JP2002030358A - Method and apparatus for producing low oxygen copper cast block - Google Patents
Method and apparatus for producing low oxygen copper cast blockInfo
- Publication number
- JP2002030358A JP2002030358A JP2000207490A JP2000207490A JP2002030358A JP 2002030358 A JP2002030358 A JP 2002030358A JP 2000207490 A JP2000207490 A JP 2000207490A JP 2000207490 A JP2000207490 A JP 2000207490A JP 2002030358 A JP2002030358 A JP 2002030358A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- molten copper
- producing
- molten
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Furnace Charging Or Discharging (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶解炉からの溶銅
を連続鋳造機を用いて連続鋳造し、酸素の含有量を抑制
した低酸素銅鋳塊を連続的に製造する製造方法、及びそ
の製造装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing a low-oxygen copper ingot with a reduced oxygen content by continuously casting molten copper from a melting furnace using a continuous casting machine. The present invention relates to the manufacturing apparatus.
【0002】[0002]
【従来の技術】銅鋳塊、とりわけ酸素の含有量を20p
pm以下に抑制している低酸素銅鋳塊の製造方法として
は、チャンネル炉やマルチ炉といった電気誘導炉を用い
て溶銅を生成し、この溶銅を、移送課程において気密に
保持したまま連続鋳造機まで移送し、鋳造塊を製造する
方法が一般的であった。このように電気誘導炉を用いて
製造する場合には、簡易な操作で容易に高温が得られ
る、また、溶銅生成時に化学反応を伴わないので品質が
安定する、といった利点を有している。しかしその反
面、建造コストや運転コストが高い、生産性が低い、と
いった欠点を有している。2. Description of the Related Art Copper ingots, in particular, oxygen content of 20p
As a method for producing a low-oxygen copper ingot that is suppressed to below pm, a molten copper is generated using an electric induction furnace such as a channel furnace or a multi-furnace, and the molten copper is continuously maintained while being kept airtight during a transfer process. The method of transferring to a casting machine and manufacturing a casting lump was common. As described above, in the case of manufacturing using an electric induction furnace, there is an advantage that a high temperature can be easily obtained by a simple operation, and the quality is stable because a chemical reaction is not involved during the production of molten copper. . However, on the other hand, it has disadvantages such as high construction cost and operation cost and low productivity.
【0003】[0003]
【発明が解決しようとする課題】低コストで大量に銅鋳
塊を製造するには、シャフト炉等のガス炉を用いる製造
方法が好ましいが、こうしたガス炉を用いた場合には、
炉内で燃焼、すなわち酸化反応を起こさせるため、溶銅
の還元処理を行わなくてはならない。これが電気誘導炉
を用いた場合にはない欠点である。そのため、生成され
た溶銅を、その移送課程において還元ガス及び/又は不
活性ガスにより還元処理して酸素濃度を低下させた後
に、連続鋳造機まで移送しなければ、低酸素銅鋳塊を製
造することはできない。しかし、このように脱酸素処理
を行うのみでは、低酸素銅鋳塊の中にホールが発生し
て、ふくれ等の欠陥が発生することがあり、こうなると
低酸素銅鋳塊の品質は劣化してしまう。そのため、ガス
炉を用いて高品質の低酸素銅鋳塊を製造することは、一
般的に大変困難とされており、低酸素銅鋳塊は専ら電気
誘導炉を用いて製造されているのが実状である。In order to produce a large amount of copper ingot at low cost, a production method using a gas furnace such as a shaft furnace is preferable. However, when such a gas furnace is used,
In order to cause combustion in the furnace, that is, an oxidation reaction, a reduction treatment of the molten copper must be performed. This is a disadvantage that cannot be obtained when an electric induction furnace is used. Therefore, if the produced molten copper is subjected to a reducing treatment with a reducing gas and / or an inert gas in the transfer process to reduce the oxygen concentration and then is not transferred to a continuous casting machine, a low oxygen copper ingot is manufactured. I can't. However, simply performing the deoxidation treatment in this way may cause holes to occur in the low-oxygen copper ingot and cause defects such as blistering, and in such a case, the quality of the low-oxygen copper ingot deteriorates. Would. For this reason, it is generally considered very difficult to produce high-quality low-oxygen copper ingots using a gas furnace, and low-oxygen copper ingots are produced exclusively using an electric induction furnace. It is a fact.
【0004】こうしたホールは、溶銅の凝固時に、溶銅
中の水素と酸素との溶解度が減少するために、結合して
生成される水蒸気(H2O)の気泡に起因する。この気
泡が、溶銅の冷却・凝固時にトラップされ、低酸素銅鋳
塊中に残存して、ホールが発生するのである。熱力学的
には、溶銅中の水素と酸素の濃度は、次式で表される関
係にある。 〔H〕2〔O〕=pH2O・K ………式(A) ここで、 〔H〕 : 溶銅中の水素濃度 〔O〕 : 溶銅中の酸素濃度 pH2O : 雰囲気中の水蒸気分圧 K : 平衡定数 である。[0004] Such holes are caused by water vapor (H 2 O) bubbles generated by the combination, because the solubility of hydrogen and oxygen in the molten copper decreases during the solidification of the molten copper. These bubbles are trapped during the cooling and solidification of the molten copper, and remain in the low-oxygen copper ingot to generate holes. Thermodynamically, the concentrations of hydrogen and oxygen in the molten copper have a relationship represented by the following equation. [H] 2 [O] = p H2O · K Formula (A) where [H]: hydrogen concentration in molten copper [O]: oxygen concentration in molten copper p H2O : water vapor content in atmosphere Pressure K: Equilibrium constant.
【0005】平衡定数Kは、温度の関数であり、一定温
度下では定数となるため、溶銅中の酸素濃度と水素濃度
は反比例の関係となる。そのため、還元によって脱酸素
処理するほど水素濃度が高くなり、凝固時にホールが形
成され易く、低品質の低酸素銅鋳塊しか製造できなくな
る。即ち、脱酸素処理のみでなく脱水素処理をも行わな
ければ、凝固時にホールが大量に形成されて、高品質の
低酸素銅鋳塊を製造することができない。[0005] The equilibrium constant K is a function of temperature and becomes a constant at a constant temperature, so that the oxygen concentration and the hydrogen concentration in the molten copper have an inversely proportional relationship. Therefore, the more the deoxidation treatment is performed by reduction, the higher the hydrogen concentration becomes, and holes are easily formed at the time of solidification, and only a low-quality low-oxygen copper ingot can be manufactured. That is, unless not only the deoxidation treatment but also the dehydrogenation treatment is performed, a large amount of holes are formed during solidification, and a high-quality low-oxygen copper ingot cannot be produced.
【0006】一方、一般的な脱ガス方法である酸化還元
法により、完全燃焼に近い状態で溶解させて水素濃度の
低い溶銅を得ることは可能であるが、次いで脱酸素処理
を行うために長い移送距離を確保しなければならず、現
実的でない。[0006] On the other hand, it is possible to obtain molten copper having a low hydrogen concentration by melting in a state close to complete combustion by an oxidation-reduction method, which is a general degassing method. A long transfer distance must be secured, which is not practical.
【0007】本発明は上記状況に鑑みてなされたもの
で、長い移送距離を確保せずに脱水素処理が行え、ホー
ルの形成が抑制された高品質の低酸素銅鋳塊を、低コス
トで大量に製造することができる製造方法及び製造装置
を提供すること、を目的とする。[0007] The present invention has been made in view of the above-mentioned circumstances, and provides a high-quality low-oxygen copper ingot in which dehydrogenation can be performed without securing a long transfer distance and the formation of holes is suppressed at a low cost. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus that can be manufactured in large quantities.
【0008】[0008]
【課題を解決するための手段】請求項1記載の発明は、
溶銅から低酸素銅鋳塊を連続的に製造する製造方法であ
って、溶解炉を還元性の雰囲気で燃焼を行い溶銅を生成
する溶銅生成工程と、前記溶解炉から送られた溶銅を、
非酸化雰囲気でシール可能な鋳造樋を用いてタンディッ
シュまで移送する溶銅移送工程と、該鋳造樋に設けられ
通過する溶銅に対して脱水素処理を施す脱ガス工程と、
該溶銅を連続鋳造機に供給して鋳造銅材を連続的に生成
する連続鋳造工程と、該鋳造銅材を所定長さに切断して
低酸素銅鋳塊とする切断工程と、を含むことを特徴とす
る。According to the first aspect of the present invention,
A method for continuously producing a low oxygen copper ingot from molten copper, comprising: a molten copper producing step of producing molten copper by burning a melting furnace in a reducing atmosphere; Copper,
A molten copper transfer step of transferring to a tundish using a casting gutter that can be sealed in a non-oxidizing atmosphere, and a degassing step of performing dehydrogenation treatment on molten copper provided in the casting gutter,
A continuous casting step of supplying the molten copper to a continuous casting machine to continuously produce a cast copper material, and a cutting step of cutting the cast copper material into a predetermined length to form a low oxygen copper ingot. It is characterized by the following.
【0009】この低酸素銅鋳塊の製造方法では、溶解炉
において還元性の雰囲気で燃焼が行われ、溶銅が脱酸素
処理され、この溶銅は鋳造樋において非酸化雰囲気でシ
ールされてタンディッシュまで移送される。この溶銅
は、酸素濃度と水素濃度とが反比例の関係となることか
ら水素濃度が高くなっているが、続く脱ガス工程にて脱
水素処理される。このため、還元によって脱酸素処理す
るほど高くなる水素濃度が低くなり、凝固時のガスの放
出が少なくなることで、鋳造銅材へのホールの形成を抑
制できる。In this method for producing a low-oxygen copper ingot, combustion is performed in a melting furnace in a reducing atmosphere to deoxidize the molten copper, and the molten copper is sealed in a non-oxidizing atmosphere in a casting gutter to form a tank. Transferred to the dish. This molten copper has a high hydrogen concentration because the oxygen concentration and the hydrogen concentration are in inverse proportion to each other, but is subjected to a dehydrogenation treatment in a subsequent degassing step. For this reason, the hydrogen concentration that increases as the deoxidation treatment is performed by reduction decreases, and the release of gas during solidification decreases, whereby the formation of holes in the cast copper material can be suppressed.
【0010】請求項2に記載の発明は、請求項1に記載
の低酸素銅鋳塊の製造方法であって、前記脱ガス工程
は、前記溶銅を攪拌することで脱水素処理を行うことを
特徴とする。According to a second aspect of the present invention, there is provided the method for producing a low-oxygen copper ingot according to the first aspect, wherein the degassing step performs a dehydrogenation treatment by stirring the molten copper. It is characterized by.
【0011】この低酸素銅鋳塊の製造方法では、溶銅を
攪拌することで溶銅中の水素を強制的に追い出して、脱
水素処理が行える。すなわち、タンディッシュへ移送さ
れる前の溶銅が攪拌されて、非酸化雰囲気を形成するた
めに吹き込まれた不活性ガスと、溶銅との接触性が良好
となる。このとき、溶銅の水素分圧に対し不活性ガス中
の水素分圧は極めて小さいため、溶銅中の水素は不活性
ガス中に取り込まれ、溶銅の脱水素処理が行えるもので
ある。In this method for producing a low-oxygen copper ingot, dehydrogenation can be performed by stirring the molten copper to forcibly remove hydrogen in the molten copper. That is, the molten copper before being transferred to the tundish is stirred, and the contact between the inert gas blown to form a non-oxidizing atmosphere and the molten copper is improved. At this time, since the hydrogen partial pressure in the inert gas is extremely smaller than the hydrogen partial pressure in the molten copper, the hydrogen in the molten copper is taken into the inert gas, and the dehydrogenation of the molten copper can be performed.
【0012】請求項3に記載の発明は、請求項2に記載
の低酸素銅鋳塊の製造方法であって、前記攪拌手段は、
前記通過する溶銅の流路を蛇行させることで攪拌を行う
ことを特徴とする。According to a third aspect of the present invention, there is provided the method for producing a low oxygen copper ingot according to the second aspect, wherein the stirring means comprises:
The stirring is performed by meandering the flow path of the passing molten copper.
【0013】この低酸素銅鋳塊の製造方法では、鋳造樋
を通過する溶銅は蛇行するように流され、激しい流れと
なることで攪拌される。すなわち、溶銅自身の流れによ
って自動的に攪拌されるようにできるため、鋳造樋を流
れる溶銅は万遍なく不活性ガスと接触する機会があり、
脱水素処理の効率が更に高められる。この場合、例えば
溶銅の流路に設けられる棒状、板状の堰が好適となる。
また、この堰は、溶銅の流れ方向に複数、或いは溶銅の
流れに直交する方向に複数設けられても良い。更に、こ
の堰を、例えばカーボンによって作成すれば、溶銅とカ
ーボンとの接触によって、脱酸素処理も効率よく行うこ
とができる。In this method for producing a low-oxygen copper ingot, molten copper passing through a casting gutter is flowed in a meandering manner, and is agitated by violent flow. In other words, because the molten copper itself can be automatically stirred by its own flow, the molten copper flowing through the casting gutter has a chance to come into contact with the inert gas evenly,
The efficiency of the dehydrogenation treatment is further improved. In this case, for example, a rod-shaped or plate-shaped weir provided in a flow path of molten copper is suitable.
A plurality of weirs may be provided in the flow direction of the molten copper, or a plurality of weirs may be provided in a direction orthogonal to the flow of the molten copper. Furthermore, if this weir is made of, for example, carbon, deoxidation can be efficiently performed by contact between molten copper and carbon.
【0014】請求項4に記載の発明は、溶銅から低酸素
銅鋳塊を連続的に製造する製造装置であって、還元性の
雰囲気で燃焼を行い溶銅を生成する溶解炉と、該溶解炉
から送られた溶銅を所定の温度に保持する保持炉と、該
保持炉から送られた溶銅を非酸化雰囲気でシールしてタ
ンディッシュまで移送する鋳造樋と、該鋳造樋に設けら
れ通過する溶銅を脱水素処理する脱ガス手段と、前記タ
ンディッシュから供給された溶銅から鋳造銅材を連続的
に生成する連続鋳造機と、前記鋳造銅材を所定長さに切
断する切断手段と、を具備したことを特徴とする。ま
た、請求項5に記載の発明は、請求項4に記載の低酸素
銅鋳塊の製造装置であって、前記脱ガス手段は、前記溶
銅を攪拌する攪拌手段であることを特徴とする。更に、
請求項6に記載の発明は、請求項5に記載の低酸素銅鋳
塊の製造装置であって、前記攪拌手段は、前記通過する
溶銅の流路を蛇行させる堰により構成されていることを
特徴とする。According to a fourth aspect of the present invention, there is provided a production apparatus for continuously producing a low oxygen copper ingot from molten copper, comprising: a melting furnace for producing molten copper by burning in a reducing atmosphere; A holding furnace for holding the molten copper sent from the melting furnace at a predetermined temperature, a casting gutter for sealing the molten copper sent from the holding furnace in a non-oxidizing atmosphere and transferring it to a tundish, A degassing means for dehydrogenating molten copper passing therethrough, a continuous casting machine for continuously producing a cast copper material from the molten copper supplied from the tundish, and cutting the cast copper material to a predetermined length. And cutting means. The invention according to claim 5 is the apparatus for producing a low-oxygen copper ingot according to claim 4, wherein the degassing means is a stirring means for stirring the molten copper. . Furthermore,
The invention according to claim 6 is the apparatus for producing a low-oxygen copper ingot according to claim 5, wherein the stirring means is configured by a weir that meanders the flow path of the passing molten copper. It is characterized by.
【0015】このように、低酸素銅鋳塊の製造装置を構
成しているので、上記請求項1〜3に記載の低酸素銅鋳
塊の製造方法を、好適に実施することができる。Since the apparatus for producing a low-oxygen copper ingot is constituted as described above, the method for producing a low-oxygen copper ingot according to the first to third aspects can be suitably carried out.
【0016】[0016]
【発明の実施の形態】以下、本発明に係る低酸素銅鋳塊
の製造装置の好適な実施の形態を図面を参照して詳細に
説明する。図1は本発明に係る低酸素銅鋳塊の製造装置
を概略的に示した構成図、図2は図1の鋳造樋を平面視
(a)、側面視(b)で示した要部拡大図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a low oxygen copper ingot manufacturing apparatus according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram schematically showing an apparatus for manufacturing a low-oxygen copper ingot according to the present invention, and FIG. 2 is an enlarged view of a main part of the casting gutter of FIG. FIG.
【0017】この低酸素銅鋳塊の製造装置1は、溶解炉
Aと、保持炉Bと、鋳造樋Cと、連続鋳造機Dと、切断
手段Eと、搬出手段Fと、を備えて構成されている。The low oxygen copper ingot manufacturing apparatus 1 includes a melting furnace A, a holding furnace B, a casting gutter C, a continuous casting machine D, a cutting means E, and an unloading means F. Have been.
【0018】溶解炉Aとしては、円筒形の炉本体を有す
るガス炉、例えばシャフト炉が好適に用いられている。
溶解炉Aの下部には、円周方向に複数のバーナー(図示
略)が、上下方向に多段状に設けられている。この溶解
炉Aでは、還元性の雰囲気で燃焼が行われて、溶銅
(湯)がつくられる。還元性の雰囲気は、例えば、天然
ガスと空気との混合ガスにおいて、燃料比を高めること
で得られる。より具体的には、CO濃度を通常の0.5
%から5%とし、酸素濃度を通常の100ppmから2
0ppm程度とする。このように、溶解炉Aにおいて還
元性の雰囲気で燃焼が行われるので、溶銅は脱酸素処理
されることとなる。As the melting furnace A, a gas furnace having a cylindrical furnace body, for example, a shaft furnace is suitably used.
At the lower part of the melting furnace A, a plurality of burners (not shown) are provided in a circumferential direction in multiple stages in a vertical direction. In the melting furnace A, combustion is performed in a reducing atmosphere to produce molten copper (hot water). The reducing atmosphere can be obtained, for example, by increasing the fuel ratio in a mixed gas of natural gas and air. More specifically, the CO concentration is set to the usual 0.5.
% To 5%, and oxygen concentration from normal 100 ppm to 2
It is about 0 ppm. As described above, since combustion is performed in the reducing atmosphere in the melting furnace A, the molten copper is subjected to the deoxidizing treatment.
【0019】保持炉Bは、溶解炉Aから送られた湯を一
旦貯蔵するとともに、所定の温度に保持したまま鋳造樋
Cに送るためのものである。鋳造樋Cは、保持炉Bから
送られた湯を非酸化雰囲気でシールしてタンディッシュ
5まで移送するものである。シールは、図2に示すよう
に、鋳造樋Cの溶銅流路(溶銅の流路)31の上面を、
カバー8により覆うことでなされる。この非酸化雰囲気
は、例えば、窒素と一酸化炭素の混合ガスやアルゴン等
の希ガスを不活性ガスとして、鋳造樋C内に吹き込むこ
とで形成される。The holding furnace B is for temporarily storing the hot water sent from the melting furnace A and sending the hot water to the casting gutter C while maintaining the temperature at a predetermined temperature. The casting gutter C transfers the hot water sent from the holding furnace B to the tundish 5 after sealing it in a non-oxidizing atmosphere. As shown in FIG. 2, the seal covers the upper surface of the molten copper flow path (flow path of molten copper) 31 of the casting gutter C.
This is done by covering with the cover 8. This non-oxidizing atmosphere is formed, for example, by blowing a mixed gas of nitrogen and carbon monoxide or a rare gas such as argon as an inert gas into the casting gutter C.
【0020】鋳造樋Cの溶銅流路31には、図2に示す
ように、通過する湯に対して脱水素処理を含む脱ガス処
理を施すための攪拌手段(脱ガス手段)33が設けられ
ている。この攪拌手段33は、堰33a、33b、33
c、33dから構成されており、湯が激しく攪拌されな
がら流れるようにしている。As shown in FIG. 2, the molten copper flow path 31 of the casting gutter C is provided with a stirring means (degassing means) 33 for performing a degassing treatment including a dehydrogenation treatment on the passing hot water. Have been. The stirring means 33 includes weirs 33a, 33b, 33
c, 33d so that hot water flows while being vigorously stirred.
【0021】堰33aは、溶銅流路31の上側、すなわ
ちカバー8に設けられている。また、堰33bは溶銅流
路31の下側に、堰33cは溶銅流路31の左側に、堰
33dは溶銅流路31の右側に、各々設けられている。
これら堰33a、33b、33c、33dによって、湯
は上下左右に蛇行しながら図2中矢印方向に流れること
で激しい流れとなって攪拌され、脱ガス処理が行えるも
のである。なお、図2(b)においては、湯面を符号3
2として示している。堰33c、33dは、溶銅流路3
1の実際の長さに対して湯の流路を長くし、仮に鋳造樋
Cが短尺であっても、脱ガス処理の効率を高めるとこと
ができるものである。また、堰33a、33bは、脱ガ
ス処理前後の溶銅と雰囲気ガスとの混合を防止する役目
を果たすものである。なお、この攪拌手段33は、主と
して脱水素処理を行うためのものであるが、湯が攪拌さ
れることで、湯中に残存している酸素も追い出すことが
できる。すなわち、脱ガス処理として、脱水素処理と2
度目の脱酸素処理との両方が行われる。これら堰33
a、33b、33c、33dを、例えばカーボンによっ
て作成するようにすれば、溶銅とカーボンとの接触によ
って、脱酸素処理も効率よく行うことができる。The weir 33a is provided above the molten copper flow path 31, that is, on the cover 8. The weir 33b is provided below the molten copper flow path 31, the weir 33c is provided on the left side of the molten copper flow path 31, and the weir 33d is provided on the right side of the molten copper flow path 31.
By the weirs 33a, 33b, 33c, 33d, the hot water flows in the directions indicated by the arrows in FIG. 2 while meandering up, down, left, and right, and is agitated in a violent flow, whereby degassing can be performed. In addition, in FIG.
It is shown as 2. The weirs 33c and 33d are connected to the molten copper flow path 3
The length of the hot water flow path is made longer than the actual length, and even if the casting gutter C is short, the efficiency of the degassing process can be increased. The weirs 33a and 33b serve to prevent mixing of the molten copper and the atmosphere gas before and after the degassing process. The stirring means 33 is mainly for performing a dehydrogenation treatment. However, by stirring the hot water, oxygen remaining in the hot water can be expelled. That is, as degassing treatment, dehydrogenation treatment and 2
Both the second deoxygenation treatment is performed. These weirs 33
If a, 33b, 33c, and 33d are made of, for example, carbon, deoxygenation can be efficiently performed by contact between molten copper and carbon.
【0022】この脱ガス処理は、この保持炉B以降の移
送過程において行う必要がある。その理由は、低酸素銅
鋳塊を得るために保持炉Bでは還元性雰囲気の燃焼、若
しくは還元剤による脱酸素処理を行うため、上記の平衡
式(A)の関係から必然的に水素濃度が上昇するためで
ある。This degassing process needs to be performed in the transfer process after the holding furnace B. The reason is that, in order to obtain a low-oxygen copper ingot, in the holding furnace B, combustion of a reducing atmosphere or deoxidation treatment with a reducing agent is performed. To rise.
【0023】さらに、脱ガス処理を行う位置としては、
鋳造直前にあるタンディッシュ5での脱ガス処理も好ま
しくない。その理由は、タンディッシュ5で湯が激しく
攪拌されるような動作、例えばバブリングを行うと、湯
面が激しく振動し、注湯ノズル9から出る湯のヘッド圧
が変動し、安定した溶銅が連続鋳造機Dへ供給されない
ためである。一方、湯面が激しく振動しない程度では、
脱ガスの効果は期待できない。このことからも、保持炉
Bからタンディッシュ5までの移送過程において脱ガス
処理を行うのが好ましい。Further, the position where the degassing process is performed is as follows.
Degassing in the tundish 5 immediately before casting is also undesirable. The reason is that when the operation of the tundish 5 in which the hot water is vigorously stirred, for example, when bubbling is performed, the hot water surface vibrates violently, the head pressure of the hot water coming out of the pouring nozzle 9 fluctuates, and stable molten copper is formed. This is because it is not supplied to the continuous casting machine D. On the other hand, if the surface does not vibrate violently,
The effect of degassing cannot be expected. For this reason, it is preferable to perform the degassing process in the transfer process from the holding furnace B to the tundish 5.
【0024】タンディッシュ5には、湯の流れ方向終端
に注湯ノズル(図示省略)が設けられており、タンディ
ッシュ5からの湯が連続鋳造機Dへ供給されるようにな
っている。The tundish 5 is provided with a pouring nozzle (not shown) at the end in the flow direction of the hot water, so that the hot water from the tundish 5 is supplied to the continuous casting machine D.
【0025】保持炉Bには、鋳造樋Cを介して、連続鋳
造機Dが連結されている。この連続鋳造機Dは、いわゆ
る縦型鋳造機とよばれるもので、供給された溶銅を冷却
しながら略鉛直方向下側に所定の断面形状の鋳造銅材2
1として引き抜く、モールド41と、ピンチロール42
と、を備えている。これらモールド41及びピンチロー
ル42の形状及び配置は、製品として得られる低酸素銅
鋳塊23の形状に応じて、適宜選択される。例えば、低
酸素銅鋳塊23を、略円柱形状をなすビレットとする場
合には、モールド41を断面円形としピンチロール42
もそれに対応した形状とする。また、略直方体形状をな
すケークとする場合には、モールド41を断面矩形とし
ピンチロール42もそれに対応した形状とする。図1に
おいては、低酸素銅鋳塊23の一例としてケークを示し
ている。A continuous casting machine D is connected to the holding furnace B via a casting gutter C. The continuous casting machine D is a so-called vertical casting machine, and a casting copper material 2 having a predetermined cross-sectional shape is formed substantially vertically below while cooling the supplied molten copper.
The mold 41 and the pinch roll 42 are pulled out as 1
And The shape and arrangement of the mold 41 and the pinch roll 42 are appropriately selected according to the shape of the low oxygen copper ingot 23 obtained as a product. For example, when the low-oxygen copper ingot 23 is a billet having a substantially cylindrical shape, the mold 41 is made circular in section and the pinch roll 42 is formed.
Also have a shape corresponding to it. When the cake has a substantially rectangular parallelepiped shape, the mold 41 has a rectangular cross section, and the pinch roll 42 has a corresponding shape. In FIG. 1, a cake is shown as an example of the low oxygen copper ingot 23.
【0026】切断手段Eは、連続鋳造機Dから出た鋳造
銅材21を、所定長さに切断するものである。この切断
手段Eの一例としては、円盤状の刃が回転する回転カッ
タが挙げられるが、鋳造銅材21を切断できるものであ
れば、他の構成を採用してもよい。The cutting means E is for cutting the cast copper material 21 discharged from the continuous casting machine D to a predetermined length. An example of the cutting means E is a rotary cutter in which a disk-shaped blade rotates, but other configurations may be adopted as long as the cast copper material 21 can be cut.
【0027】搬出手段Fは、バスケット51と、エレベ
ータ52と、コンベア53と、を備えている。バスケッ
ト51は、連続鋳造機Dのほぼ直下部に位置し、切断手
段Eによって所定長さに切断された低酸素銅鋳塊23を
受け取り、エレベータ52に載置させるものである。エ
レベータ52は、バスケット51により載置された低酸
素銅鋳塊23を、コンベア53の位置まで運び上げるも
のである。コンベア53は、エレベータ52から低酸素
銅鋳塊23を搬送するもので、途中には図示しない品質
検査装置あるいはラベラーが設けられている。なお、エ
レベータ52とコンベア53との間には、低酸素銅鋳塊
23の向きを変えるためのターンテーブルが設けられて
いてもよい。The unloading means F includes a basket 51, an elevator 52, and a conveyor 53. The basket 51 is located almost immediately below the continuous casting machine D, receives the low-oxygen copper ingot 23 cut to a predetermined length by the cutting means E, and places it on the elevator 52. The elevator 52 carries the low-oxygen copper ingot 23 placed by the basket 51 to the position of the conveyor 53. The conveyor 53 transports the low-oxygen copper ingot 23 from the elevator 52, and is provided with a quality inspection device or a labeler (not shown) on the way. A turntable for changing the direction of the low-oxygen copper ingot 23 may be provided between the elevator 52 and the conveyor 53.
【0028】このように構成される低酸素銅鋳塊の製造
装置1を用いた、低酸素銅鋳塊の製造方法について説明
する。まず、溶解炉Aにおいて還元性の雰囲気で燃焼を
行い、溶銅を脱酸素処理しつつ溶銅をつくる(溶銅生成
工程)。脱酸素処理された溶銅は、保持炉Bを経て、鋳
造樋Cを用いて非酸化雰囲気でシールされて、タンディ
ッシュ5まで移送される(溶銅移送工程)。溶解炉Aに
おいて脱酸素処理された溶銅は、酸素濃度と水素濃度と
が反比例の関係となることから、水素濃度が高くなって
いる。この水素濃度が高くなった溶銅は、鋳造樋Cを通
過する際に、攪拌手段33によって脱水素処理される
(脱ガス工程)。A method for producing a low-oxygen copper ingot using the low-oxygen copper ingot production apparatus 1 thus configured will be described. First, in a melting furnace A, combustion is performed in a reducing atmosphere, and molten copper is produced while deoxidizing the molten copper (a molten copper forming step). The deoxidized molten copper passes through the holding furnace B, is sealed in a non-oxidizing atmosphere using the casting gutter C, and is transported to the tundish 5 (molten copper transporting step). The molten copper deoxidized in the melting furnace A has a high hydrogen concentration because the oxygen concentration and the hydrogen concentration have an inverse relationship. The molten copper having the increased hydrogen concentration is dehydrogenated by the stirring means 33 when passing through the casting gutter C (degassing step).
【0029】これにより、溶銅は、酸素の含有量が20
ppm以下、水素の含有量が1ppm以下に調整され
る。こうすることで、鋳造時のガスの放出が少なくな
り、鋳造銅材21中へのホールの発生を抑制することが
できる。また、平衡式(A)の関係から、水蒸気分圧を
下げることで溶銅のガス濃度が低下するため、脱水素処
理を施す前の溶銅と脱水素処理後の溶銅を完全に分離す
ることにより、さらなる脱ガス効果を得ることが可能に
なる。これは、例えば溶銅移送工程において、上記のよ
うに攪拌手段33を設けることで実現できる。即ち、こ
の攪拌手段33は、脱水素処理前後の雰囲気ガスの混合
と、溶銅の混合とを防止する役目も果たすことになる。Thus, the molten copper has an oxygen content of 20%.
ppm or less, and the content of hydrogen is adjusted to 1 ppm or less. By doing so, gas emission during casting is reduced, and the generation of holes in the cast copper material 21 can be suppressed. Further, from the relation of the equilibrium equation (A), since the gas concentration of the molten copper is reduced by lowering the partial pressure of steam, the molten copper before the dehydrogenation treatment is completely separated from the molten copper after the dehydrogenation treatment. This makes it possible to obtain a further degassing effect. This can be realized, for example, by providing the stirring means 33 as described above in the molten copper transfer step. That is, the stirring means 33 also serves to prevent mixing of the atmosphere gas before and after the dehydrogenation treatment and mixing of the molten copper.
【0030】溶解炉Aから保持炉Bへ移送された溶銅
は、昇温された後、鋳造樋C、タンディッシュ5を経て
連続鋳造機Dに供給される。そしてモールド41からピ
ンチロール42で下方向に引き抜かれて冷却・凝固さ
れ、鋳造銅材21に連続鋳造される(連続鋳造工程)。
この鋳造銅材21は、切断手段Eによって切断され、所
定長さを有する低酸素銅鋳塊23が順次連続的に製造さ
れていく(切断工程)。切断された鋳造銅材21は、低
酸素銅鋳塊23として搬出手段Fにより搬出される(搬
出工程)。すなわち低酸素銅鋳塊23は、ほぼ直下に位
置するバスケット51に受け取られ、エレベータ52に
載置されてコンベア53の位置まで運び上げられ、この
コンベア53によって搬送される。この搬送途中に、低
酸素銅鋳塊23は、品質検査装置あるいは検査員等によ
って品質検査され、その合格品には、ラベラーにより品
番やロット番号等をラベリングされて、最終製品の低酸
素銅鋳塊23として出荷可能となる。After the molten copper transferred from the melting furnace A to the holding furnace B is heated, it is supplied to the continuous casting machine D via the casting trough C and the tundish 5. Then, it is pulled down from the mold 41 with a pinch roll 42, cooled and solidified, and continuously cast into the cast copper material 21 (continuous casting step).
The cast copper material 21 is cut by the cutting means E, and a low-oxygen copper ingot 23 having a predetermined length is sequentially and continuously manufactured (cutting step). The cut cast copper material 21 is carried out by the carrying-out means F as the low-oxygen copper ingot 23 (a carrying-out step). That is, the low-oxygen copper ingot 23 is received by the basket 51 located almost immediately below, placed on the elevator 52, carried up to the position of the conveyor 53, and conveyed by the conveyor 53. During this transportation, the low-oxygen copper ingot 23 is inspected for quality by a quality inspection device or an inspector, and the passed product is labeled with a product number or a lot number by a labeler. It can be shipped as lump 23.
【0031】本実施形態に係る低酸素銅鋳塊の製造装
置、及びこれを用いた製造方法においては、溶解炉Aに
おいて還元性の雰囲気で燃焼が行われ、溶銅が脱酸素処
理され、この溶銅は鋳造樋Cにおいて非酸化雰囲気でシ
ールされてタンディッシュ5まで移送される。そしてこ
の溶銅は、酸素濃度と水素濃度とが反比例の関係となる
ことから水素濃度が高くなっているが、続く脱ガス工程
にて攪拌手段33により脱水素処理される。これによ
り、溶銅の移送距離を長く確保せずに、還元によって脱
酸素処理するほど高くなる水素濃度を低くでき、溶銅中
の気泡の生成が抑制される。そのため、炉内で燃焼を行
うガス炉を用いて、冷却・凝固時におけるホールの生成
が抑制された高品質の低酸素銅鋳塊23を、低コストで
連続的に大量に製造できる。In the apparatus for manufacturing a low-oxygen copper ingot and the manufacturing method using the same according to the present embodiment, combustion is performed in a reducing atmosphere in the melting furnace A, and the molten copper is deoxygenated. The molten copper is sealed in a non-oxidizing atmosphere in the casting gutter C and transferred to the tundish 5. Although the molten copper has a high hydrogen concentration because the oxygen concentration and the hydrogen concentration are in an inversely proportional relationship, the molten copper is dehydrogenated by the stirring means 33 in the subsequent degassing step. This makes it possible to reduce the hydrogen concentration, which increases as the deoxidizing treatment is performed by reduction, without securing a long transfer distance of the molten copper, thereby suppressing the generation of bubbles in the molten copper. Therefore, a high-quality low-oxygen copper ingot 23 in which generation of holes at the time of cooling and solidification is suppressed can be continuously produced in large quantities at low cost by using a gas furnace that performs combustion in the furnace.
【0032】また、脱ガス手段を、溶銅を攪拌する攪拌
手段33としているので、短時間で強制的に脱水素処理
が行えるので、簡易な構成で効率よく脱水素処理を行う
ことができる。Further, since the degassing means is the stirring means 33 for stirring the molten copper, the dehydrogenation can be forcibly performed in a short time, so that the dehydrogenation can be efficiently performed with a simple structure.
【0033】更に、攪拌手段33を、通過する溶銅の流
路を蛇行させる堰により構成すれば、溶銅自身の流れに
よって自動的に攪拌されるので、特別にアジテーター等
を用いなくてよく、より簡易な構成で効率よく脱水素処
理を行うことができるとともに、低酸素銅鋳塊の製造装
置の運転管理も容易にでき、更に低コストで製造でき
る。Further, if the stirring means 33 is constituted by a weir for meandering the flow path of the molten copper passing therethrough, it is automatically stirred by the flow of the molten copper itself, so that a special agitator or the like is not required. The dehydrogenation treatment can be performed efficiently with a simpler configuration, and the operation management of the low oxygen copper ingot manufacturing apparatus can be easily performed, so that the manufacturing can be performed at lower cost.
【0034】なお、この攪拌手段33による分離は、一
箇所に限ったものではなく、移送過程の長さに応じて適
宜設置してもよい。また、全体を通して低酸素銅鋳塊に
限ったものではなく、適当な添加元素を混合することで
低酸素銅合金鋳塊を得ることも可能である。また、攪拌
手段33として、堰33a、33b、33c、33dを
溶銅流路31の上下左右に各々設けるようにしたが、鋳
造樋Cの長さや幅等によってこれら堰の個数や配置を適
宜変更しても、差し支えない。Incidentally, the separation by the stirring means 33 is not limited to one place, but may be appropriately set according to the length of the transfer process. Further, the low oxygen copper ingot is not limited to the low oxygen copper ingot throughout, and it is also possible to obtain a low oxygen copper alloy ingot by mixing an appropriate additive element. As the stirring means 33, weirs 33a, 33b, 33c, 33d are provided on the upper, lower, left, and right sides of the molten copper flow path 31, respectively, but the number and arrangement of these weirs are appropriately changed depending on the length and width of the casting gutter C. But it doesn't hurt.
【0035】また、いわゆる縦型の連続鋳造機Dを用い
ることとしているが、横方向に連続鋳造する、いわゆる
横型の連続鋳造機を用いてもよい。この場合には、エレ
ベータ52のような昇降手段は不要となる。Although a so-called vertical continuous casting machine D is used, a so-called horizontal continuous casting machine that performs continuous casting in the horizontal direction may be used. In this case, the elevating means such as the elevator 52 becomes unnecessary.
【0036】[0036]
【発明の効果】以上説明したように、本発明に係る低酸
素銅鋳塊の製造方法及び製造装置によれば、溶銅に脱酸
素処理を施した後に、脱水素処理を含む脱ガスを行える
ようにしているので、炉内で燃焼を行うガス炉を用い
て、長い移送距離を確保せずに脱水素処理が行え、ホー
ルの生成が抑制された高品質の低酸素銅鋳塊を、低コス
トで連続的に大量に製造することができる。As described above, according to the method and apparatus for producing a low oxygen copper ingot according to the present invention, degassing including dehydrogenation can be performed after deoxidizing molten copper. Therefore, using a gas furnace that burns in the furnace, dehydrogenation treatment can be performed without securing a long transfer distance, and high-quality low-oxygen copper ingots with suppressed generation of holes can be reduced. It can be mass-produced continuously at low cost.
【図1】 本発明の一実施形態に係る低酸素銅鋳塊の
製造装置を概略的に示した構成図である。FIG. 1 is a configuration diagram schematically illustrating an apparatus for producing a low oxygen copper ingot according to an embodiment of the present invention.
【図2】 図1の鋳造樋を平面視(a)、側面視
(b)で示した要部拡大図である。FIG. 2 is an enlarged view of a main part showing the casting gutter of FIG. 1 in a plan view (a) and a side view (b).
1 低酸素銅鋳塊の製造装置 5 タンディッシュ 21 鋳造銅材 23 低酸素銅鋳塊 31 溶銅流路(溶銅の流路) 33 攪拌手段(脱ガス手段) 33a、33b、33c、33d 堰 A 溶解炉 B 保持炉 C 鋳造樋 D 連続鋳造機 E 切断手段 F 搬出手段 DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of low oxygen copper ingot 5 Tundish 21 Cast copper material 23 Low oxygen copper ingot 31 Molten copper flow path (Molten copper flow path) 33 Stirring means (Degassing means) 33a, 33b, 33c, 33d Weir A Melting furnace B Holding furnace C Casting gutter D Continuous casting machine E Cutting means F Unloading means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/126 B22D 11/126 K 21/00 21/00 B 35/00 35/00 D 45/00 45/00 B C22B 9/16 C22B 9/16 F27D 3/14 F27D 3/14 A 23/04 23/04 (72)発明者 堀 和雅 大阪府堺市築港新町3−1−9 三菱マテ リアル株式会社堺工場内 (72)発明者 和田 正彦 大阪府堺市築港新町3−1−9 三菱マテ リアル株式会社堺工場内 (72)発明者 服部 芳明 大阪府堺市築港新町3−1−9 三菱マテ リアル株式会社堺工場内 Fターム(参考) 4E004 MB20 NC07 4K001 AA09 BA23 GA01 GA13 GB02 GB05 4K055 JA01 4K056 AA05 AA06 BA01 BB01 CA04 EA12 EA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B22D 11/126 B22D 11/126 K 21/00 21/00 B 35/00 35/00 D 45/00 45 / 00 B C22B 9/16 C22B 9/16 F27D 3/14 F27D 3/14 A 23/04 23/04 (72) Inventor Kazumasa Hori 3-1-9 Chikko Shinmachi, Sakai City, Osaka Prefecture Mitsubishi Materials Corporation Inside Sakai Plant (72) Inventor Masahiko Wada 3-1-9 Chikko Shinmachi, Sakai City, Osaka Prefecture Mitsubishi Materials Corporation Inside Sakai Plant (72) Inventor Yoshiaki Hattori 3-1-9 Chikko Shinmachi, Sakai City, Osaka Mitsubishi Materials Real F-term in Sakai Plant Co., Ltd. (reference) 4E004 MB20 NC07 4K001 AA09 BA23 GA01 GA13 GB02 GB05 4K055 JA01 4K056 AA05 AA06 BA01 BB01 CA04 EA12 EA14
Claims (6)
する製造方法であって、 溶解炉を還元性の雰囲気で燃焼を行い溶銅を生成する溶
銅生成工程と、 前記溶解炉から送られた溶銅を、非酸化雰囲気でシール
可能な鋳造樋を用いてタンディッシュまで移送する溶銅
移送工程と、 該鋳造樋に設けられ通過する溶銅に対して脱水素処理を
施す脱ガス工程と、 該溶銅を連続鋳造機に供給して鋳造銅材を連続的に生成
する連続鋳造工程と、 該鋳造銅材を所定長さに切断して低酸素銅鋳塊とする切
断工程と、 を含むことを特徴とする低酸素銅鋳塊の製造方法。1. A method for continuously producing a low-oxygen copper ingot from molten copper, comprising: a molten copper producing step of producing molten copper by burning a melting furnace in a reducing atmosphere; Transferring the molten copper sent from the vessel to the tundish using a casting gutter that can be sealed in a non-oxidizing atmosphere, and performing a dehydrogenation treatment on the molten copper passing through the casting gutter. A gas process; a continuous casting process of continuously producing a cast copper material by supplying the molten copper to a continuous casting machine; and a cutting process of cutting the cast copper material into a predetermined length to form a low oxygen copper ingot. A method for producing a low-oxygen copper ingot, comprising:
ることで脱水素処理を行うことを特徴とする請求項1に
記載の低酸素銅鋳塊の製造方法。2. The method for producing a low oxygen copper ingot according to claim 1, wherein in the degassing step, a dehydrogenation treatment is performed by stirring the molten copper.
流路を蛇行させることで攪拌を行うことを特徴とする請
求項2に記載の低酸素銅鋳塊の製造方法。3. The method for producing a low-oxygen copper ingot according to claim 2, wherein said stirring means performs stirring by meandering the flow path of the passing molten copper.
する製造装置であって、 還元性の雰囲気で燃焼を行い溶銅を生成する溶解炉と、 該溶解炉から送られた溶銅を所定の温度に保持する保持
炉と、 該保持炉から送られた溶銅を非酸化雰囲気でシールして
タンディッシュまで移送する鋳造樋と、 該鋳造樋に設けられ通過する溶銅を脱水素処理する脱ガ
ス手段と、 前記タンディッシュから供給された溶銅から鋳造銅材を
連続的に生成する連続鋳造機と、 前記鋳造銅材を所定長さに切断する切断手段と、 を具備したことを特徴とする低酸素銅鋳塊の製造装置。4. A production apparatus for continuously producing a low-oxygen copper ingot from molten copper, comprising: a melting furnace for producing molten copper by burning in a reducing atmosphere; and a melting furnace sent from the melting furnace. A holding furnace for holding copper at a predetermined temperature, a casting gutter for sealing the molten copper sent from the holding furnace in a non-oxidizing atmosphere and transferring the molten copper to a tundish, and dehydrating molten copper provided in the casting gutter. Degassing means for elementary treatment, a continuous casting machine for continuously producing a cast copper material from molten copper supplied from the tundish, and cutting means for cutting the cast copper material to a predetermined length. An apparatus for producing a low oxygen copper ingot.
る攪拌手段であることを特徴とする請求項4に記載の低
酸素銅鋳塊の製造装置。5. The apparatus for producing a low oxygen copper ingot according to claim 4, wherein the degassing means is a stirring means for stirring the molten copper.
流路を蛇行させる堰により構成されていることを特徴と
する請求項5に記載の低酸素銅鋳塊の製造装置。6. The apparatus for producing a low oxygen copper ingot according to claim 5, wherein said stirring means is constituted by a weir for meandering the flow path of said passing molten copper.
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000207490A JP3945131B2 (en) | 2000-07-07 | 2000-07-07 | Low oxygen copper ingot manufacturing method and manufacturing apparatus |
EP01103599A EP1127947B1 (en) | 2000-02-24 | 2001-02-21 | Method for manufacturing low-oxygen copper wire rod |
DE60119804T DE60119804T2 (en) | 2000-02-24 | 2001-02-21 | Process for the production of rod wire of low oxygen content copper |
DE60113891T DE60113891T2 (en) | 2000-02-24 | 2001-02-21 | Plant for producing continuously cast billets of low-oxygen copper |
EP05017856A EP1598433B1 (en) | 2000-02-24 | 2001-02-21 | Method for continuously producing low-oxygen copper wire |
EP01103598A EP1127946B1 (en) | 2000-02-24 | 2001-02-21 | Installation for producing continuously cast low-oxygen copper ingots |
DE60136977T DE60136977D1 (en) | 2000-02-24 | 2001-02-21 | Process for the continuous production of copper wire with low oxygen content |
US09/789,594 US6589473B2 (en) | 2000-02-24 | 2001-02-22 | Apparatus for manufacturing low-oxygen copper |
TW90104026A TW461833B (en) | 2000-02-24 | 2001-02-22 | Method for manufacturing low-oxygen copper |
KR1020010009354A KR100690253B1 (en) | 2000-02-24 | 2001-02-23 | Method for manufacturing low-oxygen copper |
KR1020010009355A KR100690257B1 (en) | 2000-02-24 | 2001-02-23 | Apparatus for manufacturing low-oxygen copper |
CA002337670A CA2337670A1 (en) | 2000-02-24 | 2001-02-23 | Apparatus for manufacturing low-oxygen copper |
CA2337668A CA2337668C (en) | 2000-02-24 | 2001-02-23 | Method for manufacturing low-oxygen copper |
CNB01104991XA CN1247349C (en) | 2000-02-24 | 2001-02-26 | Method for producing copper suboxide |
US09/791,767 US6944930B2 (en) | 2000-02-24 | 2001-02-26 | Method for manufacturing low-oxygen copper |
CNB011049928A CN1210416C (en) | 2000-02-24 | 2001-02-26 | Equipment for producing copper suboxide |
US11/194,568 US7524356B2 (en) | 2000-02-24 | 2005-08-02 | Method for manufacturing low-oxygen copper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000207490A JP3945131B2 (en) | 2000-07-07 | 2000-07-07 | Low oxygen copper ingot manufacturing method and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002030358A true JP2002030358A (en) | 2002-01-31 |
JP3945131B2 JP3945131B2 (en) | 2007-07-18 |
Family
ID=18704242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000207490A Expired - Lifetime JP3945131B2 (en) | 2000-02-24 | 2000-07-07 | Low oxygen copper ingot manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3945131B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056981A (en) * | 2006-08-30 | 2008-03-13 | Dowa Holdings Co Ltd | Method for melting additive, melting apparatus therefor, method for manufacturing zinc-based molded body and manufacturing apparatus therefor |
JP2009034717A (en) * | 2007-08-03 | 2009-02-19 | Mitsubishi Materials Corp | Casting equipment |
CN114686697A (en) * | 2022-04-09 | 2022-07-01 | 杭州富通集团有限公司 | Processing method of copper rod |
CN114850421A (en) * | 2022-05-06 | 2022-08-05 | 杭州富通集团有限公司 | Processing technology of copper rod |
-
2000
- 2000-07-07 JP JP2000207490A patent/JP3945131B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056981A (en) * | 2006-08-30 | 2008-03-13 | Dowa Holdings Co Ltd | Method for melting additive, melting apparatus therefor, method for manufacturing zinc-based molded body and manufacturing apparatus therefor |
JP2009034717A (en) * | 2007-08-03 | 2009-02-19 | Mitsubishi Materials Corp | Casting equipment |
CN114686697A (en) * | 2022-04-09 | 2022-07-01 | 杭州富通集团有限公司 | Processing method of copper rod |
CN114686697B (en) * | 2022-04-09 | 2023-08-18 | 杭州富通集团有限公司 | Processing method of copper rod |
CN114850421A (en) * | 2022-05-06 | 2022-08-05 | 杭州富通集团有限公司 | Processing technology of copper rod |
Also Published As
Publication number | Publication date |
---|---|
JP3945131B2 (en) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100690253B1 (en) | Method for manufacturing low-oxygen copper | |
JP4593397B2 (en) | Method for producing oxygen-free copper wire by continuous casting and rolling using rotary moving mold | |
JP2009226419A (en) | Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod | |
JP2002120050A (en) | Method for producing oxygen-free copper wire rod with belt and wheel type continuous casting and rolling method for producing copper alloy wire rod | |
US6682824B1 (en) | Adhesion-resistant oxygen-free roughly drawn copper wire and method and apparatus for making the same | |
JP3651386B2 (en) | Copper wire manufacturing method and manufacturing apparatus | |
JP4240768B2 (en) | Oxygen-free copper wire manufacturing method, manufacturing apparatus, and oxygen-free copper wire | |
JP2002030358A (en) | Method and apparatus for producing low oxygen copper cast block | |
JP4747689B2 (en) | Continuous production method of copper alloy | |
JP3674499B2 (en) | Method for producing phosphorus-containing copper base material for copper plating and apparatus for producing the same | |
JP2003268466A (en) | Low-oxygen copper wire rod for magnet wire, and manufacturing method therefor | |
TW461833B (en) | Method for manufacturing low-oxygen copper | |
JPH10216905A (en) | Method for continuously casting active element-containing copper alloy | |
CN100349671C (en) | Method for producing phosphorus-contained copper base material and method for producing low-oxygen copper alloy wire | |
JP2005059023A (en) | Method for manufacturing copper ingot with high-density oxygen | |
JP2022525051A (en) | Manufacturing method of steel ingot | |
JP2010137255A (en) | Casting device and casting method, and method for manufacturing magnesium alloy billet | |
JPS6313650A (en) | Continuous casting for molten steel | |
JP2005256057A (en) | Production method for oxygen-free copper alloy ingot | |
JPH11251044A (en) | Method and device for heating billet for semi-fusion molding | |
JP2009090310A (en) | Method for continuously producing copper material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3945131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |