JP2002145675A - Production process of carbon-fiber-reinforced carbon material - Google Patents
Production process of carbon-fiber-reinforced carbon materialInfo
- Publication number
- JP2002145675A JP2002145675A JP2000341841A JP2000341841A JP2002145675A JP 2002145675 A JP2002145675 A JP 2002145675A JP 2000341841 A JP2000341841 A JP 2000341841A JP 2000341841 A JP2000341841 A JP 2000341841A JP 2002145675 A JP2002145675 A JP 2002145675A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- fiber
- preform
- carbon fiber
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、材質組織が緻密な
炭素繊維強化炭素材(以下、「C/C材」ともいう)の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber reinforced carbon material (hereinafter also referred to as "C / C material") having a fine material structure.
【0002】[0002]
【従来の技術】C/C材は、炭素繊維の複合化による卓
越した比強度、比弾性率を有し、特に1000℃を超え
る高温においても比強度、比弾性率に優れ、また、炭素
材特有の軽量性と優れた耐熱性および化学的安定性を備
えているため、航空・宇宙機用の構造材料をはじめ、高
温苛酷な条件下で使用される各種部材、例えばCZ法に
よる単結晶引上用のルツボ、ヒータ、炉材などの各種高
温用の部材として有用されている。2. Description of the Related Art C / C materials have excellent specific strength and specific elastic modulus due to compounding of carbon fibers, and particularly have excellent specific strength and specific elasticity even at high temperatures exceeding 1000 ° C. Due to its unique light weight and excellent heat resistance and chemical stability, it can be used for various materials used under severe high-temperature conditions, such as structural materials for aerospace and spacecraft, such as single crystal drawing by the CZ method. It is useful as various high-temperature members such as crucibles, heaters, furnace materials, and the like.
【0003】このC/C材を製造する代表的な技術とし
ては、 (1)マトリックスとなる熱硬化性樹脂を含浸した
炭素繊維の織布を積層し、プレス等で所定形状に圧縮成
形したのちプリプレグ成形体を非酸化性雰囲気下で焼成
炭化処理する方法、 (2)マトリックスとなる熱硬化性樹
脂に浸した炭素繊維の繊維束をフィラメントワインディ
ング法で所定形状に成形し、このプリプレグ成形体を同
様に焼成炭化処理する方法、 (3)炭素繊維で形成した成
形体(炭素繊維プリフォーム)の空隙組織中に化学的気
相蒸着法(CVD)や化学的気相浸透法(CVI)など
の気相熱分解法により気相析出させた炭素を沈着、充填
させる方法、などが知られている。[0003] Typical techniques for producing this C / C material include: (1) laminating a woven fabric of carbon fibers impregnated with a thermosetting resin as a matrix, compressing the woven fabric into a predetermined shape by pressing or the like; (2) forming a fiber bundle of carbon fibers immersed in a thermosetting resin as a matrix into a predetermined shape by a filament winding method; (3) A method such as chemical vapor deposition (CVD) or chemical vapor infiltration (CVI) is applied to the void structure of a molded article (carbon fiber preform) formed of carbon fibers. A method of depositing and filling carbon deposited in a gas phase by a gas phase pyrolysis method is known.
【0004】このうち、(1) 、(2) の方法は、プリプレ
グ成形体を硬化、焼成炭化する過程でマトリックスとな
る熱硬化性樹脂に含まれる揮発性成分が揮散するため
に、得られるC/C材の材質組織には微細な空孔が生
じ、低密度化、低強度化し易い難点がある。更に、圧縮
成形時に熱硬化性樹脂の一部が外部に圧出するために高
密度のものが得難い欠点がある。そこで、C/C材の材
質組織の空孔中に炭化性のフェノール樹脂やフラン樹脂
などのバインダー樹脂あるいは石炭系や石油系のピッチ
を強制含浸したのち焼成する二次的な緻密化処理が一般
に行われている。In the methods (1) and (2), the volatile component contained in the thermosetting resin serving as a matrix is volatilized during the process of curing and calcining and carbonizing the prepreg molded body, so that the obtained C The material structure of the / C material has fine holes, and it is difficult to reduce the density and the strength. Further, there is a disadvantage that it is difficult to obtain a high-density one because a part of the thermosetting resin is pressed out during compression molding. Therefore, a secondary densification treatment is generally performed in which the pores of the material structure of the C / C material are forcibly impregnated with a binder resin such as a carbonizable phenol resin or a furan resin or a coal-based or petroleum-based pitch and then fired. Is being done.
【0005】例えば、本出願人は、炭素繊維を残炭率4
5%以上の熱硬化性樹脂液からなるマトリックス結合材
とともに複合成形したのち非酸化性雰囲気下で1400
〜1700℃の温度範囲により炭化処理して気孔率1%
以下の一次焼成体を形成し、該一次焼成体に残炭率45
%以上の熱硬化性樹脂液を含浸硬化し、ついで非酸化性
雰囲気下で2000℃以上の温度域で加熱処理するC/
C材の製造方法(特開平5−229868号公報)や、炭素繊
維にマトリックス結合材を含浸して複合成形したのち非
酸化性雰囲気下で焼成炭化して得られたC/C複合体を
基材とし、該C/C基材にピッチを含浸し非酸化性雰囲
気下800〜1200℃で焼成炭化する処理を複数回反
復して材質の嵩密度を1.1〜1.5g/ccにする第1緻
密化工程と、次いで熱硬化性樹脂液を含浸硬化し非酸化
性雰囲気下800〜1200℃で焼成炭化する処理を複
数回反復して材質の嵩密度を1.6g/cc以上にする第2
緻密化工程を、順次に施すC/C材の製造方法(特開平
8−245273号公報)などを開発、提案している。[0005] For example, the present applicant has proposed that carbon fibers have a residual carbon ratio of 4%.
After composite molding with a matrix binder composed of 5% or more of a thermosetting resin liquid, 1400
1% porosity by carbonization in the temperature range of ~ 1700 ° C
The following primary fired body was formed, and the primary fired body had a residual carbon ratio of 45.
% Of a thermosetting resin liquid and then heat-treated in a non-oxidizing atmosphere in a temperature range of 2000 ° C. or more.
A method of producing a C material (JP-A-5-229868) and a C / C composite obtained by impregnating a carbon fiber with a matrix binder, forming a composite, and then calcining and carbonizing in a non-oxidizing atmosphere. The C / C substrate is impregnated with a pitch and calcined at 800 to 1200 ° C. in a non-oxidizing atmosphere at a temperature of 800 to 1200 ° C., and the bulk density of the material is adjusted to 1.1 to 1.5 g / cc. The first densification step and then the process of impregnating and curing a thermosetting resin liquid and calcining at 800 to 1200 ° C. in a non-oxidizing atmosphere are repeated a plurality of times to increase the bulk density of the material to 1.6 g / cc or more. Second
A method of manufacturing a C / C material in which a densification process is sequentially performed (JP-A-8-245273) has been developed and proposed.
【0006】しかしながら、これらの熱硬化性樹脂やピ
ッチなどを含浸して二次的に緻密化する方法では、含浸
−加圧−焼成という操作を繰り返し行うために作業能率
が悪く、コスト高となる欠点がある。更に、液状の熱硬
化性樹脂やピッチをC/C材の微細な空隙の深部にまで
充分に含浸させることが難しく、また、空隙に含浸した
熱硬化性樹脂やピッチが焼成炭化する際にも揮発性成分
が放出されて新たな空隙が形成されるので、繰り返し行
っても緻密化には限界がある。However, in the method of secondary densification by impregnating such a thermosetting resin or pitch, the operation of impregnation, pressure and baking is repeated, resulting in poor work efficiency and high cost. There are drawbacks. Furthermore, it is difficult to sufficiently impregnate the liquid thermosetting resin or pitch deep into the fine voids of the C / C material, and when the thermosetting resin or pitch impregnated into the voids is fired and carbonized, Since volatile components are released and new voids are formed, there is a limit to densification even if repeated.
【0007】そこで、熱硬化性樹脂液やピッチなどを含
浸して二次的に緻密化する方法に代えて、気相熱分解炭
素により緻密化する方法も開発されており、例えば、特
開平1−212277号公報には炭素繊維成形体10〜
70 Vol%および炭素質マトリックス5〜80 Vol%か
ら構成され、かつ空隙率が10〜55%であるC/C材
料の空隙部に気相熱分解により炭素を沈積充填し、続い
てこの充填物の表面に気相熱分解により炭素を沈積被覆
するC/C材の製造法が提案されている。Therefore, instead of the method of impregnating with a thermosetting resin liquid or pitch and then densifying the resin, a method of densifying with gas phase pyrolytic carbon has been developed. JP-A-212277 discloses a carbon fiber molded body 10
70% by volume and 5 to 80% by volume of a carbonaceous matrix, wherein the voids of a C / C material having a porosity of 10 to 55% are deposited and filled with carbon by vapor phase pyrolysis. There has been proposed a method for producing a C / C material in which carbon is deposited and coated on the surface of the steel by vapor phase pyrolysis.
【0008】この方法は、炭素繊維の繊維束からなる成
形体にピッチや熱硬化性樹脂などを含浸し、炭化して得
られたC/C材の空隙部に気相熱分解炭素を沈着充填
し、続いてこの充填物の表面に気相熱分解炭素を沈積被
覆するものである。気相熱分解法により析出した炭素は
C/C材の炭素質マトリックス中の空隙や炭素質マトリ
ックスと炭素繊維の繊維束との界面に生じた空隙を充填
し、緻密化することができる。しかしながら、C/C材
を構成する繊維束間には炭素マトリックスが強固に固着
しているので繊維束の内部に存在する微細な空隙部に熱
分解炭素を析出させることが難しく、炭素繊維の繊維束
内の空隙部は閉気孔として残存することになり、緻密化
を図ることが困難となる。According to this method, a compact formed of a fiber bundle of carbon fibers is impregnated with a pitch or a thermosetting resin and the like, and gas-phase pyrolytic carbon is deposited and filled in voids of a C / C material obtained by carbonization. Subsequently, vapor-phase pyrolytic carbon is deposited and coated on the surface of the packing. The carbon deposited by the gas phase pyrolysis method can fill the voids in the carbonaceous matrix of the C / C material and the voids generated at the interface between the carbonaceous matrix and the fiber bundle of carbon fibers, and can be densified. However, since the carbon matrix is firmly fixed between the fiber bundles constituting the C / C material, it is difficult to deposit pyrolytic carbon in fine voids existing inside the fiber bundle, and the carbon fiber fiber The voids in the bundle remain as closed pores, making it difficult to achieve densification.
【0009】一方、(3) の炭素繊維で形成した成形体
(炭素繊維プリフォーム)の空隙組織中に、化学的気相
蒸着法(CVD;Chemical Vapor Deposition )や化学
的気相浸透法(CVI;Chemical Vapor Infiltration
)により気相熱分解反応させて析出した炭素を沈着さ
せる方法は、微細な空隙内部にまで熱分解炭素を沈着さ
せることができ、更に、原子単位で炭素が析出するので
炭素繊維プリフォームとの密着性が高いという利点があ
る。On the other hand, chemical vapor deposition (CVD) or chemical vapor infiltration (CVI) is introduced into the void structure of the molded article (carbon fiber preform) formed of carbon fiber (3). ; Chemical Vapor Infiltration
The method of depositing carbon deposited by the gas phase pyrolysis reaction according to the above) can deposit pyrolytic carbon even inside the fine voids, and furthermore, since carbon is deposited in atomic units, the carbon fiber preform can be deposited. There is an advantage that adhesion is high.
【0010】気相熱分解反応により析出した炭素を炭素
繊維プリフォームの空隙に沈着充填させる方法として、
例えば特開平8−2976号公報には、炭素繊維で作ら
れた成形体に、メタンと水素の混合ガスを、温度を12
00〜1300℃、メタンと水素の混合ガスの全圧を2
0〜80Torr、メタンの分圧を10〜32.5Torrとし
て気相浸透法による熱分解炭素を沈積させるC/C材の
製造方法が開示されている。As a method of depositing and filling the carbon deposited by the gas phase pyrolysis reaction into the voids of the carbon fiber preform,
For example, in Japanese Patent Application Laid-Open No. 8-2976, a mixed gas of methane and hydrogen is applied to a molded body made of carbon fiber at a temperature of 12%.
00-1300 ° C, the total pressure of the mixed gas of methane and hydrogen is 2
A method for producing a C / C material in which pyrolytic carbon is deposited by a gas phase infiltration method at 0 to 80 Torr and a partial pressure of methane at 10 to 32.5 Torr is disclosed.
【0011】この方法は、気相浸透法(CVI)の条件
を適切に設定すること、具体的には反応温度や反応圧力
の反応条件を適切に設定して、炭素繊維成形体の内部に
炭素の濃度差を生じさせずに熱分解炭素を高い充填率で
沈積させるものである。In this method, the conditions of the gas-phase infiltration method (CVI) are appropriately set, specifically, the reaction conditions such as the reaction temperature and the reaction pressure are appropriately set, and the carbon This is to deposit pyrolytic carbon at a high filling rate without causing a concentration difference.
【0012】[0012]
【発明が解決しようとする課題】炭素繊維の繊維束で作
製した所望形状の炭素繊維成形体(プリフォーム)に、
原料ガスを送入して、気相熱分解法により熱分解炭素を
成形体の空隙中に析出充填させる場合、炭素繊維プリフ
ォームの繊維束間に形成される比較的大きな空隙と、繊
維束内の炭素繊維フィラメント間に形成される微細な空
隙の両者に熱分解炭素を析出させ、充填させることが重
要である。SUMMARY OF THE INVENTION A carbon fiber molded article (preform) having a desired shape made of a fiber bundle of carbon fibers includes:
When the raw material gas is fed and the pyrolytic carbon is deposited and filled in the voids of the molded body by the gas phase pyrolysis method, the relatively large voids formed between the fiber bundles of the carbon fiber preform and the inside of the fiber bundles It is important to deposit and fill pyrolytic carbon in both of the fine voids formed between the carbon fiber filaments.
【0013】このうち、繊維束間に形成された空隙部に
は比較的容易に熱分解炭素を析出充填することができる
が、繊維束内の炭素繊維フィラメント間に形成された微
細な空隙部には熱分解炭素を均等かつ充分に析出充填さ
せることが難しく、特に、炭素繊維のフィラメントの断
面形状が円形に近い場合には、繊維束内のフィラメント
はその長さ方向に最密充填され易くなり、繊維束内のフ
ィラメント間の空隙は極めて微細となる。この微細な空
隙内に原料ガスを充分に浸透させて熱分解し、熱分解炭
素を充分に析出、沈着させることは難しく、残存した空
隙は閉気孔となって、高緻密化が阻害されることにな
る。[0013] Of these, the voids formed between the fiber bundles can be relatively easily deposited and filled with pyrolytic carbon, but the fine voids formed between the carbon fiber filaments in the fiber bundles can be filled. It is difficult to uniformly and sufficiently deposit and fill pyrolytic carbon.In particular, when the cross-sectional shape of the filament of carbon fiber is close to circular, the filament in the fiber bundle is likely to be packed closest in the length direction. The gap between the filaments in the fiber bundle is extremely small. It is difficult to sufficiently infiltrate the raw material gas into these fine voids and thermally decompose it, and it is difficult to sufficiently deposit and deposit pyrolytic carbon, and the remaining voids become closed pores, preventing high densification. become.
【0014】本発明は、このような問題点を解消するた
めのものであって、その目的は炭素繊維プリフォームの
空隙中に気相熱分解法により析出した熱分解炭素を充填
し、特に、繊維束内のフィラメント間の微細な空隙中に
均等、かつ充分に熱分解炭素を沈着させることにより、
材質組織が緻密なC/C材の製造方法を提供することに
ある。[0014] The present invention is intended to solve such a problem, and an object of the present invention is to fill the voids of a carbon fiber preform with pyrolytic carbon deposited by a gas phase pyrolysis method. By depositing pyrolytic carbon evenly and sufficiently in fine voids between filaments in the fiber bundle,
An object of the present invention is to provide a method for producing a C / C material having a fine material structure.
【0015】[0015]
【課題を解決するための手段】この目的を達成するため
の本発明による炭素繊維強化炭素材(C/C材)の製造
方法は、断面形状が非円形の炭素繊維フィラメントの繊
維束を用いて所望形状の炭素繊維プリフォームに成形
し、次いで気相熱分解法により熱分解炭素を炭素繊維プ
リフォームを形成する繊維束内のフィラメント間に形成
された微細空隙部および繊維束間の空隙部に析出し、充
填することを構成上の特徴とする。また、繊維束内のフ
ィラメント間に形成された微細空隙部は、炭素繊維フィ
ラメントの表面に膜厚1〜5μm の気相熱分解炭素を析
出、被覆することにより充填することが好ましい。According to the present invention, there is provided a method for producing a carbon fiber reinforced carbon material (C / C material) using a fiber bundle of carbon fiber filaments having a non-circular cross section. It is formed into a carbon fiber preform of a desired shape, and then pyrolytic carbon is vapor-phase pyrolyzed into fine voids formed between filaments in the fiber bundle forming the carbon fiber preform and voids between the fiber bundles. Precipitating and filling is a structural feature. The fine voids formed between the filaments in the fiber bundle are preferably filled by depositing and coating gas-phase pyrolytic carbon having a thickness of 1 to 5 μm on the surface of the carbon fiber filament.
【0016】[0016]
【発明の実施の形態】C/C材を構成する炭素繊維には
アクリル系、レーヨン系、ピッチ系などの原料系から製
造された炭素繊維が用いられ、炭素繊維のフィラメント
を数千〜数万本集束して繊維束を作製し、この繊維束を
1軸配向、2次元配向、3次元配向などにより所望する
製品形状に対応する成形体、すなわち炭素繊維プリフォ
ームに成形する。BEST MODE FOR CARRYING OUT THE INVENTION The carbon fibers constituting the C / C material are carbon fibers produced from a raw material system such as acrylic, rayon, pitch or the like. The main bundle is made into a fiber bundle, and the fiber bundle is formed into a molded product corresponding to a desired product shape by uniaxial orientation, two-dimensional orientation, three-dimensional orientation, or the like, that is, a carbon fiber preform.
【0017】この炭素繊維プリフォームは繊維束から形
成されているので全体が疎構造であり、プリフォーム中
には各繊維束間に形成される比較的大きな空隙部と、各
繊維束内の炭素繊維フィラメント間に形成される微細な
空隙部とを有している。そして、これらの空隙部に気相
熱分解法により熱分解炭素を析出、沈着させて充填する
ことによりC/C材が製造される。Since this carbon fiber preform is formed from a fiber bundle, it has a sparse structure as a whole. In the preform, a relatively large void formed between each fiber bundle and the carbon in each fiber bundle are formed. And fine voids formed between the fiber filaments. A C / C material is manufactured by depositing and depositing pyrolytic carbon in these voids by vapor phase pyrolysis.
【0018】気相熱分解法は、化学的気相蒸着法(CV
D)や化学的気相浸透法(CVI)により、原料を気相
で熱分解して空隙組織中に熱分解炭素を析出させ、析出
した炭素を空隙組織中に沈着、充填してC/C材を製造
するもので、気相熱分解反応により炭素を析出させる原
料としてはメタン、プロパン、プロピレン、ベンゼンな
どの易熱分解性の炭化水素ガスが好ましく用いられる。
これらの炭化水素ガスを水素ガスと混合して、混合ガス
をCVD装置やCVI装置に導入して気相で還元して熱
分解させることにより炭素が析出する。The gas phase pyrolysis method is a chemical vapor deposition (CV) method.
D) or by chemical vapor infiltration (CVI), the raw material is pyrolyzed in the gas phase to deposit pyrolytic carbon in the void structure, and the deposited carbon is deposited and filled in the void structure to obtain C / C In producing the material, as a raw material for precipitating carbon by a gas phase thermal decomposition reaction, a readily thermally decomposable hydrocarbon gas such as methane, propane, propylene and benzene is preferably used.
These hydrocarbon gases are mixed with hydrogen gas, and the mixed gas is introduced into a CVD apparatus or CVI apparatus, reduced in the gas phase and thermally decomposed to deposit carbon.
【0019】例えば、CVI装置に炭素繊維プリフォー
ムをセットして、反応系内を数十〜数Torrに減圧し、所
定温度に加熱したのち、炭化水素ガスと水素ガスを混合
した原料ガスを送入して炭素繊維プリフォーム中の空隙
部に原料ガスを浸透させ、CVI反応により原料ガスを
気相熱分解させて析出した炭素を炭素繊維プリフォーム
の空隙組織内に沈着、充填するものである。For example, a carbon fiber preform is set in a CVI apparatus, the pressure in the reaction system is reduced to several tens to several Torr, and the reaction system is heated to a predetermined temperature, and then a raw material gas obtained by mixing a hydrocarbon gas and a hydrogen gas is fed. And the raw material gas is permeated into the voids in the carbon fiber preform, and the carbon deposited by vapor-phase pyrolysis of the raw material gas by the CVI reaction is deposited and filled in the void structure of the carbon fiber preform. .
【0020】この場合、炭素繊維プリフォームの空隙部
に熱分解炭素を充分に析出させ、充填することが必要で
あるが、プリフォーム中の各繊維束間に形成される比較
的大きな空隙部には原料ガスが深部にまで比較的容易に
浸透することができるので、効率よく空隙部全体に熱分
解炭素を析出充填することができる。しかしながら、プ
リフォーム中の各繊維束内の炭素繊維フィラメント間に
形成される微細空隙部には、原料ガスを細部に亘って深
部にまで充分に浸透させることが難しいため、微細空隙
部には未充填の空隙部が残存し易い。In this case, it is necessary to sufficiently precipitate and fill pyrolytic carbon in the voids of the carbon fiber preform, but it is necessary to fill relatively large voids formed between the fiber bundles in the preform. Since the raw material gas can relatively easily penetrate into the deep portion, pyrolytic carbon can be efficiently deposited and filled in the entire void portion. However, it is difficult for the raw material gas to sufficiently penetrate into the fine voids in the fine voids formed between the carbon fiber filaments in each fiber bundle in the preform. Filled voids are likely to remain.
【0021】この微細空隙部は、繊維束として集束する
炭素繊維フィラメントの形状、特に断面形状が円形の場
合には繊維束内にフィラメントの長さ方向に最密状態で
集束され易いために、繊維束内の各フィラメント間に形
成される空隙部は一層微細化する。したがって、この微
細空隙部内に原料ガスを充分に浸透させることは難し
く、微細空隙部を気相析出した熱分解炭素で充填するこ
とが困難となる。The fine voids are formed in the form of carbon fiber filaments to be bundled as a fiber bundle, particularly when the cross-sectional shape is circular, since the fiber bundle is easily bundled in the fiber bundle in the closest direction in the length direction of the filament. The voids formed between the filaments in the bundle become finer. Therefore, it is difficult to make the raw material gas sufficiently penetrate into the fine voids, and it is difficult to fill the fine voids with pyrolytic carbon deposited in a gas phase.
【0022】そこで、本発明は、微細空隙部に熱分解炭
素を効果的に析出、充填させるために、繊維束として集
束する炭素繊維フィラメントの断面形状を非円形とする
ことにより、繊維束内に形成される各フィラメント間の
微細空隙部の拡張を図るものである。すなわち、断面形
状が円形の炭素繊維フィラメントを集束した繊維束に比
べて、断面形状が非円形の場合には繊維束内の各フィラ
メント間に形成される微細空隙部の断面を相対的に拡張
することができる。In order to effectively deposit and fill pyrolytic carbon in the fine voids, the present invention provides a non-circular cross-sectional shape of the carbon fiber filaments to be bundled as a fiber bundle. The purpose is to expand the fine voids between the formed filaments. That is, compared to a fiber bundle obtained by bundling carbon fiber filaments having a circular cross section, when the cross section is non-circular, the cross section of the fine void formed between the filaments in the fiber bundle is relatively expanded. be able to.
【0023】その結果、原料ガスの微細空隙部への浸透
が容易になり、微細空隙部の深部まで、全体的に原料ガ
スを浸透させることができるので、各フィラメント表面
は析出した熱分解炭素により強固に被覆され、微細空隙
部を充填することが可能となる。この場合、炭素繊維フ
ィラメントの表面には、膜厚1〜5μm の気相熱分解炭
素を析出し、被覆することにより微細空隙部を充填する
ことが好ましい。As a result, the raw material gas can easily penetrate into the fine voids, and the raw material gas can be entirely penetrated to the deep part of the fine voids. It is firmly covered, and it is possible to fill the fine voids. In this case, it is preferable to deposit a vapor phase pyrolytic carbon having a film thickness of 1 to 5 μm on the surface of the carbon fiber filament to cover the fine voids by coating.
【0024】気相熱分解法による熱分解炭素の析出は、
例えば、CVI反応装置の基材受台に炭素繊維プリフォ
ームを載置して加熱し、供給した原料ガスを気相熱分解
して炭素繊維プリフォームの空隙内に熱分解炭素を析出
させるものであり、CVI反応温度、反応圧力などの反
応条件を制御することにより析出、充填する。The deposition of pyrolytic carbon by the gas phase pyrolysis method is as follows.
For example, a carbon fiber preform is placed on a substrate support of a CVI reactor and heated, and the supplied raw material gas is subjected to gas phase pyrolysis to precipitate pyrolytic carbon in the voids of the carbon fiber preform. Yes, deposition and filling are performed by controlling reaction conditions such as CVI reaction temperature and reaction pressure.
【0025】このようにして、炭素繊維プリフォームを
形成する繊維束内の各フィラメントの表面には気相析出
した熱分解炭素が被覆されて微細空隙部が充填され、ま
た繊維束間の空隙部には析出した熱分解炭素が充填され
て、材質組織が緻密で、高密度、高強度の材質性状を備
えたC/C材を製造することが可能となる。なお、この
ようにして製造されたC/C材は、更にハロゲンガスな
どによる高純度化処理や表面に耐酸化コーティングなど
を施すことにより、汚染を嫌う半導体分野における部材
などとしても好適に用いることができる。In this manner, the surface of each filament in the fiber bundle forming the carbon fiber preform is coated with the vapor-deposited pyrolytic carbon to fill the fine voids, and the voids between the fiber bundles are provided. Is filled with the deposited pyrolytic carbon, and a C / C material having a dense material structure, high density, and high strength material properties can be manufactured. In addition, the C / C material manufactured in this manner is preferably used as a member in a semiconductor field which is resistant to contamination by further purifying with a halogen gas or the like or applying an oxidation-resistant coating to the surface. Can be.
【0026】[0026]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。Hereinafter, examples of the present invention will be described in comparison with comparative examples.
【0027】実施例1 断面形状が非円形の炭素繊維フィラメント6000本を
集束した繊維束を用いて平織布を成形し、プリフォーム
とした。このプリフォームを高周波誘導加熱方式のCV
I反応装置の基材受台にセットした。原料ガスとしてプ
ロパンと水素の混合ガス(プロパン濃度15モル%)を
用い、混合ガスを1.0リットル/分の流量で供給し、
炉内圧力50Torr、温度1000℃の条件で15時間C
VI反応を行い、プリフォーム中に熱分解炭素を析出、
充填してC/C材を製造した。Example 1 A plain woven fabric was formed using a fiber bundle obtained by bundling 6000 carbon fiber filaments having a non-circular cross-sectional shape to obtain a preform. This preform is converted to a high frequency induction heating CV
It was set on the substrate support of the I reaction apparatus. A mixed gas of propane and hydrogen (propane concentration 15 mol%) was used as a raw material gas, and the mixed gas was supplied at a flow rate of 1.0 liter / min.
15 hours C under conditions of furnace pressure 50 Torr and temperature 1000 ° C
Perform a VI reaction to deposit pyrolytic carbon in the preform,
Filled to produce a C / C material.
【0028】実施例2 実施例1と同じ繊維束を用いて成形した3次元織りの製
織体をプリフォームとした他は、実施例1と同じ方法に
よりCVI反応を行って、プリフォーム中に熱分解炭素
を析出、充填してC/C材を製造した。Example 2 A CVI reaction was carried out in the same manner as in Example 1 except that a three-dimensional woven fabric formed using the same fiber bundle as in Example 1 was used as a preform. Decomposed carbon was deposited and filled to produce a C / C material.
【0029】実施例3 12000本の炭素繊維フィラメントを集束した繊維束
を用いて成形した平織布をプリフォームとした他は、実
施例1と同じ方法によりCVI反応を行って、プリフォ
ーム中に熱分解炭素を析出、充填してC/C材を製造し
た。Example 3 A CVI reaction was carried out in the same manner as in Example 1 except that a plain woven fabric formed using a fiber bundle obtained by bundling 12,000 carbon fiber filaments was used as a preform. The pyrolytic carbon was deposited and filled to produce a C / C material.
【0030】比較例1 断面形状が実質的に円形の炭素繊維フィラメント600
0本を集束した繊維束を用いて平織布を成形してプリフ
ォームとした他は、実施例1と同じ方法によりCVI反
応を行って、プリフォーム中に熱分解炭素を析出、充填
してC/C材を製造した。Comparative Example 1 Carbon fiber filament 600 having a substantially circular cross section
Except that a plain woven fabric was formed using a fiber bundle obtained by bundling 0 fibers into a preform, a CVI reaction was performed in the same manner as in Example 1 to deposit and fill pyrolytic carbon in the preform. A C / C material was manufactured.
【0031】比較例2 比較例1と同じ繊維束を用いて成形した3次元織りの製
織体をプリフォームとした他は、実施例1と同じ方法に
よりCVI反応を行って、プリフォーム中に熱分解炭素
を析出、充填してC/C材を製造した。Comparative Example 2 A CVI reaction was carried out in the same manner as in Example 1 except that a three-dimensionally woven body formed using the same fiber bundle as in Comparative Example 1 was used as a preform. Decomposed carbon was deposited and filled to produce a C / C material.
【0032】比較例3 断面形状が実質的に円形の炭素繊維フィラメント120
00本を集束した繊維束を用いて平織布を成形してプリ
フォームとした他は、実施例1と同じ方法によりCVI
反応を行って、プリフォーム中に熱分解炭素を析出、充
填してC/C材を製造した。Comparative Example 3 A carbon fiber filament 120 having a substantially circular cross section
A CVI was prepared in the same manner as in Example 1 except that a plain woven fabric was formed from a fiber bundle obtained by bundling 00 fibers into a preform.
The reaction was performed to deposit and fill pyrolytic carbon in the preform to produce a C / C material.
【0033】このようにして製造したC/C材につい
て、熱分解炭素の析出、充填による重量増加率、およ
び、炭素繊維フィラメント単位体積当たりの熱分解炭素
の沈着量を測定した。また、走査電子顕微鏡の二次電子
像から炭素繊維フィラメントの表面に被覆された熱分解
炭素の膜厚を測定するとともに繊維束内の充填状態を観
察した。得られた結果を、プリフォームの嵩密度および
開気孔率などとともに表1に示した。With respect to the C / C material thus produced, the rate of weight increase due to the deposition and filling of pyrolytic carbon, and the amount of pyrolytic carbon deposited per unit volume of carbon fiber filament were measured. Further, the film thickness of the pyrolytic carbon coated on the surface of the carbon fiber filament was measured from the secondary electron image of the scanning electron microscope, and the filling state in the fiber bundle was observed. The results obtained are shown in Table 1 together with the bulk density and open porosity of the preform.
【0034】(1)重量増加率 (wt%) の測定 (W−W0 )/W0 ×100 から算出。 但し、W0 はプリフォームの重量、WはCVI反応を行
った後の重量。 (2)沈着量 (g/cm3)の測定 (W−W0 )/(W0 /ρf )から算出。 但し、W0 はプリフォームの重量、WはCVI反応を行
った後の重量、ρf はフィラメント密度。(1) Measurement of weight increase rate (wt%) Calculated from (W−W 0) / W 0 × 100. Here, W0 is the weight of the preform, and W is the weight after the CVI reaction. (2) Measurement of deposition amount (g / cm 3 ) Calculated from (W−W 0) / (W 0 / ρ f ). However, W0 is the weight of the preform, weight after W is performing the CVI reaction, the [rho f filament density.
【0035】[0035]
【表1】 [Table 1]
【0036】実施例1〜3から、プリフォームの織り方
に拘わらず、炭素繊維として断面形状が非円形の炭素繊
維フィラメントの繊維束で作製した炭素繊維プリフォー
ムを用いることで、嵩密度1.4〜1.5g/cm3 、開気
孔率10%以下の緻密なC/C材を製造することができ
た。炭素繊維フィラメントの断面形状が異形状であるこ
とによって、炭素繊維フィラメントが互いに疎に充填す
る為、繊維束内部にまで原料ガスの供給が可能となり、
結果として炭素繊維フィラメント全てに均一に熱分解炭
素が取り巻いて沈着し緻密な組織となったものと考えら
れる。According to Examples 1 to 3, the bulk density of the carbon fiber preform is made by using a carbon fiber preform made of a fiber bundle of carbon fiber filaments having a non-circular cross section regardless of the weave of the preform. A dense C / C material having 4 to 1.5 g / cm 3 and an open porosity of 10% or less could be produced. Since the cross-sectional shape of the carbon fiber filament is irregular, the carbon fiber filaments are sparsely filled with each other, so that it is possible to supply the raw material gas to the inside of the fiber bundle,
As a result, it is considered that the pyrolytic carbon uniformly surrounds and deposits on all the carbon fiber filaments, resulting in a dense structure.
【0037】比較例1〜3の場合、プリフォームの嵩密
度及び開気孔率は実施例1〜3と同程度であったが、何
れの織り方をしたプリフォームに於いても、製造された
C/C材の嵩密度は1.0〜1.3g/cm3 、開気孔率2
0%以上であり、C/C材は実施例1〜3と比較して疎
な構造を有していた。炭素繊維フィラメントの断面形状
が実質的に凹凸のない円形の為、フィラメントが互いに
密に充填し、炭素繊維束内の空隙への熱分解炭素の沈着
が困難となり、繊維束内の空隙は閉気孔として残存した
まま熱分解炭素が繊維束表面に選択的に沈着した為、緻
密化が不十分なものとなったと考えられる。In Comparative Examples 1 to 3, the bulk density and open porosity of the preforms were almost the same as in Examples 1 to 3, but the weaving preforms were produced. C / C material has a bulk density of 1.0 to 1.3 g / cm 3 and an open porosity of 2
0% or more, and the C / C material had a sparse structure as compared with Examples 1 to 3. Since the cross-sectional shape of the carbon fiber filament is substantially circular without any irregularities, the filaments are densely packed with each other, and it becomes difficult to deposit pyrolytic carbon in the voids in the carbon fiber bundle, and the voids in the fiber bundle are closed pores. It is considered that the densification was insufficient because the pyrolytic carbon was selectively deposited on the surface of the fiber bundle while remaining.
【0038】[0038]
【発明の効果】以上のとおり、本発明のC/C材の製造
方法によれば、断面形状が非円形の炭素繊維フィラメン
トの繊維束で作製した炭素繊維プリフォーム(成形体)
を用いて、気相熱分解法により熱分解炭素を析出、充填
することにより、繊維束内の各フィラメント間の微細空
隙部にまで熱分解炭素が充填され、緻密なC/C材を製
造することができる。As described above, according to the method for producing a C / C material of the present invention, a carbon fiber preform (compact) made of a fiber bundle of carbon fiber filaments having a non-circular cross-sectional shape.
Is used to deposit and fill pyrolytic carbon by a gas phase pyrolysis method, thereby filling the fine voids between the filaments in the fiber bundle to the fine voids to produce a dense C / C material. be able to.
Claims (2)
トの繊維束を用いて所望形状の炭素繊維プリフォームに
成形し、次いで気相熱分解法により熱分解炭素を炭素繊
維プリフォームを形成する繊維束内のフィラメント間に
形成された微細空隙部および繊維束間の空隙部に析出
し、充填することを特徴とする炭素繊維強化炭素材の製
造方法。1. A fiber which is formed into a carbon fiber preform having a desired shape by using a fiber bundle of carbon fiber filaments having a non-circular cross-sectional shape, and then forms pyrolytic carbon into the carbon fiber preform by a gas phase pyrolysis method. A method for producing a carbon fiber reinforced carbon material, comprising depositing and filling in fine voids formed between filaments in a bundle and voids between fiber bundles.
5μm の気相熱分解炭素を析出、被覆する、請求項1記
載の炭素繊維強化炭素材の製造方法。2. The carbon fiber filament has a film thickness of 1 to
The method for producing a carbon fiber reinforced carbon material according to claim 1, wherein 5 µm of gas phase pyrolytic carbon is deposited and coated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000341841A JP2002145675A (en) | 2000-11-09 | 2000-11-09 | Production process of carbon-fiber-reinforced carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000341841A JP2002145675A (en) | 2000-11-09 | 2000-11-09 | Production process of carbon-fiber-reinforced carbon material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002145675A true JP2002145675A (en) | 2002-05-22 |
Family
ID=18816503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000341841A Pending JP2002145675A (en) | 2000-11-09 | 2000-11-09 | Production process of carbon-fiber-reinforced carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002145675A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105695954A (en) * | 2016-01-22 | 2016-06-22 | 山东国晶新材料有限公司 | Method for strengthening mechanical properties of single crystal furnace thermal field material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59168126A (en) * | 1983-03-14 | 1984-09-21 | Toray Ind Inc | Production of pitch based carbon fiber |
JPS605070A (en) * | 1983-04-19 | 1985-01-11 | ソシエテ・ユ−ロペ−ヌ・ドウ・プロプルジオン | Composite material and manufacture |
JPH082976A (en) * | 1994-06-17 | 1996-01-09 | Ishikawajima Harima Heavy Ind Co Ltd | Production of carbon fiber/carbon-based composite material |
JPH08296124A (en) * | 1995-04-24 | 1996-11-12 | Toray Ind Inc | Non-circular cross section carbon fiber and carbon fiber-reinforced composite material |
-
2000
- 2000-11-09 JP JP2000341841A patent/JP2002145675A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59168126A (en) * | 1983-03-14 | 1984-09-21 | Toray Ind Inc | Production of pitch based carbon fiber |
JPS605070A (en) * | 1983-04-19 | 1985-01-11 | ソシエテ・ユ−ロペ−ヌ・ドウ・プロプルジオン | Composite material and manufacture |
JPH082976A (en) * | 1994-06-17 | 1996-01-09 | Ishikawajima Harima Heavy Ind Co Ltd | Production of carbon fiber/carbon-based composite material |
JPH08296124A (en) * | 1995-04-24 | 1996-11-12 | Toray Ind Inc | Non-circular cross section carbon fiber and carbon fiber-reinforced composite material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105695954A (en) * | 2016-01-22 | 2016-06-22 | 山东国晶新材料有限公司 | Method for strengthening mechanical properties of single crystal furnace thermal field material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2722198B2 (en) | Method for producing carbon / carbon composite material having oxidation resistance | |
US5217657A (en) | Method of making carbon-carbon composites | |
US5597611A (en) | Reinforced carbon composites | |
JP3034084B2 (en) | Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same | |
EP0410781B1 (en) | Process for preparing carbon material | |
JPH06172030A (en) | Production of carbon material | |
JP3829964B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JPH0710753B2 (en) | Method for producing carbon fiber reinforced composite material having oxidation resistance | |
US5523035A (en) | Process for producing carbonaceous material | |
JP2002145675A (en) | Production process of carbon-fiber-reinforced carbon material | |
JP3983459B2 (en) | Carbon fiber reinforced carbon composite screw | |
JP2019172503A (en) | PRODUCTION PROCESS FOR SiC FIBER REINFORCED SiC COMPOSITE MATERIAL | |
JP2521795B2 (en) | Method for producing carbon fiber reinforced composite material having oxidation resistance | |
JP2001048664A (en) | Production of carbon fiber-reinforced carbon material | |
JP2001181062A (en) | Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same | |
JP3548597B2 (en) | Oxidation-resistant treatment method of carbon fiber reinforced carbon composite | |
JP3494533B2 (en) | Method for producing oxidation resistant C / C composite | |
JP3058180B2 (en) | Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same | |
JP2000169250A (en) | Production of carbon fiber reinforced carbon composite material | |
EP0428977B1 (en) | Process for producing carbonaceous material | |
JP3599791B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites | |
JP2000219584A (en) | Carbon fiber reinforced carbon composite material coated with silicon carbide and its production | |
JPH0822783B2 (en) | Method for manufacturing carbon / carbon composite material | |
JPH11130553A (en) | Carbon/carbon composite material | |
JPH05148062A (en) | Production of carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100331 |