[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002031143A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JP2002031143A
JP2002031143A JP2000212114A JP2000212114A JP2002031143A JP 2002031143 A JP2002031143 A JP 2002031143A JP 2000212114 A JP2000212114 A JP 2000212114A JP 2000212114 A JP2000212114 A JP 2000212114A JP 2002031143 A JP2002031143 A JP 2002031143A
Authority
JP
Japan
Prior art keywords
rolling
bearing
groove
life
riding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000212114A
Other languages
Japanese (ja)
Inventor
Shigeru Okita
滋 沖田
Hiromichi Takemura
浩道 武村
Kazuo Matsushita
一夫 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000212114A priority Critical patent/JP2002031143A/en
Publication of JP2002031143A publication Critical patent/JP2002031143A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the life by inhibiting the occurrence of flaw and restraining a contact surface pressure by defining a groove shape against a rolling body (ball). SOLUTION: A contact surface pressure caused by a bearing load is restrained and a damage caused by a rolling fatigue is prevented by making a groove curvature Sr represented by a percent of a groove diameter to a ball diameter is from 52% to 55%. A generation of damage is prevented at the time of assembling of rolling body by making a groove depth ratio Sd represented by a percent of a groove depth to the ball diameter is from 18.5% to 25% or less. A riding-up phenomenon of the rolling body is relaxed and 'a riding-up flaw' is hardly caused on the rolling body to enhance a life by making a riding-up coefficient Kd to 20 or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転がり軸受に関
し、特に、オルタネータ、電磁クラッチ、中間プーリ、
エアコンプレッサー、水ポンプなどのエンジン補器に使
用される転がり軸受に好適なものである。
The present invention relates to a rolling bearing, and more particularly to an alternator, an electromagnetic clutch, an intermediate pulley,
It is suitable for rolling bearings used in engine accessories such as air compressors and water pumps.

【0002】[0002]

【従来の技術】近年、エンジンの小型・軽量化に伴い、
エンジン補器にも小型・軽量化と共に高性能・高出力化
が要求されている。エンジンが運転作動しているとき、
例えばオルタネータの軸受には、高速回転に伴う高振
動、高荷重(重力加速度で4G〜30G程度)がベルト
を介して同時に作用し、その結果、特に固定輪である外
輪軌道面に早期剥離を生じて短寿命の原因となってい
る。
2. Description of the Related Art In recent years, as engines have become smaller and lighter,
Engine auxiliaries are also required to be smaller, lighter, and have higher performance and higher output. When the engine is running,
For example, high vibration and high load (approximately 4G to 30G by gravitational acceleration) due to high-speed rotation act simultaneously on the alternator bearing via the belt, and as a result, premature peeling occurs particularly on the outer ring raceway surface which is a fixed wheel. Cause short life.

【0003】高振動、高荷重下で使用される軸受の寿命
向上を図る従来技術として、例えば特開平2−1906
15号公報には、軸受内にグリースを封入したグリース
封入軸受において、軸受軌道輪の転走面に厚さ0.1〜
2.5μmの酸化皮膜を形成するものが開示されてい
る。また、実開平6−43349号公報には、潤滑剤で
潤滑されるころ軸受において、軸受軌道輪の転走面に厚
さ0.1〜2.5μmの酸化皮膜を形成するものが開示
されている。また、特開平5ー26244号公報には、
軸受内にグリースを封入したグリース封入軸受におい
て、少なくとも固定側軌道輪を1.5〜6%Cr含有鋼
で構成するものが開示されている。これは、軌道輪の材
料自体の不動態被膜により、脆性剥離を防止するように
したものである。
As a conventional technique for improving the life of a bearing used under high vibration and high load, for example, Japanese Patent Application Laid-Open No. Hei 2-1906 is known.
No. 15 discloses a grease-filled bearing in which grease is sealed in a bearing.
One that forms an oxide film of 2.5 μm is disclosed. Japanese Unexamined Utility Model Publication No. 6-43349 discloses a roller bearing lubricated with a lubricant in which an oxide film having a thickness of 0.1 to 2.5 μm is formed on a rolling surface of a bearing race. I have. Also, Japanese Patent Application Laid-Open No. 5-26244 discloses that
A grease-filled bearing in which grease is sealed in a bearing is disclosed in which at least the fixed-side race is made of steel containing 1.5 to 6% Cr. This is intended to prevent brittle flaking by a passivation film of the material of the bearing ring itself.

【0004】[0004]

【発明が解決しようとする課題】ところで、前述のよう
な軸受軌道輪の早期剥離を防止する対策として、「SA
Eテクニカルペーパー:SAE950944(開催日1
995年2月27日〜3月2日)」の第1〜第14項に
は、オルタネータ用軸受の疲労メカニズムを解明し、封
入グリースをEグリースからダンパー効果の高いMグリ
ースに変更することにより、このMグリースで高振動・
高荷重を吸収して早期剥離を防止することが開示されて
いる。
By the way, as a measure to prevent the early separation of the bearing race as described above, "SA
E Technical Paper: SAE950944 (Date 1)
(February 27-March 2, 995), the first to fourteenth items are to clarify the fatigue mechanism of alternator bearings, and to change the encapsulated grease from E grease to M grease with high damper effect. , High vibration with this M grease
It is disclosed that high loads are absorbed to prevent premature peeling.

【0005】この軌道輪早期剥離現象は、高振動・高荷
重によって、潤滑油中に含まれている僅かな水分(例え
ばグリース中には0.1%程度含有する場合もある)が
分解し、その水素イオンが軌道面に吸着し、水素原子と
なって、高歪み場(最大剪断応力位置近傍)へ集積し、
応力腐食割れ型剥離に至ると考えられる。また、軸受内
における水分の発生源として、一つにエンジン補器用の
軸受は高温状態で使用される場合が多く、運転停止後、
大気温度まで冷却される際に、軸受内の僅かな空間に存
在する空気が結露することも考えられる。
[0005] This early raceway peeling phenomenon is caused by the fact that a slight amount of water contained in lubricating oil (for example, grease may contain about 0.1%) is decomposed due to high vibration and high load. The hydrogen ions are adsorbed on the orbital surface, become hydrogen atoms, and accumulate in the high strain field (near the maximum shear stress position).
It is thought to lead to stress corrosion cracking type delamination. Also, as a source of moisture in the bearing, one of the bearings for engine accessories is often used in a high temperature state.
It is conceivable that air existing in a small space in the bearing may condense when cooled to ambient temperature.

【0006】更に、これらの一連の研究として、転がり
軸受に水が混入した場合の寿命低下の事例として、J.A.
Ciruraらの「Wear, 24(1973)107-118, The Effect of H
ydrogen on the Rolling Contact Fatigue Life of AIS
I 52100 and 440C Steel Balls」によると、潤滑油に水
を混入させた4球転がり試験では、水混入前と比較して
寿命が約1/10に低下したことや、水素チャージを行
った鋼球での転がり疲労試験では、ステンレス鋼鋼球が
軸受鋼2種鋼球より長寿命である結果が示されている。
[0006] Further, as a series of these studies, as an example of the life reduction when water is mixed in a rolling bearing, JA
Cirura et al., `` Wear, 24 (1973) 107-118, The Effect of H
ydrogen on the Rolling Contact Fatigue Life of AIS
According to I 52100 and 440C Steel Balls, in a four-ball rolling test in which water was mixed with lubricating oil, the life was reduced to about 1/10 compared to before mixing with water, and a steel ball charged with hydrogen was used. In the rolling fatigue test, the results show that the stainless steel balls have a longer life than the bearing steel class 2 steel balls.

【0007】しかしながら、高振動・高荷重下で使用さ
れるエンジン補器用軸受は、「日本トライボロジー会議
予稿集(東京、1995-5)p551〜 554」に示されているよ
うに、固定輪の負荷圏入口側で自転滑りを生じるため、
ダンパー効果となりうる酸化皮膜が切断され、早期剥離
の多発する外輪に直接負荷を受けるため、固定輪の早期
剥離を防止することが困難であるとの結果が示されてい
る。
However, as shown in "Japan Tribology Conference Proceedings (Tokyo, 1995-5), pp. 551 to 554," the bearings for engine accessories used under high vibration and high load have a fixed wheel load. In order to cause rotation slip at the entrance of the sphere,
The results indicate that it is difficult to prevent early peeling of the fixed wheel because the oxide film that can serve as a damper effect is cut and directly receives a load on the outer ring where premature peeling frequently occurs.

【0008】つまり、酸化皮膜を作っても、被膜が破れ
てしまえば、長寿命効果がなくなってしまうというので
ある。本発明は前記諸問題を解決すべく開発されたもの
であり、高振動・高荷重に起因する早期剥離を良好に防
止して、軸受寿命の大幅な延長を可能とする転がり軸受
を提供することを目的とするものである。
That is, even if an oxide film is formed, if the film is broken, the long life effect is lost. The present invention has been developed in order to solve the above-mentioned problems, and provides a rolling bearing capable of favorably preventing early peeling due to high vibration and high load and greatly extending the life of the bearing. It is intended for.

【0009】[0009]

【課題を解決するための手段】かかる諸問題を解決する
ために、本発明に係る転がり軸受は、外輪と内輪との間
に複数の転動体が配設された転がり軸受において、玉径
に対する溝径の百分率で表される溝曲率Srが52%を
超え且つ55%以下であり、且つ玉径に対する溝深さの
百分率で表される溝深さ率Sdが18.5%を超え且つ
25%以下であり、且つ下記式で表される乗上げ係数K
dが20以上であることを満たすように前記外輪及び内
輪の軌道面を形成したことを特徴とする転がり軸受。
In order to solve the above-mentioned problems, a rolling bearing according to the present invention is a rolling bearing having a plurality of rolling elements disposed between an outer ring and an inner ring. The groove curvature Sr expressed as a percentage of the diameter is more than 52% and not more than 55%, and the groove depth ratio Sd expressed as a percentage of the groove depth with respect to the ball diameter is more than 18.5% and 25% The raising coefficient K which is the following and is represented by the following equation:
A rolling bearing, wherein the raceways of the outer ring and the inner ring are formed so as to satisfy d is 20 or more.

【0010】 Kd=(Sr−52)×10+(Sd−2) ……… (1)Kd = (Sr−52) × 10 + (Sd−2) (1)

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本実施形態の転がり軸受の断面図で
ある。この転がり軸受1は、JIS呼び番号6303の
深溝玉軸受であり、外輪2がハウジング8に固定され、
シャフト7が挿通される内輪3が回転する。外輪2と内
輪3との間には保持器5で保持された多数の転動体4が
配置され、保持器5の両側位置の外輪2と内輪3との間
にはシール部材6が装着されている。そして、このシー
ル部材6によって囲まれる部分には、前記ダンパー効果
の高いMグリースを封入し、高振動・高荷重を吸収して
早期剥離を防止する長寿命軸受仕様となっている。な
お、シャフト7の回転に伴ってない輪3も回転し、その
回転に伴う振動・荷重はシャフト7から内輪3及び転動
体4を介して外輪2の負荷圏に作用する。
Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view of the rolling bearing of the present embodiment. The rolling bearing 1 is a deep groove ball bearing of JIS call number 6303, in which the outer ring 2 is fixed to a housing 8,
The inner ring 3 through which the shaft 7 is inserted rotates. A number of rolling elements 4 held by a retainer 5 are arranged between the outer ring 2 and the inner ring 3, and a seal member 6 is mounted between the outer ring 2 and the inner ring 3 on both sides of the retainer 5. I have. The portion surrounded by the seal member 6 is filled with M grease having a high damper effect, and has a long life bearing specification in which high vibration and high load are absorbed to prevent early peeling. The wheel 3 that is not rotated with the rotation of the shaft 7 also rotates, and the vibration and load associated with the rotation act on the load zone of the outer ring 2 from the shaft 7 via the inner ring 3 and the rolling elements 4.

【0012】実施例及び比較例の軸受寿命試験に際し、
軸受内・外輪、転動体には、実施例及び比較例とも、材
料には軸受鋼SUJ2を用い、通常熱処理(840℃で
焼入れ加熱、油冷却後、180℃にて焼戻し)を施して
試験に供した。なお、内・外輪の表面硬さはHRC57
〜63、残留オーステナイト量は7〜20%、内・外輪
の表面粗さは0.01〜0.03μmRa、転動体の表
面粗さは0.003〜0.010μmRaとし、所定の
溝曲率(玉径に対する溝径の百分率)や溝深さ率(玉径
に対する溝深さの百分率)になるように研削加工を施し
た。また、転動体には通常のSUJ2鋼球を使用した。
そして、組立後、前述のようにMグリースを封入して、
試験軸受を作成した。
In the bearing life tests of Examples and Comparative Examples,
For the inner and outer rings of the bearing and the rolling elements, the bearing steel SUJ2 was used as the material for both the examples and comparative examples, and was subjected to normal heat treatment (quenching and heating at 840 ° C., oil cooling, and tempering at 180 ° C.) before testing. Provided. The surface hardness of the inner and outer rings is HRC57.
63, the amount of retained austenite is 7-20%, the surface roughness of the inner and outer rings is 0.01-0.03 μmRa, the surface roughness of the rolling elements is 0.003-0.010 μmRa, and the predetermined groove curvature (ball Grinding was performed so that the groove diameter ratio (percentage of the groove diameter with respect to the diameter) and the groove depth ratio (percentage of the groove depth with respect to the ball diameter) were obtained. A normal SUJ2 steel ball was used for the rolling element.
Then, after assembling, fill in M grease as described above,
Test bearings were made.

【0013】ここで、本発明者等は、転がり軸受で、特
にエンジン補器用の軸受に関して、市場の自動車で不具
合が発生した軸受を多数、詳細に調査した結果、不具合
品の軸受で、転動体に傷があるものを多数、確認した。
特に、注目すべき点として、これらエンジン補器用の転
がり軸受に対し、前記酸化皮膜や潤滑剤によるダンパー
効果や水素の侵入防止などを含めた長寿命対策を施して
いるにもかかわらず、転動体に傷が発生すると不具合が
起きることを突き止めた。
Here, the present inventors have conducted a detailed investigation on a large number of bearings in which a failure has occurred in a vehicle on the market, particularly for a bearing for an engine auxiliary device, and as a result, have found that a bearing with a defective product has a rolling element. Many were found to have scratches.
In particular, it should be noted that despite the fact that longevity measures such as a damper effect by the oxide film and the lubricant and prevention of hydrogen intrusion have been applied to the rolling bearings for the engine auxiliary devices, the rolling elements It was found that if a scratch occurred on the surface, a problem would occur.

【0014】ここで、更に転動体に発生する傷を詳しく
調査すると、線形状の傷で、場合によってははっきりと
舟形の傷が確認された。つまり、これらの傷は、図2に
示すように、軸受の溝肩に転動体が乗上げて発生する
「乗上げ傷」であり、軸受をハウジングやシャフトと組
付けるなど、軸受の取り扱いで発生した傷と判断され
る。ちなみに、乗上げとは、スラスト荷重がかかったと
き、図2の○の部分で、軌道輪と転動体との接触楕円が
軌道面から外にでることをいう。
Here, when the flaws generated in the rolling elements were further examined in detail, it was confirmed that the flaws were linear and, in some cases, boat-shaped flaws. In other words, as shown in FIG. 2, these flaws are “raising flaws” caused by the rolling elements climbing on the groove shoulders of the bearing, and are caused by handling of the bearing such as mounting the bearing to the housing or the shaft. It is determined that the wound has occurred. Incidentally, riding up means that when a thrust load is applied, the contact ellipse between the bearing ring and the rolling element goes out of the raceway surface at the portion indicated by ○ in FIG.

【0015】本発明者等は、この調査結果から、「乗上
げ傷」に着目し、「乗上げ傷」がつきにくい転がり軸受
に関して種々の実験を行った。「乗上げ傷」に関して
は、一般的に、溝深さを大きくして溝深さ率を大きくす
るか、溝曲率を大きくするか、又は軸受隙間を小さくす
ることが考えられる。高速回転で使用される電装補器関
連の転がり軸受としては、軸受隙間を極端に小さくする
と焼付きが発生するため、隙間に関しては従来通りと
し、溝深さ率と溝曲率に関して乗上げ現象の検討を行っ
た。
The present inventors have paid attention to "ride-in scratches" based on the results of this investigation, and have conducted various experiments on rolling bearings which are less likely to cause "ride-in scratches". Regarding the “raising scratch”, it is generally considered that the groove depth is increased to increase the groove depth ratio, the groove curvature is increased, or the bearing gap is reduced. For rolling bearings related to electrical accessories used at high speeds, seizure occurs if the bearing gap is made extremely small, so the gap should be the same as before, and the rise in groove depth ratio and groove curvature should be examined. Was done.

【0016】一般に、玉軸受の乗上げ荷重は、軸受の諸
元から計算が可能である。一例を下記2式に示す。 乗上げ荷重 =(2×fm ×(cosα/ cosαi ー1)/C)2/3 ×玉数×玉径2 × sinαi ……… (2) 但し、fm :内輪と外輪の溝曲率の平均値 α :初期接触角 αi :乗上げ時の接触角 である。
Generally, the riding load of a ball bearing can be calculated from the specifications of the bearing. An example is shown in the following two equations. Riding load = (2 × f m × ( cosα / cosα i over 1) / C) 2/3 Number of balls × × ball diameter 2 × sinα i ......... (2) where, f m: grooves of the inner ring and the outer ring Average value of curvature α: initial contact angle α i : contact angle when riding up.

【0017】次に、前述した実施例及び比較例の転がり
軸受に対し、特開平9−89724号公報に記載される
試験装置によって寿命試験を行った。試験は、回転数を
所定時間(例えば9秒)毎に5000rpmと1000
rpmとに切り換える急加減速試験に従った。また、実
施例及び比較例共に、試験軸受には、前記JIS呼び番
号6303を用いた。また、試験軸受の荷重条件は、P
(負荷荷重)/C(動定格荷重)=0.10とし、封入
グリースにはMグリースを用いた。
Next, a life test was performed on the rolling bearings of the above-described Examples and Comparative Examples using a test apparatus described in Japanese Patent Application Laid-Open No. 9-89724. In the test, the rotation speed was set to 5000 rpm and 1000 for every predetermined time (for example, 9 seconds).
In accordance with a rapid acceleration / deceleration test for switching to rpm. In each of the examples and the comparative examples, the JIS call number 6303 was used for the test bearing. The load condition of the test bearing is P
(Load) / C (dynamic load rating) = 0.10, and M grease was used as the sealed grease.

【0018】また、各種溝形状を軌道輪の転走面に形成
した転がり軸受に対し、図2に示すように、外輪2と内
輪3とで逆向きのアキシャル荷重を負荷して、通常の転
がり軸受ならば「乗上げ傷」が発生する条件を与えてか
ら、寿命試験を行った。アキシャル荷重は、動定格荷重
の0.2倍とし、荷重時間は10分間とした。また、試
験打ち切り時間を1500時間とした。また、試験数は
各々n=10行い、ワイブル分布関数によって、10個
の供試体転がり軸受のうち短寿命側から10%の軸受に
剥離が発生するまでの総回転時間を求め、これを寿命と
した。試験結果を表1及び図3に示す。なお、乗上げ係
数は、前記1式に従って求めた。
As shown in FIG. 2, a normal axial load is applied between the outer ring 2 and the inner ring 3 to the rolling bearing in which various groove shapes are formed on the rolling surface of the raceway, and the normal rolling is performed. In the case of bearings, a life test was performed after conditions were given under which "raising scratches" occurred. The axial load was 0.2 times the dynamic rated load, and the load time was 10 minutes. The test termination time was 1500 hours. The number of tests was n = 10, and the total rotation time required for the 10% of the ten rolling bearings to be separated from the short-lived side was determined by the Weibull distribution function. did. The test results are shown in Table 1 and FIG. The raising coefficient was determined according to the above equation (1).

【0019】[0019]

【表1】 [Table 1]

【0020】表1及び図3から明らかなように、各実施
例は、乗上げ係数Kdを20以上とすることで、「乗上
げ傷」の発生を最小限に抑えることができ、良好な寿命
が得られた。但し、溝深さ率Sdが19%未満の実施例
1は、微小ではあるが「乗上げ傷」が確認されたため、
溝深さ率Sdは19%以上が望ましい。また、溝曲率S
rを大きくしすぎると、「乗上げ傷」の発生は防げる
が、試験荷重による接触面圧が高くなるため、若干寿命
の低下が確認された。そのため、溝曲率Srは54%以
下が望ましく、乗上げ係数Kdは22以上30以下が望
ましい。
As can be seen from Table 1 and FIG. 3, in each of the embodiments, by setting the riding coefficient Kd to 20 or more, the occurrence of "riding scratches" can be minimized, and good life can be achieved. was gotten. However, in Example 1 in which the groove depth ratio Sd was less than 19%, although "small climbing" was confirmed although it was minute,
The groove depth ratio Sd is desirably 19% or more. Also, the groove curvature S
If the value of r is too large, the occurrence of "ride damage" can be prevented, but the contact surface pressure due to the test load is increased, so that the life is slightly reduced. Therefore, the groove curvature Sr is desirably 54% or less, and the rise coefficient Kd is desirably 22 or more and 30 or less.

【0021】これに対し、比較例1、2は溝曲率Srが
小さく、比較例3は溝深さ率Sdが小さく、且つ全て乗
上げ係数Kdが20より小さいので、前記アキシャル荷
重によって「乗上げ傷」が発生し、前述した転動体の自
転滑りによる酸化皮膜の切断現象が、転動体の傷による
短寿命現象を加速したものと考えられる。また、比較例
4は、溝曲率Sr及び溝深さ率Sdは本発明の推奨値内
であるが、乗上げ係数Kdが20より小さいため、相互
作用が機能せず、「乗上げ傷」が発生して寿命が低下し
た。また、比較例5は、溝曲率Srを必要以上に大きく
しすぎたため、接触面圧が高くなりすぎ、転動疲労によ
る寿命の低下が確認された。
On the other hand, in Comparative Examples 1 and 2, the groove curvature Sr is small, and in Comparative Example 3, the groove depth ratio Sd is small and the coefficient of rise Kd is all smaller than 20, so that the "loading" is increased by the axial load. It is considered that "scratch" occurs, and the above-described phenomenon of cutting the oxide film due to the sliding of the rolling element accelerates the short life phenomenon caused by the damage of the rolling element. In Comparative Example 4, the groove curvature Sr and the groove depth ratio Sd were within the recommended values of the present invention. However, since the rise coefficient Kd was smaller than 20, the interaction did not function, and “rare scratches” occurred. Occurrence and shortened service life. In Comparative Example 5, since the groove curvature Sr was too large, the contact surface pressure was too high, and a reduction in life due to rolling fatigue was confirmed.

【0022】以上より、乗上げ係数Kdが20以上にな
ると乗上げ現象が緩和され、転動体に「乗上げ傷」がつ
きにくくなるために、寿命が向上する。なお、乗上げ係
数Kdは22以上30以下とすることにより、より安定
した寿命が得られる。また、溝曲率Srを必要以上に大
きくすると、軸受荷重による接触面圧が高くなりすぎ
て、一般的な転動疲労による破損が発生するため、溝曲
率Srの上限を55%とした。また、溝深さ率Sdを必
要以上に大きくすると、転動体の組込みが困難になり、
場合によっては転動体組込み時に傷を付けてしまう恐れ
があるため、溝深さ率Sdの上限を25%とした。ま
た、溝深さ率Sdのみに着目した場合、19%以上で剥
離が少なく、長寿命となっているので、より望ましい。
As described above, when the riding-up coefficient Kd is 20 or more, the riding-up phenomenon is alleviated, and "rolling-up flaws" are less likely to occur on the rolling elements, so that the life is improved. By setting the raising coefficient Kd to 22 or more and 30 or less, a more stable life can be obtained. Further, if the groove curvature Sr is made unnecessarily large, the contact surface pressure due to the bearing load becomes too high and breakage due to general rolling fatigue occurs. Therefore, the upper limit of the groove curvature Sr is set to 55%. Also, if the groove depth ratio Sd is increased more than necessary, it becomes difficult to incorporate the rolling elements,
In some cases, the upper limit of the groove depth ratio Sd is set to 25% because the rolling elements may be damaged when assembled. In addition, when attention is paid only to the groove depth ratio Sd, the peeling is small at 19% or more and the life is long, which is more preferable.

【0023】一方、転がり軸受をハウジングやシャフト
と組付けるなど、転がり軸受の取り扱いで発生した傷と
判断される「乗上げ傷」は、その要因となる取り扱いと
して、外輪のハウジングへの装入時や、シャフトの内輪
への装入時に何らかのトラブルが発生して起こる可能性
が高い。図4にその一例を示す。これは、ハウジング8
に圧入された転がり軸受1の内輪3にシャフト7を装入
する場合、シャフト7のエッジと内輪3のエッジ部(実
際には面取りされているため、以下、チャンファー部と
記す)とが所謂かじりを起こし、引っかかっている状態
であり、前記図2と同様のアキシャル荷重が作用して、
転動体に「乗上げ傷」がつく恐れがある。通常、軸受外
輪や内輪のチャンファー部は研削加工が施されておら
ず、熱処理した肌のままになっている。従って、表面状
態は悪く、表面粗さもよくないので、かじりが起こりや
すい。このようなチャンファー部のかじりによるアキシ
ャル荷重から、転動体の「乗上げ傷」を防ぐため、軸受
外輪や内輪のチャンファー部の表面粗さを0.5μmR
a以下にすることが望ましい。
On the other hand, "ride-up scratches", which are determined to be caused by handling of the rolling bearings, such as mounting the rolling bearings on a housing or a shaft, may be caused by handling when the outer ring is inserted into the housing. Also, there is a high possibility that some trouble occurs when the shaft is inserted into the inner ring. FIG. 4 shows an example. This is the housing 8
When the shaft 7 is inserted into the inner ring 3 of the rolling bearing 1 press-fitted into the shaft, an edge of the shaft 7 and an edge portion of the inner ring 3 (because it is actually chamfered, hereinafter referred to as a chamfer portion) are so-called. It is in a state of being seized and stuck, and the same axial load as in FIG.
There is a danger that the rolling elements will get "riding wounds". Normally, the chamfer portions of the bearing outer ring and the inner ring are not subjected to the grinding process and remain as a heat-treated skin. Therefore, the surface condition is poor and the surface roughness is not good, so that the galling is likely to occur. The surface roughness of the chamfer portion of the outer ring and inner ring of the bearing is set to 0.5 μmR in order to prevent the rolling element from “raising scratch” from the axial load due to the galling of the chamfer portion.
It is desirable to set it to a or less.

【0024】[0024]

【発明の効果】以上説明したように、本発明の転がり軸
受によれば、乗上げ係数Kdを20以上として転動体の
乗上げ傷を防止すると共に、溝曲率Srを規定して接触
面圧が高くなりすぎるのを防止したり、溝深さ率Sdを
規定して転動体組込み時の傷の発生を防止したりするこ
とにより、総合的に大幅な寿命向上が可能となる。
As described above, according to the rolling bearing of the present invention, the riding coefficient Kd is set to 20 or more to prevent the rolling element from getting scratched, and the contact surface pressure is reduced by defining the groove curvature Sr. By preventing the height from becoming too high, or by defining the groove depth ratio Sd to prevent the occurrence of scratches when the rolling elements are incorporated, it is possible to significantly improve the overall life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の転がり軸受の一実施形態を示す縦断面
図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a rolling bearing of the present invention.

【図2】転動体の乗上げ傷の説明図である。FIG. 2 is an explanatory view of a riding wound of a rolling element.

【図3】乗上げ係数と転がり軸受寿命の関係を示す説明
図である。
FIG. 3 is an explanatory diagram showing a relationship between a riding coefficient and a rolling bearing life.

【図4】組付け時に転動体に乗上げ傷が発生する場合の
説明図である。
FIG. 4 is an explanatory diagram of a case where a rolling scratch occurs on a rolling element during assembly.

【符号の説明】[Explanation of symbols]

1は転がり軸受 2は外輪 3は内輪 4は転動体 5は保持器 6はシール 7はシャフト 8はハウジング 1 is a rolling bearing 2 is an outer ring 3 is an inner ring 4 is a rolling element 5 is a cage 6 is a seal 7 is a shaft 8 is a housing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松下 一夫 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3J101 AA02 AA32 AA42 AA52 AA62 BA53 BA54 EA03 EA63 FA31 GA24  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuo Matsushita 1-5-50 Kugenuma Shinmei, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 3J101 AA02 AA32 AA42 AA52 AA62 BA53 BA54 EA03 EA63 FA31 GA24

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外輪と内輪との間に複数の転動体が配設
された転がり軸受において、玉径に対する溝径の百分率
で表される溝曲率Srが52%を超え且つ55%以下で
あり、且つ玉径に対する溝深さの百分率で表される溝深
さ率Sdが18.5%を超え且つ25%以下であり、且
つ下記式で表される乗上げ係数Kdが20以上であるこ
とを満たすように前記外輪及び内輪の軌道面を形成した
ことを特徴とする転がり軸受。 Kd=(Sr−52)×10+(Sd−2)
1. In a rolling bearing having a plurality of rolling elements disposed between an outer ring and an inner ring, a groove curvature Sr expressed as a percentage of a groove diameter with respect to a ball diameter is more than 52% and not more than 55%. And the groove depth ratio Sd expressed as a percentage of the groove depth with respect to the ball diameter exceeds 18.5% and not more than 25%, and the raising coefficient Kd expressed by the following formula is not less than 20. A rolling bearing, wherein the raceways of the outer ring and the inner ring are formed so as to satisfy the following. Kd = (Sr−52) × 10 + (Sd−2)
JP2000212114A 2000-07-13 2000-07-13 Rolling bearing Withdrawn JP2002031143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212114A JP2002031143A (en) 2000-07-13 2000-07-13 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212114A JP2002031143A (en) 2000-07-13 2000-07-13 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2002031143A true JP2002031143A (en) 2002-01-31

Family

ID=18708075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212114A Withdrawn JP2002031143A (en) 2000-07-13 2000-07-13 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2002031143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185701A (en) * 2012-03-12 2013-09-19 Ntn Corp Rolling bearing
JP2016191474A (en) * 2016-08-17 2016-11-10 Ntn株式会社 Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185701A (en) * 2012-03-12 2013-09-19 Ntn Corp Rolling bearing
JP2016191474A (en) * 2016-08-17 2016-11-10 Ntn株式会社 Rolling bearing

Similar Documents

Publication Publication Date Title
JPH0689783B2 (en) Grease bearing
EP3372852A1 (en) Rotation support device for pinion shaft
US20030015262A1 (en) Surface-treated rolling bearing and manufacturing method thereof
WO2011122371A1 (en) Rolling bearing
JP2000337389A (en) Rolling bearing
JP2003254327A (en) Thrust bearing
US6071358A (en) Rolling member and rolling device comprising the same
JP2004301321A (en) Bearing for alternator and bearing for pulley
US20050047694A1 (en) Rolling bearing
US20050226546A1 (en) Rolling bearing
JP2657420B2 (en) Rolling bearing
JP2002031143A (en) Rolling bearing
JP4810157B2 (en) Rolling bearing
US5385412A (en) Rolling bearing
JPH09291942A (en) Radial rolling bearing
JP3517266B2 (en) Grease-filled rolling bearing
JP2006071022A (en) Rolling bearing
US4799810A (en) Very high speed marginally lubricated ball thrust bearing
JP4375038B2 (en) Thrust needle roller bearing
JP2009204076A (en) Rolling bearing
JP2002089569A (en) Radial ball bearing and method of use thereof
JP2004176156A (en) Rolling bearing
JP2002242942A (en) Rolling bearing
JP3114378B2 (en) Rolling bearing
JPH0772565B2 (en) Vehicle alternator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080821