[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002151000A - Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method - Google Patents

Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method

Info

Publication number
JP2002151000A
JP2002151000A JP2000350554A JP2000350554A JP2002151000A JP 2002151000 A JP2002151000 A JP 2002151000A JP 2000350554 A JP2000350554 A JP 2000350554A JP 2000350554 A JP2000350554 A JP 2000350554A JP 2002151000 A JP2002151000 A JP 2002151000A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
antibacterial film
photocatalytic
antibacterial
photocatalytic antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000350554A
Other languages
Japanese (ja)
Inventor
Etsuo Urataki
悦夫 浦滝
Masahiro Ichikawa
正大 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000350554A priority Critical patent/JP2002151000A/en
Publication of JP2002151000A publication Critical patent/JP2002151000A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3689Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one oxide layer being obtained by oxidation of a metallic layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance cleaning effect, up to antibacterial effect, while having deodorization/staining performance not less than that of a fluorescent lamp with a traditional photocatalyst film, without increasing the manufacturing cost. SOLUTION: Oxidized metal fine particles, in which an antibacterial metal of silver or the like is made to be carried, is made to be arranged only in the vicinity of a surface of a comparatively inexpensive titanium film without carrying the antimicrobe metal. As a result of this, the traditional cleaning effect turns into antibacterial effect, and the deodorization performance can be enhanced than that of the conventional cases and the manufacturing cost of the lamp can be nearly the same as that of the conventional cases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光ランプの製造
方法に関し、特に、「光触媒抗菌膜」を塗布してなる構
造を持ち、光触媒作用による脱臭効果、防汚効果、及び
抗菌剤による抗菌効果の3種の効果を合わせ有する蛍光
ランプの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fluorescent lamp, and more particularly to a method for applying a "photocatalytic antibacterial film", which has a deodorizing effect, an antifouling effect by a photocatalytic action, and an antibacterial effect by an antibacterial agent. And a method for manufacturing a fluorescent lamp having the three effects described above.

【0002】[0002]

【従来の技術】近年、酸化チタンの薄い膜を各種製品に
塗布し、また、酸化チタンを塗料等に練り込んで塗装
し、これらの表面に紫外線を照射することにより、脱臭
や防汚効果が得られるという技術が各分野で応用されて
いる。この技術は、家庭用品・建築材料等多くの製品分
野で応用されてきており、蛍光ランプにも応用されてい
る(例えば、特開平10-116587)。
2. Description of the Related Art In recent years, a thin film of titanium oxide has been applied to various products, and the titanium oxide has been kneaded into a paint or the like, and the surface has been irradiated with ultraviolet rays to achieve a deodorizing and antifouling effect. The technology that can be obtained is applied in various fields. This technology has been applied to many product fields such as household goods and building materials, and is also applied to fluorescent lamps (for example, JP-A-10-116587).

【0003】従来の蛍光ランプのガラス部断面図を図4
に示す。蛍光ランプ24は、軟質ガラスからなるガラス管
22の内面に、紫外線を可視に変換する蛍光体21を塗布
し、光触媒膜23を該ガラス管1の外表面に塗布して構成
されている。前記光触媒膜23とは、図5に示す酸化チタ
ン2を固着剤3により、ガラス管22の表面に薄い膜として
塗布乾燥し固着せしめたものである。蛍光ランプ24を点
灯することにより、内部に発生する紫外線が蛍光体22や
ガラス管21を透過して前記光触媒膜23に達する。図5に
示す光触媒膜23の粗粒子酸化チタン2は、100〜400nmの
紫外線を照射されることより、その内部に電子e-とホー
ルh+を生成し、これがランプ表面と接している大気中の
酸素や水と反応して、イオン化酸素や過酸化水素等の活
性物質(以下「活性種」という)が発生する。
FIG. 4 is a sectional view of a glass part of a conventional fluorescent lamp.
Shown in The fluorescent lamp 24 is a glass tube made of soft glass.
A fluorescent material 21 for converting ultraviolet light into visible light is applied to the inner surface of 22, and a photocatalytic film 23 is applied to the outer surface of the glass tube 1. The photocatalyst film 23 is obtained by coating titanium oxide 2 shown in FIG. 5 with a fixing agent 3 on a surface of the glass tube 22 as a thin film, drying and fixing the film. When the fluorescent lamp 24 is turned on, the ultraviolet light generated inside passes through the phosphor 22 and the glass tube 21 to reach the photocatalytic film 23. The coarse-grained titanium oxide 2 of the photocatalytic film 23 shown in FIG. 5 is irradiated with ultraviolet rays of 100 to 400 nm, thereby generating electrons e- and holes h + therein, which are in contact with the lamp surface in the atmosphere. Reacts with oxygen or water to generate active substances such as ionized oxygen and hydrogen peroxide (hereinafter referred to as “active species”).

【0004】活性種はいずれも酸化活性の能力があるた
め、光触媒膜23の表面に接触した有機物に対し、酸化・
分解の化学反応を起こすことができる。例えば、空気中
にいやなにおい分子が光触媒面に接触すると、これらは
活性種により無臭である水(気体)や窒素ガスや炭酸ガス
に分解して変化するために、脱臭効果が得られることに
なる。また、有機物である油などの汚れがランプ表面に
付着した場合も、光触媒の表面で化学反応を起こして分
解し、水や窒素ガス等に変化するため、常にきれいな表
面を保持できるという防汚効果を発揮することが知られ
ている。さらには、空気中に浮遊している細菌が、この
酸化チタンの表面に付着した際には、有機物である該細
菌の細胞を分解して死滅させるため、浄化効果を有す
る。従って、光触媒膜付き蛍光ランプは、光触媒膜23の
ない従来の一般ランプに比べて、脱臭・防汚・浄化の3
種類の効果を発揮するランプであり、よりクリーンな生
活環境が得られるという特徴を有するランプである。
[0004] Since all of the active species have the ability of oxidizing activity, organic species in contact with the surface of the photocatalytic film 23 are oxidized and oxidized.
Decomposition chemical reactions can occur. For example, when unpleasant smell molecules come into contact with the photocatalyst surface in the air, they are decomposed into water (gas), nitrogen gas, or carbon dioxide gas, which is odorless by the active species, and changed, resulting in a deodorizing effect. Become. In addition, even when dirt such as oil, which is an organic substance, adheres to the lamp surface, it causes a chemical reaction on the surface of the photocatalyst, decomposes, and changes to water, nitrogen gas, etc., so that a clean surface can always be maintained. It is known to exert Furthermore, when bacteria floating in the air adhere to the surface of the titanium oxide, they decompose and kill the cells of the bacteria, which are organic substances, and thus have a purifying effect. Therefore, the fluorescent lamp with a photocatalytic film has three advantages of deodorization, antifouling and purification compared to a conventional general lamp without the photocatalytic film 23.
It is a lamp that exhibits various kinds of effects, and has a feature that a cleaner living environment can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
光触媒膜付き蛍光ランプは、細菌などの微生物を死に至
らしめるには、前述の活性種が微生物の細胞を分解する
のに多くの時間を必要とするため、また、死んだ微生物
が光触媒膜23の上に存在することで、これと活性種の反
応に多大の時間を必要とするために、生菌(生きている
細菌)を死滅により減少させる速度が低下するという欠
点があった。従って、光触媒膜なしの製品と光触媒膜付
きの製品との抗菌性能試験後の生菌数が、「100:1以
下」のレベルに達する「抗菌効果」を発揮するには至ら
ず、浄化効果のレベルであった。
However, the conventional fluorescent lamp with a photocatalytic film requires a lot of time for the above-mentioned active species to decompose the cells of the microorganism in order to kill microorganisms such as bacteria. In addition, since the dead microorganisms are present on the photocatalytic film 23, the reaction between the microorganisms and the active species requires a large amount of time, so that the viable bacteria (living bacteria) are reduced by death. There was a disadvantage that the speed was reduced. Therefore, the number of viable bacteria after the antibacterial performance test of the product without the photocatalytic film and the product with the photocatalytic film does not reach the level of `` 100: 1 or less '' and does not exhibit the `` antibacterial effect '', and the purification effect Level.

【0006】最近多くの実用例があるように、銀、銅、
亜鉛等の抗菌性金属を酸化チタン等の非抗菌性無機酸化
物に「担持」させた無機抗菌剤が開発されている。担持
とは、抗菌性金属を酸化チタン等の非抗菌性無機酸化物
に混合するか、化合物の形で構成するか、または、両者
を結合状態とすることにより構成されたことを示すもの
である。前記無機抗菌剤をガラス管22の表面に塗布固着
せしめることで、抗菌作用を発現させることが可能であ
る。
[0006] As there are many practical examples recently, silver, copper,
Inorganic antibacterial agents in which an antibacterial metal such as zinc is "supported" by a non-antibacterial inorganic oxide such as titanium oxide have been developed. Carrying means that the antibacterial metal is mixed with a non-antibacterial inorganic oxide such as titanium oxide, or is formed in the form of a compound, or indicates that both are bonded to each other. . By applying and fixing the inorganic antibacterial agent on the surface of the glass tube 22, an antibacterial action can be exhibited.

【0007】図3は、前記抗菌性金属4を粗粒子酸化チタ
ン2に担持させてなる無機抗菌剤より構成されている光
触媒抗菌膜25をガラス管22の表面に形成した例の模式図
を示している。図3では、細菌が光触媒抗菌膜25に接触
した場合、膜のガラス管22に近い部分の抗菌金属4は、
細菌との距離が離れるためその作用効果が小さくなり、
無駄になっているという欠点を有する。一方、抗菌性金
属4は非常に高価な材料であるため、この材料使用量を
低減し、かつ、抗菌性能を同一とする光触媒抗菌膜の成
膜方法が望まれていた。
FIG. 3 is a schematic view showing an example in which a photocatalytic antibacterial film 25 composed of an inorganic antibacterial agent in which the antibacterial metal 4 is supported on coarse-grained titanium oxide 2 is formed on the surface of a glass tube 22. ing. In FIG. 3, when bacteria contact the photocatalytic antibacterial membrane 25, the antibacterial metal 4 near the glass tube 22 of the membrane is
The effect is small because the distance to the bacteria is large,
It has the disadvantage of being wasted. On the other hand, since the antibacterial metal 4 is a very expensive material, there has been a demand for a method for forming a photocatalytic antibacterial film that reduces the amount of the material used and has the same antibacterial performance.

【0008】本発明は、脱臭・防汚・浄化効果のうち、
特に浄化効果について格段の性能向上させ、抗菌効果に
までレベルアップすることを目的としたものであり、か
つ、この製造コストを従来とほぼ同等にすることを可能
にした構造を有する光触媒抗菌膜付き蛍光ランプの製造
方法を提供するものである。
The present invention provides a deodorizing, antifouling, and purifying effect.
With a photocatalytic antibacterial film with a structure that aims to significantly improve the purification effect and improve the antibacterial effect, and to make the manufacturing cost almost the same as before. A method for manufacturing a fluorescent lamp is provided.

【0009】[0009]

【課題を解決するための手段】抗菌性金属である銀や
銅、亜鉛等のうち特によく用いられる銀は、抗菌性金属
の中でも最も高価な材料の1つである。一方、酸化チタ
ンに抗菌性金属を担持させた光触媒抗菌剤の製造工程
は、光触媒膜である酸化チタンを製造するより複雑な工
程になるため、製造コストが増加する。本発明は、光触
媒抗菌膜の塗膜の断面において、その表面側(空気に触
れる側)に多くの抗菌性金属を配置し、ガラス管に近い
部分は安価な非抗菌性金属酸化物を配置するように工夫
したものである。
Among the antibacterial metals, silver, copper, zinc and the like, silver, which is particularly frequently used, is one of the most expensive materials among the antibacterial metals. On the other hand, the manufacturing process of a photocatalytic antibacterial agent in which an antibacterial metal is supported on titanium oxide is a more complicated process than that of manufacturing titanium oxide as a photocatalytic film, and thus the manufacturing cost increases. In the present invention, in the cross section of the coating film of the photocatalytic antibacterial film, many antibacterial metals are arranged on the surface side (the side that comes in contact with air), and a portion close to the glass tube is arranged with an inexpensive non-antibacterial metal oxide. It is something devised as follows.

【0010】すなわち、抗菌性金属を光触媒性非抗菌性
金属酸化物の塗布膜の表面及び表面近傍の位置に配置す
ることにより、前記抗菌性金属の使用量を低減させるこ
とができ、ランプ製造コストの低減が可能となる。
That is, by disposing the antibacterial metal on the surface of the coating film of the photocatalytic non-antibacterial metal oxide and at a position near the surface, the amount of the antibacterial metal used can be reduced, and the lamp manufacturing cost can be reduced. Can be reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて説明する。図1は、本発明の特徴を最も良く
表している光触媒抗菌膜付き蛍光ランプの塗膜断面の構
造模式図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic structural view of a cross section of a coating film of a fluorescent lamp with a photocatalytic antibacterial film, which best illustrates the features of the present invention.

【0012】蛍光ランプのガラス管22の表面に比較的粒
子の粗い光触媒性非抗菌性金属酸化物である粗粒子酸化
チタン2が塗布され、金属酸化物よりなる固着剤3により
ガラス管22に強固に固着されている。前記粗粒子酸化チ
タン2の表面及び表面に極めて近傍の位置に粒径の小さ
い微粒子酸化金属粒1を配置する構造とした。該微粒子
酸化金属粒1は、光触媒性酸化チタンや固着剤としての
シリカ等の金属酸化物の粒子の集まった粒に、抗菌剤と
しての銀、銅、亜鉛等のうちの1種以上の金属が担持さ
れており、抗菌効果を発現する材料である。
The surface of the glass tube 22 of the fluorescent lamp is coated with a coarse-grained titanium oxide 2 which is a photocatalytic non-antibacterial metal oxide having a relatively coarse particle, and is firmly attached to the glass tube 22 by a fixing agent 3 made of a metal oxide. It is stuck to. The structure was such that fine metal oxide particles 1 having a small particle size were arranged on the surface of the coarse particle titanium oxide 2 and at a position very close to the surface. The fine metal oxide particles 1 are formed by collecting particles of metal oxide particles such as photocatalytic titanium oxide and silica as a fixing agent, and silver, copper, zinc or the like as an antibacterial agent. A material that is carried and exhibits an antibacterial effect.

【0013】なお、細菌を死に至らしめる現象は、微粒
子酸化金属1のうちの光触媒効果を発揮する酸化チタ
ン、及び粗粒子酸化チタン2の光触媒作用により発生す
る活性種によっても得られることができるが、微粒子酸
化金属1に担持されている抗菌性金属そのものが細菌に
作用して死に至らしめる割合のほうが極めて大きいもの
であり、これにより抗菌性能が大きく発現できるもので
ある。
The phenomenon that causes bacteria to die can also be obtained by the active species generated by the photocatalytic action of titanium oxide exhibiting a photocatalytic effect and coarse-grained titanium oxide 2 among the fine metal oxides 1. The rate at which the antibacterial metal itself carried on the fine metal oxide particles 1 acts on bacteria to cause death is much higher, whereby the antibacterial performance can be greatly exhibited.

【0014】図2に示すように例えば大腸菌等の細菌5の
外郭9が、この光触媒抗菌膜25の表面に接触した場合、
抗菌性金属例えば銀7が進入経路8の如くに移動して、細
菌5の外郭9を破壊または透過して体内6に侵入し、細菌5
の生理循環作用が停止してしまうことになる。
As shown in FIG. 2, when the outer shell 9 of the bacterium 5 such as Escherichia coli contacts the surface of the photocatalytic antibacterial film 25,
The antibacterial metal, for example, silver 7 moves along the entry route 8, destroys or penetrates the outer shell 9 of the bacterium 5, enters the body 6, and
Physiological circulatory action is stopped.

【0015】以下に、本発明になる図1の構造の光触媒
抗菌膜を成膜処理する方法を説明する。
Hereinafter, a method for forming a photocatalytic antibacterial film having the structure of FIG. 1 according to the present invention will be described.

【0016】粗粒子酸化チタン2を水またはアルコール
または両者の混合液に分散させ、コロイド分散液として
薬液LAを製造する。また、一方で、例えば特開平7-1096
74に示されているような製造方法で、抗菌性金属4を担
持させた微粒子酸化金属粒1のコロイド分散液である薬
液LBを調製製造する。
The coarse particle titanium oxide 2 is dispersed in water or an alcohol or a mixture thereof to produce a drug solution LA as a colloidal dispersion. On the other hand, for example,
74, a chemical liquid LB, which is a colloidal dispersion liquid of the fine metal oxide particles 1 supporting the antibacterial metal 4, is prepared and manufactured.

【0017】次に、前記コロイド分散液である薬液LA,L
Bの両者を混合して光触媒抗菌薬液LCを得る。この際、
「薬液LAの粗粒子酸化チタン+固着剤3の重量:薬液LB
の微粒子酸化金属の重量=100:(0.001〜40)」となるよう
に調合する。この薬液LCをランプガラス管22の外表面に
スプレーで霧状にして噴霧塗布した後に、乾燥させて光
触媒抗菌膜25を形成する。コロイド分散液を塗布した
後、室温での放置では膜強度が短時間のうちには上昇せ
ず、数日以上の時間を必要とする。本発明者の実験結果
では、100℃以上(300℃程度以下)で5分以上の加熱焼き
付け作業を実施すれば、実用上必要な膜強度を得ること
ができることを確認した。
Next, the above-mentioned colloidal dispersion liquids LA and L
B and B are mixed to obtain a photocatalytic antibacterial liquid LC. On this occasion,
"Weight of coarse titanium oxide + fixative 3 in chemical LA: Chemical LB
Of fine metal oxide particles = 100: (0.001 to 40) ”. The chemical liquid LC is sprayed on the outer surface of the lamp glass tube 22 by spraying, and then dried to form the photocatalytic antibacterial film 25. After the application of the colloidal dispersion, the film strength does not increase in a short time when left at room temperature, and it takes several days or more. According to the experimental results of the inventor, it has been confirmed that if a heat baking operation is performed at 100 ° C. or more (about 300 ° C. or less) for 5 minutes or more, a film strength necessary for practical use can be obtained.

【0018】ガラス管22への薬液塗布方法としては、上
記スプレー方式の他に、ガラス管を薬液に浸漬して徐々
に引き上げて塗布するディップ方式や刷毛塗り方式等多
くの方法があるが、スプレー方式は、さまざまな形状の
ガラス管の表面にも膜厚を均一に成膜でき、かつ、製造
方法も容易でコストも安価になるという利点がある。
As a method of applying a chemical solution to the glass tube 22, there are many other methods such as a dip method and a brush coating method in which a glass tube is dipped in a chemical solution and gradually pulled up and applied, in addition to the above-mentioned spray method. The method has the advantages that the film thickness can be uniformly formed on the surface of glass tubes of various shapes, and the manufacturing method is easy and the cost is low.

【0019】上記の如くしてなる微粒子酸化金属粒1と
粗粒子酸化チタン2を混合した光触媒抗菌薬液LCは、そ
の乾燥工程において溶媒である水やアルコールが蒸発・
乾燥する際に、光触媒抗菌膜25の内部から徐々に上方す
なわち空気に触れる表面の方向に移動しながら蒸発す
る。この移動の際に粗粒子酸化チタン2より微粒子酸化
金属粒1のほうが重量が軽いために、微粒子酸化金属1の
粒子が表面の方向に移動する(以下、「微粒子の表面移
動効果」と略す)。したがって、乾燥または焼き付けの
完了時点では、微粒子酸化金属粒1の多くが粗粒子酸化
チタン2の表面及び表面近傍に付着して、図1のような構
造として完成する。すなわち、抗菌性金属4を担持した
微粒子酸化金属粒1を粗粒子酸化チタン2の上に塗布した
かのような構造を実現することができる。
The photocatalytic antibacterial agent liquid LC obtained by mixing the fine metal oxide particles 1 and the coarse titanium oxide 2 as described above is used in a drying step to evaporate water or alcohol as a solvent.
During drying, the photocatalytic antibacterial film 25 evaporates while gradually moving upward from the inside, that is, toward the surface in contact with air. During this movement, the fine metal oxide particles 1 move in the direction of the surface because the fine metal oxide particles 1 are lighter in weight than the coarse titanium oxide 2 (hereinafter, abbreviated as “surface moving effect of fine particles”). . Therefore, at the time of completion of drying or baking, most of the fine metal oxide particles 1 adhere to the surface and near the surface of the coarse titanium oxide 2 to complete the structure as shown in FIG. That is, it is possible to realize a structure as if the fine metal oxide particles 1 carrying the antibacterial metal 4 were applied on the coarse titanium oxide 2.

【0020】ここで、微粒子の表面移動効果を得るため
には、「粗粒子酸化チタン2の平均粒径:微粒子酸化金
属粒1の平均粒径=100:(50以下)」となるようにして構成
することが望ましい。
Here, in order to obtain the effect of moving the surface of the fine particles, the average particle diameter of the coarse titanium oxide 2: the average particle diameter of the fine metal oxide particles 1 = 100: (50 or less). It is desirable to configure.

【0021】図1の光触媒抗菌膜25の粗粒子酸化チタン2
の平均粒径は0.01〜2.0μm程度がよく、0.01μmより微
細であると微粒子酸化金属粒1の粒径との比率が小さく
なって、微粒子酸化金属粒1の微粒子表面移動効果が期
待できない。2.0μmより大きいと可視光透過率が小さく
なり、ランプの全光束が低下する欠点が発生する。
The coarse titanium oxide 2 of the photocatalytic antibacterial film 25 shown in FIG.
The average particle size is preferably about 0.01 to 2.0 μm. If the average particle size is smaller than 0.01 μm, the ratio of the fine metal oxide particles 1 to the particle size becomes small, and the fine metal oxide particles 1 cannot be expected to have an effect of moving the fine particle surface. If it is larger than 2.0 μm, the visible light transmittance becomes small, and there is a disadvantage that the total luminous flux of the lamp is reduced.

【0022】微粒子酸化金属粒1の平均粒径は、0.05μm
以下程度がよく、大きすぎると微粒子表面移動効果が期
待できない。
The average particle diameter of the fine metal oxide particles 1 is 0.05 μm
When the particle size is too large, the effect of moving the surface of the fine particles cannot be expected.

【0023】粗粒子酸化チタン2と微粒子酸化金属粒1の
重量比は、100:(0.001〜40)程度の範囲とすることが望
ましく、これより微粒子酸化金属粒1の量が減少する
と、抗菌効果がなくなり、この比率より微粒子酸化金属
粒1の比率が大きくなると、抗菌効果のレベルが飽和
し、かつ、光触媒抗菌膜25の材料費が高くなり実用的で
はなくなる。
The weight ratio of the coarse-grained titanium oxide 2 to the fine-grained metal oxide particles 1 is desirably in the range of about 100: (0.001 to 40). When the ratio of the fine metal oxide particles 1 is larger than this ratio, the level of the antibacterial effect is saturated, and the material cost of the photocatalytic antibacterial film 25 increases, which is not practical.

【0024】また、光触媒抗菌膜25の平均膜厚は、適用
する製品が蛍光ランプであるということから、0.05〜2.
0μm程度が望ましい。0.05μmより膜厚が小さくなると
光触媒効果が十分発揮されず、また、2.0μmより大きく
なると光透過率が減少してランプの全光束が低下すると
いう欠点が発生する。
The average thickness of the photocatalytic antibacterial film 25 is 0.05 to 2.
About 0 μm is desirable. When the film thickness is less than 0.05 μm, the photocatalytic effect is not sufficiently exhibited, and when the film thickness is more than 2.0 μm, the light transmittance is reduced and the total luminous flux of the lamp is reduced.

【0025】図1の光触媒抗菌膜25を形成するにあた
り、第1工程で粗粒子酸化チタンを塗布し、第2工程で微
粒子酸化金属2を塗布するという方法もあるが、この場
合、塗布工程が2回になり製造コストが大幅に増加し、
大きな設備投資をも必要とするという欠点を有する。本
発明の構成例である図1の光触媒抗菌膜25を、5cm×5cm
程度のガラス板の表面に塗布成膜した。この際、「粗粒
子酸化チタン2の平均粒子と、微粒子酸化金属粒1の平均
粒子との比」を「100:(3〜20)」、「粗粒子酸化チタン2
+固着剤3の重量と、微粒子酸化金属粒1の重量との比」
を「100:(0.04〜1.0)」、平均膜厚を0.1〜1μmとして構
成し、スプレー方式にて塗布し加熱焼き付けして製作し
た。これを(社)家庭電気製品公正取引協議会の「菌等の
抑制に関する用語使用基準(1997年)」に規定された「抗
菌試験方法(フィルム密着法)」にて抗菌性能の試験をし
た。その結果、本発明の処理を施していない「無加工
品」と、本発明になる「加工品」サンプルの生菌残数の
両者の対数の差が2以上となり(生菌数比は100:1以
下)、抗菌性能を満足することができた。
In forming the photocatalytic antibacterial film 25 shown in FIG. 1, there is a method in which coarse-grained titanium oxide is applied in the first step, and fine-grained metal oxide 2 is applied in the second step. Two times, the production cost greatly increases,
It has the disadvantage of requiring a large capital investment. The photocatalytic antibacterial film 25 of FIG. 1, which is a configuration example of the present invention, has a size of 5 cm × 5 cm.
A film was formed by coating on the surface of a glass plate having a certain degree. At this time, the `` ratio of the average particle of the coarse-grained titanium oxide 2 to the average particle of the fine-grained metal oxide particle 1 '' is set to `` 100: (3 to 20) ''
+ Ratio of the weight of the fixing agent 3 to the weight of the fine metal oxide particles 1 "
Was formed as “100: (0.04 to 1.0)” and the average film thickness was 0.1 to 1 μm, applied by a spray method, and baked by heating. This was tested for antibacterial performance by the “Antibacterial Test Method (Film Adhesion Method)” defined in the “Standards for the Use of Terms Regarding the Control of Bacteria and the Like (1997)” of the Japan Home Appliances Fair Trade Association. As a result, the difference between the logarithm of both the "unprocessed product" that has not been subjected to the treatment of the present invention and the remaining number of viable bacteria of the "processed product" sample according to the present invention is 2 or more (the viable cell count ratio is 100: 1 or less), and antimicrobial performance could be satisfied.

【0026】[0026]

【発明の効果】本発明によれば、上記の如く公的に規定
された試験方法において、抗菌効果を発現できることを
確認できた。
According to the present invention, it has been confirmed that the antibacterial effect can be exhibited by the test method publicly defined as described above.

【0027】本発明の副次的効果として、脱臭効果のさ
らなる向上が上げられる。すなわち微粒子酸化金属1の
中の微粒子酸化チタンは、その比表面積が粗粒子酸化チ
タン2に比較して大きいため、におい分子に触れる酸化
チタンの面積が大きくなり、かつ、活性種もその触れる
面積に比例して多く発生するため、脱臭性能がより大き
くなるという付随的効果があることが判明した。
As a secondary effect of the present invention, the deodorizing effect can be further improved. In other words, since the specific surface area of the fine particle titanium oxide in the fine particle metal oxide 1 is larger than that of the coarse particle titanium oxide 2, the area of the titanium oxide touching the odor molecules becomes large, and the active species also touches the area. It has been found that there is an incidental effect that the deodorizing performance is further increased since the amount is generated in proportion.

【0028】なお、本発明のランプの脱臭・防汚・抗菌
効果のうち、脱臭効果・防汚効果については、ランプ点
灯中に紫外線が光触媒抗菌膜25に照射されることにより
効果が発現される。抗菌効果については、銀等の抗菌性
金属4が紫外線の有無に関係なく微生物に作用するた
め、ランプ点灯中及びランプ消灯中の両者において効果
を発現するものである。
The deodorizing, antifouling, and antibacterial effects of the lamp of the present invention are exerted by irradiating the photocatalytic antibacterial film 25 with ultraviolet rays during lamp operation. . Regarding the antibacterial effect, since the antibacterial metal 4 such as silver acts on microorganisms regardless of the presence or absence of ultraviolet rays, the effect is exhibited both when the lamp is turned on and when the lamp is turned off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光触媒抗菌膜の一構造例を示す模式
図。
FIG. 1 is a schematic view showing one structural example of a photocatalytic antibacterial film of the present invention.

【図2】本発明の光触媒抗菌膜に細菌が接触した場合の
模式的説明を示す図。
FIG. 2 is a diagram schematically illustrating a case where bacteria contact the photocatalytic antibacterial film of the present invention.

【図3】従来の光触媒抗菌膜の一構造例を示す模式図。FIG. 3 is a schematic view showing one structural example of a conventional photocatalytic antibacterial film.

【図4】従来の蛍光ランプの断面図。FIG. 4 is a sectional view of a conventional fluorescent lamp.

【図5】従来の光触媒膜の一構造例を示す模式図。FIG. 5 is a schematic diagram showing one structural example of a conventional photocatalytic film.

【符号の説明】[Explanation of symbols]

1 微粒子酸化金属粒 2 粗粒子酸化チタン 3 固着剤 4 抗菌性金属 5 細菌 6 細菌体内 7 銀 8 進入経路 9 細菌外郭 21 蛍光体 22 ガラス管 23 光触媒膜 24 蛍光ランプ 25 光触媒抗菌膜。 1 Fine metal oxide particles 2 Coarse particle titanium oxide 3 Fixing agent 4 Antibacterial metal 5 Bacteria 6 Bacteria 7 Silver 8 Ingress pathway 9 Bacterial shell 21 Phosphor 22 Glass tube 23 Photocatalytic film 24 Fluorescent lamp 25 Photocatalytic antibacterial film.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G059 AA07 AB09 AB11 AC22 DA01 DA04 DA09 DB04 EA04 EB05 EB06 GA01 GA14 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA14A BA14B BA48A BB02A BB02B BC31A BC31B BC32A BC32B BC35A BC35B CA01 CA11 CA17 EA06 EB15X EB15Y FA03 FB06 FB23 FB24 FB30 FC08 5C043 AA20 BB09 CC09 CD01 DD27 DD33 EA11 EC02 EC03 EC06 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G059 AA07 AB09 AB11 AC22 DA01 DA04 DA09 DB04 EA04 EB05 EB06 GA01 GA14 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA14A BA14B BA48A BB02A BB02B BC31A BC31B BC31B BC FA03 FB06 FB23 FB24 FB30 FC08 5C043 AA20 BB09 CC09 CD01 DD27 DD33 EA11 EC02 EC03 EC06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ガラス管の外表面にすくなくとも(1)粗粒
子酸化チタンと、(2)酸化金属等の固着剤と、(3)前記粗
粒子酸化チタンの平均粒径の50%程度以下の平均粒径の
抗菌性金属を担持させた微粒子酸化金属粒とを有する光
触媒抗菌膜を塗布固着し、かつ、前記微粒子酸化金属粒
は前記粗粒子酸化チタン層の表面または表面近傍に主に
固着配置したことを特徴とする光触媒抗菌膜付き蛍光ラ
ンプ。
(1) At least (1) a coarse particle titanium oxide, (2) a fixing agent such as a metal oxide, and (3) an average particle diameter of about 50% or less of the average particle diameter of the coarse particle titanium oxide on the outer surface of the glass tube. A photocatalytic antibacterial film having fine metal oxide particles carrying an antibacterial metal having an average particle size is applied and fixed, and the fine metal oxide particles are mainly fixed and disposed on or near the surface of the coarse titanium oxide layer. A fluorescent lamp with a photocatalytic antibacterial film.
【請求項2】前記粗粒子酸化チタンの平均粒径を0.01〜
2.0μm程度としたことを特徴とする請求項1記載の光触
媒抗菌膜付き蛍光ランプ。
2. The coarse particle titanium oxide has an average particle size of 0.01 to 0.01.
2. The fluorescent lamp with a photocatalytic antibacterial film according to claim 1, wherein the fluorescent lamp has a thickness of about 2.0 μm.
【請求項3】前記微粒子酸化金属粒の平均粒径を0.05μ
m以下としたことを特徴とする請求項1記載の光触媒抗菌
膜付き蛍光ランプ。
3. An average particle size of said fine metal oxide particles is 0.05 μm.
2. The fluorescent lamp with a photocatalytic antibacterial film according to claim 1, wherein the length is not more than m.
【請求項4】前記粗粒子酸化チタンに固着剤を付加した
ものの重量と、微粒子酸化金属粒との重量比を、100対
0.001〜40としたことを特徴とする請求項1記載の光触媒
抗菌膜付き蛍光ランプ。
4. The weight ratio of the weight of the coarse-grained titanium oxide to which a fixing agent is added and the weight of the fine-grained metal oxide particles are 100 to 100.
2. The fluorescent lamp with a photocatalytic antibacterial film according to claim 1, wherein the fluorescent lamp is 0.001 to 40.
【請求項5】前記光触媒抗菌膜の平均膜厚を0.05〜2.0
μmとしたことを特徴とする請求項1記載の光触媒抗菌膜
付き蛍光ランプ。
5. The photocatalytic antibacterial film has an average thickness of 0.05 to 2.0.
2. The fluorescent lamp with a photocatalytic antibacterial film according to claim 1, wherein the thickness is set to μm.
【請求項6】(1)粗粒子酸化チタンと酸化金属等の固着
剤のコロイド分散液と、(2)銀等の抗菌性金属を担持さ
せた微粒子酸化金属のコロイド分散液とをそれぞれ個別
に作った後、これらを撹拌混合してなる光触媒抗菌膜用
コロイド分散液を用いて、光触媒抗菌膜を成膜したこと
を特徴とする請求項1記載の光触媒抗菌膜付き蛍光ラン
プの製造方法。
6. A colloidal dispersion of (1) a coarse particle titanium oxide and a fixing agent such as a metal oxide, and (2) a colloidal dispersion of a fine particle metal oxide supporting an antibacterial metal such as silver are separately prepared. 2. The method for producing a fluorescent lamp with a photocatalytic antibacterial film according to claim 1, wherein a photocatalytic antibacterial film is formed using a colloidal dispersion for a photocatalytic antibacterial film obtained by stirring and mixing these.
【請求項7】コロイド分散液をスプレーにより噴霧する
ことにより、光触媒抗菌膜を成膜することを特徴とする
請求項6記載の光触媒抗菌膜付き蛍光ランプの製造方
法。
7. The method for producing a fluorescent lamp with a photocatalytic antibacterial film according to claim 6, wherein the photocatalytic antibacterial film is formed by spraying a colloidal dispersion liquid by spraying.
【請求項8】コロイド分散液を塗布した後、100℃以上5
分以上の条件で加熱焼き付けすることにより、光触媒抗
菌膜を成膜することを特徴とする請求項6記載の光触媒
抗菌膜付き蛍光ランプの製造方法。
8. After the application of the colloidal dispersion, the temperature is 100 ° C. or higher.
7. The method for producing a fluorescent lamp with a photocatalytic antibacterial film according to claim 6, wherein the photocatalytic antibacterial film is formed by heating and baking under conditions of at least one minute.
JP2000350554A 2000-11-13 2000-11-13 Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method Pending JP2002151000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350554A JP2002151000A (en) 2000-11-13 2000-11-13 Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350554A JP2002151000A (en) 2000-11-13 2000-11-13 Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002151000A true JP2002151000A (en) 2002-05-24

Family

ID=18823760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350554A Pending JP2002151000A (en) 2000-11-13 2000-11-13 Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002151000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051996A1 (en) * 2005-10-31 2007-05-10 Ucl Business Plc Antimicrobial films
WO2007130140A1 (en) * 2006-04-27 2007-11-15 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
JP2010172831A (en) * 2009-01-29 2010-08-12 Sugino Mach Ltd Manufacturing method of photocatalyst coating liquid, coating liquid for antibacterial deodorization dry cleaning, and photocatalyst processed clothing
JP2012139613A (en) * 2010-12-28 2012-07-26 Showa Ceramics Co Ltd Photocatalyst carrier and manufacturing method for the same
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051996A1 (en) * 2005-10-31 2007-05-10 Ucl Business Plc Antimicrobial films
WO2007130140A1 (en) * 2006-04-27 2007-11-15 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
US7892662B2 (en) 2006-04-27 2011-02-22 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
EP2364958A1 (en) * 2006-04-27 2011-09-14 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
US8092912B2 (en) 2006-04-27 2012-01-10 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
US8221833B2 (en) 2006-04-27 2012-07-17 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
JP2010172831A (en) * 2009-01-29 2010-08-12 Sugino Mach Ltd Manufacturing method of photocatalyst coating liquid, coating liquid for antibacterial deodorization dry cleaning, and photocatalyst processed clothing
JP4542601B2 (en) * 2009-01-29 2010-09-15 株式会社スギノマシン Photocatalyst coating liquid manufacturing method, antibacterial deodorant dry cleaning coating liquid, and photocatalyst-processed clothing.
JP2012139613A (en) * 2010-12-28 2012-07-26 Showa Ceramics Co Ltd Photocatalyst carrier and manufacturing method for the same
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same

Similar Documents

Publication Publication Date Title
EP1437397B1 (en) Cleaning agent
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2545727B2 (en) Deodorant lamp and its manufacturing method
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP3275032B2 (en) Environmental purification material and method for producing the same
KR101003751B1 (en) Composition comprising photocatalyst coated with apatite and radiating-radiant-heat apparatus including the same
WO1994011092A1 (en) Air treating method using photocatalyst under interior illumination
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
JP3493393B2 (en) Photocatalytic powder for environmental purification, powder-containing polymer composition and molded article thereof, and methods for producing them
JPH07100378A (en) Photocatalyst of titanium oxide thin film and its production
JPH09111022A (en) Photocatalytic sheet and its production
JPH11169724A (en) Composite particle material having anti-bacterial function
JP2002151000A (en) Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method
JP2001070802A (en) Photocatalyst film and its production
EA027566B1 (en) Photocatalytic element for purification and disinfection of air and water and method for the production thereof
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
CN1493395A (en) Nano-titanium dioxide photocatalyst film, preparation and its application
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
CN1559672A (en) Preparation method of titanium dioxide photo catalyst composite solution
JP3312132B2 (en) Air purification fan and method of manufacturing the same
CN1442366A (en) Preparation method of titanium oxide and its application
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate
CN2706238Y (en) Spray nozzle of low pressure atomized spray gun

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214