[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002025603A - Method for manufacturing cylindrical battery - Google Patents

Method for manufacturing cylindrical battery

Info

Publication number
JP2002025603A
JP2002025603A JP2000208101A JP2000208101A JP2002025603A JP 2002025603 A JP2002025603 A JP 2002025603A JP 2000208101 A JP2000208101 A JP 2000208101A JP 2000208101 A JP2000208101 A JP 2000208101A JP 2002025603 A JP2002025603 A JP 2002025603A
Authority
JP
Japan
Prior art keywords
battery
battery case
outer diameter
diameter
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000208101A
Other languages
Japanese (ja)
Inventor
Satoshi Furuya
諭 古屋
Kota Asano
剛太 浅野
Yoshitaka Dansui
慶孝 暖水
Masaharu Miyahisa
正春 宮久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000208101A priority Critical patent/JP2002025603A/en
Publication of JP2002025603A publication Critical patent/JP2002025603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery with high electrolyte leakage resistance and high capacity by reducing the diameter of only the upper part of a battery case before an electrolyte is injected, sealing the battery case with a sealing plate smaller than the outer diameter of the battery case in a completed battery, then reducing the diameter of the whole battery case. SOLUTION: This method for manufacturing the cylindrical battery is such that an electrode group is formed by interposing a separator between a belt- shaped positive electrode plate and a belt-shaped negative electrode plate and spirally winding them, the electrode group is housed in the battery case, and when the upper part of the battery case is sealed with the sealing plate, after the electrode group is inserted into the battery case having large diameter, the diameter of the upper part of the battery case is previously reduced smaller than the outer diameter of the battery case in the completed battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正・負極板をセパ
レータを介して渦巻状に巻回してケース内に収納してケ
ース上部を封口板で密閉する電池の製造法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a battery, in which a positive / negative electrode plate is spirally wound via a separator, housed in a case, and the upper part of the case is sealed with a sealing plate.

【0002】[0002]

【従来の技術】近年、機器のコードレス化が急速に進む
中、これらの電源として小型且つ軽量で高エネルギー密
度を有する二次電池への要望が高まりつつある。
2. Description of the Related Art In recent years, with the rapid progress of cordless devices, there is an increasing demand for small and lightweight secondary batteries having a high energy density as these power supplies.

【0003】従来このような電池は、正極板と負極板
と、この両者間に介在して電気的に絶縁するセパレータ
と負極板、正極板を渦巻状に巻回して構成した極板群を
金属製電池ケースに収納し、この極板群に電解液が所定
量注入された後、電池ケース上部を正・負いずれか一方
極の端子を兼ねた封口板で密閉して構成される。
Conventionally, such a battery is composed of a positive electrode plate, a negative electrode plate, a separator, a negative electrode plate, and an electrode plate group formed by spirally winding a positive electrode plate interposed therebetween to electrically insulate. The battery pack is housed in a battery case, and after a predetermined amount of electrolyte is injected into the electrode group, the upper part of the battery case is sealed with a sealing plate serving also as a positive or negative terminal.

【0004】こうして作られる電池の電気容量は、巻回
体である渦巻状電極体の体積、つまり極板群の直径およ
び長さによって決まり、特に直径の差は大きな容量差を
生じる。従って同一外径寸法の電池において最大の容量
を得るためには、出来るだけ極板群の径を大きくするこ
とが望ましい。
[0004] The electric capacity of the battery thus produced is determined by the volume of the spirally wound electrode body, that is, the diameter and length of the electrode plate group. In particular, a difference in diameter causes a large capacity difference. Therefore, in order to obtain the maximum capacity in batteries having the same outer diameter, it is desirable to increase the diameter of the electrode group as much as possible.

【0005】一方電池ケースの中へ極板群を挿入する際
には、極板群の外径は電池ケースの内径に対してある程
度小さく、両者の間に隙間があるほうが容易に挿入で
き、生産性の点では望ましい。現在では係る構造の円筒
型電池は,生産性の点で仕方なく、極板群の直径を電池
ケースの内径に対してやや小径として製造されている。
On the other hand, when the electrode group is inserted into the battery case, the outer diameter of the electrode group is somewhat smaller than the inner diameter of the battery case. It is desirable in terms of sex. At present, cylindrical batteries having such a structure are manufactured with the electrode plate group having a slightly smaller diameter than the inner diameter of the battery case, inevitably in terms of productivity.

【0006】ここでの電池製造方法において、例えば、
予め大きな径のケースを用いて極板群を挿入し、電池を
組立てた後にケース全体の径を小さくする方法が特開昭
57−130368号公報にて開示されている。しかし
この方法では、ケースの径を小さくする際に、収縮用管
状治具が封口板を擦るため、封口板のかしめ程度が低下
するため、耐漏液性が低下するという課題があった。
In the battery manufacturing method, for example,
Japanese Patent Application Laid-Open No. Sho 57-130368 discloses a method of inserting a group of electrodes using a case having a large diameter in advance and reducing the diameter of the entire case after assembling the battery. However, in this method, when the diameter of the case is reduced, the shrinking tubular jig rubs the sealing plate, so that the degree of caulking of the sealing plate is reduced.

【0007】これに代わって、特開平6−215792
号には、極板群をケースに挿入した後、ケース上部を密
閉する前に構成した後に縮径を行う方法が開示されてい
る。
[0007] Instead of this, Japanese Patent Laid-Open No. Hei 6-215792
Japanese Patent Application Publication No. JP-A-2003-115139 discloses a method of reducing the diameter after inserting the electrode plate group into the case and before closing the upper part of the case.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この方
法でも、ケースの径を縮径する際に、必ず封口板との擦
れが発生するため、かしめ状態が不十分になり、耐漏液
性は低下するという課題が残る。
However, even with this method, when the diameter of the case is reduced, rubbing with the sealing plate always occurs, so that the caulked state is insufficient and the liquid leakage resistance is reduced. The challenge remains.

【0009】本発明は、上記の課題を解決し、耐漏液性
の優れた、高容量電池を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and to provide a high-capacity battery having excellent resistance to liquid leakage.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の電池は、予め最終仕上がり電池における電池
ケースの外径寸法よりも、大きい外径寸法の電池ケース
を使用し、その電池ケースへの最終仕上がり電池におけ
る電池ケースの内径寸法よりも大きな外径寸法を有する
極板群を挿入した後、電解液を注入する前に電池ケース
上部の外径のみを予め最終仕上がり寸法に合致する電池
ケース外径寸法まで減少させ、その外径寸法と同じ径を
有する封口板で密閉し、封口後に初充放電を行い、その
後に電池ケースの外径全体を、電池の最終仕上がり寸法
に合致する電池ケース外径寸法まで減少させる製造法と
した。
In order to achieve the above object, a battery of the present invention uses a battery case having an outer diameter larger than the outer diameter of the battery case in the final finished battery in advance, and uses the battery case. After inserting the electrode group having an outer diameter larger than the inner diameter of the battery case in the final finished battery, only the outer diameter of the upper part of the battery case before injecting the electrolytic solution matches the final finished size in advance. Reduce the outer diameter of the case, seal it with a sealing plate having the same diameter as the outer diameter, perform initial charge and discharge after sealing, and then fit the entire outer diameter of the battery case to the final finished size of the battery The manufacturing method was to reduce the outer diameter of the case.

【0011】[0011]

【発明の実施の実態】本発明の請求項1に記載の発明
は、帯状の正極板と負極板との間にセパレータを介在さ
せて渦巻状に巻回した極板群をケース内に収納して、ケ
ース上部を封口板で密閉する製造工程において、予め最
終仕上がり電池における電池ケースの外径寸法より大き
い外径寸法の電池ケースを使用し、その電池ケースへ最
終仕上がり電池における電池ケースの内径寸法よりも大
きな外径寸法を有する極板群を挿入した後、電解液を注
入する前に電池ケース上部の外径のみを予め電池の最終
仕上がり寸法に合致する電池ケース外径寸法まで減少さ
せ、その外径寸法と同じ径を有する封口板で密閉し、封
口した後に、電池ケースの外径全体を、電池の最終仕上
がり寸法に合致する電池ケース外径寸法まで減少させる
製造法とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first aspect of the present invention, a spirally wound electrode plate group is housed in a case with a separator interposed between a strip-shaped positive electrode plate and a negative electrode plate. In the manufacturing process of sealing the upper part of the case with a sealing plate, a battery case having an outer diameter larger than the outer diameter of the battery case in the final finished battery is used in advance, and the inner diameter of the battery case in the final finished battery is added to the battery case. After inserting the electrode group having an outer diameter larger than that, before injecting the electrolyte, only the outer diameter of the upper part of the battery case is reduced in advance to the outer diameter of the battery case that matches the final finished size of the battery. After sealing and sealing with a sealing plate having the same diameter as the outer diameter, the manufacturing method is such that the entire outer diameter of the battery case is reduced to the outer diameter of the battery case that matches the final finished size of the battery.

【0012】これによって、予めケース上部の径を小さ
くして、その径に合致する外径の封口板を使用するた
め、電極群をケースに収納後、ケース全体の径を小さく
する際に、収縮用管状治具が封口板を擦ることが無くな
るため、封口板のかしめ形状がくずれず維持できるた
め、耐漏液性を保持できる。
Thus, the diameter of the upper portion of the case is reduced in advance, and a sealing plate having an outer diameter corresponding to the diameter is used. Since the tubular jig for use does not rub against the sealing plate, the swaged shape of the sealing plate can be maintained without being distorted, so that liquid leakage resistance can be maintained.

【0013】また、初充放電後の電池内の電解液は、正
・負極板およびセパレータに充分吸液された状態となっ
ているのでその後電池全体を縮径しても、縮径の際に電
解液が電池外に漏れることがないため、耐漏液性も優れ
たものとなる。
The electrolyte in the battery after the initial charge and discharge is in a state of being sufficiently absorbed by the positive and negative electrode plates and the separator. Since the electrolyte does not leak out of the battery, the leakage resistance is also excellent.

【0014】[0014]

【実施例】以下に、本発明の具体例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples of the present invention will be described.

【0015】(実施例)水酸化ニッケル100重量部に
対し、結着剤としてカルボキシメチルセルロース0.2
重量部と、全ペーストの25重量%となるように水を加
え練合してペースト状活物質を作製した。
(Example) Carboxymethyl cellulose 0.2 as a binder was added to 100 parts by weight of nickel hydroxide.
Water was added and kneaded so as to be 25 parts by weight of the total paste and 25 parts by weight of the total paste to prepare a paste-like active material.

【0016】このペースト状活物質をニッケルのスポン
ジ状基板に充填して乾燥した後、プレスして充填密度を
高め、幅61mm、厚み0.8mm、長さ26mmの正
極板1を作製した。
This paste-like active material was filled in a nickel sponge-like substrate, dried, and then pressed to increase the packing density, thereby producing a positive electrode plate 1 having a width of 61 mm, a thickness of 0.8 mm and a length of 26 mm.

【0017】水素吸蔵合金粉末をパンチングメタルに塗
着した、幅61mm、厚さ0.4mm、長さ45mmの
負極板2を作製した。
A negative electrode plate 2 having a width of 61 mm, a thickness of 0.4 mm, and a length of 45 mm was prepared by coating a hydrogen absorbing alloy powder on a punching metal.

【0018】次いで、電気的に絶縁するセパレータ3で
正極板1と負極板2を渦巻状に巻回して極板群を構成
し、これを鉄にニッケルメッキした直径8.55mmの
電池ケース4に挿入し、電池ケース4の上部のみを8.
15mmの径に調整した管状治具6を通過させ、電池ケ
ース4上部外径を8.15mmに縮径し、アルカリ電解
液を注入した後、正極端子を兼ねた直径8.15mmの
封口板5で密閉し、この電池を電流値70mAで15時
間充電し、電流値700mAhで電池の端子電圧が1.
0Vまで放電するという初充放電を2回繰り返した後、
8.40mmの径に調整した管状治具6を図1に示すよ
うに押圧治具7で押しながら通過させ電池の外径全体を
8.40mmにして、HR8.4/67サイズの本発明
の実施例におけるニッケル−水素蓄電池Aを作製した。
この電池Aの半裁断面図を図2に示す。
Next, a positive electrode plate 1 and a negative electrode plate 2 are spirally wound by an electrically insulating separator 3 to form an electrode plate group, which is then nickel-plated with iron into a battery case 4 having a diameter of 8.55 mm. 7. Insert only the top of battery case 4
After passing through a tubular jig 6 adjusted to a diameter of 15 mm, the outer diameter of the upper part of the battery case 4 is reduced to 8.15 mm, an alkaline electrolyte is injected, and a sealing plate 5 having a diameter of 8.15 mm also serving as a positive electrode terminal. And the battery was charged at a current value of 70 mA for 15 hours. At a current value of 700 mAh, the terminal voltage of the battery was 1.
After repeating the initial charge / discharge of discharging to 0V twice,
As shown in FIG. 1, a tubular jig 6 adjusted to a diameter of 8.40 mm is passed while being pressed by a pressing jig 7 so that the entire outer diameter of the battery is 8.40 mm, and the HR8.4 / 67 size of the present invention is used. The nickel-hydrogen storage battery A in the example was manufactured.
FIG. 2 shows a half sectional view of the battery A.

【0019】なお、本実施例においては、ケース4の最
終仕上がり外径寸法に対して97%までケース4の上部
の外径を小さくしたが、90%を下回ると、封口板5で
密閉する際にかしめ状態が不十分になり、耐漏液性が低
下し、また、98%を上回ると管状治具6を通過させて
電池外径を小さくする際に、管状治具6が封口板5を擦
るため、かしめ形状がくずれて耐漏液性が低下するため
90〜98%とするのが好ましい。
In this embodiment, the outer diameter of the upper part of the case 4 is reduced to 97% with respect to the final finished outer diameter of the case 4. When the caulking state is insufficient, the liquid leakage resistance is reduced, and when it exceeds 98%, the tubular jig 6 rubs the sealing plate 5 when passing the tubular jig 6 and reducing the outer diameter of the battery. Therefore, the caulking shape is distorted and the liquid leakage resistance is reduced, so that the content is preferably set to 90 to 98%.

【0020】(比較例1)直径8.40mmの封口板8
と直径8.40mmのケース9を用い、このケース9の
外径を縮径しないで電池を構成する。まず、電気的に絶
縁するセパレータ3で正極板1と負極板2を渦巻状に巻
回して極板群を構成し、これを鉄にニッケルメッキした
直径8.40mmの電池ケース9に挿入し、このケース
9の中にアルカリ電解液を注入した後、正極端子を兼ね
た直径8.40mmの封口板8で密閉し、この電池を電
流値70mAで15時間充電し、電流値700mAhで
電池の端子電圧が1.0Vまで放電するという初充放電
を2回繰り返し、比較例1のニッケル−水素蓄電池Bを
作製した。なお、電池Bは、電池Aに対してケース外径
が0.15mm小さいため、電池内空間体積は電池Bが
電池Aよりも0.25cc分小さくなる。その分電池B
では、電池Aよりも、正極・負極の充填量と電解液量を
少なくした。
Comparative Example 1 A sealing plate 8 having a diameter of 8.40 mm
And a case 9 having a diameter of 8.40 mm, and a battery is formed without reducing the outer diameter of the case 9. First, a positive electrode plate 1 and a negative electrode plate 2 are spirally wound with an electrically insulating separator 3 to form an electrode plate group, which is inserted into a nickel-plated 8.40 mm diameter battery case 9 of iron. After injecting the alkaline electrolyte into the case 9, the container was sealed with a sealing plate 8 also serving as a positive electrode terminal and having a diameter of 8.40 mm. The battery was charged at a current value of 70 mA for 15 hours. The initial charge / discharge of discharging the voltage to 1.0 V was repeated twice to produce a nickel-hydrogen storage battery B of Comparative Example 1. Since the outer diameter of the case of the battery B is smaller than that of the battery A by 0.15 mm, the internal volume of the battery B is smaller than that of the battery A by 0.25 cc. Battery B
In the example, the filling amount of the positive electrode and the negative electrode and the amount of the electrolytic solution were smaller than those of the battery A.

【0021】(比較例2)直径8.40mmの封口板8
と直径8.55mmのケース4を用い、このケース9の
外径を縮径して電池を構成する。まず、電気的に絶縁す
るセパレータ3で正極板1と負極板2を渦巻状に巻回し
て極板群を構成し、これを鉄にニッケルメッキした直径
8.55mmの電池ケース4に挿入し、このケース4の
中にアルカリ電解液を注入した後、正極端子を兼ねた直
径8.40mmの封口板5で密閉し、図3の模式断面図
に示すように押圧治具7で押圧しながら、8.40mm
の内径を有する管状治具6中に通過させ、電池ケース4
の外径全体を8.40mmに縮径した比較例2の電池C
を構成し、この電池Cを電流値70mAで15時間充電
し、電流値700mAhで電池の端子電圧が1.0Vま
で放電するという初充放電を2回繰り返した。
Comparative Example 2 A sealing plate 8 having a diameter of 8.40 mm
And a case 4 having a diameter of 8.55 mm, and the outer diameter of the case 9 is reduced to form a battery. First, a positive electrode plate 1 and a negative electrode plate 2 are spirally wound with an electrically insulating separator 3 to form an electrode plate group, which is inserted into a nickel-plated 8.55 mm diameter battery case 4 of iron. After injecting the alkaline electrolyte into the case 4, the case 4 is sealed with a sealing plate 5 also serving as a positive electrode terminal and having a diameter of 8.40 mm, and pressed by a pressing jig 7 as shown in a schematic sectional view of FIG. 8.40mm
Through a tubular jig 6 having an inner diameter of
Of Comparative Example 2 in which the entire outer diameter of was reduced to 8.40 mm
The battery C was charged at a current value of 70 mA for 15 hours, and the initial charge and discharge of discharging the terminal voltage of the battery to 1.0 V at a current value of 700 mAh was repeated twice.

【0022】電池A,電池B,電池Cをそれぞれ100
個ずつ作製し、これらの電池を20℃、70mAの電流
の大きさで15時間充電を行い、20℃、140mAの
電流の大きさで電池の端子電圧が1.0Vまで放電を行
った。このときのそれぞれの電池の放電容量を測定し
た。また、これらの電池の充放電後の電池100個当り
の漏液発生個数を調べた。それらの結果を(表1)に示
す。
Battery A, Battery B and Battery C are each 100
These batteries were manufactured individually, and these batteries were charged at a current of 20 ° C. and a current of 70 mA for 15 hours, and discharged at a current of 20 ° C. and a current of 140 mA until the terminal voltage of the battery was 1.0 V. At this time, the discharge capacity of each battery was measured. Further, the number of leaks per 100 batteries after charging and discharging of these batteries was examined. The results are shown in (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】(表1)に示すように、電池Aと電池C
は、電池Bよりも放電容量が約14%増加している。こ
れは、電池Aと電池Cが、電池Bよりも、電池内への正
極・負極の充填量が多いためである。
As shown in Table 1, battery A and battery C
Has a discharge capacity about 14% higher than that of the battery B. This is because the batteries A and C have a larger amount of positive and negative electrodes than the battery B.

【0025】また、電池Aと電池Bは、充放電後漏液し
ていないが、電池Cは100個中7個も漏液していた。
この電池Cの漏液している箇所は、封口板のかしめ部で
あった。これは、電池Cを構成するときに封口板かしめ
部が管状治具と擦れるため、かしめ形状が変形したため
と考えられる。
The batteries A and B did not leak after charging / discharging, but the battery C leaked seven out of 100 batteries.
The leaked portion of the battery C was a swaged portion of the sealing plate. This is presumably because the caulking portion of the sealing plate was rubbed against the tubular jig when the battery C was formed, and the caulking shape was deformed.

【0026】以上のように、実施例の電池Aは、電池容
量が大きく、耐漏液性能も良好な電池である。
As described above, the battery A of the embodiment is a battery having a large battery capacity and good leakage resistance.

【0027】上記の実施例では、電池ケース上部のみを
管状治具を通過させて収縮させ、収縮前の最終仕上がり
ケース外径寸法の97%としたが、この外径寸法として
は90〜98%であると同様な効果が得られる。
In the above embodiment, only the upper part of the battery case is contracted by passing through the tubular jig to have 97% of the outer diameter of the final finished case before shrinking, but this outer diameter is 90 to 98%. Has the same effect.

【0028】なお、管状治具6の材質は、セラミック製
の材質のものが摩耗が少ないため電池の縮径を精度良く
行うことができるので好ましい。
The material of the tubular jig 6 is preferably made of a ceramic material since the diameter of the battery can be reduced with a small amount of abrasion because the abrasion is small.

【0029】[0029]

【発明の効果】以上のように本発明の円筒型電池の製造
法によれば、正極・負極等の充填物を電池内により多く
充填することができるため、高容量な円筒型電池を提供
することができる。
As described above, according to the method for manufacturing a cylindrical battery of the present invention, the filling material such as the positive electrode and the negative electrode can be filled more in the battery, so that a high capacity cylindrical battery is provided. be able to.

【0030】また、予め、電池ケース上部のみを管状治
具を通過させて収縮させ、収縮前の最終仕上がりケース
外径寸法よりも小さい径の封口板を用いるので、ケース
全体の径を収縮する際に、収縮用管状治具が封口板を擦
ることが無くなるため、封口板のかしめ形状の変化がな
く、耐漏液性に優れた円筒型電池を提供できる。
Further, only the upper part of the battery case is previously contracted by passing through a tubular jig, and a sealing plate having a diameter smaller than the outer diameter of the final finished case before contraction is used. In addition, since the shrinking tubular jig does not rub against the sealing plate, there is no change in the swaged shape of the sealing plate, and a cylindrical battery excellent in liquid leakage resistance can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池の縮径の模式図FIG. 1 is a schematic diagram of a diameter reduction of a battery according to an embodiment of the present invention.

【図2】同ニッケル−水素蓄電池Aの半裁断面図FIG. 2 is a half sectional view of the nickel-hydrogen storage battery A;

【図3】比較例2における電池の縮径の模式図FIG. 3 is a schematic diagram of a reduced diameter of a battery in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電池ケース 5 封口板 6 管状治具 7 押圧治具 8 比較例1と2の封口板 9 比較例1の電池ケース DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Sealing plate 6 Tubular jig 7 Pressing jig 8 Sealing plate of comparative examples 1 and 2 9 Battery case of comparative example 1

───────────────────────────────────────────────────── フロントページの続き (72)発明者 暖水 慶孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宮久 正春 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA03 AA17 BB03 DD05 DD15 DD26 5H028 AA01 AA07 BB01 BB04 BB10 BB17 CC12 CC17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshitaka Namizu 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5H011 AA03 AA17 BB03 DD05 DD15 DD26 5H028 AA01 AA07 BB01 BB04 BB10 BB17 CC12 CC17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】帯状の正極板と負極板とをセパレータを介
して渦巻状に巻回された極板群を電池ケースに収納する
円筒型電池の製造方法において、予め最終仕上がり電池
における電池ケースの外径寸法より大きい外径寸法の電
池ケースを使用し、その電池ケースへ最終仕上がり電池
における電池ケースの内径寸法よりも大きな外径寸法を
有する極板群を挿入する工程と、最終仕上がり電池にお
ける電池外径寸法よりも小さくなるように、電池ケース
上部外径を減少させる工程と、この電池ケース上部外径
と合致する外径寸法を有する封口板で密閉する工程と、
電池ケースの外径全体を、電池の最終仕上がり寸法に合
致する外径寸法まで減少させる工程とを有することを特
徴とする円筒型電池の製造方法。
In a method for manufacturing a cylindrical battery in which a group of electrode plates in which a strip-shaped positive electrode plate and a negative electrode plate are spirally wound via a separator is housed in a battery case, the battery case of a battery case in a final finished battery is previously prepared. A step of using a battery case having an outer diameter larger than the outer diameter, and inserting an electrode plate group having an outer diameter larger than the inner diameter of the battery case in the final finished battery into the battery case; A step of reducing the outer diameter of the battery case upper part so as to be smaller than the outer diameter dimension, and a step of sealing with a sealing plate having an outer diameter dimension that matches the outer diameter of the battery case upper part,
Reducing the entire outer diameter of the battery case to an outer diameter dimension that matches the final finished dimensions of the battery.
【請求項2】電池ケースの外径全てを電池の最終仕上が
り寸法に合致する電池ケース外径寸法まで減少させる工
程を初充放電の後に行う請求項1記載の円筒型電池の製
造方法。
2. The method for manufacturing a cylindrical battery according to claim 1, wherein the step of reducing the entire outer diameter of the battery case to the outer diameter dimension of the battery case that matches the final finished size of the battery is performed after the initial charge and discharge.
【請求項3】最終仕上がり寸法に合致する電池ケース外
径寸法まで減少させる際に用いる管状治具の材質がセラ
ミックである請求項1記載の円筒型電池の製造方法。
3. The method for manufacturing a cylindrical battery according to claim 1, wherein the material of the tubular jig used to reduce the outer diameter of the battery case to the final finished size is ceramic.
JP2000208101A 2000-07-10 2000-07-10 Method for manufacturing cylindrical battery Pending JP2002025603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208101A JP2002025603A (en) 2000-07-10 2000-07-10 Method for manufacturing cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208101A JP2002025603A (en) 2000-07-10 2000-07-10 Method for manufacturing cylindrical battery

Publications (1)

Publication Number Publication Date
JP2002025603A true JP2002025603A (en) 2002-01-25

Family

ID=18704742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208101A Pending JP2002025603A (en) 2000-07-10 2000-07-10 Method for manufacturing cylindrical battery

Country Status (1)

Country Link
JP (1) JP2002025603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614195B2 (en) 2014-03-31 2017-04-04 Gs Yuasa International Ltd. Energy storage device and manufacturing method of the same
CN114221067A (en) * 2021-11-13 2022-03-22 四川英能基科技有限公司 Battery cathode structure, battery and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614195B2 (en) 2014-03-31 2017-04-04 Gs Yuasa International Ltd. Energy storage device and manufacturing method of the same
CN114221067A (en) * 2021-11-13 2022-03-22 四川英能基科技有限公司 Battery cathode structure, battery and preparation method
CN114221067B (en) * 2021-11-13 2023-05-09 四川英能基科技有限公司 Battery cathode structure, battery and preparation method

Similar Documents

Publication Publication Date Title
KR100387339B1 (en) A method of manufacturing a battery including a non-circular spiral electrode body
KR20080095166A (en) Method of manufacturing square flat secondary battery
JP2004171980A (en) Alkaline battery and its manufacturing method
JP2002164023A (en) Square battery
JP2002050322A (en) Sealed square flat cell
JP2000090974A (en) Lithium ion secondary battery and manufacture thereof
JP2000182573A (en) Secondary battery
JP3390309B2 (en) Sealed alkaline storage battery
JPH09293529A (en) Cylindrical sealed storage battery and manufacture thereof
JP2002025603A (en) Method for manufacturing cylindrical battery
JP2000323117A (en) Cylindrical storage battery
KR100210502B1 (en) Separator for spiral electrode
JP4214455B2 (en) battery
JP2001196090A (en) Alkaline battery
JPH11176420A (en) Nonaqueous electrolyte secondary battery
JP3099652B2 (en) Battery manufacturing method
JP3695868B2 (en) Square alkaline storage battery
JP2001176541A (en) Alkaline storage battery
KR100399782B1 (en) Lithium ion Secondary battery including the case of which is a pouch and method for manufacturing the same
JP4572429B2 (en) Cylindrical lithium secondary battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2623775B2 (en) Sealed rectangular nickel-cadmium storage battery
JP2000149960A (en) Cylindrical battery
JPH06349461A (en) Alkaline storage battery
JP2002075434A (en) Secondary cell