[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002035908A - Breakout detection method in continuous casting equipment - Google Patents

Breakout detection method in continuous casting equipment

Info

Publication number
JP2002035908A
JP2002035908A JP2000230858A JP2000230858A JP2002035908A JP 2002035908 A JP2002035908 A JP 2002035908A JP 2000230858 A JP2000230858 A JP 2000230858A JP 2000230858 A JP2000230858 A JP 2000230858A JP 2002035908 A JP2002035908 A JP 2002035908A
Authority
JP
Japan
Prior art keywords
mold
heat flux
value
breakout
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000230858A
Other languages
Japanese (ja)
Other versions
JP4112783B2 (en
Inventor
Takahiro Katai
崇博 片井
Junichi Nakagawa
淳一 中川
Koichi Hirai
康一 平井
Masayoshi Ono
真義 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000230858A priority Critical patent/JP4112783B2/en
Publication of JP2002035908A publication Critical patent/JP2002035908A/en
Application granted granted Critical
Publication of JP4112783B2 publication Critical patent/JP4112783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57)【要約】 【課題】 溶鋼の連続鋳造において、鋳型内の鋳片に発
生したブレークアウトを精度良く検出方法に関するもの
である。 【解決手段】 鋳型に埋設した複数の温度計測手段で鋳
型温度を計測し、鋳型温度計測値に基づき鋳型鋳造異常
を検出する方法において、鋳型方向に間隔をおいて鋳型
の複数箇所に埋設した温度計測手段で鋳型温度を計測
し、鋳型温度計測値に基づいて各計測点における鋳型内
面での熱流束を伝熱逆問題手法を用いて推定し、該熱流
束値の変化を、その変化開始点から1次遅れ値を求め、
前記の算出した上側の熱流束値と、前記1次遅れ値とか
ら熱流束の差を鋳造方向別に求め、鋳造上流側の熱電対
位置における前記熱流束差と下流側熱電対位置間の距離
および鋳片の引抜速度から求められる鋳片の移動時間後
の下流側熱電対差積算値を算出し、該積算値が所定値以
上となるときを、凝固シェル破断に起因するブレークア
ウトの発生とする連続鋳造設備におけるブレークアウト
検出方法。
(57) [Summary] [PROBLEMS] To provide a method for accurately detecting a breakout occurring in a slab in a mold in continuous casting of molten steel. SOLUTION: In a method of measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting a mold casting abnormality based on a measured value of the mold temperature, a temperature embedded in a plurality of portions of the mold at intervals in a mold direction. The mold temperature is measured by the measuring means, and the heat flux on the inner surface of the mold at each measurement point is estimated using the heat transfer inverse problem method based on the measured mold temperature value, and the change in the heat flux value is determined as the change starting point. From the first order delay value,
From the calculated upper heat flux value and the first order lag value, a difference in heat flux is determined for each casting direction, and the distance between the heat flux difference and the downstream thermocouple position at the upstream thermocouple position and Calculate the downstream thermocouple difference integrated value after the moving time of the slab obtained from the drawing speed of the slab, and when the integrated value is equal to or more than a predetermined value, it is assumed that breakout due to solidified shell fracture occurs. Breakout detection method in continuous casting equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造に
おいて、鋳型内の鋳片に発生したブレークアウトを精度
良く検出する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately detecting a breakout occurring in a slab in a mold in continuous casting of molten steel.

【0002】[0002]

【従来の技術】溶鋼の連続鋳造において、鋳型内の鋳片
に発生したブレークアウトを検出することは、連続鋳造
操業および品質管理上重要であり、従来から種々の手段
が提案されている。例えば、本出願人の出願に係る特開
平9−108891号公報に開示された発明は、連続鋳
造機の鋳型に、その鋳造方向に複数の温度測定素子を設
置して鋳型温度を測定し、その測定値が上昇した際、そ
の上昇開始点からの1次遅れ温度を求め、前記測定した
鋳型温度とこの1次遅れ温度から温度差を鋳造方向の温
度測定素子別に求め、該鋳造方向上流側の温度測定素子
位置における前記温度差と、該上流側温度測定素子位置
と下流側温度測定素子位置間の距離および引抜速度から
求めた鋳片の移動時間後の該下流側温度測定素子位置に
おける前記温度差との積算値を算出し、この積算値が所
定値以上となったときに凝固殻破断に起因するブレーク
アウトの発生とすることを特徴とする連続鋳造における
ブレークアウトの予知方法で、鋳型内に設置した熱電対
により検出した温度から直接温度差を積算し、ブレーク
アウトを判定する方法である。
2. Description of the Related Art In continuous casting of molten steel, detection of breakout occurring in a slab in a mold is important in continuous casting operation and quality control, and various means have been conventionally proposed. For example, the invention disclosed in Japanese Patent Application Laid-Open No. Hei 9-108891 filed by the applicant of the present application measures a mold temperature by installing a plurality of temperature measuring elements in the casting direction of a mold of a continuous casting machine, When the measured value rises, a first-order lag temperature from the rising start point is obtained, and a temperature difference is obtained from the measured mold temperature and the first-order lag temperature for each temperature measuring element in the casting direction. The temperature difference at the temperature measuring element position, the distance between the upstream temperature measuring element position and the downstream temperature measuring element position and the temperature at the downstream temperature measuring element position after the slab moving time determined from the drawing speed. A method of predicting breakout in continuous casting, wherein an integrated value with the difference is calculated, and when the integrated value is equal to or greater than a predetermined value, a breakout due to solidification shell fracture is generated. Integrating the temperature difference directly from the detected temperature by installing the thermocouple, a method of determining a breakout.

【0003】この方法においては、温度はあくまでもあ
る位置での温度指標であり、条件(特に鋳型残厚)によ
り大きく変化し、該鋳型残厚の経時変化を定量的に定め
るのは困難であるため、時間の関数として一義的に決定
するので、特に非定常時の伝熱挙動の評価に誤差を生じ
るという課題がある。また、所定値の設定により未検出
または過検出の発生が増加する恐れがある。
In this method, the temperature is merely a temperature index at a certain position, and varies greatly depending on conditions (particularly, the remaining mold thickness), and it is difficult to quantitatively determine the temporal change of the remaining mold thickness. However, since it is uniquely determined as a function of time, there is a problem that an error occurs in the evaluation of the heat transfer behavior particularly in an unsteady state. In addition, the occurrence of undetected or overdetected data may increase due to the setting of the predetermined value.

【0004】また、上記と同様に、本出願人の出願に係
る特開平6−320245号公報に開示された発明は、
連続鋳造において、鋳型内の抜熱を計測できる熱流束計
を銅板に複数埋設し、該熱流束計から得られる鋳造速度
Vcを用いて、下記式に基づいて表面疵発生域/適性域
/ブレークアウト発生域であるかを判定し、上記表面疵
発生域においてはモールド内冷却水量を減少させ、ブレ
ークアウト発生域においてはモールド内冷却水量を増加
させるモールド内抜熱制御装置にある。 0.44Vc2 −0.592Vc+1.567≦Q≦
0.43Vc2−0.556Vc+2.029 Q:熱流束(Kcal/m2 ・hr) Vc:鋳造速度(m/min)
[0004] Similarly to the above, the invention disclosed in Japanese Patent Application Laid-Open No. 6-320245 filed by the present applicant is disclosed in
In continuous casting, a plurality of heat flux meters capable of measuring heat removal in a mold are buried in a copper plate, and using a casting speed Vc obtained from the heat flux meter, a surface flaw generation area / appropriate area / break is obtained based on the following equation. An out-of-mold heat removal control device that determines whether the area is an out-of-mold occurrence area, reduces the amount of cooling water in the mold in the area where the surface flaw occurs, and increases the amount of cooling water in the mold in the area of break-out. 0.44Vc 2 -0.592Vc + 1.567 ≦ Q ≦
0.43Vc 2 -0.556Vc + 2.029 Q: Heat flux (Kcal / m 2 · hr) Vc: Casting speed (m / min)

【0005】この発明は、鋳型内の厚み方向に2点の熱
電対を配置し、その温度差から熱流束qを下記(1)式
として検出するものである。 q=λ/d×ΔT(Kcal/m2 ・hr) ・・・・(1) 但し、λ:鋳型の熱伝導度(Kcal/m2 ・hr/
℃) d:熱電対距離(m) ΔT:熱電対温度差(℃)
In the present invention, two thermocouples are arranged in a thickness direction in a mold, and a heat flux q is detected from the temperature difference as the following equation (1). q = λ / d × ΔT (Kcal / m 2 · hr) (1) where λ: thermal conductivity of the mold (Kcal / m 2 · hr /
° C) d: Thermocouple distance (m) ΔT: Thermocouple temperature difference (° C)

【0006】しかしながら、上記の仮定は定常状態での
式であり、時間による熱流束変動の大きい非定常伝熱現
象に適用するには問題がある。それは、鋳造中の鋳型内
での伝熱現象はパウダー流入条件が鋳造速度やパウダー
の流入量といった操業条件が常に変化するため、式中の
値は変化する。ところが、式中のλは銅板の物性値であ
り一定としており、伝熱状況が常に変化する鋳型内伝熱
現象を評価するためには、上記式では大きな推定誤差を
生じるという課題を有する。
[0006] However, the above assumption is an equation in a steady state, and there is a problem in applying it to an unsteady heat transfer phenomenon in which the heat flux varies greatly with time. As for the heat transfer phenomenon in the casting mold during the casting, the values in the formula change because the powder inflow condition always changes the operating conditions such as the casting speed and the amount of powder inflow. However, λ in the formula is a physical property value of the copper plate and is constant, and there is a problem that a large estimation error is generated in the above formula in order to evaluate the heat transfer phenomenon in the mold in which the heat transfer condition constantly changes.

【0007】また最近、特開平9−108891号公報
に開示された発明のような方法において、鋳型内面での
熱流束を伝熱逆問題手法を用いてブレークアウトを極め
て正確に検出することが提案されている。この方法は、
非定常伝熱現象における鋳型内の鋳片のブレークアウト
の検出に極めて有効である。
Recently, in a method disclosed in Japanese Patent Application Laid-Open No. 9-108891, it has been proposed to detect a heat flux on the inner surface of a mold extremely accurately by using a heat transfer inverse problem technique. Have been. This method
It is extremely effective in detecting breakout of a slab in a mold in an unsteady heat transfer phenomenon.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な、特に非定常伝熱現象における鋳型内の鋳片のブレー
クアウトの検出を精度良く行うことでブレークアウトの
発生を防止し、さらには、ブレークアウトの検出的中率
を向上させ、ブレークアウト回避時に実施する鋳造速度
の低下に起因する非定常材の発生の抑止を図ることを目
的とするものである。
SUMMARY OF THE INVENTION The present invention prevents the occurrence of a breakout by accurately detecting the breakout of a slab in a mold, particularly in the unsteady heat transfer phenomenon, as described above. It is an object of the present invention to improve the detection accuracy of breakouts and to suppress the generation of unsteady materials due to a reduction in casting speed performed when avoiding breakouts.

【0009】[0009]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨とするところは、下記手段にある。 (1)鋳型に埋設した複数の温度計測手段で鋳型温度を
計測し、鋳型温度計測値に基づき鋳型鋳造異常を検出す
る方法において、鋳型方向に間隔をおいて鋳型の複数箇
所に埋設した温度計測手段で鋳型温度を計測し、鋳型温
度計測値に基づいて各計測点における鋳型内面での熱流
束を伝熱逆問題手法を用いて推定し、該熱流束値の変化
をその変化開始点から1次遅れ値を求め、前記の算出し
た上側の熱流束値と、前記1次遅れ値とから熱流束の差
を鋳造方向別に求め、鋳造上流側の熱電対位置における
前記熱流束差と下流側熱電対位置間の距離および鋳片の
引抜速度から求められる鋳片の移動時間後の下流側熱電
対差積算値を算出し、該積算値が所定値以上となるとき
を、凝固シェル破断に起因するブレークアウトの発生と
する連続鋳造設備におけるブレークアウト検出方法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and its gist lies in the following means. (1) In a method of measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting an abnormality in mold casting based on the measured value of the mold temperature, the temperature measurement embedded in a plurality of locations of the mold at intervals in the mold direction. Means for measuring the mold temperature, estimating the heat flux on the inner surface of the mold at each measurement point using the heat transfer inverse problem method based on the measured mold temperature value, and calculating the change in the heat flux value from the change start point by 1 point. A second delay value is obtained, and a difference in heat flux is determined for each casting direction from the calculated upper heat flux value and the first-order delay value. The difference between the heat flux difference at the thermocouple position on the upstream side of the casting and the downstream thermocouple is obtained. Calculate the downstream thermocouple difference integrated value after the moving time of the slab obtained from the distance between the paired positions and the slab drawing speed, and when the integrated value becomes a predetermined value or more, due to solidification shell fracture. Continuous casting equipment with breakout Breakout detection methods definitive.

【0010】(2)鋳型に埋設した複数の温度計測手段
で鋳型温度を計測し、鋳型温度計測値に基づき鋳型鋳造
異常を検出する方法において、鋳型方向に間隔をおいて
鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計
測し、鋳型温度計測値に基づいて各計測点における鋳型
内面での熱流束を伝熱逆問題手法を用いて推定し、該熱
流束値の変化をその変化開始点から移動平均値を求め、
前記の算出した上側の熱流束値と、前記移動平均値とか
ら熱流束の差を鋳造方向別に求め、鋳造上流側の熱電対
位置における前記熱流束差と下流側熱電対位置間の距離
および鋳片の引抜速度から求められる鋳片の移動時間後
の下流側熱電対差積算値を算出し、該積算値が所定値以
上となるときを、凝固シェル破断に起因するブレークア
ウトの発生とする連続鋳造設備におけるブレークアウト
検出方法。 (3)鋳型内の鋳造方向に複数設置した熱電対から得ら
れる温度情報から熱流束値を推定し、その時系列変化に
周波数分解手法を施して、外乱を除去する(1)または
(2)に記載の連続鋳造設備におけるブレークアウト検
出方法。
(2) In a method of measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting a mold casting abnormality based on a measured value of the mold temperature, the mold is embedded in a plurality of locations of the mold at intervals in the mold direction. The mold temperature is measured by the temperature measuring means, and the heat flux on the inner surface of the mold at each measurement point is estimated using the heat transfer inverse problem method based on the measured mold temperature, and the change in the heat flux value is started. Find the moving average from the points,
From the calculated upper heat flux value and the moving average value, a difference in heat flux is determined for each casting direction, and the distance between the heat flux difference and the downstream thermocouple position at the thermocouple position on the upstream side of the casting and the casting distance are determined. Calculate the downstream thermocouple difference integrated value after the slab moving time obtained from the slab drawing speed, and when the integrated value is equal to or greater than a predetermined value, determine the occurrence of breakout due to solidified shell fracture as a continuous Breakout detection method for casting equipment. (3) Estimate a heat flux value from temperature information obtained from a plurality of thermocouples installed in a casting direction in a casting mold, and apply a frequency decomposition method to the time series change to remove disturbances (1) or (2). A method for detecting breakout in the continuous casting facility as described in the above.

【0011】[0011]

【発明の実施の形態】以下、本発明について添付図面に
より説明する。図1は鋳型に設置した温度検出点を示す
図、図2は鋳型内面と鋳型水冷溝間の熱移動を表す概念
図である。図1において、鋳型1は温度検出列2を持
ち、鋳造方向に適宜間隔で熱電対3a(上部温度検出
点)、3b(下部温度検出点)が複数個配設されてお
り、予め鋳造条件、鋳型材質の熱伝導度、温度計測点の
鋳型内面からの距離その他熱流束値、温度分布、対流伝
熱量その他演算に必要なデータ、プログラム等が入力さ
れている計算機(図示せず)に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing temperature detection points installed on a mold, and FIG. 2 is a conceptual diagram showing heat transfer between an inner surface of a mold and a mold water cooling groove. In FIG. 1, a mold 1 has a temperature detection line 2, and a plurality of thermocouples 3a (upper temperature detection points) and 3b (lower temperature detection points) are arranged at appropriate intervals in the casting direction. It is connected to a computer (not shown) in which the heat conductivity of the mold material, the distance of the temperature measurement point from the inner surface of the mold, other heat flux values, temperature distribution, convection heat transfer amount, and other data and programs required for calculation are input. ing.

【0012】なお、このとき、熱流束値、鋳型温度分布
等を精度よく求めるために上流側に配置される熱電対3
aは、溶融スラグ液相部分、または凝固開始点付近に設
置されることが望ましく、また下流側に配置される熱電
対3bは、凝固シェルの部分に設置する。また、前記の
熱電対3a、3bを鋳片の幅に応じて、幅方向に並列さ
せるとよい。また、前記鋳型1内には、鋳型水冷機構と
その冷却水温度測定機構とが設けられており、該温度測
定機構の測定結果は、前記コンピュータに入力される。
At this time, in order to obtain a heat flux value, a mold temperature distribution, and the like with high accuracy, a thermocouple 3 disposed upstream is used.
a is desirably installed near the liquid phase portion of the molten slag or near the solidification start point, and the thermocouple 3b disposed downstream is installed at the solidified shell portion. The thermocouples 3a and 3b may be arranged in the width direction in accordance with the width of the slab. In the mold 1, a mold water cooling mechanism and a cooling water temperature measurement mechanism are provided, and the measurement result of the temperature measurement mechanism is input to the computer.

【0013】前述のように、鋳型内面と水冷機構との間
に埋設した温度計測手段により計測した鋳型温度から鋳
型内表面の熱流束を測定し、ブレークアウトを検出す
る。以下にこれらの熱流束を求める手法について説明す
る。鋳型内の熱流束はJames.V.Beckの非線
形逆伝熱問題の手法[Int.J.Mass.Tran
sfer,vol.13,pp703−716]を適用
し、非定常伝熱方程式の数値解より、鋳型内面と水冷機
構との間に埋設した1点の鋳型温度計測値を最も良く説
明できる熱流束を逐次求める。また、熱流束と非定常伝
熱差分方程式の解として求められる鋳型内表面温度を同
時に決定する。
As described above, the breakout is detected by measuring the heat flux on the inner surface of the mold from the mold temperature measured by the temperature measuring means embedded between the inner surface of the mold and the water cooling mechanism. Hereinafter, a method for obtaining these heat fluxes will be described. The heat flux in the mold was determined by James. V. Beck's method of nonlinear inverse heat transfer problem [Int. J. Mass. Tran
sfer, vol. 13, pp. 703-716], and a heat flux that can best explain the measured value of the temperature of the mold at one point embedded between the inner surface of the mold and the water cooling mechanism is sequentially obtained from the numerical solution of the unsteady heat transfer equation. In addition, the heat flux and the inner surface temperature of the mold obtained as a solution of the unsteady heat transfer difference equation are simultaneously determined.

【0014】図2において、鋳型厚み方向の一次元方向
伝熱のみを考えると、鋳型内面から鋳型水冷機構間の熱
移動を支配する方程式は以下の式で表される。 ρCp∂T/∂t=−∂(λ∂T/∂x)/∂x ・・・・(2) T(E,t)=Y(t) ・・・・(3) λ∂T(F,t)/∂x=hw(T(E,t)−Tw) ・・・・(4) T(x,0)=T0(x) ・・・・(5) ここで、ρは鋳型材料の密度、Cpは鋳型材料の比熱、
xは鋳型内面から水冷機構への任意の位置における垂直
方向距離、Eは鋳型内面から鋳型熱電対設置までの垂直
方向距離、Yはの計測値を表す。Fは鋳型内面12から
水冷機構13までの垂直方向距離、hw,Twは各々、
水側冷却の総括伝熱係数、水温を示す。T0(x)は鋳
型内面12から鋳型水冷機構13間の垂直方向の初期温
度分布を示し、鋳造開始直前に全て室温に設定する。
In FIG. 2, considering only the one-dimensional heat transfer in the thickness direction of the mold, the equation governing the heat transfer from the inner surface of the mold to the mold water cooling mechanism is expressed by the following equation. ρCp∂T / ∂t = −∂ (λ∂T / ∂x) / ∂x (2) T (E, t) = Y (t) (3) λ∂T (F , T) / ∂x = hw (T (E, t) −Tw) (4) T (x, 0) = T0 (x) (5) where ρ is a mold material Density, Cp is the specific heat of the mold material,
x represents a vertical distance from the inner surface of the mold to the water cooling mechanism at an arbitrary position, E represents a vertical distance from the inner surface of the mold to the installation of the mold thermocouple, and Y represents a measured value of. F is the vertical distance from the mold inner surface 12 to the water cooling mechanism 13, and hw and Tw are
Shows the overall heat transfer coefficient and water temperature of water side cooling. T0 (x) indicates the initial temperature distribution in the vertical direction between the mold inner surface 12 and the mold water cooling mechanism 13, and is all set to room temperature immediately before the start of casting.

【0015】(2)、(4)、(5)式により計算した
熱電対計測点における鋳型温度T(E,t)と計測温度
Y(t)の2乗誤差を以下の(6)式でこれが最小とな
るような熱流束q(t,0)≡λ∂T/∂XX=0
(6)式より決定する。 F(q)=(T(E,t)−Y(T))2 ・・・・(6) ∂F(q)/∂q=0 ・・・・(7) 以上の説明では図2での上側温度計測点について熱流束
を求めたが、下側温度計測点または計測点が3箇所以上
ある場合でも同様にして計測点の熱流束を求めることが
できる。これら求めた熱流束により内外挿して、鋳型方
向の熱流束分布を求める。熱流束は鋳造方向位置および
時間の関数であるが、以下単にqmで表す。
The square error between the mold temperature T (E, t) and the measured temperature Y (t) at the thermocouple measurement point calculated by the equations (2), (4) and (5) is expressed by the following equation (6). The heat flux q (t, 0) ≡λ∂T / ∂X X = 0 that minimizes this is determined from equation (6). F (q) = (T (E, t) −Y (T)) 2 (6) ∂F (q) / ∂q = 0 (7) In the above description, FIG. Although the heat flux is obtained for the upper temperature measurement point, the heat flux at the measurement point can be obtained in the same manner even when there are three or more lower temperature measurement points or measurement points. The heat flux distribution in the mold direction is obtained by extrapolation using the obtained heat flux. The heat flux is a function of the position in the casting direction and of time, but is simply represented by qm.

【0016】上記に熱流束を求める演算はコンピュータ
ーにより図3に示すフローチャートの命令に従って実行
される。S31で時間tにゼロを設定し、S32で時間
tに微小時間間隔Δtを加算し時間を更新するS33に
て鋳造方向に鋳型内設置された熱電対の計測値をコンピ
ューターに読み込みS34にてS33で読み込んだ熱電
対の計測値に基づき、鋳型表面の熱流束qmと鋳型内表
面温度T(0,t)を計算する。また、S35にて計算
した出力の周波数分解法によりノイズの除去を実施する
がその理由については後述する。
The calculation for obtaining the heat flux is executed by a computer in accordance with the instructions in the flowchart shown in FIG. In step S31, the time t is set to zero, and in step S32, a minute time interval Δt is added to the time t to update the time. The heat flux qm on the mold surface and the mold inner surface temperature T (0, t) are calculated based on the measured values of the thermocouple read in step (1). The noise is removed by the frequency decomposition method of the output calculated in S35, and the reason will be described later.

【0017】具体的には前述の(5)式を初期条件、
(3)式および(4)式を境界条件として(2)式を離
散化して解く。(2)〜(5)式により計算した熱電対
計測点における鋳型温度T(E,t)と計測温度Y
(t)の2乗誤差を前述の(6)式により計算する。前
述の(7)式に示すように2乗誤差F(q)の熱流束に
関する偏微分係数がゼロに近づくように仮定した熱流束
値q0 を以下の手順に従って修正する。仮定した熱流束
0 を境界条件にして計算した鋳型温度計測点における
鋳型温度計算値をT(E,t)0、修正した熱流束q1
を境界条件にして計算した鋳型温度計測点における鋳型
温度計算値をT(E,t)1とすると、T(E,t)1
をΔq≡q1 −q0 についてテーラー展開すると以下の
ようになる。 T(E,t)1=T(E,t)0+(∂T(E,t)0/∂q0 ) ・(q1 −q0 ) ・・・・(8)
Specifically, the above equation (5) is used as an initial condition,
Equation (2) is discretized and solved using equations (3) and (4) as boundary conditions. The mold temperature T (E, t) and the measured temperature Y at the thermocouple measurement point calculated by the equations (2) to (5)
The square error of (t) is calculated by the above equation (6). Partial differential coefficient for the heat flux of the aforementioned (7) the square as shown in equation error F (q) is modified according to the procedures of the following heat flow flux value q 0 which is assumed to be close to zero. The calculated mold temperature at the mold temperature measurement point calculated using the assumed heat flux q 0 as a boundary condition is T (E, t) 0, and the corrected heat flux q 1
Let T (E, t) 1 be the calculated mold temperature value at the mold temperature measurement point calculated with the boundary condition as T (E, t) 1
Is Taylor-expanded about Δq≡q 1 −q 0 as follows. T (E, t) 1 = T (E, t) 0+ (∂T (E, t) 0 / ∂q 0) · (q 1 -q 0) ···· (8)

【0018】ここで、感度係数β0を以下のように定義
する。 β0≡∂T(E,t)0/∂q0 =(T(E,t)1−T(E,t)0)/εq0 ・・・・(9) ここで、εはqの最適値を探索するために設定する微小
値であり、例えば0.001とする。(8)式と(9)
式を(7)に代入し、q1 に関して整理すると、以下の
ようになる。 q1 =q0 +(T(E,t)0−Y(t))/β0 ・・・・(10) q1 とq0 を比較し、下記の収束判定式を満足すればq
1 が求める熱流束である。 (q1 −q0 )/q0 <0.001 ・・・・(11) (11)式を満足しない場合は、q1 を基準に上と同様
の手順で以下の(12)式に従ってq1 の計算を行い、
(13)式を満足するまで計算を繰り返し、熱流束qを
決定し、同時に鋳型内表面温度T(0,t)が計算され
る。 qi =qi-1 +(T(E,t)i-1 −Y(t))/βi-1 ・・・・(12) i=1,2,3… (qi −qi-1 )/qi-1 <0.001 ・・・・(13) i=1,2,3…
Here, the sensitivity coefficient β0 is defined as follows. β0≡∂T (E, t) 0 / ∂q 0 = (T (E, t) 1-T (E, t) 0) / εq 0 ···· (9) where, epsilon is the q optimal This is a minute value set for searching for a value, for example, 0.001. Equation (8) and (9)
Substituting the equation into (7) and rearranging q 1 gives the following. q 1 = q 0 + (T (E, t) 0−Y (t)) / β 0 (10) By comparing q 1 with q 0 , if the following convergence judgment formula is satisfied, q
1 is the desired heat flux. (Q 1 −q 0 ) / q 0 <0.001 (11) In the case where the expression (11) is not satisfied, q is calculated according to the following expression (12) in the same procedure as above based on q 1. Perform the calculation of 1 ,
The calculation is repeated until the expression (13) is satisfied, the heat flux q is determined, and at the same time, the mold inner surface temperature T (0, t) is calculated. q i = q i−1 + (T (E, t) i−1 −Y (t)) / β i−1 (12) i = 1,2,3 (q i −q i -1 ) / q i-1 <0.001 (13) i = 1, 2, 3,.

【0019】上記の手法により鋳型方向の熱流束分布q
mを算出し上側熱電対より算出される熱流束推定値が限
界値a以上に変動し、続いて鋳造の進行により発生する
遅れ時間内に下側熱電対より算出される熱流束推定値が
限界値b以上に変動した場合にブレークアウトが発生す
ると判定する事ができる。この変動をより明確に捕らえ
る手法として2つの熱流束の偏差の積である共分散の適
用が有効である。さらに、この共分散値は2つの計算値
の積算によりまとめられた値であることから、判定定数
の数を減らすことが可能となり、定数の調整の負荷を減
らすことが可能となる。
According to the above method, the heat flux distribution q in the mold direction is obtained.
m, the heat flux estimate calculated from the upper thermocouple fluctuates beyond the limit value a, and the heat flux estimate calculated from the lower thermocouple within the delay time caused by the progress of casting is subsequently limited. It can be determined that a breakout occurs when the value f2 or more fluctuates. It is effective to apply covariance, which is the product of the deviation of two heat fluxes, as a method for more clearly capturing this variation. Furthermore, since this covariance value is a value obtained by integrating two calculated values, the number of determination constants can be reduced, and the load of adjusting the constants can be reduced.

【0020】以後、熱流束の値が上昇することで発生す
る拘束性ブレークアウトの例を用いて説明する。鋳型内
での初期凝固中に発生した凝固破断箇所を検知すること
によって、拘束性ブレークアウトを図1、図4を用いて
説明する。図4は鋳型に設置した図1に示した鋳造方向
に複数の温度検出点列から推定した鋳型方向熱流束検出
列の一例を示したものである。凝固破断部では鋳型に直
接溶鋼が接触する為、これが温度検出列近辺を通過する
際、温度検出から推定した熱流束の時系列変化は図4
(a)に示すような正常時の熱流束から大きく上昇して
元に戻ると言う両者相似な熱流束変化パターンが判断位
置の通過に伴い順次現れる。この時間変化パターンに対
して、引き抜きによる時間遅れが0になるように、温度
検出点の熱流束時系列変化を時間軸上で未来の方向に平
行移動させると、図4(b)に示すような相似な熱流束
変化が同一タイミングで現れ、この熱流束変化を正常時
の熱流束A(t)、B(T)からの上昇分つまり偏差Δ
qmA(t)、ΔqmB(t)で補足する。そして偏差
ΔqmA(t),ΔqmB(t)の積により算出した、
いわゆる共分散値N(t)が図4(c)に示すように、
凝固殻破断部が通過するときのみに大きな値となる。
The following description will be made using an example of a constraint breakout caused by an increase in the value of the heat flux. Constraint breakout will be described with reference to FIGS. 1 and 4 by detecting a solidification break occurring during initial solidification in a mold. FIG. 4 shows an example of a heat flux detection sequence in the mold direction estimated from a plurality of temperature detection point sequences in the casting direction shown in FIG. Since molten steel directly contacts the mold at the solidification fracture part, when it passes near the temperature detection line, the time-series change of the heat flux estimated from the temperature detection is shown in FIG.
As shown in (a), the heat flux change patterns similar to each other, ie, a large rise from the normal heat flux and a return to the original heat flux, appear sequentially as the judgment position is passed. With respect to this time change pattern, when the time series change of the heat flux at the temperature detection point is translated in the future direction on the time axis so that the time delay due to the drawing becomes zero, as shown in FIG. Heat flux changes appear at the same timing, and this heat flux change is increased from the normal heat fluxes A (t) and B (T), that is, the deviation Δ
Supplement with qmA (t) and ΔqmB (t). And calculated by the product of the deviations ΔqmA (t) and ΔqmB (t),
As shown in FIG. 4C, the so-called covariance value N (t)
It becomes a large value only when the solidified shell breaks through.

【0021】以下に、判定の詳細方法を図4を用いて説
明する。時間tにおける共分散値をN(t)とすると、
数式で表すと下記(14)式のように表記できる。式中
のt−v(t)は時刻がtよりv(t)秒前で有る事を
示しており、これが時間軸上の平行移動にあたる。そし
て引抜速度による温度検出点間の熱流束時間遅れを表さ
れ、それを式で示すと下記(17)式のようになる。上
記ΔqmA(t)およびΔqmB(t)が急激に上昇す
るときにのみ大きくなるように正常時の熱流束をその時
刻での熱流束と一次遅れ熱流束の低い方となるようにし
ている。
A detailed method of the determination will be described below with reference to FIG. If the covariance value at time t is N (t),
When expressed by a mathematical expression, it can be expressed as the following expression (14). Tv (t) in the equation indicates that the time is v (t) seconds before t, which corresponds to a parallel movement on the time axis. Then, the heat flux time delay between the temperature detection points due to the drawing speed is expressed, and it is expressed by the following equation (17). The normal heat flux is set to the lower of the heat flux at that time and the first-order lag heat flux so that the above-mentioned ΔqmA (t) and ΔqmB (t) become large only when abruptly increasing.

【0022】これを数式で表すと下記(18)と(1
9)式のようになる。式中の一次遅れ熱流束は温度検出
点の今回推定したサンプリング熱流束A(t)、B
(t)と前回サンプリング時に算出した熱流束C(t−
Δt)、D(t−Δt)と一次遅れ係数により次の(2
0)と(21)式を用いて求める。この時定数を温度検
出点における熱流束が上昇している部分の継続時間より
長くすれば、凝固殻破断部の通過による熱流束変化を容
易に捕捉できる。以上の式により調節が必要な定数は1
次送れ時定数のみで、この値も熱流束変化パターンによ
り容易に決定できる。
When this is expressed by a mathematical formula, the following (18) and (1)
Equation 9) is obtained. The first-order lag heat flux in the equation is the sampling heat flux A (t), B estimated this time at the temperature detection point.
(T) and the heat flux C (t−
Δt), D (t−Δt) and the first-order lag coefficient, the following (2)
0) and (21). If this time constant is made longer than the duration of the portion where the heat flux rises at the temperature detection point, it is possible to easily capture the change in the heat flux due to the passage through the broken portion of the solidified shell. The constant that needs to be adjusted by the above equation is 1
With only the next transfer time constant, this value can be easily determined from the heat flux change pattern.

【0023】 N(t)=ΔqmA(t−v(t))×ΔqmB(t)・・・・(14) ΔqmA(t)=A(t)−C(t) ・・・・(15) ΔqmB(t)=B(t)−D(t) ・・・・(16) v(t)=L/W(t) ・・・・(17) ただし、 ΔqmA(t):時間tにおける上側温度検出点での熱流束偏差 ΔqmB(t):時間tにおける下側温度検出点での熱流束偏差 A(t) :時刻tにおける上側温度検出点での熱流束 B(t) :時刻tにおける下側温度検出点での熱流束 v(t) :時刻tにおける引抜速度による温度検出点間の熱流束の 時間遅れ L :温度検出点(熱流束推定点)間の距離 W(t) :時刻tにおける鋳片引抜速度N (t) = ΔqmA (t−v (t)) × ΔqmB (t) (14) ΔqmA (t) = A (t) −C (t) (15) ΔqmB (t) = B (t) −D (t) (16) v (t) = L / W (t) (17) where ΔqmA (t): upper side at time t Heat flux deviation at the temperature detection point ΔqmB (t): Heat flux deviation at the lower temperature detection point at time t A (t): Heat flux at the upper temperature detection point at time t B (t): At time t Heat flux at lower temperature detection point v (t): Time delay of heat flux between temperature detection points due to drawing speed at time t L: Distance between temperature detection points (heat flux estimation point) W (t): Time Slab drawing speed at t

【0024】 C(t)=min(A(t),E(t)) ・・・・(18) D(t)=min(B(t),F(t)) ・・・・(19) を算出する。ただし、 C(t):時刻tにおける上側温度検出点での正常時熱
流束 D(t):時刻tにおける下側温度検出点での正常時熱
流束 を表す。式中の一次遅れ熱流束は以下の式で表せれる。 E(t)=ALFA×A(t)+(1−ALFA)×C(t−Δt) ・・・・(20) F(t)=ALFA×B(t)+(1−ALFA)×D(t−Δt) ・・・・(21) ALFA(t)=1/(1+TAU/Δt) ・・・・(22) ただし、 E(t):時刻tにおける上側温度検出点での一次遅れ
熱流束 F(t):時刻tにおける下側温度検出点での一次遅れ
熱流束 ALFA:時刻tにおける一次遅れ定数 Δt :サンプリング周期 TAU :時刻tにおける一次遅れ定数 を表す。
C (t) = min (A (t), E (t)) (18) D (t) = min (B (t), F (t)) (19) ) Is calculated. Here, C (t): normal heat flux at the upper temperature detection point at time t D (t): normal heat flux at the lower temperature detection point at time t The first-order lag heat flux in the equation is expressed by the following equation. E (t) = ALFA × A (t) + (1−ALFA) × C (t−Δt) (20) F (t) = ALFA × B (t) + (1−ALFA) × D (T−Δt) (21) ALFA (t) = 1 / (1 + TAU / Δt) (22) where E (t) is a first-order lag heat flow at the upper temperature detection point at time t. Flux F (t): First-order lag heat flux at the lower temperature detection point at time t ALFA: First-order lag constant at time t Δt: Sampling period TAU: First-order lag constant at time t

【0025】前記(20)と(21)式で求めた一次遅
れ熱流束E(t)(ないしはF(t))と検出熱流束A
(t)(ないしはB(t))との関係から正常時の熱流
束C(t)(ないしはD(t)を前記(18)と(1
9)式から算出するが前記(20)と(21)式で定義
している一次遅れ熱流束を下記(20−2)と(21−
2)式で定義できる移動平均熱流束により正常時の熱流
束を算出しても判定することが可能である。
The first-order lag heat flux E (t) (or F (t)) and the detected heat flux A obtained by the above equations (20) and (21)
From the relationship with (t) (or B (t)), the heat flux C (t) (or D (t) in the normal state is changed to the above (18) and (1).
The first-order lag heat flux calculated from the equation (9) and defined by the equations (20) and (21) is given by the following equations (20-2) and (21-).
The determination can be made even if the normal heat flux is calculated from the moving average heat flux defined by the equation (2).

【0026】[0026]

【数1】 (Equation 1)

【0027】ただし、 E’(t):時刻tにおける上側温度検出点での移動平
均熱流束 F’(t):時刻tにおける下側温度検出点での移動平
均熱流束 n :移動平均の計算時にさかのぼるサンプル数
E '(t): Moving average heat flux at the upper temperature detection point at time t F' (t): Moving average heat flux at the lower temperature detection point at time t n: Calculation of moving average Number of samples going back to time

【0028】その理由を図18を用いて説明する。図1
8は、ある熱流束の時系列変化から正常時の熱流束の変
化を算出した例を示したものである。図中(a)は(2
0)式および(21)式から算出される一次遅れ熱流束
E(t)(ないしはF(t))により算出される正常時
の熱流束値C(t)(なしいはD(t))と温度検出点
での熱流束A(t)(ないしはB(t))を表してお
り、(b)は(20−2)式および(21−2)式から
算出される移動熱流束より算出される正常時の熱流束値
C(t)(ないしはD(t))と温度検出点での熱流束
A(t)(ないしはB(t))を表す。また図中の実線
が温度検出点での熱流束A(t)(ないしはB(t))
を破線が正常時の熱流束値C(t)(ないしはD
(t))を表す。この図から一次遅れ値および移動平均
値を用いても、同様に熱流束の変化を捕らえることが可
能であることが確かめられる。移動平均熱流束E’
(t)(ないしはF’(t))を用いてブレークアウト
の発生を予知する場合は、上記の(14)〜(19)式
をそのまま使用することが可能であり、一次遅れ熱流束
を算出する(20)式および(21)式をそのまま(2
0−2)式および(21−2)式に変更することでブレ
ークアウト発生を予知する事が可能となる。上記により
示す方法により求めた、共分散値の時系列推移に対し
て、予め設定した拘束性ブレークアウトの発生限界値と
比較して大きな場合に、拘束性ブレークアウトと認識
し、この凝固殻破断部が鋳型通過直後にブレークアウト
となるであろうと予測する事で、事前に発生を予知する
事が可能となる。
The reason will be described with reference to FIG. Figure 1
FIG. 8 shows an example in which a change in the heat flux in a normal state is calculated from a time-series change in a certain heat flux. (A) in the figure is (2)
Normal heat flux value C (t) (or D (t)) calculated from first-order lag heat flux E (t) (or F (t)) calculated from equations (0) and (21). And the heat flux A (t) (or B (t)) at the temperature detection point, and (b) is calculated from the moving heat flux calculated from the equations (20-2) and (21-2). The heat flux value C (t) (or D (t)) at normal temperature and the heat flux A (t) (or B (t)) at the temperature detection point. The solid line in the figure indicates the heat flux A (t) (or B (t)) at the temperature detection point.
Is the heat flux value C (t) (or D
(T)). From this figure, it is confirmed that the change of the heat flux can be similarly captured by using the first-order lag value and the moving average value. Moving average heat flux E '
When predicting the occurrence of a breakout using (t) (or F ′ (t)), the above equations (14) to (19) can be used as they are, and the first-order lag heat flux is calculated. Equations (20) and (21)
By changing to the expressions 0-2) and (21-2), it is possible to predict the occurrence of a breakout. If the time series transition of the covariance value obtained by the method described above is larger than the preset limit value of restrictive breakout, it is recognized as restrictive breakout. By predicting that a part will break out immediately after passing the mold, it is possible to predict the occurrence in advance.

【0029】拘束性ブレークアウトの発生を予知、そし
て防止するための処理フローを図5を基に説明する。図
中、100は鋳型における温度検出列で検出した熱流束
A(t)・B(t)と連続鋳造機のピンチロールで検出
した鋳造引抜速度W(t)を入力し、これを基に時々刻
々共分散値N(t)を算出する共分散部、101は共分
散部100で算出した共分散値N(t)を、凝固破断の
指標として操業監視画面に出力することで操業者に操業
状況の認識を促すとともに、予め設定した拘束性ブレー
クアウト発生限界値と比較し前述共分散値N(t)が拘
束性ブレークアウト発生限界値T0より大きい場合に、
拘束性ブレークアウト発生を予知する拘束性ブレークア
ウト発生予知判定部、102は前記拘束性ブレークアウ
ト発生予知部101から前記共分散値N(t)を入力す
ると、必要に応じて引抜の減速及び停止を指示して、拘
束性ブレークアウトのブレークアウトの発生を未然に防
止する拘束性ブレークアウト防止制御部である。
A processing flow for predicting and preventing occurrence of restrictive breakout will be described with reference to FIG. In the figure, reference numeral 100 denotes the heat fluxes A (t) and B (t) detected by the temperature detection sequence in the mold and the casting pulling speed W (t) detected by the pinch roll of the continuous casting machine. The covariance unit 101 calculates the instantaneous covariance value N (t). 101 operates the operator by outputting the covariance value N (t) calculated by the covariance unit 100 to the operation monitoring screen as an index of solidification fracture. In addition to prompting the user to recognize the situation, when the covariance value N (t) is larger than the restrictive breakout occurrence limit value T0 when compared with a preset restrictive breakout occurrence limit value,
Upon receiving the covariance value N (t) from the restrictive breakout occurrence predicting unit 101, the restrictive breakout occurrence predicting determination unit 102 for predicting the occurrence of the restrictive breakout, decelerates and stops the drawing as necessary. To prevent the occurrence of the breakout of the restrictive breakout beforehand.

【0030】前記共分散値N(t)100の処理フロー
を図6ないしは図19に示すフローを用いて説明する。
図6は(20−2)ないしは(21−2)式により求め
られる一次遅れ熱流束E(t)(ないしはF(t))を
用いたときの共分散値N(t)100の処理フローであ
る。まず、前記鋳型1の温度検出点3a、3bで検出さ
れた鋳型熱流束A(t)・B(t)とピンチロールで測
定した鋳片の引抜速度を読み込む(S61)。この読み
込んだ時刻tにおける引抜速度W(t)による温度検出
点間の時間遅れ、すなわち、鋳片のある位置が温度検出
点3aを通過して温度検出点3bに達する時間v(t)
を前記(17)式により算出する(S62)。そして、
予め設定した温度検出点3a,3bのサンプリング周期
Δtと時刻tにおける一次遅れ定数TAUをもとに、前
記(22)式により一次遅れ係数ALFAを算出する
(S63)。前回のサンプリング時に求めた正常時の正
常時の熱流束(C(t−Δt)、D(t−Δt))、今
回のサンプリング時の温度検出点3a,3bでの熱流束
A(t)・B(t)、上記演算をした一次遅れ定数AL
FAをもとに前記(20)式と(21)式により時刻t
における温度検出点の一次遅れ熱流束E(t)F(t)
を算出する(S64、S65)。そしてこの両一次遅れ
熱流束E(t)、F(t)と、前記S41で読み込んだ
温度検出点の鋳型熱流束A(t),B(t)にて前記
(18)式(19)式により正常値の熱流束C(t)、
D(t)を求める(S66)。このようにして、求めた
正常時の熱流束を記憶し(S67)、次回サンプリング
時にS64に用いる。
The processing flow of the covariance value N (t) 100 will be described with reference to the flow charts shown in FIGS.
FIG. 6 is a processing flow of the covariance value N (t) 100 when the first-order lag heat flux E (t) (or F (t)) obtained by the equation (20-2) or (21-2) is used. is there. First, the mold heat fluxes A (t) and B (t) detected at the temperature detection points 3a and 3b of the mold 1 and the drawing speed of the slab measured by the pinch roll are read (S61). The time delay between the temperature detection points due to the drawing speed W (t) at the read time t, that is, the time v (t) in which the position of the slab passes through the temperature detection point 3a and reaches the temperature detection point 3b.
Is calculated by the equation (17) (S62). And
Based on the preset sampling period Δt of the temperature detection points 3a and 3b and the first-order lag constant TAU at the time t, the first-order lag coefficient ALFA is calculated by the equation (22) (S63). The normal heat flux (C (t−Δt), D (t−Δt)) obtained at the previous sampling, and the heat flux A (t) · at the temperature detection points 3a and 3b at the current sampling. B (t), the primary delay constant AL calculated above
Based on the FA, the time t is calculated according to the equations (20) and (21).
First order heat flux E (t) F (t) at the temperature detection point at
Is calculated (S64, S65). The two primary lag heat fluxes E (t) and F (t) and the mold heat fluxes A (t) and B (t) at the temperature detection points read in S41 are used to calculate the equations (18) and (19). The normal value of the heat flux C (t),
D (t) is obtained (S66). The normal heat flux obtained in this way is stored (S67) and used for S64 at the next sampling.

【0031】そして、前記(14)式により共分散値N
(t)を算出する(S68、S69)ものであり、この
模式図を図4の(a)、(b)に示す。すなわち、前記
時刻tより、前記温度検出点間の時間遅れv(t)前に
おける温度検出点で測定した鋳型熱流束A(t−v
(t))と前記正常時の熱流束C(t−v(t))の偏
差ΔqmA(t−v(t))を前記(15)式で求める
(S68)。次に、前記偏差ΔqmA(t−v(t))
とΔqmB(t)を積算、つまり前記(14)式により
共分散N(t)を算出(S69)し、記憶して操業状況
監視画面に出力して操業者に操業状況の認識を促すとと
もに、拘束性ブレークアウト発生予知部101および拘
束性ブレークアウト防止制御部102に出力する。
Then, the covariance N
(T) is calculated (S68, S69), and this schematic diagram is shown in (a) and (b) of FIG. That is, from the time t, the mold heat flux A (tv) measured at the temperature detection point before the time delay v (t) between the temperature detection points.
The deviation ΔqmA (t−v (t)) between (t)) and the normal heat flux C (t−v (t)) is obtained by the above equation (15) (S68). Next, the deviation ΔqmA (t−v (t))
And ΔqmB (t) are integrated, that is, the covariance N (t) is calculated by the above equation (14) (S69), stored and output to the operation status monitoring screen to prompt the operator to recognize the operation status, It outputs to the restrictive breakout occurrence prediction unit 101 and the restrictive breakout prevention control unit 102.

【0032】一方、図19は(20−2)ないしは(2
1−2)式により求められる移動平均熱流束E’(t)
(ないしはF’(t))を用いたときの共分散値N
(t)100の処理フローである。まず、前記鋳型1の
温度検出点3a、3bで検出された鋳型熱流束A(t)
・B(t)とピンチロールで測定した鋳型の引抜速度を
読み込む(S181)。この読み込んだ時刻tにおける
引抜速度W(t)による温度検出点間の時間遅れ、すな
わち、鋳片のある位置が温度検出点3aを通過して温度
検出点3bに達する時間v(t)を前記(17)式によ
り算出する(S182)。
On the other hand, FIG. 19 shows (20-2) or (2)
1-2) Moving average heat flux E '(t) obtained by equation (1)
(Or F ′ (t)) using the covariance value N
It is a processing flow of (t) 100. First, the mold heat flux A (t) detected at the temperature detection points 3a and 3b of the mold 1
Read the drawing speed of the mold measured with B (t) and the pinch roll (S181). The time delay between the temperature detection points due to the drawing speed W (t) at the read time t, that is, the time v (t) at which the position of the slab passes through the temperature detection point 3a and reaches the temperature detection point 3b is defined as the above-mentioned value. It is calculated by equation (17) (S182).

【0033】そして、前回のサンプリング時に求めた正
常時の熱流束(C(t−Δt)、D(t−Δt))、今
回のサンプリング時の温度検出点3a、3bでの熱流束
A(t)、B(t)、前記(20−2)式と(21−
2)式により温度検出点の移動平均熱流束E’(t)
(ないしはF’(t))を算出する(S183)。そし
てこの移動平均熱流束E’(t)、F’(t)と、前記
S41で読み込んだ温度検出点の鋳型熱流束A(t)、
B(t)にて前記(18)式(19)式により正常値の
熱流束C(t)、D(t)を求める(S184、S18
5)。このようにして、求めた正常時の熱流束を記憶し
(S186)、次回サンプリング時にS184に用い
る。
Then, the normal heat flux (C (t−Δt), D (t−Δt)) obtained at the previous sampling, and the heat flux A (t) at the temperature detection points 3a, 3b at the current sampling. ), B (t), the formula (20-2) and (21-
The moving average heat flux E '(t) at the temperature detection point is obtained by the equation 2)
(Or F ′ (t)) is calculated (S183). Then, the moving average heat fluxes E '(t) and F' (t), and the mold heat fluxes A (t) at the temperature detection points read in S41,
At B (t), heat fluxes C (t) and D (t) having normal values are obtained from the above equations (18) and (19) (S184, S18).
5). The normal heat flux obtained in this way is stored (S186), and used in S184 at the next sampling.

【0034】そして、前記(14)式により共分散値N
(t)を算出する(S187、S188)ものであり、
この模式図を図4の(a)・(b)に示す。すなわち、
前記時刻tより、前記温度検出点間の時間遅れv(t)
前における温度検出点で測定した鋳型熱流束A(t−v
(t))と前記正常時の熱流束C(t−v(t))の偏
差ΔqmA(t−v(t))を前記(15)式で求める
(S187)。次に、前記偏差ΔqmA(t−v
(t))とΔqmB(t)を積算、つまり前記(14)
式により共分散N(t)を算出(S188)し、記憶し
て操業状況監視画面に出力して操業者に操業状況の認識
を促すとともに、拘束性ブレークアウト発生予知部10
1および拘束性ブレークアウト防止制御部102に出力
する。
Then, the covariance N
(T) is calculated (S187, S188).
This schematic diagram is shown in FIGS. That is,
The time delay v (t) between the temperature detection points from the time t
The mold heat flux A (tv) measured at the temperature detection point before
The deviation ΔqmA (t−v (t)) between (t)) and the normal heat flux C (t−v (t)) is obtained by the above equation (15) (S187). Next, the deviation ΔqmA (t−v
(T)) and ΔqmB (t), that is, (14)
The covariance N (t) is calculated by the formula (S188), stored and output to the operation status monitoring screen to prompt the operator to recognize the operation status, and to restrict the breakout occurrence prediction unit 10
1 and the restrictive breakout prevention control unit 102.

【0035】次に拘束性ブレークアウト発生予知判定部
101の処理フローを図7に示すフローチャートで説明
する。この模式図を図4−(c)に示す。まず、上記共
分散値算出部100で算出された共分散値N(t)を読
み込んで凝固殻破断の指標として認識し(S71)、そ
の値を予め設定した拘束性ブレークアウト発生限界値以
内かを判定し(S72)、拘束性ブレークアウト発生限
界以内の場合には拘束性ブレークアウト発生予知無しを
セットし(S73)、拘束性ブレークアウト発生限界を
越えた場合には拘束性ブレークアウト発生予知有りをセ
ット(S74)する。そして、図5に示すように拘束性
ブレークアウト発生予知結果を操業状況監視画面に出力
で操業者に操業状況の認識を促すとともに、拘束性ブレ
ークアウト防止制御部102に出力する。
Next, the processing flow of the restrictive breakout occurrence prediction judging section 101 will be described with reference to the flowchart shown in FIG. This schematic diagram is shown in FIG. First, the covariance value N (t) calculated by the covariance value calculation unit 100 is read and recognized as an index of solidification shell fracture (S71), and the value is determined to be within a preset limit value of restrictive breakout occurrence. Is determined (S72), and if it is within the constraint breakout occurrence limit, no constraint breakout occurrence prediction is set (S73). If the constraint breakout occurrence limit is exceeded, constraint breakout occurrence prediction is performed. The presence is set (S74). Then, as shown in FIG. 5, the prediction result of the occurrence of the restrictive breakout is output to the operation status monitoring screen to prompt the operator to recognize the operation status, and is output to the restrictive breakout prevention control unit 102.

【0036】さらに、拘束性ブレークアウト防止制御部
102の処理フローを図8に示すフローチャートにより
説明する。まず、拘束性ブレークアウト発生予知判定部
101に記憶された拘束性ブレークアウト発生予知判定
結果を読み込み(S81)、拘束性ブレークアウト発生
予知無しか、拘束性ブレークアウト発生予知かを判定し
(S82)、拘束性ブレークアウト発生予知の情報であ
った場合には、共分散値算出部100にセットされた共
分散値を読み込み(S83)、その数値の大きさに応じ
て、予め設定した引抜速度を選択して前記引抜速度まで
減速ないしは停止を指示(S84)する。すなわち、凝
固破断箇所を検知した時に、鋳型内で前記凝固破断箇所
が回復し拘束性ブレークアウトの発生を抑制するよう時
間を確保する。
Further, the processing flow of the restrictive breakout prevention control unit 102 will be described with reference to the flowchart shown in FIG. First, the restraint breakout occurrence prediction determination result stored in the restraint breakout occurrence prediction determination unit 101 is read (S81), and it is determined whether there is no restraint breakout occurrence prediction or restraint breakout occurrence prediction (S82). If the information is the prediction of occurrence of restrictive breakout, the covariance value set in the covariance value calculation unit 100 is read (S83), and the drawing speed set in advance according to the value of the numerical value is determined. Is selected to instruct deceleration or stop to the above-mentioned drawing speed (S84). That is, when a solidification fracture is detected, a time is secured so that the solidification fracture recovers in the mold and suppresses occurrence of restrictive breakout.

【0037】また今回の判定方法は、鋳型内の初期凝固
において、パウダーが鋳型と溶鋼間に異常に流入した
り、凝固殻の表面部に大型介在物が巻き込まれたりした
ときに、その部分だけ鋳型冷却による抜熱が十分になさ
れず、その結果凝固殻の成長が不十分となる。この凝固
殻の薄い部分が、鋳片の引抜により鋳型を抜けた後に、
内部の未凝固部分の溶鋼静圧に耐えきれずに、上記大型
介在物が脱落すると同時に鋳片表面凝固殻が破断し、内
部の溶鋼が流出する介在物性ブレークアウトが発生す
る。前記介在物性ブレークアウトに関しても3a,3b
で検出された鋳型熱流束A(t)・B(t)にも変化が
現れる(抜熱が不十分となるため熱流束が減少する)の
で、適用が可能である。介在物性ブレークアウトが発生
する場合には前記の抜熱不良に起因する熱流束値の低下
が発生する。
[0037] In addition, in this determination method, in the initial solidification in the mold, when the powder abnormally flows between the mold and the molten steel, or when a large inclusion is caught in the surface of the solidified shell, only that portion is used. Heat is not sufficiently removed by cooling the mold, and as a result, the growth of the solidified shell is insufficient. After the thin part of this solidified shell has come out of the mold by drawing the slab,
Without being able to withstand the static pressure of the molten steel in the unsolidified portion inside, the large inclusions fall off and at the same time, the solidified shell of the slab surface breaks, causing a breakout of inclusions in which the molten steel flows out. 3a, 3b for the inclusion breakout
The change also appears in the mold heat fluxes A (t) and B (t) detected at (2) (the heat flux is reduced due to insufficient heat removal), so that application is possible. When the inclusion breakout occurs, the heat flux value is reduced due to the above-mentioned poor heat removal.

【0038】図12に示すように介在物性ブレークアウ
トの場合は拘束性ブレークアウトの場合と比べ鋳型内の
熱電対列から推定した熱流束変化が逆に負方向へ大きく
変化するという特徴があることから、そこで介在物性ブ
レークアウトを判定予知するためには、前述の(14)
〜(17)と前記(18)式および(19)式の代わり
に下記(18−2)、(19−2)を用い、更に前述の
(20)〜(22)を用いれば適用が可能となる。な
お、介在物性ブレークアウトの場合は処理フローは熱流
束変化が負に変化するだけ、図13〜15に示すように
その処理フローは拘束性ブレークアウトと大きな差はな
い。 C(t)=max(A(t),E(t)) ・・・・(18−2) D(t)=max(B(t),F(t)) ・・・・(19−2) また、前記の移動平均熱流束E’(t)(ないしはF’
(t))を用いてブレークアウトの発生を予知する場合
は上記の(14)〜(17)式と(18−1)および
(18−2)をそのまま使用し、一次遅れ熱流束を算出
する(20)式および(21)式をそのまま(20−
2)式および(21−2)式に変更することでブレーク
アウト発生を予知する事が可能となる(この共分散部1
00のフローを図20に示す)。
As shown in FIG. 12, in the case of the inclusion breakout, the change of the heat flux estimated from the thermopile train in the mold significantly changes in the negative direction as compared with the case of the constraint breakout. Therefore, in order to judge and predict the inclusion property breakout there, the above-mentioned (14)
(18-2) and (19-2) are used in place of (17) and the equations (18) and (19), and the above (20) to (22) are applicable. Become. In the case of the inclusion breakout, the process flow has only a negative change in the heat flux change, and as shown in FIGS. C (t) = max (A (t), E (t)) (18-2) D (t) = max (B (t), F (t)) (19- 2) The moving average heat flux E '(t) (or F')
When predicting the occurrence of a breakout using (t)), the above-described equations (14) to (17) and (18-1) and (18-2) are used as they are, and the first-order lag heat flux is calculated. Expressions (20) and (21) are directly used as (20-
By changing the equations (2) and (21-2), it is possible to predict the occurrence of breakout (this covariance unit 1
00 is shown in FIG. 20).

【0039】さらに、本発明においては、例えばウェー
ブレット変換等の周波数分解手法により短周期の熱流束
変動を除去して、ブレークアウトを検出する事で検出精
度がさらに向上する。その理由を、図9および図17を
用いて説明する。ブレークアウトは割れの深さがある限
界深さを超えると健全な凝固部の厚みが確保できなくな
り発生することは前にも述べている。更にこの割れが深
くなることで伝熱抵抗となる凝固シェル厚が大きく変化
することで鋳型方向の熱流束が大きく変化する。図9に
ブレークアウトが発生したときの縦割れ長さの分布を示
すが、この図からブレークアウトが発生する時には必ず
10cm以上の縦割れが発生していることがわかる。鋳
片の引抜速度が2.5cm/秒程度であることから、今
回の検証においては4秒以下の短周期を除去しても、ブ
レークアウト発生の起因となる深い割れを、熱流束の変
動を評価することで検出することが可能となる。
Further, in the present invention, a short period heat flux fluctuation is removed by a frequency decomposition method such as a wavelet transform, and a breakout is detected to further improve the detection accuracy. The reason will be described with reference to FIGS. As mentioned earlier, breakouts occur when the crack depth exceeds a certain critical depth, making it impossible to ensure a sound solidified portion thickness. Further, when the cracks become deeper, the thickness of the solidified shell, which becomes the heat transfer resistance, changes greatly, so that the heat flux in the mold direction changes greatly. FIG. 9 shows the distribution of the length of the vertical crack when a breakout occurs. It can be seen from FIG. 9 that when the breakout occurs, a vertical crack of 10 cm or more always occurs. Since the drawing speed of the slab is about 2.5 cm / sec, in this verification, even if a short cycle of 4 seconds or less is removed, deep cracks that cause breakout can be prevented by changing the heat flux. The evaluation enables detection.

【0040】さらに、図17にノイズのフィルタリング
を実施したときの熱流束の変化量を表す共分散値N
(t)と割れ深さの関係を、周波数分解手法によりノイ
ズのフィルタリングを実施による割れ深さ指数の予測精
度を評価したものを示す。図中の縦軸は割れ深さ指標で
あり、ブレークアウトが発生する限界深さを1とした時
の無次元深さとして定義される。また横軸は鋳造したと
きの熱流束の共分散値N(t)を示す。図中の(a)は
1秒周期のサンプレングした熱流束のデータから算出さ
れる共分散値を横軸にとり比較したものであり、図中の
(b)は周波数分解手法により4秒以下の高周波数領域
をフィルタリングしノイズを除去したときに算出される
共分散値N(t)を横軸にとっている。
FIG. 17 shows a covariance value N representing a change in heat flux when noise filtering is performed.
The relationship between (t) and the crack depth is shown by evaluating the accuracy of predicting the crack depth index by performing noise filtering by the frequency decomposition method. The vertical axis in the figure is a crack depth index, which is defined as a dimensionless depth when the critical depth at which breakout occurs is set to 1. The horizontal axis indicates the covariance value N (t) of the heat flux when casting. (A) in the figure is a comparison of the covariance value calculated from the data of the sampled heat flux in a 1-second cycle on the horizontal axis, and (b) in the figure is a high-frequency of 4 seconds or less by the frequency decomposition method. The horizontal axis represents the covariance value N (t) calculated when filtering the frequency domain and removing noise.

【0041】図中(a)においては共分散値N(t)と
割れ深さ指標との間に相関は見られないが(b)の条件
においては、共分散値N(t)と割れ深さ指標との間に
正の相関関係が見られる。この理由として(a)での共
分散値N(t)の変化は割れが深くなることにより変化
する影響の他にパウダーのフィルム厚やエアギャップ生
成による伝熱抵抗の変化により共分散値N(t)が変化
する為に割れ深さ指標との間に相関が見られないと推定
される。
Although there is no correlation between the covariance value N (t) and the crack depth index in (a), the covariance value N (t) and the crack depth under the condition (b). There is a positive correlation with the index. The reason for this is that the change in the covariance value N (t) in (a) is affected not only by the deepening of the cracks but also by the change in the heat transfer resistance due to the powder film thickness and air gap generation. Since t) changes, it is estimated that there is no correlation with the crack depth index.

【0042】一方図中(b)に関しては前記のパウダー
のフィルム厚やエアギャップ生成による伝熱抵抗の変化
は1秒単位程度の変化であり、伝熱抵抗の変化は割れ深
さによる影響に支配されていることから、相関関係が見
られると考えられる。本発明においては共分散値N
(t)のしきい値を図12に示すように設定することで
ブレークアウト発生予知判定を実施することができる。
すなわち、図17(a)に示す割れ深さに起因しない4
秒以内での高周期ノイズをフィルタリングで除くこと
で、ブレークアウトの判定精度が更に向上する。一方、
このしきい値を低く設定するとブレークアウトと判定す
る機会が増加し、判定精度が低下する。また実施の方案
については、図3のフローのS35にてノイズを除去す
るステップを設けることで実施できる。
On the other hand, as for (b) in the figure, the change of the heat transfer resistance due to the powder film thickness and the air gap generation is a change of about one second, and the change of the heat transfer resistance is governed by the influence of the crack depth. Therefore, it is considered that there is a correlation. In the present invention, the covariance value N
By setting the threshold of (t) as shown in FIG. 12, breakout occurrence prediction judgment can be performed.
That is, 4 is not caused by the crack depth shown in FIG.
By filtering out high-period noises within seconds, the accuracy of breakout determination is further improved. on the other hand,
If this threshold value is set low, the chance of determining a breakout increases, and the determination accuracy decreases. Further, the embodiment can be implemented by providing a step of removing noise in S35 of the flow of FIG.

【0043】実施例を図10,11および12を用いて
説明する。図10,11はブレークアウト発生時の伝熱
挙動を表したものである。図10が拘束性ブレークアウ
ト発生時の伝熱挙動を図11が介在物性ブレークアウト
発生時の伝熱挙動を表す。両図において上段(a)が温
度検出点の温度変化を、中段(b)が前記図3のフロー
のS31〜S34により算出する温度検出点での熱流束
の時系列変化を、そして下段(c)が図3のフローのS
35により算出されるノイズを除去したときの熱流束の
時系列変化を表す。これらの図から温度検出点の温度で
評価するよりは、熱流束の変化をさらにノイズを除去し
たときの熱流束の変化を捉らえることで、ブレークアウ
ト発生の検出精度を向上させることが可能であるといえ
る。
An embodiment will be described with reference to FIGS. 10 and 11 show the heat transfer behavior when a breakout occurs. FIG. 10 shows the heat transfer behavior at the time of occurrence of the constraining breakout, and FIG. 11 shows the heat transfer behavior at the time of occurrence of the inclusion breakout. In both figures, the upper part (a) shows the temperature change at the temperature detection point, the middle part (b) shows the time series change of the heat flux at the temperature detection point calculated by S31 to S34 in the flow of FIG. 3, and the lower part (c) ) Is S in the flow of FIG.
35 shows a time-series change of the heat flux when the noise calculated by 35 is removed. Rather than evaluating from the temperature at the temperature detection point from these figures, it is possible to improve the detection accuracy of breakout occurrence by capturing the change in the heat flux when the noise is further removed from the change in the heat flux You can say that.

【0044】図12は本発明による拘束性ブレークアウ
トの検知の検出精度を評価するものであり、図12の左
側が、ブレークアウトの発生していない時の図6のフロ
ーに従い算出した共分散値N(t)の時系列変化を、一
方右側は前記手法により算出したブレークアウト発生時
の共分散値N(t)の時系列変化示す。図12の上段
(a)は従来技術である特開平9−108801号公報
の開示手法により算出した温度検出点での温度変化を用
いて算出した共分散N(t)値の時系列変化を、中段
(b)は図3の破線で示したS35の処置による4秒以
下の短周期の除去を実施せずに算出した温度検出点での
熱流束の共分散値N(t)の時系列変化を、さらに下段
(c)は図3の破線で示したS35の処置による4秒以
下の短周期の除去を実施して算出した温度検出点での熱
流束の共分散値N(t)の時系列変化を示す。なお、図
12の左側の(a)〜(c)及び右側の(a)〜(c)
はそれぞれ全て同一の箇所、同一タイミングの測定デー
タを基にしたものであり右側の図の(a)〜(c)にお
いて、時間−32秒において拘束性ブレークアウトの起
点となる割れが発生したものである。
FIG. 12 is a diagram for evaluating the detection accuracy of the detection of the restrictive breakout according to the present invention. The left side of FIG. 12 shows the covariance value calculated according to the flow of FIG. 6 when no breakout occurs. The right-hand side shows the time-series change of N (t), while the right-hand side shows the time-series change of the covariance value N (t) at the time of the breakout calculated by the above method. The upper part (a) of FIG. 12 shows the time series change of the covariance N (t) value calculated using the temperature change at the temperature detection point calculated by the technique disclosed in Japanese Patent Application Laid-Open No. 9-108801. The middle part (b) shows a time series change of the heat flux covariance value N (t) at the temperature detection point calculated without removing the short cycle of 4 seconds or less by the treatment of S35 shown by the broken line in FIG. Further, the lower row (c) shows the time when the covariance value N (t) of the heat flux at the temperature detection point calculated by performing the removal of the short cycle of 4 seconds or less by the treatment of S35 shown by the broken line in FIG. Indicates a series change. It should be noted that (a) to (c) on the left and (a) to (c) on the right in FIG.
Are based on the measurement data at the same location and at the same timing, respectively, and in FIGS. 3A to 3C in the right-hand side, a crack at which the starting point of the restrictive breakout occurs at a time of -32 seconds is shown. It is.

【0045】図12の従来のような温度の共分散値を用
いて拘束性ブレークアウトを予知しようすれば、(a)
に示すように左図の拘束性ブレークアウトが発生しなか
った場合の温度の最大共分散値(時間−78秒での70
0)は右側の拘束性ブレークアウトが発生した場合の共
分散値(時間が−32秒時の370)よりも大きくなる
ケースがあるため、(a)の右図のような拘束性ブレー
クアウトを検出するためには、検出用のしきい値を37
0以下にせざるを得ず(例えば(a)の示すしきい値
1)、(a)左図のようなブレークアウトが発生しない
場合においても過剰検出をしてしまう恐れがある。
If the constraint breakout is to be predicted using the covariance value of the temperature as in the prior art shown in FIG.
As shown in the figure, the maximum covariance value of the temperature in the case where the restrictive breakout in the left diagram did not occur (70 at time-78 seconds).
0) may be larger than the covariance value (370 when the time is −32 seconds) when the right constraint breakout occurs, so that the constraint breakout as shown in the right diagram of FIG. In order to detect, the detection threshold is set to 37
It must be set to 0 or less (for example, the threshold value 1 shown in (a)), and (a) excessive detection may occur even when no breakout occurs as shown in the left diagram.

【0046】一方、本願発明ように、図12の(b)に
示すような温度検出点での熱流束の時系列変化を基に拘
束性ブレークアウトを検出した場合には、拘束性ブレー
クアウト発生時よりも拘束性ブレークアウトが発生しな
かった時よりも熱流束の共分散値が小さくなるため、拘
束性ブレークアウトが発生しなかった時より大きく、且
つ拘束性ブレークアウトが発生したよりも小さい値にし
きい値を定めれば(例えば(b)のしきい値2)、拘束
性ブレークアウトが発生する正常に検出可能となる。
On the other hand, as in the present invention, when a constrained breakout is detected based on a time-series change in heat flux at a temperature detection point as shown in FIG. Since the covariance value of the heat flux is smaller than when the constraint breakout did not occur, it is larger than when the constraint breakout did not occur, and smaller than when the constraint breakout occurred. If a threshold value is set for the value (for example, threshold value 2 in (b)), it is possible to normally detect the occurrence of restrictive breakout.

【0047】さらに、前記の図3の破線で示したS35
の処置による4秒以下の熱流束の短周期の除去した場合
には、図12の(c)に示すように、拘束性ブレークア
ウトの発生時と発生しなかった時の差が一層顕著に現れ
ることから、さらに精度良く拘束性ブレークアウトの検
出が可能となる。なお、図12(a)〜(c)は拘束性
ブレークアウトの場合の示した図であるが、前記のよう
に介在物性ブレークアウトの場合でも、図13(a)〜
(c)に示したように熱流束の波形の変化方向が逆転す
るだけであって共分散値N(t)は同様な傾向があるこ
とが確認された。
Further, S35 shown by the broken line in FIG.
In the case where the short period of the heat flux of 4 seconds or less is removed by the above treatment, as shown in FIG. 12C, the difference between when the restraint breakout occurs and when it does not occur appears more remarkably. Therefore, it is possible to detect the restrictive breakout with higher accuracy. FIGS. 12A to 12C are diagrams showing the case of the restrictive breakout. However, even in the case of the inclusion breakout as described above, FIGS.
As shown in (c), it was confirmed that the direction of change of the heat flux waveform was only reversed, and the covariance value N (t) had the same tendency.

【0048】[0048]

【発明の効果】以上説明したように、本発明は連続鋳造
操業に際して、破断した凝固シェルから溶鋼が流出する
ことにより発生するブレークアウトの発生を予知し、そ
の発生を防止することができ、しかもその検出精度を従
来の手法に比して著しく改善することが可能となる。
As described above, according to the present invention, in the continuous casting operation, the occurrence of breakout caused by the outflow of molten steel from the broken solidified shell can be predicted, and the occurrence can be prevented. The detection accuracy can be significantly improved as compared with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳型に設置した温度検出点を表す図FIG. 1 is a diagram showing temperature detection points installed on a mold.

【図2】鋳型内面と鋳型水冷機構間の熱移動の概念を表
す図
FIG. 2 is a view showing a concept of heat transfer between a mold inner surface and a mold water cooling mechanism.

【図3】伝熱逆問題手法適用を表すフロー図FIG. 3 is a flowchart showing application of a heat transfer inverse problem method;

【図4】(a)凝固殻破断部通過時の熱流束変化を示し
た図 (b)鋳型熱流束の時間遅れを補正して示した図 (c)熱流束変化を共分散値で示した図
4A is a diagram showing a change in heat flux at the time of passing through a fractured portion of a solidified shell; FIG. 4B is a diagram showing a correction of a time delay of a heat flux of a mold; and FIG. 4C is a diagram showing a change in heat flux as a covariance value. Figure

【図5】拘束性ブレークアウト予知装置例のブロック図FIG. 5 is a block diagram of an example of a restrictive breakout prediction device.

【図6】一次遅れ熱流束を用いたときの拘束性ブレーク
アウト共分散値算出部の動作フロー図
FIG. 6 is an operation flow diagram of a constrained breakout covariance value calculation unit when a first-order lag heat flux is used.

【図7】拘束性ブレークアウト発生予知判定部の動作フ
ロー図
FIG. 7 is an operation flowchart of a restrictive breakout occurrence prediction determining unit.

【図8】拘束性ブレークアウト防止制御部の動作フロー
FIG. 8 is an operation flowchart of a restrictive breakout prevention control unit.

【図9】拘束性ブレークアウト発生時の割れ長さ分布を
表す図
FIG. 9 is a diagram showing a crack length distribution when restrictive breakout occurs.

【図10】拘束性ブレークアウトの (a)温度の時系列変化を表す図 (b)鋳型熱流束の時間遅れを補正して示した図 (c)4秒以下の短周期ノイズを除去したときの熱流束
の時系列変化を表す図
FIG. 10 shows (a) a time-series change in temperature for restraint breakout; (b) a diagram showing the time delay of the mold heat flux corrected; (c) a short-period noise of 4 seconds or less removed. Showing time-series changes of heat flux

【図11】介在物性ブレークアウトの (a)温度の時系列変化を表す図 (b)鋳型熱流束の時間遅れを補正して示した図 (c)4秒以下の短周期ノイズを除去したときの熱流束
の時系列変化を表す図
11A and 11B are diagrams showing a time series change in temperature, and FIG. 11B is a diagram showing the time delay of the heat flux of the mold corrected. Showing time-series changes of heat flux

【図12】通常鋳造時(左)とブレークアウト発生時
(右)の (a)温度の共分散値の時系列変化を表す図 (b)熱流束の共分散値の時系列変化を表す図 (c)4秒以下の短周期ノイズを除去したときの熱流束
の共分散値の時系列変化を表す図
FIG. 12 is a diagram showing a time-series change of a covariance value of temperature during normal casting (left) and a time of occurrence of a breakout (right); and (b) a diagram showing a time-series change of covariance value of heat flux. (C) A diagram showing a time series change of the covariance value of the heat flux when the short-period noise of 4 seconds or less is removed.

【図13】(a)介在物噛み込み部通過時の熱流束変化
を示した図 (b)鋳型熱流束の時間遅れを補正して示した図 (c)熱流束変化を共分散値で示した図
13A is a diagram showing a change in heat flux when passing through an inclusion biting portion. FIG. 13B is a diagram showing a correction of a time delay of a mold heat flux. FIG. 13C is a diagram showing a change in heat flux as a covariance value. Figure

【図14】一次遅れ熱流束を用いたときの介在物性ブレ
ークアウト共分散値算出部の動作フロー図
FIG. 14 is an operation flowchart of the inclusion property breakout covariance value calculation unit when the first-order lag heat flux is used.

【図15】介在物性ブレークアウト発生予知判定部の動
作フロー図
FIG. 15 is an operation flowchart of the inclusion property breakout occurrence prediction judgment unit.

【図16】介在物性ブレークアウト防止制御部の動作フ
ロー図
FIG. 16 is an operation flowchart of the inclusion property breakout prevention control unit.

【図17】割れ深さと共分散値N(t)の関係を示した
もので (a)周波数分解手法を適用しない場合を表す図 (b)周波数分解手法を適用し4秒以内の高周期ノイズ
を除去したものを表す図
FIG. 17 shows a relationship between a crack depth and a covariance value N (t). (A) A diagram showing a case where the frequency decomposition method is not applied. (B) A high period noise within 4 seconds by applying the frequency decomposition method. Diagram showing the result of removing

【図18】(a)一次遅れ値 (b)移動平均値 を用いた時の、正常時および温度検出点での時系列変化
を表した図
FIG. 18 is a diagram showing time-series changes at a normal time and at a temperature detection point when (a) a first-order lag value and (b) a moving average value are used.

【図19】移動平均熱流束を用いたときの拘束性ブレー
クアウト共分散値算出部の動作フロー図
FIG. 19 is an operation flow diagram of a restrictive breakout covariance value calculation unit when a moving average heat flux is used.

【図20】移動平均熱流束を用いたときの介在物性ブレ
ークアウト共分散値算出部の動作フロー図
FIG. 20 is an operation flowchart of the inclusion property breakout covariance value calculation unit when the moving average heat flux is used.

【符号の説明】[Explanation of symbols]

1 鋳型 2 溶融金属 2a 鋳型温度検出列(鋳型短辺中央部) 2b 鋳型温度検出列(鋳型長辺縁部) 2c 鋳型温度検出列(鋳型長辺中央部) 2d 鋳型温度検出列(鋳型長辺縁部) 3a 鋳型上部温度検出点 3b 鋳型下部温度検出点 4 凝固破断部 5 凝固シェル 11 鋳片 12 鋳型内表面 13 水冷機構 16 上部温度検出点 1 Mold 2 Molten metal 2a Mold temperature detection row (center of short side of mold) 2b Mold temperature detection row (center of long side of mold) 2c Mold temperature detection row (center of long side of mold) 2d Mold temperature detection row (long side of mold) Edge) 3a Mold upper temperature detection point 3b Mold lower temperature detection point 4 Solidification break 5 Solidification shell 11 Cast piece 12 Mold inner surface 13 Water cooling mechanism 16 Upper temperature detection point

フロントページの続き (72)発明者 平井 康一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 小野 真義 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4E004 MC12 PA07 Continuing from the front page (72) Inventor Koichi Hirai 1 Nishinosu, Oita, Oita City, Oita Prefecture Nippon Steel Corporation Oita Works (72) Inventor Masayoshi Ono 1 Nishinosu, Oita, Oita City, Oita Prefecture Nippon Steel Corporation F-term in Oita Works (reference) 4E004 MC12 PA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳型に埋設した複数の温度計測手段で鋳
型温度を計測し、鋳型温度計測値に基づき鋳型鋳造異常
を検出する方法において、鋳型方向に間隔をおいて鋳型
の複数箇所に埋設した温度計測手段で鋳型温度を計測
し、鋳型温度計測値に基づいて各計測点における鋳型内
面での熱流束を伝熱逆問題手法を用いて推定し、該熱流
束値の変化をその変化開始点から1次遅れ値を求め、前
記の算出した上側の熱流束値と、前記1次遅れ値とから
熱流束の差を鋳造方向別に求め、鋳造上流側の熱電対位
置における前記熱流束差と下流側熱電対位置間の距離お
よび鋳片の引抜速度から求められる鋳片の移動時間後の
下流側熱電対差積算値を算出し、該積算値が所定値以上
となるときを、凝固シェル破断に起因するブレークアウ
トの発生とすることを特徴とする連続鋳造設備における
ブレークアウト検出方法。
1. A method for measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting an abnormality in a mold casting based on a measured value of the mold temperature. The mold temperature is measured by the temperature measuring means, and the heat flux on the inner surface of the mold at each measurement point is estimated using the heat transfer inverse problem method based on the measured mold temperature value, and the change in the heat flux value is determined as the change starting point. From the calculated upper heat flux value and the first-order lag value to determine the difference in heat flux for each casting direction. The difference between the heat flux difference at the thermocouple position on the upstream side of casting and the downstream The downstream thermocouple difference integrated value after the slab moving time obtained from the distance between the side thermocouple positions and the slab drawing speed determined from the slab drawing speed is calculated, and when the integrated value is equal to or greater than a predetermined value, the solidified shell breakage occurs. That a breakout caused by A method for detecting breakout in continuous casting equipment.
【請求項2】 鋳型に埋設した複数の温度計測手段で鋳
型温度を計測し、鋳型温度計測値に基づき鋳型鋳造異常
を検出する方法において、鋳型方向に間隔をおいて鋳型
の複数箇所に埋設した温度計測手段で鋳型温度を計測
し、鋳型温度計測値に基づいて各計測点における鋳型内
面での熱流束を伝熱逆問題手法を用いて推定し、該熱流
束値の変化をその変化開始点から移動平均値を求め、前
記の算出した上側の熱流束値と、前記移動平均値とから
熱流束の差を鋳造方向別に求め、鋳造上流側の熱電対位
置における前記熱流束差と下流側熱電対位置間の距離お
よび鋳片の引抜速度から求められる鋳片の移動時間後の
下流側熱電対差積算値を算出し、該積算値が所定値以上
となるときを、凝固シェル破断に起因するブレークアウ
トの発生とすることを特徴とする連続鋳造設備における
ブレークアウト検出方法。
2. A method for measuring a mold temperature by a plurality of temperature measuring means embedded in a mold and detecting an abnormality in a mold casting based on a measured value of the mold temperature. The mold temperature is measured by the temperature measuring means, and the heat flux on the inner surface of the mold at each measurement point is estimated using the heat transfer inverse problem method based on the measured mold temperature value, and the change in the heat flux value is determined as the change starting point. From the calculated upper heat flux value and the moving average value to determine the difference in heat flux for each casting direction, the heat flux difference at the upstream thermocouple position and the downstream thermoelectric value. Calculate the downstream thermocouple difference integrated value after the moving time of the slab obtained from the distance between the paired positions and the slab drawing speed, and when the integrated value becomes a predetermined value or more, due to solidification shell fracture. What happens when a breakout occurs A method for detecting breakout in continuous casting equipment.
【請求項3】 鋳型内の鋳造方向に複数設置した熱電対
から得られる温度情報から熱流束値を推定し、その時系
列変化に周波数分解手法を施して、外乱を除去すること
を特徴とする請求項1または2に記載の連続鋳造設備に
おけるブレークアウト検出方法。
3. The method according to claim 1, wherein a heat flux value is estimated from temperature information obtained from a plurality of thermocouples arranged in a casting direction in the mold, and a time-series change is subjected to a frequency decomposition method to remove disturbance. Item 3. A method for detecting breakout in a continuous casting facility according to item 1 or 2.
JP2000230858A 2000-07-31 2000-07-31 Breakout detection method in continuous casting equipment Expired - Lifetime JP4112783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230858A JP4112783B2 (en) 2000-07-31 2000-07-31 Breakout detection method in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230858A JP4112783B2 (en) 2000-07-31 2000-07-31 Breakout detection method in continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2002035908A true JP2002035908A (en) 2002-02-05
JP4112783B2 JP4112783B2 (en) 2008-07-02

Family

ID=18723761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230858A Expired - Lifetime JP4112783B2 (en) 2000-07-31 2000-07-31 Breakout detection method in continuous casting equipment

Country Status (1)

Country Link
JP (1) JP4112783B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Apparatus and method for detecting state of slab in mold, and computer-readable storage medium
JP2002346715A (en) * 2001-05-18 2002-12-04 Nippon Steel Corp Apparatus, method, computer program, and computer-readable storage medium for evaluating state of slab in mold
JP2007167871A (en) * 2005-12-19 2007-07-05 Nippon Steel Corp Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
WO2009107865A1 (en) * 2008-02-28 2009-09-03 Jfeスチール株式会社 Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel
JP2009226480A (en) * 2008-02-28 2009-10-08 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method for steel using the apparatus, and breakout prevention apparatus
KR100991810B1 (en) 2007-12-31 2010-11-04 주식회사 포스코 Breakout Prediction Method in Continuous Casting Process
JP2012139713A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Method for predicting breakout
CN109261921A (en) * 2018-09-28 2019-01-25 唐山钢铁集团有限责任公司 The pre-judging method of continuous casting of middle-thin slabs bleed-out

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941330A (en) * 2012-10-31 2013-02-27 中冶南方工程技术有限公司 Control method for online predication of surface crack of continuous casting sheet billet
CN109396375B (en) 2018-12-11 2019-09-27 大连理工大学 A Mold Breakout Prediction Method Based on Eigenvector and Hierarchical Clustering

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143997A (en) * 2000-11-10 2002-05-21 Nippon Steel Corp Apparatus and method for detecting state of slab in mold, and computer-readable storage medium
JP2002346715A (en) * 2001-05-18 2002-12-04 Nippon Steel Corp Apparatus, method, computer program, and computer-readable storage medium for evaluating state of slab in mold
JP2007167871A (en) * 2005-12-19 2007-07-05 Nippon Steel Corp Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
JP4579820B2 (en) * 2005-12-19 2010-11-10 新日本製鐵株式会社 Apparatus and method for determining operating state of mold or mold operating surface, method for operating mold or mold, computer program, and computer-readable recording medium
KR100991810B1 (en) 2007-12-31 2010-11-04 주식회사 포스코 Breakout Prediction Method in Continuous Casting Process
WO2009107865A1 (en) * 2008-02-28 2009-09-03 Jfeスチール株式会社 Method for detecting breakouts in continuous casting and an apparatus therefor, breakout prevention apparatus, method for estimating solidification shell thickness and an apparatus therefor, and a continuous casting method for steel
JP2009226480A (en) * 2008-02-28 2009-10-08 Jfe Steel Corp Method and apparatus for detecting breakout in continuous casting, continuous casting method for steel using the apparatus, and breakout prevention apparatus
JP2012139713A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Method for predicting breakout
CN109261921A (en) * 2018-09-28 2019-01-25 唐山钢铁集团有限责任公司 The pre-judging method of continuous casting of middle-thin slabs bleed-out
CN109261921B (en) * 2018-09-28 2020-08-04 唐山钢铁集团有限责任公司 Method for prejudging medium and thin slab continuous casting bleed-out

Also Published As

Publication number Publication date
JP4112783B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
EP3100802B1 (en) Method, device and program for determining casting state in continuous casting
JP2002035908A (en) Breakout detection method in continuous casting equipment
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP2020011255A (en) Casting state determination device, casting state determination method, and program
JPS58148061A (en) Method for predicting breakout in continuous casting
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JP7115240B2 (en) Breakout prediction method in continuous casting
Ito et al. Evaluation of solidified shell thickness by thermocouple in mold
JP5365459B2 (en) Solid shell thickness estimation method and apparatus in continuous casting, breakout detection method and apparatus in continuous casting
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
JP2000317594A (en) Method for estimating solidified shell thickness and powder inflow thickness in molten metal mold
JPH01210160A (en) Method for predicting vertical cracks in continuous casting
JP2000317595A (en) Surface flaw prediction method for continuous cast slabs
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP2010194548A (en) Method for estimating solidification shell thickness in continuous casting and apparatus therefor, and method for detecting breakout in continuous casting and apparatus therefor
JP2000263203A (en) Method for predicting longitudinal cracks in continuous cast slabs
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JP3617423B2 (en) Method for estimating constrained breakout
JP4214818B2 (en) Abnormality detection method for temperature sensor for predicting constrained breakout
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet
WO2021256063A1 (en) Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device
JP3093586B2 (en) Vertical crack detection method for continuous cast slab
JPH02165856A (en) Method for determining abnormality of temperature measuring element in continuous casting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350