2の連続焼鈍条件が均熱温度900℃および
急冷開始温度850℃と、通常の連続焼鈍設備で工業的
に達成可能な温度条件を大きく逸脱しており、工業的な
製造性に劣っていることから明らかである。つまり、こ
の公報では、工業的に実現可能な連続焼鈍条件では引張
強度が880〜1170MPaで、かつマルテンサイト
単相組織の鋼を得ることが困難であることを示している
のである。Furthermore, Japanese Patent No. 2826058 discloses a technique of "volume ratio of martensite of 70% or more". Examples of this publication, Table 1, steel No. 2
Describes a steel plate having a tensile strength of 880 to 1170 MPa and a martensite single phase structure. However, this technique does not suggest that the formation of a martensite single-phase structure results in extremely good stretch flangeability and mechanical joining properties of the steel sheet. Further, this technique has no consideration of industrially obtaining a martensitic single-phase structure having a tensile strength of 880 to 1170 MPa. This is because the steel No. The composition of No. 2 is not Mn + Cr + Mo ≧ 1.6% as in the present invention, and does not contain 0.0005 to 0.0050% of B, and is shown in Examples and Table 2 of this publication. Steel No. (2) The continuous annealing conditions are soaking temperature 900 ° C and quenching start temperature 850 ° C, which greatly deviate from the industrially achievable temperature conditions with ordinary continuous annealing equipment, and are inferior in industrial productivity. It is clear from In other words, this publication indicates that it is difficult to obtain a steel having a tensile strength of 880 to 1170 MPa and a martensitic single phase structure under industrially achievable continuous annealing conditions.
【0027】上記連続焼鈍条件が、通常の連続焼鈍設備
で工業的に達成することが困難であるのは以下の理由に
よる。上述した図1に示した通常の連続焼鈍炉の均熱帯
2では、一般に焼鈍雰囲気を還元性に保つため、ラジア
ントチューブと呼ばれる耐熱鋼製の管の内部でCO等の
可燃性ガスを燃焼させており、その輻射熱を熱源として
いる。このような均熱帯2において板温を900℃とす
るためには、雰囲気温度およびラジアントチューブ温度
を900℃以上とする必要があり、このような過酷な条
件は装置寿命を著しく縮める。また、急冷開始温度を8
50℃としているが、均熱帯2と急冷帯4との間に設け
られた徐冷帯3(図ではガスジェット帯)で不可避的に
100℃以上の板温低下があるため、均熱温度を900
℃とした場合には急冷開始温度を850℃とすることは
困難であり、このような連続焼鈍条件を達成するために
は、高温保持が可能な特殊な構造の均熱帯と、短い徐冷
帯とを備えた新規な連続焼鈍炉を開発する必要がある。
さらに、たとえこのような専用の連続焼鈍炉を開発した
としても、鋼板の材質の観点からは、900℃で加熱保
持するとオーステナイト結晶粒径が粗大化し、そのため
急冷後のマルテンサイト組織も粗大化し、鋼板の曲げ
性、靱性が劣化してしまうため、このような連続焼鈍条
件は好ましくなく、またこのような条件を必須とする材
料も好ましくない。It is difficult to achieve the above continuous annealing conditions industrially with ordinary continuous annealing equipment for the following reasons. In the soaking zone 2 of the ordinary continuous annealing furnace shown in FIG. 1 described above, a combustible gas such as CO is burned in a heat-resistant steel tube called a radiant tube in order to generally keep the annealing atmosphere in a reducing state. And the radiant heat is used as a heat source. In order to maintain the plate temperature at 900 ° C. in such a tropical zone 2, the ambient temperature and the radiant tube temperature must be 900 ° C. or higher, and such severe conditions significantly shorten the life of the apparatus. Also, the quenching start temperature is set to 8
Although the temperature is set to 50 ° C., since the sheet temperature inevitably decreases by 100 ° C. or more in the slow cooling zone 3 (gas jet zone in the figure) provided between the soaking zone 2 and the quenching zone 4, the soaking temperature is set to 900
It is difficult to set the quenching start temperature to 850 ° C. when the temperature is set to 850 ° C., and in order to achieve such continuous annealing conditions, it is necessary to provide a uniform structure with a special structure capable of maintaining a high temperature and a short annealing zone. It is necessary to develop a new continuous annealing furnace having:
Furthermore, even if such a dedicated continuous annealing furnace was developed, from the viewpoint of the quality of the steel sheet, when heated and maintained at 900 ° C., the austenite crystal grain size was coarsened, so that the martensite structure after quenching was also coarsened, Since the bending property and toughness of the steel sheet are deteriorated, such continuous annealing conditions are not preferable, and materials that require such conditions are also not preferable.
【0028】[0028]
【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係る冷延鋼板は、重量%で、Mn、C
rおよびMoの少なくとも1種を合計で1.6〜2.5
%含有し、または、Bを0.0005〜0.0050%
含有し、または、Mn、CrおよびMoの少なくとも1
種を合計で1.6〜2.5%かつBを0.0005〜
0.0050%含有し、実質的にマルテンサイト単相
(鋼板表層より深さ10μm以内の部分を除く)であ
り、引張強度が880〜1170MPaの超高張力冷延
鋼板である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The cold-rolled steel sheet according to the present invention contains Mn, C
at least one of r and Mo is 1.6 to 2.5 in total
% Or B is 0.0005 to 0.0050%
Containing or at least one of Mn, Cr and Mo
1.6 to 2.5% of the total seeds and 0.0005 to B
It is an ultra-high tensile cold-rolled steel sheet containing 0.0050%, is substantially a martensite single phase (excluding a portion within 10 μm in depth from the surface layer of the steel sheet), and has a tensile strength of 880 to 1170 MPa.
【0029】まず、鋼組成について説明する。Mn、C
rおよびMoの少なくとも1種を合計で1.6〜2.5
%含有することとしたのは、Ar3点を低温化するため
であり、これにより通常の連続焼鈍炉でマルテンサイト
単相組織を工業的に得ることが可能となる。Mn、Cr
およびMoの合計量が1.6%未満ではAr3点を低温
化する効果が十分に得られず、一方、これらの元素の合
計量が2.5%を超えると強度が880〜1170MP
aの範囲を超えてしまうため、Mn、CrおよびMoの
少なくとも1種を合計で1.6〜2.5%とした。な
お、冷延鋼板の引張強度を880〜1170MPaとす
るためには、Mn、CrおよびMoの合計量に応じて、
Cの含有量を調整する必要がある。First, the steel composition will be described. Mn, C
at least one of r and Mo is 1.6 to 2.5 in total
The content is determined to lower the temperature of the Ar 3 point, and this makes it possible to industrially obtain a martensitic single-phase structure in a normal continuous annealing furnace. Mn, Cr
If the total amount of Mo and Mo is less than 1.6%, the effect of lowering the temperature of the Ar 3 point cannot be sufficiently obtained, while if the total amount of these elements exceeds 2.5%, the strength becomes 880 to 1170MPa.
Since it exceeds the range of a, at least one of Mn, Cr and Mo is set to 1.6 to 2.5% in total. In order to set the tensile strength of the cold-rolled steel sheet to 880 to 1170 MPa, according to the total amount of Mn, Cr and Mo,
It is necessary to adjust the content of C.
【0030】Bを0.0005〜0.0050%含有す
ることとしたのは、Ar3点を低温化するためであり、
これにより通常の連続焼鈍炉でマルテンサイト単相組織
を工業的に得ることが可能となる。Bが0.0005%
未満ではAr3点を低温化する効果が十分に得られず、
一方、0.0050%を超えると熱間圧延の変形抵抗が
大きくなり、製造が困難となるため、B量は0.000
5〜0.0050%とした。The reason why B is contained in an amount of 0.0005% to 0.0050% is to lower the temperature of Ar 3 points.
This makes it possible to industrially obtain a martensite single-phase structure in a normal continuous annealing furnace. B is 0.0005%
If it is less than 3 , the effect of lowering the temperature of the Ar 3 point cannot be sufficiently obtained,
On the other hand, if the content exceeds 0.0050%, the deformation resistance of hot rolling increases, and the production becomes difficult.
5 to 0.0050%.
【0031】なお、Mn、CrおよびMoの少なくとも
1種と、Bとを複合して含有させる場合には、Bを含有
させない場合よりもMn等の合計量を少なくすることが
でき、これらの元素による引張強度の上昇を少なくする
ことができるので、C量の上限が緩和され、これにより
製鋼コストの上昇を回避することができる。In the case where at least one of Mn, Cr and Mo is combined with B, the total amount of Mn and the like can be reduced as compared with the case where B is not contained. Therefore, the increase in tensile strength due to the above can be reduced, so that the upper limit of the amount of C is alleviated, thereby making it possible to avoid an increase in steelmaking cost.
【0032】Nbを0.001〜0.04%添加するこ
とが好ましい。Nbは、均熱帯でのオーステナイト組織
の粗大化を抑制する機能を有し、Nbの添加によりオー
ステナイト組織の粗大化による鋼板の曲げ性、靱性の劣
化を防止することができる。0.001%未満ではその
効果が十分でなく、0.04%を超えると再結晶を著し
く遅延させるため好ましくない。従って、添加する場合
のNb添加量は0.001〜0.04%とする。It is preferable to add 0.001 to 0.04% of Nb. Nb has a function of suppressing coarsening of the austenitic structure in the solitary tropics, and the addition of Nb can prevent deterioration of the bendability and toughness of the steel sheet due to the coarsening of the austenitic structure. If it is less than 0.001%, the effect is not sufficient, and if it exceeds 0.04%, recrystallization is significantly delayed, which is not preferable. Therefore, when Nb is added, the amount of Nb added is set to 0.001 to 0.04%.
【0033】Bを含有させる場合には、Tiを48/1
4[N]〜3×48/14[N]%(ただし、[N]は
N量(重量%)を示す)添加することが好ましい。Bの
前述のような効果はBが固溶状態であるときに限り得ら
れるため、BがNと結合してBNが生成するとその効果
は減少してしまう。その際Tiを添加し、あらかじめ固
溶NをTiNとして完全に析出させれば、固溶B量が増
えB添加の効果を最大限とすることができる。このよう
なTi添加の効果は48/14[N]未満では不十分で
あり、3×48/14[N]を超えるとTiCを形成し
て延性が減少するため、Ti量は48/14[N]〜3
×48/14[N]とする。When B is contained, Ti is added in an amount of 48/1.
It is preferable to add 4 [N] to 3 × 48/14 [N]% (where [N] indicates the amount of N (% by weight)). Since the above-described effect of B can be obtained only when B is in a solid solution state, the effect is reduced when B is combined with N to form BN. At this time, if Ti is added and solid solution N is completely precipitated in advance as TiN, the amount of solid solution B increases and the effect of the addition of B can be maximized. If the effect of such Ti addition is less than 48/14 [N], the effect is insufficient. If it exceeds 3 × 48/14 [N], TiC is formed and ductility is reduced. N] ~ 3
× 48/14 [N].
【0034】他の成分としては、C:0.01〜0.0
7%、Si:0.3%以下、P:0.1%以下、S:
0.01%以下、Sol.Al:0.01〜0.1%、
N:0.0050%以下であることが好ましい。As other components, C: 0.01 to 0.0
7%, Si: 0.3% or less, P: 0.1% or less, S:
0.01% or less, Sol. Al: 0.01 to 0.1%,
N: It is preferable to be 0.0050% or less.
【0035】C:0.01〜0.07% Cは、冷延鋼板の引張強度を880〜1170MPaに
するために、前述のMn、CrおよびMoの合計量に応
じて、その量が適宜調整される。ただし、0.01%未
満とすると製鋼コストが高くなり、0.07%超とする
とMn等の合計量に関わらず引張強度が880〜117
0MPaの範囲を超えるため、C量は0.01〜0.0
7%とする。より好ましくは0.03〜0.07%であ
る。C: 0.01 to 0.07% C is appropriately adjusted in accordance with the total amount of Mn, Cr and Mo in order to make the tensile strength of the cold-rolled steel sheet 880 to 1170 MPa. Is done. However, if it is less than 0.01%, the steel making cost is increased, and if it exceeds 0.07%, the tensile strength is 880 to 117 regardless of the total amount of Mn and the like.
Since the amount exceeds the range of 0 MPa, the C content is 0.01 to 0.0
7%. More preferably, it is 0.03 to 0.07%.
【0036】Si:0.3%以下 Siは、本発明ではAr3点を上昇させる有害な元素で
あり、できるだけ低減することが望ましい。0.3%を
超えると実質的に880〜1170MPaのマルテンサ
イト単相組織を得ることが困難になるため、0.3%以
下とする。Si: 0.3% or less Si is a harmful element that raises the Ar 3 point in the present invention, and it is desirable to reduce it as much as possible. If it exceeds 0.3%, it becomes difficult to obtain a martensitic single phase structure of substantially 880 to 1170 MPa.
【0037】P:0.1%以下 Pは、強度調整の目的で添加してもよいが、0.1%を
超えるとスポット溶接部の靱性を劣化させるため、0.
1%以下とする必要がある。P: 0.1% or less P may be added for the purpose of adjusting the strength. However, if it exceeds 0.1%, the toughness of the spot welded portion is deteriorated.
It needs to be 1% or less.
【0038】S:0.01%以下 Sは本発明では不純物として取り扱う。0.01%を超
えるとMnS析出物に起因して伸びフランジ性が劣化す
るため0.01%以下とする。S: 0.01% or less S is treated as an impurity in the present invention. If it exceeds 0.01%, the stretch flangeability deteriorates due to MnS precipitates, so the content is made 0.01% or less.
【0039】Sol.Al:0.01〜0.1% Alは脱酸剤として添加される。0.01%未満ではそ
の効果が十分でなく、0.1%を超えると効果が飽和し
不経済なため、Sol.Al量を0.01〜0.1%と
する。Sol. Al: 0.01 to 0.1% Al is added as a deoxidizing agent. If it is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, the effect is saturated and uneconomical. The Al content is set to 0.01 to 0.1%.
【0040】N:0.0050%以下 Nは、本発明では不純物として取り扱う。0.0050
%を超えるとコイル内の強度ばらつきをもたらすため
0.0050%以下とする。N: 0.0050% or less N is treated as an impurity in the present invention. 0.0050
%, 0.005% or less because the strength variation in the coil is caused.
【0041】本発明は、Cu,Ni,Zr,V,W,C
a,Sn,O等の不純物元素を通常の範囲で含有しても
その効果は失われない。また、強度調整等のためにこれ
らの元素を意図的に少量添加することも可能とする。The present invention relates to Cu, Ni, Zr, V, W, C
Even if impurity elements such as a, Sn, and O are contained in a normal range, the effect is not lost. Also, it is possible to intentionally add a small amount of these elements for the purpose of adjusting the strength and the like.
【0042】次に、金属組織について説明する。金属組
織を実質的にマルテンサイト単相(鋼板表層より深さ1
0μm以内の部分を除く)とすることは、本発明におけ
る極めて重要な構成要件であり、このような組織とする
ことで極めて良好な伸びフランジ性が得られる。ここ
で、実質的にマルテンサイト単相とは、光学顕微鏡、走
査型電子顕微鏡、X線回折法で組織を定量測定し、フェ
ライト、ベイナイト、残留オーステナイト等が合わせて
1%以上含まれないことを意味する。ただし、例えば、
AlN、MnS、TiN等の鋼中の溶質元素同士により
形成される析出物、マルテンサイトの焼き戻しに伴い析
出する微細な鉄炭化物は含まれていてもよい。また、表
層の脱炭等により鋼板表面の10μm以内の最表層にフ
ェライトが生成することがあるが、これは伸びフランジ
性や機械的接合性に影響を及ぼさず、むしろ曲げ性を向
上させることから、鋼板表層10μm以内にはフェライ
トが含まれていてもよい。このため、鋼板表層より深さ
10μm以内の部分については金属組織を限定しないこ
ととした。Next, the metal structure will be described. Substantially a martensitic single phase (depth 1 from steel sheet surface layer)
(Excluding the portion within 0 μm) is a very important component in the present invention, and by using such a structure, an extremely good stretch flangeability can be obtained. Here, the “substantially martensite single phase” means that the structure is quantitatively measured by an optical microscope, a scanning electron microscope, and an X-ray diffraction method, and that a total of 1% or more of ferrite, bainite, retained austenite, and the like is not contained. means. However, for example,
Precipitates formed by solute elements in steel, such as AlN, MnS, and TiN, and fine iron carbide precipitated by tempering martensite may be included. Ferrite may be formed on the outermost layer within 10 μm of the steel sheet surface due to decarburization of the surface layer, etc., but this does not affect the stretch flangeability and mechanical bonding properties, but rather improves the bendability. Ferrite may be contained in the surface layer of the steel sheet within 10 μm. For this reason, the metallographic structure is not limited to a portion within a depth of 10 μm from the surface layer of the steel sheet.
【0043】本発明の冷延鋼板は、引張強度が880〜
1170MPaである。これは前述したように本発明の
冷延鋼板がこの範囲の強度が要求される自動車用骨格部
材等への適用を意図しているからである。このような用
途を考慮すると、引張強度は980〜1080MPaの
範囲が好ましい。The cold-rolled steel sheet of the present invention has a tensile strength of 880 to 880.
1170 MPa. This is because, as described above, the cold-rolled steel sheet of the present invention is intended to be applied to a skeleton member for automobiles or the like which requires a strength in this range. Considering such applications, the tensile strength is preferably in the range of 980 to 1080 MPa.
【0044】以上のような鋼組成および金属組織を有
し、引張強度が880〜1170MPaである本発明の
冷延鋼板は、鉄鋼連盟規格(JFST1001−199
6)に定める穴拡げ率が75%以上の優れた伸びフラン
ジ性を有しており、この冷延鋼板をプレス加工すること
により自動車構造部材、補強部材および自動車シート骨
格部材等を好適に成形することができる。The cold-rolled steel sheet of the present invention having the above-described steel composition and metal structure and having a tensile strength of 880 to 1170 MPa is manufactured according to the standards of the Iron and Steel Federation (JFST1001-199).
It has excellent stretch flangeability with a hole expansion rate of 75% or more as specified in 6), and is preferably formed by pressing this cold-rolled steel sheet into an automobile structural member, a reinforcing member, an automobile seat frame member and the like. be able to.
【0045】また、本発明の冷延鋼板は、切削穴の穴拡
げ率が100%以上の優れた機械的接合性を有してお
り、この冷延鋼板を材料とする部品はTOX接合等の機
械的接合により十分な強度で接合することができる。な
お、ここでいう切削穴の穴拡げ率とは、試験片に切削穴
を形成し、以下は鉄鋼連盟規格(JFST1001−1
996)に準拠した穴拡げ試験を行うことにより求めら
れる値である。この切削穴の穴拡げ率が100%未満で
は、機械的接合による接合時に接合部内部の鋼板にクラ
ックが発生して接合強度を著しく下げるため、優れた機
械的接合性が得られない(クラック発生の実例について
は、後述の図4を参照。)。なお、鉄鋼連盟規格になる
打ち抜き穴による穴拡げ試験(JIST1001−19
96)による穴拡げ率は、打ち抜きによる材料の損傷の
影響が大きく、この値を向上させても必ずしも機械的接
合性は向上されない。Further, the cold-rolled steel sheet of the present invention has excellent mechanical joining properties in which the hole expansion rate of the cut hole is 100% or more. It is possible to join with sufficient strength by mechanical joining. In addition, the hole expansion rate of the cut hole here means that a cut hole is formed in a test piece, and the following is based on the Iron and Steel Federation Standard (JFST1001-1).
This is a value obtained by performing a hole expansion test according to 996). If the hole expansion ratio of the cut hole is less than 100%, cracks occur in the steel plate inside the joint at the time of joining by mechanical joining, and the joining strength is remarkably reduced, so that excellent mechanical joining properties cannot be obtained (crack occurrence). For the actual example, see FIG. 4 described later.) In addition, a hole expansion test using a punched hole, which becomes a standard of the Iron and Steel Federation (JIST1001-19)
The hole expansion rate according to (96) is greatly affected by damage to the material due to punching, and even if this value is improved, the mechanical bondability is not necessarily improved.
【0046】次に、製造方法について説明する。以上の
ような冷延鋼板を製造する際には、まず、連続鋳造によ
り上記組成を有する鋼スラブを製造し、直接または再加
熱後、熱間圧延を行う。熱間圧延はAr 3点以上の温度
で終了し、その後30℃/sec以上の冷却速度で70
0℃以下まで冷却し、620℃以下で巻き取ることが望
ましい。冷間圧延前にスケールを除去し、冷間圧延によ
り所望の板厚とし、続いて、800〜890℃に加熱、
保持後、20℃/sec以下で徐冷し、680〜750
℃から100℃/sec超の冷却速度で200℃以下ま
で冷却する連続焼鈍を行う。Next, the manufacturing method will be described. More than
When manufacturing such cold-rolled steel sheets, first,
Steel slabs having the above composition
After heating, hot rolling is performed. Hot rolling is Ar 3Temperature above the point
At a cooling rate of 30 ° C./sec or more.
Cool to 0 ° C or less and wind up at 620 ° C or less
Good. The scale is removed before cold rolling.
To a desired thickness, followed by heating to 800 to 890 ° C.
After holding, slowly cool at 20 ° C./sec or less,
At a cooling rate of over 100 ° C / sec.
To perform continuous annealing for cooling.
【0047】以下、この連続焼鈍条件について説明す
る。 ・800〜890℃に加熱、保持 加熱、保持する温度が800℃以下では急冷開始温度を
Ar3点以上にすることが困難となり、マルテンサイト
単相組織が得られない。一方、890℃以上ではオース
テナイト組織が粗大化するため鋼板の曲げ性、靱性が劣
化してしまい、また、連続焼鈍設備の劣化をもたらすた
め好ましくない。このため、加熱、保持温度は800〜
890℃とする。Hereinafter, the continuous annealing conditions will be described. Heating and holding at 800 to 890 ° C. If the heating and holding temperature is 800 ° C. or lower, it becomes difficult to set the quenching start temperature to the Ar 3 point or higher, and a martensitic single phase structure cannot be obtained. On the other hand, if the temperature is 890 ° C. or higher, the austenite structure is coarsened, so that the bendability and toughness of the steel sheet are deteriorated, and the continuous annealing equipment is deteriorated. Therefore, the heating and holding temperature is 800 to
890 ° C.
【0048】・20℃/sec以下で徐冷 マルテンサイト単相組織を得るためには、徐冷帯を板温
Ar3点以上で通過させる必要があり、このため徐冷帯
での冷却速度を20℃/sec以下とする。徐冷帯での
冷却速度が20℃/secを超えると徐冷帯で板温がA
r3点を下回るためフェライトが発生し、マルテンサイ
ト単相組織が得られない。Slow cooling at 20 ° C./sec or less In order to obtain a martensitic single-phase structure, it is necessary to pass the annealing zone at a plate temperature Ar of 3 points or more. 20 ° C./sec or less. When the cooling rate in the slow cooling zone exceeds 20 ° C./sec, the sheet temperature becomes A in the slow cooling zone.
and ferrite occurs for less than r 3 points, martensitic not single-phase structure is obtained.
【0049】・680〜750℃から100℃/sec
超の冷却速度で200℃以下まで冷却 急冷開始温度が680℃以下ではフェライトが発生する
ためマルテンサイト単相組織が得られず、750℃を超
えると板形状が劣化するため、急冷開始温度は680〜
750℃とする。なお、マルテンサイト単相組織を安定
的に得るためには急冷開始温度は700℃以上とするこ
とが好ましい。一方、急冷の冷却速度が100℃/se
c以下であるか、または、急冷終了温度が200℃を超
える場合には、マルテンサイト変態が不十分となり、所
望のマルテンサイト単相組織が得られなくなるため、急
冷の冷却速度を100℃/sec超とし、かつ急冷終了
温度を200℃以下とする。さらに望ましくは、冷却速
度500℃/sec超、急冷終了温度50℃以下とす
る。この際、冷却方法は限定しないが、板幅方向、長手
方向の材質変動を抑制するためには、噴流水中に焼入れ
ることが最も望ましい。さらに、この噴流水中の焼入れ
により、冷却速度500℃/sec超、急冷終了温度5
0℃以下の冷却を容易に達成することができる。· From 680 to 750 ° C to 100 ° C / sec
When the quenching start temperature is 680 ° C or lower, ferrite is generated and a martensitic single phase structure cannot be obtained. When the quenching start temperature is higher than 750 ° C, the plate shape is deteriorated. ~
750 ° C. In order to stably obtain a martensitic single phase structure, the quenching start temperature is preferably set to 700 ° C. or higher. On the other hand, the quenching cooling rate is
If the temperature is less than or equal to c, or if the quenching end temperature exceeds 200 ° C., the martensitic transformation becomes insufficient and the desired martensite single phase structure cannot be obtained, so the quenching cooling rate is set to 100 ° C./sec. The quenching end temperature is set to 200 ° C. or lower. More preferably, the cooling rate is more than 500 ° C./sec, and the quenching end temperature is 50 ° C. or less. At this time, the cooling method is not limited, but it is most preferable to quench in the jet water in order to suppress the variation of the material in the plate width direction and the longitudinal direction. Further, the quenching in the jet water causes a cooling rate of more than 500 ° C./sec and a quenching end temperature of 5 ° C.
Cooling below 0 ° C. can be easily achieved.
【0050】また、急冷後、靱性を向上させるため、1
00〜250℃で3分以上の焼き戻し処理を行うことが
望ましい。100℃以下または3分未満では焼き戻し処
理の効果が少なく、250℃を超えると低温焼き戻し脆
性により延性が著しく劣化するため好ましくない。After quenching, to improve the toughness,
It is desirable to perform a tempering treatment at 00 to 250 ° C. for 3 minutes or more. If the temperature is less than 100 ° C. or less than 3 minutes, the effect of the tempering treatment is small, and if it exceeds 250 ° C., ductility is remarkably deteriorated due to low-temperature tempering embrittlement, which is not preferable.
【0051】さらに、以上のようにして連続焼鈍を行っ
た後に、調質圧延を行ってもよい。この際の調質圧延率
は形状矯正の点から0.3%以上が望ましい。また、伸
びの劣化を防ぐためには、調質圧延率は1.0%以下で
あることが望ましい。Further, after performing the continuous annealing as described above, temper rolling may be performed. The temper reduction rate at this time is desirably 0.3% or more from the viewpoint of shape correction. Further, in order to prevent elongation of elongation, the temper rolling reduction is desirably 1.0% or less.
【0052】なお、以上のような工程の後、Znめっき
等の金属めっき、および/または、有機系等の各種潤滑
被膜を塗布する表面処理を行ってもよく、このような表
面処理鋼板も本発明の超高張力冷延鋼板に含まれる。After the above-described steps, metal plating such as Zn plating and / or surface treatment for applying various lubricating films such as organic ones may be performed. It is included in the ultra-high tensile strength cold rolled steel sheet of the invention.
【0053】[0053]
【実施例】以下、本発明の実施例について説明する。 [実施例1]表1に示す化学組成を有する鋼スラブを連
続鋳造により製造し、1250℃にスラブ再加熱後、板
厚3.0mmまで熱間圧延した。熱間圧延は熱間仕上温
度約870℃、巻取り温度560〜600℃で行った。
酸洗後、冷間圧延し、板厚1.2mmとした。続いて連
続焼鈍炉により熱処理を行った。加熱、保持温度は85
0℃、徐冷帯での徐冷速度は7℃/sec、急冷開始温
度は720℃、急冷停止温度は約40℃、急冷は噴流水
中に水焼き入れすることにより行い、その冷却速度は1
000℃/sec以上であった。焼き戻し処理は、20
0℃で約10分間保持することにより行った。その後、
調質圧延を0.5%の伸長率で行った。Embodiments of the present invention will be described below. [Example 1] A steel slab having the chemical composition shown in Table 1 was produced by continuous casting, slab was reheated to 1250 ° C, and then hot-rolled to a thickness of 3.0 mm. Hot rolling was performed at a hot finishing temperature of about 870 ° C and a winding temperature of 560 to 600 ° C.
After pickling, cold rolling was performed to a sheet thickness of 1.2 mm. Subsequently, heat treatment was performed in a continuous annealing furnace. Heating and holding temperature is 85
0 ° C., the slow cooling rate in the slow cooling zone is 7 ° C./sec, the rapid cooling start temperature is 720 ° C., the rapid cooling stop temperature is about 40 ° C., and the rapid cooling is performed by water quenching in the jet water.
000 ° C./sec or more. The tempering process is 20
Performed by holding at 0 ° C. for about 10 minutes. afterwards,
Temper rolling was performed at an elongation of 0.5%.
【0054】このようにして得られた鋼板の金属組織を
コイル長手方向に平行な断面で観察し、鏡面研磨、ナイ
タールによるエッチングを行い、走査型電子顕微鏡(S
EM)写真を撮影し、マルテンサイトの体積率を求め
た。求められたマルテンサイトの体積率を表1に併せて
示す。The metallographic structure of the steel sheet thus obtained was observed in a cross section parallel to the longitudinal direction of the coil, mirror-polished and etched with nital, and scanned with a scanning electron microscope (SEM).
EM) A photograph was taken to determine the volume fraction of martensite. Table 1 also shows the determined volume fraction of martensite.
【0055】以上のようにして得られた鋼板から、圧延
方向に対して直角方向にJIS5号試験片を切削加工に
より採取し、引張試験を行った。また、鉄鋼連盟規格
(JFST1001−1996)に準拠して、穴拡げ率
を測定した。さらに、圧延方向と平行に30×100m
mの短冊状の試験片を切削加工により切り出し、0.5
mmピッチの先端Rを有するポンチで180°曲げを行
い、割れが発生しない最小の曲げ半径を求めた。それぞ
れの鋼板について、引張試験により得られたYP(MP
a)、TS(MPa)およびEl(%)と、穴拡げ率
(%)と、最小曲げ半径(mm)とを表2に示す。From the steel sheet obtained as described above, a JIS No. 5 test piece was sampled by cutting in a direction perpendicular to the rolling direction, and a tensile test was performed. In addition, the hole expansion ratio was measured according to the Iron and Steel Federation Standard (JFST1001-1996). Furthermore, 30 × 100m parallel to the rolling direction
m test piece cut out by cutting
180 ° bending was performed with a punch having a tip R having a pitch of mm, and a minimum bending radius at which no crack occurred was determined. For each steel plate, the YP (MP
Table 2 shows a), TS (MPa) and El (%), the hole expansion ratio (%), and the minimum bending radius (mm).
【0056】[0056]
【表1】 [Table 1]
【0057】[0057]
【表2】 [Table 2]
【0058】表2に示すように、本発明例である鋼番号
1〜6は、いずれも引張強度が880〜1170MPa
であり、かつ、穴拡げ率が75%以上と極めて良好な伸
びフランジ性を有しており、さらに最小曲げ半径も1.
0mm以下と良好な曲げ特性を有している。これに対し
て比較例である鋼番号7〜10は、いずれかの特性が劣
っていた。例えば、鋼番号7はMn、MoおよびCrの
合計量が1.6%未満であるためマルテンサイト単相の
組織が得られず、このため穴拡げ率が低く、伸びフラン
ジ性が劣っていた。鋼番号8はC量が0.07%を超え
るため強度が高くなりすぎ、このため穴拡げ率が低くか
つ最小曲げ半径が大きく、伸びフランジ性および曲げ性
が劣っていた。鋼番号9は、C量が0.07%を超える
とともにSi量が0.3%を超えるためマルテンサイト
単相の組織が得られず、このため高い穴拡げ率が得られ
ず、伸びフランジ性が劣っていた。鋼番号10は、M
n、MoおよびCrの合計量が2.5%を超えるため、
引張強度が高くなりすぎ、このため穴拡げ率が低くかつ
最小曲げ半径が大きく、伸びフランジ性および曲げ性が
劣っていた。As shown in Table 2, the steel numbers 1 to 6 of the present invention have tensile strengths of 880 to 1170 MPa.
And a very good stretch flangeability with a hole expansion ratio of 75% or more, and a minimum bending radius of 1.
It has good bending characteristics of 0 mm or less. On the other hand, steel Nos. 7 to 10 as comparative examples were inferior in any of the properties. For example, in steel No. 7, since the total amount of Mn, Mo, and Cr was less than 1.6%, a structure of martensite single phase was not obtained, so that the hole expansion ratio was low and the stretch flangeability was poor. Steel No. 8 had an excessively high strength because the C content exceeded 0.07%, and therefore had a low hole expansion ratio, a large minimum bending radius, and poor stretch flangeability and bendability. Steel No. 9 has a C content of more than 0.07% and a Si content of more than 0.3%, so that a martensitic single phase structure cannot be obtained, and therefore a high hole expansion rate cannot be obtained, and stretch flangeability is not obtained. Was inferior. Steel No. 10 is M
Since the total amount of n, Mo and Cr exceeds 2.5%,
The tensile strength was too high, and therefore the hole expansion rate was low, the minimum bending radius was large, and the stretch flangeability and bendability were poor.
【0059】[実施例2]実施例1の鋼番号1〜3と同
じ組成を有する鋼スラブを用いて、実施例1と同じ条件
で冷間圧延まで行った後、表3に示す条件で連続焼鈍工
程および調質圧延を行い、種々に変化させた熱処理を施
した供試材記号A〜Fの鋼板を得た。得られた鋼板を、
実施例1と同様に、引張試験し、穴拡げ率および最小曲
げ半径を測定した結果を表4に示す。[Example 2] Using a steel slab having the same composition as steel numbers 1 to 3 of Example 1, cold rolling was performed under the same conditions as in Example 1, and then continuous under the conditions shown in Table 3. Annealing steps and temper rolling were performed to obtain steel sheets of test material symbols A to F which had been subjected to variously changed heat treatments. The obtained steel sheet is
Table 4 shows the results of the tensile test and the measurement of the hole expansion ratio and the minimum bending radius in the same manner as in Example 1.
【0060】[0060]
【表3】 [Table 3]
【0061】[0061]
【表4】 [Table 4]
【0062】表4に示すように、本発明例である供試材
記号A〜Dは、いずれも引張強度が880〜1170M
Paであり、かつ、穴拡げ率が75%以上と極めて良好
な伸びフランジ性を有しており、さらに最小曲げ半径も
1.0mm以下と良好な曲げ特性を有している。これに
対して比較例である供試材記号EおよびFは、いずれか
の特性が劣っていた。例えば、供試材記号Eは均熱温度
が800℃未満のため、徐冷帯で板温度が不可避的に低
下することにより急冷開始温度が680℃よりも低くな
ってしまい、マルテンサイト単相の組織が得られず、こ
のため穴拡げ率が低く、伸びフランジ性が劣っていた。
供試材記号Fは、徐冷速度が20℃/secを超えるた
め急冷開始温度が680℃未満となり、マルテンサイト
単相の組織が得られず、このため穴拡げ率が低く、伸び
フランジ性が劣っていた。As shown in Table 4, the test material symbols A to D of the present invention all have a tensile strength of 880 to 1170M.
It is Pa and has a very good stretch flangeability with a hole expansion ratio of 75% or more, and also has a good bending characteristic with a minimum bending radius of 1.0 mm or less. On the other hand, the test material symbols E and F as comparative examples were inferior in either property. For example, sample material symbol E has a soaking temperature of less than 800 ° C., so that the quenching start temperature becomes lower than 680 ° C. due to the unavoidable decrease of the plate temperature in the slow cooling zone. The structure was not obtained, so that the hole expansion rate was low and the stretch flangeability was poor.
For sample material symbol F, the quenching start temperature was lower than 680 ° C. because the slow cooling rate exceeded 20 ° C./sec, and a martensitic single phase structure was not obtained. Therefore, the hole expansion rate was low and the stretch flangeability was low. Was inferior.
【0063】[実施例3]表5に示す化学組成を有する
鋼スラブを連続鋳造により製造し、実施例1と同様のプ
ロセスにより(ただし、急冷の冷却速度は約2000℃
/sec)鋼板とし、それぞれの鋼板について、実施例
1と同様の手順で、マルテンサイトの体積率を求めると
ともに引張試験を行った。また、それぞれの鋼板に機械
切削加工で直径10mmの穴を開けた試料を用いて、以
下は鉄鋼連盟規格(JIST1001−1996)に準
拠した穴拡げ試験を行い、割れが発生した穴径を測定
し、この穴径の初期穴径からの変化率を求めることで、
切削穴の穴拡げ率を求めた。Example 3 A steel slab having the chemical composition shown in Table 5 was produced by continuous casting, and was subjected to the same process as in Example 1 (however, the quenching cooling rate was about 2000 ° C.).
/ Sec) Each steel sheet was subjected to the same procedure as in Example 1 to determine the volume fraction of martensite and to carry out a tensile test. In addition, using a sample in which a hole of 10 mm in diameter was drilled by mechanical cutting in each steel plate, a hole expansion test in accordance with the Iron and Steel Federation Standard (JIST1001-1996) was performed, and the hole diameter at which a crack occurred was measured. By calculating the rate of change of this hole diameter from the initial hole diameter,
The hole expansion rate of the cut hole was determined.
【0064】さらに、最近注目されている非加熱で行え
る機械的接合への適用性を、次に述べる方法で測定した
剥離強度により評価した。機械的接合性を剥離強度によ
り評価したのは、前述のように、機械的接合の接合部の
強度に対しては材料の損傷の影響が支配的であり、材料
の影響が顕著に現れるためである。Further, applicability to mechanical bonding that can be performed without heating, which has recently attracted attention, was evaluated based on peel strength measured by the method described below. The mechanical bondability was evaluated based on the peel strength, as described above, because the effect of material damage is dominant on the strength of the mechanically bonded joint, and the effect of the material appears significantly. is there.
【0065】まず、2枚の矩形の試験片を、長手方向が
直交し中央部で交差するように重ねた後、図2の(a)
に示す円筒状のポンチ(ポンチ:径5.6mm)と図2
の(b)に示す底部の周辺にリング状の溝のあるダイ
(ダイ径:8mm、ダイ深さ:1.2mm)を用いてプ
レス成形する。このとき、2枚の試験片は、図2のCに
示すように、ダイ底部の溝中へ塑性流動するので機械的
に接合される。その後、図3に示すような接合部を試験
片面に垂直方向へ引っ張って接合部が剥離するときの強
度を求める。この剥離強度と幾何的接合性の関係を予め
調査したところ、剥離強度が2.0kN以上であれば機
械的接合性が十分であった。First, two rectangular test pieces are overlapped so that their longitudinal directions are orthogonal to each other and intersect at the center, and FIG.
2 and a cylindrical punch (punch: 5.6 mm in diameter) shown in FIG.
(B) is press-formed using a die (die diameter: 8 mm, die depth: 1.2 mm) having a ring-shaped groove around the bottom. At this time, as shown in FIG. 2C, the two test pieces plastically flow into the grooves at the bottom of the die and are mechanically joined. Thereafter, the joint as shown in FIG. 3 is pulled in the direction perpendicular to the surface of the test piece to determine the strength at which the joint peels off. When the relationship between the peel strength and the geometric bondability was investigated in advance, it was found that the mechanical bondability was sufficient if the peel strength was 2.0 kN or more.
【0066】それぞれの鋼板を図2に示すTOX接合に
より接合した後、図3に示すようにして剥離試験を行い
接合強度を評価した。それぞれの鋼板について、マルテ
ンサイト体積率(%)と、切削穴の穴拡げ率(%)と、
引張試験により得られたYP(MPa)、TS(MP
a)およびEl(%)と、剥離強度(kN)とを表6に
示す。After the respective steel sheets were joined by TOX joining shown in FIG. 2, a peeling test was performed as shown in FIG. 3 to evaluate the joining strength. For each steel plate, the martensite volume ratio (%), the hole expansion ratio (%) of the cut hole,
YP (MPa), TS (MP
Table 6 shows a) and El (%), and the peel strength (kN).
【0067】[0067]
【表5】 [Table 5]
【0068】[0068]
【表6】 [Table 6]
【0069】表6に示すように、本発明例である鋼番号
11〜16は、いずれも引張強度が880〜1170M
Paであり、かつ、切削穴の穴拡げ率が100%以上で
接合強度が高く、機械的接合性が極めて良好である。こ
れに対して比較例である鋼番号17〜20は、いずれか
の特性が劣っていた。例えば、鋼番号17は、Mn+C
r+Moが1.6%未満であるためマルテンサイト単相
の組織が得られず、そのため機械的接合による接合強度
が劣っていた。図4に、この鋼番号17の機械的接合に
よる接合部分を拡大して示す。図4に矢印で示すよう
に、鋼番号17では接合部分にクラックが発生してお
り、このクラックのために接合強度が劣化したものと考
えられる。鋼番号18は、C量が0.07%を超えるた
め、強度が高くなりすぎて伸びが著しく劣っていた。鋼
番号19は、Si量が0.3%を超えるためマルテンサ
イト単相組織が得られておらず、そのため機械接合の接
合強度が劣っていた。鋼番号20は、Mn+Cr+Mo
が2.5%を超えるため、引張強度が高くなりすぎて伸
びが著しく劣っていた。As shown in Table 6, steel numbers 11 to 16 of the present invention have tensile strengths of 880 to 1170M.
When Pa is Pa and the hole expansion ratio of the cut hole is 100% or more, the joining strength is high and the mechanical joining property is extremely good. On the other hand, steel Nos. 17 to 20 as comparative examples were inferior in any of the properties. For example, steel number 17 is Mn + C
Since r + Mo was less than 1.6%, the structure of the martensite single phase was not obtained, and the joining strength by mechanical joining was inferior. FIG. 4 shows an enlarged view of the joint portion of the steel No. 17 by mechanical joining. As indicated by the arrow in FIG. 4, cracks occurred at the joints in steel No. 17, and it is considered that the joint strength was deteriorated due to the cracks. Steel No. 18 had a C content exceeding 0.07%, so the strength was too high and the elongation was extremely poor. In steel No. 19, the martensitic single phase structure was not obtained because the Si content exceeded 0.3%, and thus the bonding strength of mechanical bonding was inferior. Steel No. 20 is Mn + Cr + Mo
Exceeds 2.5%, the tensile strength was too high and the elongation was extremely poor.
【0070】[実施例4]実施例1の鋼番号11〜13
と同じ組成を有する鋼スラブを用いて、実施例3と同じ
条件で冷間圧延まで行った後、表7に示す条件で連続焼
鈍工程および調質圧延を行い、種々に変化させた熱処理
を施した供試材記号G〜Nの鋼板を得た。得られた鋼板
のそれぞれについて、実施例3と同様に、マルテンサイ
ト体積率および切削穴の穴拡げ率を求め、引張試験し、
機械的接合の剥離強度を求めた結果を表8に示す。[Example 4] Steel numbers 11 to 13 of Example 1
Using a steel slab having the same composition as in Example 3, cold rolling was performed under the same conditions as in Example 3, then a continuous annealing step and a temper rolling were performed under the conditions shown in Table 7, and variously changed heat treatments were performed. The steel sheets of the test material symbols G to N were obtained. For each of the obtained steel sheets, the martensite volume ratio and the hole expansion ratio of the cut hole were determined and the tensile test was performed in the same manner as in Example 3.
Table 8 shows the results of the measurement of the peel strength of mechanical bonding.
【0071】[0071]
【表7】 [Table 7]
【0072】[0072]
【表8】 [Table 8]
【0073】表8に示すように、本発明例である供試材
記号G〜Jは、いずれも引張強度が880〜1170M
Paであり、かつ、切削穴の穴拡げ率が100%以上で
接合強度が高く、機械的接合性が極めて良好である。こ
れに対して比較例である供試材記号K〜Nは、いずれか
の特性が劣っていた。例えば、供試材記号Kは、均熱温
度が800℃未満のため徐冷帯で板温度が不可避的に低
下することにより、急冷開始温度が680℃未満とな
り、マルテンサイト単相の組織が得られず、このため機
械的接合の接合強度が劣っていた。供試材記号Lは徐冷
での冷却速度が20℃/secを超えるため、急冷開始
温度が680℃未満となり、マルテンサイト単相の組織
が得られず、機械的接合の接合強度が劣っていた。供試
材記号Mは急冷速度が100℃/sec以下であるため
冷却中にフェライトが生成し、供試材記号Nは急冷停止
温度が200℃を超えるため焼き戻し中にフェライト、
ベイナイトが生成し、いずれもマルテンサイト単相の組
織が得られず、機械的接合の接合強度が劣っていた。As shown in Table 8, the test material symbols G to J of the present invention all have a tensile strength of 880 to 1170M.
When Pa is Pa and the hole expansion ratio of the cut hole is 100% or more, the joining strength is high and the mechanical joining property is extremely good. On the other hand, the test material symbols K to N as comparative examples were inferior in any of the characteristics. For example, sample material K has a soaking temperature of less than 800 ° C., so that the plate temperature inevitably decreases in the slow cooling zone, the quenching start temperature becomes less than 680 ° C., and a martensitic single phase structure is obtained. Therefore, the joining strength of the mechanical joining was inferior. For sample material symbol L, since the cooling rate in slow cooling exceeds 20 ° C./sec, the quenching start temperature is less than 680 ° C., a martensitic single phase structure cannot be obtained, and the joining strength of mechanical joining is poor. Was. For sample material symbol M, quenching rate was 100 ° C./sec or less, ferrite was generated during cooling. For sample material symbol N, ferrite was generated during tempering because the quenching stop temperature exceeded 200 ° C.
Bainite was formed, and in each case, a martensitic single phase structure was not obtained, and the joining strength of mechanical joining was poor.
【0074】[0074]
【発明の効果】本発明によれば、プレス成形に適した優
れた伸びフランジ性を有し、かつ、TOX接合等の機械
的接合により高い強度で接合可能な優れた機械的接合性
を有し、現存の連続焼鈍炉で工業的に製造することが可
能な、引張強度880〜1170MPa級、特に980
〜1080MPa級の超高張力冷延鋼板を提供すること
ができる。According to the present invention, it has excellent stretch flangeability suitable for press molding and excellent mechanical bondability that can be bonded with high strength by mechanical bonding such as TOX bonding. Tensile strength of 880-1170 MPa, especially 980, which can be industrially manufactured in existing continuous annealing furnaces
It is possible to provide an ultra-high tensile cold-rolled steel sheet of a class of up to 1080 MPa.
【0075】本発明の超高張力冷延鋼板を用いることに
より、自動車用構造部材および補強部材、自動車シート
骨格部材等をプレス成形により容易かつ低コストで製造
することが可能となる。そして、このような部品を広く
用いることにより自動車の大幅な軽量化が達成され、ひ
いては自動車の燃費向上、CO2排出量削減等の効果も
期待される。By using the ultra-high tensile strength cold-rolled steel sheet of the present invention, it is possible to easily and inexpensively manufacture structural members and reinforcing members for automobiles, frame members of automobile seats and the like by press molding. By widely using such components, a significant reduction in the weight of an automobile can be achieved, and further, effects such as improvement in automobile fuel efficiency and reduction of CO 2 emission can be expected.
【図1】現存の連続焼鈍炉の構成を示す概略図。FIG. 1 is a schematic diagram showing the configuration of an existing continuous annealing furnace.
【図2】機械的接合の説明図であって、(a)はポン
チ、(b)はダイ、(c)は試験片接合状態を示す図。FIGS. 2A and 2B are explanatory diagrams of mechanical joining, in which FIG. 2A shows a punch, FIG. 2B shows a die, and FIG.
【図3】剥離強度試験の説明図。FIG. 3 is an explanatory view of a peel strength test.
【図4】比較例において接合部分にクラックが発生した
状態の拡大図。FIG. 4 is an enlarged view of a comparative example in which a crack has occurred in a joint portion.
フロントページの続き (72)発明者 吉武 明英 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鶴丸 英幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K037 EA02 EA05 EA11 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA31 EB06 EB08 FA03 FC04 FE02 FH01 FJ05 FJ06 FK02 FK03 FK06 FK08 FL01 FM02 Continuing from the front page (72) Inventor Akihide Yoshitake 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Hideyuki Tsurumaru 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Incorporated F term (reference) 4K037 EA02 EA05 EA11 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA31 EB06 EB08 FA03 FC04 FE02 FH01 FJ05 FJ06 FK02 FK03 FK06 FK08 FL01 FM02
Claims (9)
くとも1種を合計で1.6〜2.5%含有し、実質的に
マルテンサイト単相(鋼板表層より深さ10μm以内の
部分を除く)であり、引張強度が880〜1170MP
aであることを特徴とする超高張力冷延鋼板。Claims: 1. A martensitic single phase containing at least one of Mn, Cr and Mo in a weight percentage of 1.6 to 2.5% in total (parts having a depth of less than 10 μm from the surface layer of a steel sheet). Excluding) and a tensile strength of 880 to 1170MP
(a) an ultra-high tensile cold-rolled steel sheet;
50%含有し、実質的にマルテンサイト単相(鋼板表層
より深さ10μm以内の部分を除く)であり、引張強度
が880〜1170MPaであることを特徴とする超高
張力冷延鋼板。2. B is 0.0005 to 0.00% by weight.
An ultra-high tensile cold-rolled steel sheet containing 50%, substantially a martensite single phase (excluding a portion within 10 μm in depth from the surface layer of the steel sheet), and having a tensile strength of 880 to 1170 MPa.
くとも1種を合計で1.6〜2.5%、Bを0.000
5〜0.0050%含有し、実質的にマルテンサイト単
相(鋼板表層より深さ10μm以内の部分を除く)であ
り、引張強度が880〜1170MPaであることを特
徴とする超高張力冷延鋼板。3. A total of 1.6 to 2.5% of at least one of Mn, Cr and Mo and B of 0.000% by weight.
An ultra-high tensile cold-rolled steel containing 5 to 0.0050%, substantially a martensitic single phase (excluding a portion within 10 μm in depth from the surface layer of the steel sheet), and having a tensile strength of 880 to 1170 MPa. steel sheet.
〜2.5% を含有し、残部が実質的にFeからなり、実質的にマル
テンサイト単相(鋼板表層より深さ10μm以内の部分
を除く)であり、引張強度が880〜1170MPaで
あることを特徴とする超高張力冷延鋼板。4. In% by weight, C: 0.01 to 0.07%, Si: 0.3% or less, P: 0.1% or less, S: 0.01% or less, Sol. Al: 0.01 to 0.1%, N: 0.0050% or less, at least one of Mn, Cr and Mo: 1.6 in total
~ 2.5%, the balance being substantially composed of Fe, a substantially martensitic single phase (excluding the portion within 10 µm in depth from the surface layer of the steel sheet), and a tensile strength of 880 to 1170 MPa. Ultra-high tensile cold rolled steel sheet characterized by the following.
50%をさらに含有することを特徴とする請求項4に記
載の超高張力冷延鋼板。5. B: 0.0005 to 0.00% by weight
The ultra-high tensile strength cold-rolled steel sheet according to claim 4, further comprising 50%.
×48/14[N]%(ただし、[N]はN含有量(重
量%)を示す)をさらに含有することを特徴とする請求
項2、請求項3または請求項5に記載の超高張力冷延鋼
板。6. Ti: 48/14 [N] to 3% by weight
The ultrahigh-density composition according to claim 2, further comprising × 48/14 [N]% (where [N] indicates N content (% by weight)). Tension cold rolled steel sheet.
%をさらに含有することを特徴とする請求項1から請求
項6のいずれか1項に記載の超高張力冷延鋼板。7. Nb: 0.001 to 0.04 by weight%
%. The ultra-high tensile cold-rolled steel sheet according to any one of claims 1 to 6, further comprising:
ことを特徴とする請求項1から請求項7のいずれか1項
に記載の超高張力冷延鋼板。8. The ultra-high tensile cold-rolled steel sheet according to claim 1, wherein a hole expansion ratio of the cut hole is 100% or more.
記載の成分組成を有する鋼スラブを、熱間圧延し、冷間
圧延し、連続焼鈍し、冷却する冷延鋼板の製造方法であ
って、連続焼鈍で800〜890℃に加熱、保持後、2
0℃/sec以下で徐冷し、680〜750℃から10
0℃/sec超の冷却速度で200℃以下まで冷却する
ことを特徴とする引張強度が880〜1170MPaで
ある超高張力冷延鋼板の製造方法。9. A method for producing a cold-rolled steel sheet, comprising hot rolling, cold rolling, continuous annealing, and cooling a steel slab having the component composition according to any one of claims 1 to 7. After heating to 800 to 890 ° C. by continuous annealing and holding,
Cool slowly at 0 ° C / sec or less, and
A method for producing an ultra-high tensile cold-rolled steel sheet having a tensile strength of 880 to 1170 MPa, characterized by cooling to a temperature of 200 ° C. or lower at a cooling rate of more than 0 ° C./sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001275257A JP3729108B2 (en) | 2000-09-12 | 2001-09-11 | Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-276891 | 2000-09-12 | ||
JP2000276891 | 2000-09-12 | ||
JP2001275257A JP3729108B2 (en) | 2000-09-12 | 2001-09-11 | Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002161336A true JP2002161336A (en) | 2002-06-04 |
JP3729108B2 JP3729108B2 (en) | 2005-12-21 |
Family
ID=26599781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001275257A Expired - Fee Related JP3729108B2 (en) | 2000-09-12 | 2001-09-11 | Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3729108B2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1514951A1 (en) * | 2002-06-14 | 2005-03-16 | JFE Steel Corporation | High strength cold rolled steel plate and method for production thereof |
JP2005163115A (en) * | 2003-12-03 | 2005-06-23 | Jfe Steel Kk | Method for manufacturing super high-strength steel sheet with adequate shape |
JP2005273002A (en) * | 2004-02-27 | 2005-10-06 | Jfe Steel Kk | Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor |
JP2006233318A (en) * | 2005-02-28 | 2006-09-07 | Jfe Steel Kk | Method for producing high strength steel sheet having excellent shape-fixability and deep drawability |
JP2007177272A (en) * | 2005-12-27 | 2007-07-12 | Nippon Steel Corp | High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor |
JP2007177271A (en) * | 2005-12-27 | 2007-07-12 | Nippon Steel Corp | High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor |
JP2008531940A (en) * | 2005-02-25 | 2008-08-14 | デーナ、コーポレイション | Lower strength material for MLS layer |
US7507307B2 (en) | 2002-06-10 | 2009-03-24 | Jfe Steel Corporation | Method for producing cold rolled steel plate of super high strength |
JP2009079255A (en) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | High-tensile-strength cold-rolled steel sheet and method for manufacturing the same |
JP2009108343A (en) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | High-strength steel sheet and manufacturing method therefor |
WO2009066734A1 (en) | 2007-11-22 | 2009-05-28 | Kabushiki Kaisha Kobe Seiko Sho | High-strength cold-rolled steel sheet |
WO2009110607A1 (en) | 2008-03-07 | 2009-09-11 | 株式会社神戸製鋼所 | Cold-rolled steel sheets |
WO2010058762A1 (en) | 2008-11-19 | 2010-05-27 | 住友金属工業株式会社 | Steel sheet, surface-treated steel sheet, and method for producing the same |
WO2010114131A1 (en) | 2009-04-03 | 2010-10-07 | 株式会社神戸製鋼所 | Cold-rolled steel sheet and process for producing same |
WO2011105385A1 (en) | 2010-02-26 | 2011-09-01 | Jfeスチール株式会社 | Super-high strength cold-rolled steel sheet having excellent bending properties |
WO2011118459A1 (en) * | 2010-03-24 | 2011-09-29 | Jfeスチール株式会社 | Ultra high strength cold rolled steel sheet and method for producing same |
WO2011152017A1 (en) | 2010-05-31 | 2011-12-08 | Jfeスチール株式会社 | High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof |
KR101630975B1 (en) * | 2014-12-05 | 2016-06-16 | 주식회사 포스코 | High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same |
CN105779882A (en) * | 2016-05-23 | 2016-07-20 | 攀钢集团攀枝花钢铁研究院有限公司 | Low-cost cold-roll steel sheet and production method thereof |
CN105838991A (en) * | 2016-04-01 | 2016-08-10 | 攀钢集团攀枝花钢铁研究院有限公司 | Cold-rolled steel plate for household appliances and production method of cold-rolled steel plate |
WO2017111233A1 (en) * | 2015-12-23 | 2017-06-29 | (주)포스코 | High strength steel and manufacturing method therefor |
US10094011B2 (en) | 2013-05-22 | 2018-10-09 | Baoshan Iron & Steel Co., Ltd. | Superstrength cold-rolled weathering steel sheet and method of manufacturing same |
WO2019124766A1 (en) * | 2017-12-24 | 2019-06-27 | 주식회사 포스코 | High yield ratio-type high-strength steel sheet and method for manufacturing same |
CN114107794A (en) * | 2020-08-31 | 2022-03-01 | 宝山钢铁股份有限公司 | 980 MPa-grade ultra-low carbon martensite and residual austenite type ultrahigh reaming steel and manufacturing method thereof |
EP4206350A4 (en) * | 2020-08-31 | 2024-03-13 | Baoshan Iron & Steel Co., Ltd. | High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor |
KR102729387B1 (en) | 2019-05-15 | 2024-11-14 | 아르셀러미탈 | A cold rolled martensitic steel sheet and a method of producing thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090277547A1 (en) | 2006-07-14 | 2009-11-12 | Kabushiki Kaisha Kobe Seiko Sho | High-strength steel sheets and processes for production of the same |
JP5637342B2 (en) | 2008-09-18 | 2014-12-10 | 国立大学法人 岡山大学 | Hot-pressed steel plate member and method for manufacturing the same |
KR101917452B1 (en) | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Cold rolled steel sheet with excellent bendability and hole expansion property, and method for manufacturing the same |
KR102398271B1 (en) | 2020-10-06 | 2022-05-13 | 주식회사 포스코 | High-strength steel sheet having excellent bendability and hole expandability and method for manufacturing same |
-
2001
- 2001-09-11 JP JP2001275257A patent/JP3729108B2/en not_active Expired - Fee Related
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7507307B2 (en) | 2002-06-10 | 2009-03-24 | Jfe Steel Corporation | Method for producing cold rolled steel plate of super high strength |
EP2017363A3 (en) * | 2002-06-14 | 2009-08-05 | JFE Steel Corporation | High strength cold-rolled steel sheet and method for manufacturing the same |
EP1514951A4 (en) * | 2002-06-14 | 2006-05-10 | Jfe Steel Corp | High strength cold rolled steel plate and method for production thereof |
EP1514951A1 (en) * | 2002-06-14 | 2005-03-16 | JFE Steel Corporation | High strength cold rolled steel plate and method for production thereof |
JP2005163115A (en) * | 2003-12-03 | 2005-06-23 | Jfe Steel Kk | Method for manufacturing super high-strength steel sheet with adequate shape |
JP4492111B2 (en) * | 2003-12-03 | 2010-06-30 | Jfeスチール株式会社 | Manufacturing method of super high strength steel plate with good shape |
JP2005273002A (en) * | 2004-02-27 | 2005-10-06 | Jfe Steel Kk | Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor |
JP4586449B2 (en) * | 2004-02-27 | 2010-11-24 | Jfeスチール株式会社 | Ultra-high-strength cold-rolled steel sheet excellent in bendability and stretch flangeability and manufacturing method thereof |
JP2008531940A (en) * | 2005-02-25 | 2008-08-14 | デーナ、コーポレイション | Lower strength material for MLS layer |
JP2006233318A (en) * | 2005-02-28 | 2006-09-07 | Jfe Steel Kk | Method for producing high strength steel sheet having excellent shape-fixability and deep drawability |
JP4525386B2 (en) * | 2005-02-28 | 2010-08-18 | Jfeスチール株式会社 | Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability |
JP2007177272A (en) * | 2005-12-27 | 2007-07-12 | Nippon Steel Corp | High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor |
JP2007177271A (en) * | 2005-12-27 | 2007-07-12 | Nippon Steel Corp | High-strength cold-rolled steel sheet superior in hole expandability, and manufacturing method therefor |
JP2009079255A (en) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | High-tensile-strength cold-rolled steel sheet and method for manufacturing the same |
JP2009108343A (en) * | 2007-10-26 | 2009-05-21 | Sumitomo Metal Ind Ltd | High-strength steel sheet and manufacturing method therefor |
WO2009066734A1 (en) | 2007-11-22 | 2009-05-28 | Kabushiki Kaisha Kobe Seiko Sho | High-strength cold-rolled steel sheet |
US8679265B2 (en) | 2007-11-22 | 2014-03-25 | Kobe Steel, Ltd. | High-strength cold-rolled steel sheet |
EP2455507A1 (en) | 2007-11-22 | 2012-05-23 | Kabushiki Kaisha Kobe Seiko Sho | High-strength cold-rolled steel sheet |
WO2009110607A1 (en) | 2008-03-07 | 2009-09-11 | 株式会社神戸製鋼所 | Cold-rolled steel sheets |
US8343288B2 (en) | 2008-03-07 | 2013-01-01 | Kobe Steel, Ltd. | Cold rolled steel sheet |
WO2010058762A1 (en) | 2008-11-19 | 2010-05-27 | 住友金属工業株式会社 | Steel sheet, surface-treated steel sheet, and method for producing the same |
WO2010114131A1 (en) | 2009-04-03 | 2010-10-07 | 株式会社神戸製鋼所 | Cold-rolled steel sheet and process for producing same |
US8840738B2 (en) | 2009-04-03 | 2014-09-23 | Kobe Steel, Ltd. | Cold-rolled steel sheet and method for producing the same |
WO2011105385A1 (en) | 2010-02-26 | 2011-09-01 | Jfeスチール株式会社 | Super-high strength cold-rolled steel sheet having excellent bending properties |
US8951367B2 (en) | 2010-02-26 | 2015-02-10 | Jfe Steel Corporation | Ultra high strength cold rolled steel sheet having excellent bendability |
JP2011202195A (en) * | 2010-03-24 | 2011-10-13 | Jfe Steel Corp | Ultrahigh strength cold rolled steel sheet and method for producing same |
WO2011118459A1 (en) * | 2010-03-24 | 2011-09-29 | Jfeスチール株式会社 | Ultra high strength cold rolled steel sheet and method for producing same |
CN102822375A (en) * | 2010-03-24 | 2012-12-12 | 杰富意钢铁株式会社 | Ultra high strength cold rolled steel sheet and method for producing same |
KR101288701B1 (en) * | 2010-03-24 | 2013-07-22 | 제이에프이 스틸 가부시키가이샤 | Ultra high strength cold rolled steel sheet and method for producing same |
CN102822375B (en) * | 2010-03-24 | 2014-05-28 | 杰富意钢铁株式会社 | Ultra high strength cold rolled steel sheet and method for producing same |
WO2011152017A1 (en) | 2010-05-31 | 2011-12-08 | Jfeスチール株式会社 | High-strength molten-zinc-plated steel sheet having excellent bendability and weldability, and process for production thereof |
US10196727B2 (en) | 2010-05-31 | 2019-02-05 | Jfe Steel Corporation | High strength galvanized steel sheet having excellent bendability and weldability, and method of manufacturing the same |
US10094011B2 (en) | 2013-05-22 | 2018-10-09 | Baoshan Iron & Steel Co., Ltd. | Superstrength cold-rolled weathering steel sheet and method of manufacturing same |
KR101630975B1 (en) * | 2014-12-05 | 2016-06-16 | 주식회사 포스코 | High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same |
WO2017111233A1 (en) * | 2015-12-23 | 2017-06-29 | (주)포스코 | High strength steel and manufacturing method therefor |
CN105838991A (en) * | 2016-04-01 | 2016-08-10 | 攀钢集团攀枝花钢铁研究院有限公司 | Cold-rolled steel plate for household appliances and production method of cold-rolled steel plate |
CN105779882A (en) * | 2016-05-23 | 2016-07-20 | 攀钢集团攀枝花钢铁研究院有限公司 | Low-cost cold-roll steel sheet and production method thereof |
WO2019124766A1 (en) * | 2017-12-24 | 2019-06-27 | 주식회사 포스코 | High yield ratio-type high-strength steel sheet and method for manufacturing same |
KR20190077193A (en) * | 2017-12-24 | 2019-07-03 | 주식회사 포스코 | High strength steel sheet having high yield ratio and method for manufacturing the same |
KR102075216B1 (en) | 2017-12-24 | 2020-02-07 | 주식회사 포스코 | High strength steel sheet having high yield ratio and method for manufacturing the same |
EP3730651A4 (en) * | 2017-12-24 | 2020-10-28 | Posco | High yield ratio-type high-strength steel sheet and method for manufacturing same |
KR102729387B1 (en) | 2019-05-15 | 2024-11-14 | 아르셀러미탈 | A cold rolled martensitic steel sheet and a method of producing thereof |
CN114107794A (en) * | 2020-08-31 | 2022-03-01 | 宝山钢铁股份有限公司 | 980 MPa-grade ultra-low carbon martensite and residual austenite type ultrahigh reaming steel and manufacturing method thereof |
CN114107794B (en) * | 2020-08-31 | 2023-08-11 | 宝山钢铁股份有限公司 | 980 MPa-grade ultra-low carbon martensite and residual austenite ultra-high hole-enlarging steel and manufacturing method thereof |
EP4206350A4 (en) * | 2020-08-31 | 2024-03-13 | Baoshan Iron & Steel Co., Ltd. | High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3729108B2 (en) | 2005-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3729108B2 (en) | Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof | |
US11572603B2 (en) | Hot-rolled steel strip and manufacturing method | |
US10023925B2 (en) | Hot stamped article, method of producing hot stamped article, energy absorbing member, and method of producing energy absorbing member | |
JP4470701B2 (en) | High-strength thin steel sheet with excellent workability and surface properties and method for producing the same | |
JP7261822B2 (en) | Al-Fe alloy plated steel sheet for hot forming with excellent TWB welding properties, and method for producing hot formed member | |
JP4530606B2 (en) | Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability | |
WO2003106723A1 (en) | High strength cold rolled steel plate and method for production thereof | |
JP4586449B2 (en) | Ultra-high-strength cold-rolled steel sheet excellent in bendability and stretch flangeability and manufacturing method thereof | |
WO2016152172A1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
JP2004232022A (en) | Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor | |
EP1325966B1 (en) | Super-high strength cold-rolled steel sheet and method for production thereof | |
JP2000080440A (en) | High strength cold rolled steel sheet and its manufacture | |
JP4265152B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP4265153B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JPH0657375A (en) | Ultrahigh tensile strength cold-rolled steel sheet and its production | |
JP2006265577A (en) | Method for producing high strength, high toughness steel sheet | |
JP4306497B2 (en) | High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same | |
JPH10280090A (en) | High strength cold rolled steel sheet having superior shape and excellent in bendability, and its production | |
JP3993703B2 (en) | Manufacturing method of thin steel sheet for processing | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
WO2011043287A1 (en) | Steel for linepipe having good strength and malleability, and method for producing the same | |
JP2023045253A (en) | Steel plate and method for producing the same | |
JP2618563B2 (en) | High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same | |
JP7444343B1 (en) | Thick steel plate and its manufacturing method | |
JP4815729B2 (en) | Manufacturing method of high strength ERW steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3729108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131014 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |