JP2002018276A - Atmospheric pressure plasma treatment apparatus - Google Patents
Atmospheric pressure plasma treatment apparatusInfo
- Publication number
- JP2002018276A JP2002018276A JP2000208160A JP2000208160A JP2002018276A JP 2002018276 A JP2002018276 A JP 2002018276A JP 2000208160 A JP2000208160 A JP 2000208160A JP 2000208160 A JP2000208160 A JP 2000208160A JP 2002018276 A JP2002018276 A JP 2002018276A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- atmospheric pressure
- processing apparatus
- reaction gas
- plasma processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
- Cleaning In General (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は大気圧プラズマ処理
装置に関するもので、詳しくは、主としてポリエチレン
やポリプロピレン、PTFE(ポリ四フッ化エチレン)
などの撥水性を有する樹脂に塗料を塗布するとか水性イ
ンクで印刷を施す際にその表面を親水性に改質したり、
プラスチックの表面に酸素のプラズマ処理によって濡れ
性を付与したり、ガラス、セラミックス、金属、半導体
等の疎水性表面を親水化したり、表面に付着した有機物
を洗浄したりするなどの表面処理を行なう場合に用いら
れるプラズマ処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmospheric pressure plasma processing apparatus, and more particularly, to polyethylene, polypropylene and PTFE (polytetrafluoroethylene).
When applying a paint to a water-repellent resin such as, or when printing with a water-based ink, the surface is modified to be hydrophilic,
When performing surface treatments such as imparting wettability to the plastic surface by oxygen plasma treatment, hydrophilizing hydrophobic surfaces such as glass, ceramics, metals, and semiconductors, and cleaning organic substances attached to the surface. The present invention relates to a plasma processing apparatus used in the present invention.
【0002】[0002]
【従来の技術】上記のような表面改質や有機物洗浄等の
表面処理に用いられるプラズマ処理装置として、ヘリウ
ムや水素等の不活性ガスと酸素やフルオロカーボン系の
含フッ素化合物ガス等の反応性気体とを混合してなる反
応ガスを大気圧もしくは大気圧近傍(弱減圧または弱加
圧)圧力下で高圧電極と接地電極との間に形成される放
電部に導入し通過させるとともに両電極に高周波電圧を
印加することにより放電部にグロー放電プラズマを発生
させて該プラズマにより生成される化学的に活性な励起
種を含むガス流を被処理物の表面に向けて吹出して所定
の表面処理を行なうように構成された大気圧プラズマ処
理装置として、本出願人は、例えば特許第293485
2号公報や特許第2979308号公報に開示されたよ
うな構成のものを既に提案している。2. Description of the Related Art As a plasma processing apparatus used for surface treatment such as surface modification and organic substance washing as described above, an inert gas such as helium or hydrogen and a reactive gas such as oxygen or a fluorocarbon-based fluorine-containing compound gas are used. Is introduced into and passed through a discharge part formed between the high-voltage electrode and the ground electrode at atmospheric pressure or near atmospheric pressure (weakly decompressed or weakly pressurized), and high-frequency waves are passed through both electrodes. Glow discharge plasma is generated in the discharge part by applying a voltage, and a gas flow containing a chemically active excited species generated by the plasma is blown toward the surface of the object to be processed to perform a predetermined surface treatment. As an atmospheric pressure plasma processing apparatus configured as described above, the present applicant has disclosed, for example, Japanese Patent No. 293485.
No. 2 and Japanese Patent No. 2979308 have already been proposed.
【0003】これら本出願人が既に提案しているプラズ
マ処理装置は大気圧下での表面処理が実現可能であっ
て、それ以前から採用されていた低圧グロー放電プラズ
マによる処理装置、例えば真空容器内に互いに対向状態
に配置した高圧電極と接地電極との間の放電部に酸素等
の放電用反応ガスを導入させて両電極に高周波電圧を印
加することにより低圧グロー放電プラズマを発生させ、
該プラズマにより生成される化学的に活性な励起種を含
むガスによって接地電極上に設置保持させた被処理物の
表面を処理するように構成されていたプラスマ処理装置
に比べて、真空系を形成するための装置及び設備が不要
であることから、装置全体の小型化および低コスト化が
図れるとともに、被処理物を電極上に設置する必要もな
いので、被処理物の面積や厚み、形状に対応させやす
く、多種多様な被処理物に対する表面処理に適用可能で
あり、また、生産プロセスのインラインへの組込みも容
易で生産性の向上も図れるといった利点を有している。[0003] The plasma processing apparatus proposed by the present applicant is capable of performing surface treatment under atmospheric pressure, and a processing apparatus using a low-pressure glow discharge plasma which has been employed before that, for example, a vacuum chamber. A low-pressure glow discharge plasma is generated by applying a high-frequency voltage to both electrodes by introducing a discharge reaction gas such as oxygen into a discharge portion between a high-voltage electrode and a ground electrode arranged in opposition to each other,
A vacuum system is formed as compared with a plasma processing apparatus that is configured to process the surface of an object to be processed installed and held on a ground electrode with a gas containing a chemically active excited species generated by the plasma. Since the apparatus and equipment for performing the processing are not required, the size and cost of the entire apparatus can be reduced, and the object to be processed does not need to be installed on the electrode. It has advantages that it can be easily adapted, can be applied to surface treatment of various kinds of objects to be processed, and can be easily incorporated into an in-line production process to improve productivity.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、本出願
人による既提案の大気圧プラズマ処理装置では、放電部
に発生されるグロー放電プラズマにより生成される化学
的に活性な励起種を含むガス流を被処理物の表面に向け
て吹出すだけのものであり、また、両電極に印加する高
周波電圧としては、スパークやアーク放電などの異常放
電に伴う電力ロスがなく、大気圧下でのグロー放電プラ
ズマの発生が確実、安定化するような値に設定する必要
があるために、その処理速度及び処理性能の向上には自
ずと限界があり、この点で改良の余地が残されていた。However, in the atmospheric pressure plasma processing apparatus proposed by the present applicant, a gas flow containing a chemically active excited species generated by a glow discharge plasma generated in a discharge portion is generated. It only blows out toward the surface of the workpiece, and the high-frequency voltage applied to both electrodes has no power loss due to abnormal discharge such as spark or arc discharge, and glow discharge under atmospheric pressure. Since it is necessary to set a value that ensures and stabilizes the generation of plasma, the processing speed and processing performance are naturally limited, and there is room for improvement in this respect.
【0005】本発明は上記のような実情に鑑みてなされ
たもので、既に提案している装置にさらに簡単な構成を
付加することにより、装置全体の小型化、多種多様な被
処理物に対する適用性の拡充及び生産プロセスのインラ
インへの組込みの容易性という利点を確保しつつ、処理
速度及び処理性能の著しい向上を図ることができる大気
圧プラズマ処理装置を提供することを目的としている。The present invention has been made in view of the above circumstances, and by adding a simpler configuration to the already proposed apparatus, the overall apparatus can be reduced in size and applied to a wide variety of workpieces. It is an object of the present invention to provide an atmospheric pressure plasma processing apparatus capable of remarkably improving the processing speed and the processing performance while securing the advantages of enhancing the performance and facilitating the incorporation of the production process into the in-line.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る大気圧プラズマ処理装置は、板状の高
圧電極とこの高圧電極に絶縁体を挟んで対向配置された
接地電極との間に微小隙間からなる放電ギャップ及び混
合反応ガス噴出部が形成されていると共に、接地電極側
には、少なくともヘリウムまたは水素を含む不活性ガス
と酸素またはフルオロカーボン系の含フッ素化合物ガス
を含む反応性気体との混合反応ガスの供給通路が形成さ
れており、この混合反応ガス供給通路から上記放電ギャ
ップ及び混合反応ガス噴出部に向けて上記混合反応ガス
を大気圧もしくは大気圧近傍下で導入するとともに、両
電極に高周波電圧を印加して放電ギャップにグロー放電
プラズマを発生させることによって、その放電プラズマ
により生成される化学的に活性な励起種を含むガス流を
上記混合反応ガス噴出部の吹出口から被処理物の表面に
吹き出し照射させるように構成している大気圧プラズマ
処理装置において、上記混合反応ガス噴出部の吹出口に
対向する箇所に補助電極を配置し、この補助電極に直流
もしくは高周波のバイアス電圧を印加可能に構成してい
ることを特徴とするものである。In order to achieve the above object, an atmospheric pressure plasma processing apparatus according to the present invention comprises a plate-like high voltage electrode and a ground electrode opposed to the high voltage electrode with an insulator interposed therebetween. A discharge gap consisting of minute gaps and a mixed reactant gas ejection part are formed, and a reaction containing an inert gas containing at least helium or hydrogen and an oxygen or fluorocarbon-based fluorine-containing compound gas is provided on the ground electrode side. A supply path for a mixed reaction gas with a reactive gas is formed, and the mixed reaction gas is introduced from the mixed reaction gas supply path toward the discharge gap and the mixed reaction gas ejection section at or near atmospheric pressure. At the same time, a high frequency voltage is applied to both electrodes to generate a glow discharge plasma in a discharge gap, thereby being generated by the discharge plasma. An atmospheric pressure plasma processing apparatus configured to blow and irradiate a gas flow containing a chemically active excited species from an outlet of the mixed reaction gas outlet to the surface of the object to be processed; An auxiliary electrode is arranged at a position facing the air outlet of the above, and a DC or high frequency bias voltage can be applied to the auxiliary electrode.
【0007】上記構成の本発明によれば、板状高圧電極
と接地電極とを絶縁体を挟んで対向配置するという簡易
な組立手段で混合反応ガスの供給機能及びガス流噴出機
能を備えた電極部を構成することが可能で、低圧グロー
放電プラズマによる処理装置に比べて装置全体の小型
化、面積や厚み、形状など多種多様な被処理物に対する
適用性の拡充及び生産プロセスのインラインへの組込み
の容易性が図れる。According to the present invention having the above-described structure, an electrode having a function of supplying a mixed reaction gas and a function of ejecting a gas flow is provided by a simple assembling means in which a plate-like high-voltage electrode and a ground electrode are opposed to each other with an insulator interposed therebetween. It is possible to configure a part, compared to the processing equipment using low-pressure glow discharge plasma, to reduce the size of the entire equipment, expand the applicability to a wide variety of workpieces such as area, thickness, shape, and incorporate the production process inline Easiness can be achieved.
【0008】そのうえ、放電プラズマにより生成される
化学的に活性な励起種を含むガス流を被処理物の表面に
向けて吹出す混合反応ガス噴出部の吹出口に対向する箇
所に配置した補助電極に直流もしくは高周波のバイアス
電圧を印加することにより、両電極に印加する高周波電
圧をスパークやアーク放電などの異常放電に伴う電力ロ
スがない比較的低い値に設定して電力消費をできるだけ
節減しながらも、大気圧下でのグロー放電プラズマの発
生を確実、安定化するとともに、活性度を大きくして所
定の処理速度及び処理性能の向上を達成することが可能
である。それゆえにまた、処理速度を一定にしてバイア
ス電圧を調整することにより、被処理物に応じて処理性
能や処理範囲(厚み)を適宜コントロールすることも可
能であり、さらに、被処理物が不織布や多孔性フィルム
である場合は、バイアス電圧の調整によって内層部まで
処理することが可能となる。[0008] In addition, an auxiliary electrode disposed at a position opposite to the outlet of the mixed reaction gas outlet for blowing a gas flow containing a chemically active excited species generated by the discharge plasma toward the surface of the workpiece. By applying a DC or high frequency bias voltage to the electrodes, the high frequency voltage applied to both electrodes is set to a relatively low value with no power loss due to abnormal discharge such as spark or arc discharge, while reducing power consumption as much as possible. In addition, it is possible to reliably and stabilize the generation of the glow discharge plasma under the atmospheric pressure, and to increase the activity to achieve a predetermined improvement in the processing speed and processing performance. Therefore, by adjusting the bias voltage while keeping the processing speed constant, it is also possible to appropriately control the processing performance and the processing range (thickness) according to the object to be processed. In the case of a porous film, it is possible to process up to the inner layer by adjusting the bias voltage.
【0009】上述のように動作する大気圧プラズマ処理
装置における放電ギャップ及び混合反応ガス噴出部の形
成手段としては、請求項2に記載のように、中実帯板状
に形成されている高圧電極の短辺方向の一端側部分で、
その先端部に近付くほど漸次接近するように形成された
略二等辺三角形状部分の両側傾斜面と、高圧電極の厚み
方向の両側にそれぞれ絶縁体を挟んで対向配置された一
対の接地電極の短辺方向の一端部側で高圧電極の略二等
辺三角形状部分の両側傾斜面に各々対向するように形成
された傾斜面との間にそれぞれ形成する手段、あるい
は、請求項3に記載のように、平板状の高圧電極とそれ
と同形状の平板状でその全面に多数のガス流吹出孔を有
する接地電極とをそれら両電極の周辺部間に絶縁体を挟
んで対向配置することにより両電極間に形成する手段の
いずれであってもよい。The means for forming the discharge gap and the mixed reactant gas jetting part in the atmospheric pressure plasma processing apparatus operating as described above may be a high-pressure electrode formed in a solid strip plate shape. At one end in the short side direction of
The short sides of a pair of ground electrodes, which are arranged on both sides in the thickness direction of the high-voltage electrode and opposed to each other with an insulator interposed therebetween, are formed on both sides in the thickness direction of the high voltage electrode. 4. A means formed between the one end side in the side direction and the inclined surfaces formed so as to respectively oppose the inclined surfaces on both sides of the approximately isosceles triangular portion of the high voltage electrode, or as described in claim 3. A high-voltage electrode in the form of a plate and a ground electrode having the same shape as the plate and having a large number of gas flow blowing holes are opposed to each other by sandwiching an insulator between the peripheral portions of the two electrodes. Any of the means for forming an image may be used.
【0010】上記放電ギャップ及び混合反応ガス噴出部
の形成手段として、請求項2に記載の手段を採用する場
合は、混合反応ガス噴出部の両側吹出口から吹出される
ガス流同士を衝突させて途切れのない一直線状のガス流
を被処理物の表面全域に均等に作用させることが可能と
なり、バイアス電圧の印加作用と相俟って、所定の表面
処理を適正均一かつ非常に効率よく行なわせることがで
きる。In the case where the means according to the second aspect is employed as the means for forming the discharge gap and the mixed reaction gas ejection portion, the gas flows blown from both side outlets of the mixed reaction gas ejection portion are caused to collide with each other. An uninterrupted straight gas flow can be applied uniformly to the entire surface of the object to be processed, and together with the application of the bias voltage, the predetermined surface processing can be performed appropriately uniformly and very efficiently. be able to.
【0011】特に、請求項2の構成を採用した大気圧プ
ラズマ発生装置において、請求項4に記載のように、帯
板状高圧電極の略二等辺三角形状部分の両側傾斜面を含
む全面及び一対の接地電極の傾斜面を含む全面のうちの
少なくとも一方を絶縁体で被覆することにより、放電ギ
ャップでのスパークやアーク放電などの異常放電による
電力ロスを十分に抑制し、低い高周波電圧の印加でもグ
ロー放電プラズマを確実かつ安定よく発生させることが
でき、装置、特に電極の長期耐久性を維持しながらも、
所定の処理速度及び処理性能の向上を達成することがで
きる。[0011] In particular, in the atmospheric pressure plasma generator adopting the structure of claim 2, as described in claim 4, the whole surface including the inclined surfaces on both sides of the substantially isosceles triangular portion of the strip-shaped high-voltage electrode and a pair thereof. By covering at least one of the entire surface including the inclined surface of the ground electrode with an insulator, power loss due to abnormal discharge such as spark or arc discharge in the discharge gap is sufficiently suppressed, and even when a low high-frequency voltage is applied. Glow discharge plasma can be generated reliably and stably, and while maintaining the long-term durability of the device, especially the electrode,
It is possible to achieve predetermined processing speed and processing performance improvement.
【0012】また、上記放電ギャップ及び混合反応ガス
噴出部の形成手段として、請求項3に記載の手段を採用
する場合は、プラズマを偏平かつ広い放電ギャップの全
域に安定よく発生させて、放電ギャップの広い範囲から
ほぼ均質な中性励起種を含むガス流を吹出すとともに、
その広い範囲でのバイアス電圧の印加、調整によって、
表面改質等の所定の処理を高品質に効率よく行なうこと
ができる。In the case where the means according to the third aspect is employed as a means for forming the discharge gap and the mixed reactant gas jetting portion, the plasma is generated stably over the entire flat and wide discharge gap, and the discharge gap is formed. Blows out a gas stream containing almost homogeneous neutral excited species from a wide range of
By applying and adjusting the bias voltage in that wide range,
Predetermined treatments such as surface modification can be efficiently performed with high quality.
【0013】さらに、上記構成の大気圧プラズマ処理装
置において、請求項5に記載のように、高圧電極、接地
電極及び補助電極の内部にそれぞれ、冷却水循環用通路
を形成することによって、長時間に亘って表面処理を行
なう際の各電極の過熱を防いで所定の表面処理を連続的
に効率よく実行することが可能である。Further, in the atmospheric pressure plasma processing apparatus having the above-mentioned structure, a cooling water circulation passage is formed in each of the high-voltage electrode, the ground electrode and the auxiliary electrode for a long time. It is possible to continuously and efficiently execute a predetermined surface treatment by preventing overheating of each electrode during the surface treatment.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係るプラズマ処
理装置の第1の実施形態を示す側面図、図2はその底面
図、図3は図1のA−A線に沿った縦断正面図、図4は
図3の要部の拡大図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing a first embodiment of a plasma processing apparatus according to the present invention, FIG. 2 is a bottom view thereof, FIG. 3 is a vertical sectional front view taken along line AA of FIG. 1, and FIG. 3 is an enlarged view of a main part of FIG.
【0015】この第1の実施形態における大気圧プラズ
マ処理装置20は、基本的に、中実帯板状に形成された
高圧電極1と、この高圧電極1の厚み方向(図3のx−
x方向)の両側にそれぞれ、四弗化樹脂板など帯状の絶
縁板2,2を挟んで対向配置することで上記高圧電極1
に対し電気的に隔離してアース接地された表裏一対の帯
板状の接地電極3,3と、これら高圧電極1、接地電極
3,3及び絶縁板2,2のうち短辺方向(図3及び図5
のz−z方向)の一端部側で高圧電極1と接地電極3,
3との間に形成される後述の放電ギャップ15,15及
び混合反応ガス噴出通路16,16を除く全体を包囲す
るように角U字形状に形成されたアルミニウム製等のカ
バーケーシング4と、上記混合反応ガス噴出通路16,
16の下流側に形成された吹出口17に対向する箇所に
配置された補助電極21及びこの補助電極21に直流の
バイアス電圧を印加する直流電源22とからなる。An atmospheric pressure plasma processing apparatus 20 according to the first embodiment basically includes a high-voltage electrode 1 formed in a solid band shape and a thickness direction of the high-voltage electrode 1 (x-x in FIG. 3).
The high-voltage electrode 1 is disposed on both sides of the high-voltage electrode 1 in the x direction) by sandwiching band-shaped insulating plates 2 and 2 such as a tetrafluoride resin plate.
A pair of front and back strip-shaped ground electrodes 3 and 3 which are electrically isolated from each other and grounded, and a short side direction of the high voltage electrode 1, the ground electrodes 3 and 3 and the insulating plates 2 and 2 (FIG. And FIG.
High-voltage electrode 1 and ground electrode 3 at one end in the z-z direction).
And a cover casing 4 made of aluminum or the like formed in a square U shape so as to surround the whole except for discharge gaps 15 and 15 and mixed reactant gas ejection passages 16 and 16 to be described later formed between the cover casing 4 and the above. Mixed reaction gas ejection passage 16,
The auxiliary electrode 21 is provided at a position facing the air outlet 17 formed downstream of the auxiliary electrode 16 and a DC power supply 22 for applying a DC bias voltage to the auxiliary electrode 21.
【0016】上記高圧電極1の短辺方向(図3のz−z
方向)の一端部分1Aは、図3及び図4に示すように、
その両側面1a,1aが先端部に近付くほど漸次接近す
るような傾斜面となる略二等辺三角形状に形成され、そ
の先端部は円弧状の湾曲面1bに形成されている。この
略二等辺三角形状部分1Aの両側傾斜面1a,1a及び
先端湾曲面1bは、セラミックコーティングにより形成
される絶縁体9で被覆されている。The short side direction of the high voltage electrode 1 (z-z in FIG. 3)
Direction), as shown in FIG. 3 and FIG.
The sides 1a, 1a are formed in an approximately isosceles triangular shape having an inclined surface that gradually approaches as they approach the tip, and the tip is formed in an arcuate curved surface 1b. The inclined surfaces 1a, 1a on both sides and the curved end surface 1b of the substantially isosceles triangular portion 1A are covered with an insulator 9 formed by ceramic coating.
【0017】一方、一対の接地電極3,3の各中実内部
には、図5に示すように、電極長辺方向(図5のy−y
方向)の全長に亘る孔明け加工及びその孔両端部への栓
5の圧入固定(図6参照)によってヘリウムガスまたは
水素を含む不活性ガスと酸素またはフルオロカーボン系
の含フッ素化合物ガスを含む反応性気体との混合反応ガ
スを大気圧下で供給する反応ガス供給通路6,6が電極
長辺方向に沿わせて形成されているとともに、該反応ガ
ス供給通路6,6よりも上部の中実内部には、電極長辺
方向の全長に亘る孔明け加工及びその孔両端部への栓7
の圧入固定(図6参照)によって上記反応ガス供給通路
6,6に並行する状態の冷却水循環用通路8,8が形成
されている。なお、上記高圧電極1の中実内部には上記
接地電極3の冷却水循環用通路8と同様にして冷却水循
環用通路18が形成されているとともに、補助電極21
の内部にも冷却水循環用通路23が形成されている。On the other hand, as shown in FIG. 5, inside the solids of the pair of grounding electrodes 3 and 3, the direction of the long side of the electrode (yy in FIG. 5)
The inert gas containing helium gas or hydrogen and the reactive gas containing oxygen or a fluorocarbon-based fluorinated compound gas are formed by drilling the entire length of the hole (in the direction) and press-fitting and fixing the plug 5 to both ends of the hole (see FIG. 6). Reaction gas supply passages 6, 6 for supplying a reaction gas mixed with a gas under atmospheric pressure are formed along the long side direction of the electrode, and a solid internal portion above the reaction gas supply passages 6, 6 is formed. In the figure, a hole is formed over the entire length in the long side direction of the electrode, and plugs 7 are inserted into both ends of the hole.
The cooling water circulation passages 8, 8 are formed in parallel with the reaction gas supply passages 6, 6 by press-fitting (see FIG. 6). A cooling water circulation passage 18 is formed in the solid inside of the high voltage electrode 1 in the same manner as the cooling water circulation passage 8 of the ground electrode 3, and an auxiliary electrode 21 is formed.
A cooling water circulation passage 23 is also formed in the inside.
【0018】また、上記一対の接地電極3,3の短辺方
向(z−z方向)の一端部3A,3A側にはそれぞれ、
図3、図4及び図6に示すように、上記高圧電極1の略
二等辺三角形状部分1Aの両側傾斜面1a,1aに平行
状態で対向する傾斜面3a,3aが形成されている。こ
れら傾斜面3a,3aのうち、基端部及び長辺方向の両
端部を除く部分に切り込みが設けられており、その切り
込まれた傾斜面部分3a´,3a´と上記高圧電極1の
略二等辺三角形状部分1Aの両側傾斜面1a,1aとの
間にそれぞれ放電ギャップ15,15及び混合反応ガス
噴出通路16,16が形成され、これら噴出通路16,
16の下流側に被処理物表面に向けての吹出口17が形
成されているとともに、上記切り込み傾斜面部分3a
´,3a´を含む傾斜面3a,3aの全域、吹出口17
の両側面3b,3b及び先端外面3c,3cの全面も高
圧電極1と同様にセラミックコーティングにより形成さ
れる絶縁体9´で被覆されている。Further, one end 3A of the pair of ground electrodes 3, 3 in the short side direction (z-z direction) is
As shown in FIG. 3, FIG. 4, and FIG. 6, inclined surfaces 3a, 3a are formed in parallel with and opposed to the inclined surfaces 1a, 1a on both sides of the substantially isosceles triangular portion 1A of the high-voltage electrode 1. Of these inclined surfaces 3a, 3a, a cut is provided in a portion excluding the base end and both ends in the long side direction, and the cut inclined surface portions 3a ', 3a' and the high-voltage electrode 1 are roughly cut. Discharge gaps 15, 15 and mixed reaction gas ejection passages 16, 16 are formed between the inclined surfaces 1a, 1a of the isosceles triangular portion 1A, respectively.
A blow-out port 17 is formed on the downstream side of the workpiece 16 toward the surface of the workpiece, and the cut slope portion 3a is formed.
', 3a', the entire area of the inclined surfaces 3a, 3a,
The entire surfaces of both side surfaces 3b, 3b and tip outer surfaces 3c, 3c are also covered with an insulator 9 'formed of ceramic coating similarly to the high voltage electrode 1.
【0019】なお、高圧電極1の短辺方向一端側の略二
等辺三角形状部分1Aの両側傾斜面1a,1aの交差角
度θは、両側放電ギャップ15,15及び噴出通路1
6,16を通過して噴出されるガス流同士が吹出口17
よりも噴出方向(図4の矢印w方向)の下流位置で衝突
し合流する角度に設定されている。The intersection angle θ between the two inclined surfaces 1a, 1a of the approximately isosceles triangular portion 1A at one end in the short side direction of the high voltage electrode 1 is determined by the discharge gaps 15, 15 on both sides and the ejection passage 1
The gas flows ejected through the nozzles 6 and 16 form the outlet 17.
It is set at an angle at which it collides and merges at a downstream position in the ejection direction (the direction of the arrow w in FIG. 4).
【0020】さらに、上記接地電極3,3の短辺方向の
一端部3A,3Aの内部にはそれぞれ、電極長辺方向に
等間隔を隔てて、一端が上記反応ガス供給通路6に連通
接続し他端が傾斜面部分3a´,3a´に開口する複数
個の混合反応ガス吹出孔10…,10…が形成されてお
り、これら吹出孔10…,10…から上記高圧電極1の
傾斜面1a,1aと一対の接地電極3,3の傾斜面部分
3a´,3a´間に形成される両側放電ギャップ15,
15及び噴出通路16,16に混合反応ガスを導入し通
過させるとともに、高圧電極1に高周波電圧を印加する
ことにより、放電ギャップ15,15でのグロー放電プ
ラズマの発生に伴い生成される化学的に活性な励起種を
含むガス流(以下、プラズマフレアと称するものも含
む)を両側噴出通路16,16を通して吹出口17から
被処理物の表面に直線状に噴出するように構成されてい
る。Further, one ends of the ground electrodes 3 and 3 are connected to the reaction gas supply passage 6 at equal intervals in the long side direction of the electrodes, respectively, inside the one ends 3A and 3A in the short side direction. A plurality of mixed reaction gas blowout holes 10..., 10... Having the other ends open to the inclined surface portions 3 a ′, 3 a ′ are formed, and the slopes 1 a of the high-voltage electrode 1 are formed from these blowout holes 10. , 1a and the two-sided discharge gaps 15, formed between the inclined surface portions 3a ', 3a' of the pair of ground electrodes 3, 3,
By introducing and passing the mixed reaction gas through the discharge gaps 15 and the jet passages 16 and 16 and applying a high-frequency voltage to the high-voltage electrode 1, chemically generated gas is generated along with the generation of glow discharge plasma in the discharge gaps 15 and 15. A gas flow containing an active excited species (hereinafter also referred to as a plasma flare) is ejected linearly from the outlet 17 to the surface of the workpiece through the both-side ejection passages 16, 16.
【0021】次に、上記のように構成された第1の実施
形態による大気圧プラズマ処理装置20の使用形態及び
動作について説明する。図7に示すように、被処理物の
一例であるPTFEなどの樹脂シート材13を水平姿勢
に載置して連続搬送可能なコンベア14の搬送経路中間
位置の上部に大気圧プラズマ処理装置20を横断状態に
設置固定して使用される。そして、上記コンベア14に
よって樹脂シート材13を水平搬送させつつ、大気圧も
しくは大気圧近傍(弱減圧または弱加圧)圧力下で上記
反応ガス供給通路6,6に混合反応ガスを供給し、この
混合反応ガスを複数個のガス吹出し孔10…,10…を
通して高圧電極1と接地電極3,3との間に形成される
放電ギャップ部15,15に導入した状態で上記高圧電
極1に高周波電圧(10KHz〜500MHz)を印加
すると同時に補助電極21に直流電源22を介して直流
のバイアス電圧(0V〜−100V)を印加することに
よって、高周波電圧をスパークやアーク放電などの異常
放電に伴う電力ロスがない比較的低い値に設定しながら
も、大気圧下で反応活性の大きいグロー放電プラズマを
確実かつ安定よく発生させることが可能である。Next, the usage and operation of the atmospheric pressure plasma processing apparatus 20 according to the first embodiment configured as described above will be described. As shown in FIG. 7, an atmospheric pressure plasma processing apparatus 20 is placed above a transfer path intermediate position of a conveyor 14 capable of continuously transferring a resin sheet material 13 such as PTFE, which is an example of an object to be processed, placed in a horizontal position. It is installed and fixed in a transverse state. Then, while the resin sheet material 13 is horizontally conveyed by the conveyor 14, the mixed reaction gas is supplied to the reaction gas supply passages 6, 6 under the atmospheric pressure or a pressure close to the atmospheric pressure (weakly decompressed or weakly pressurized). A high-frequency voltage is applied to the high-voltage electrode 1 while the mixed reaction gas is introduced into the discharge gaps 15 formed between the high-voltage electrode 1 and the ground electrodes 3 and 3 through the plurality of gas blowing holes 10. (10 KHz to 500 MHz) and a DC bias voltage (0 V to -100 V) applied to the auxiliary electrode 21 via the DC power supply 22 at the same time, so that the high frequency voltage is changed to a power loss due to abnormal discharge such as spark or arc discharge. It is possible to reliably and stably generate glow discharge plasma with high reaction activity under atmospheric pressure while setting it at a relatively low value. .
【0022】このようにして発生される活性度の大きい
グロー放電プラズマにより生成されるイオン、ラジカル
などの化学的に活性な励起種を含むプラズマフレアは両
側噴出通路16,16を通して吹出口17に向けて流れ
た後、この吹出口17から樹脂シート材13の表面に向
け直線状に噴出されることになり、それら噴出プラズマ
フレア同士が樹脂シート材13の表面上で互いに衝突合
流されて途切れのない一直線状のプラズマフレアが樹脂
シート材13の表面全域に均等に作用されることによっ
て、樹脂シート材13の表面に対する親水化処理を高速
度に行なうことが可能である。The plasma flare containing chemically active excited species such as ions and radicals generated by the glow discharge plasma having high activity generated as described above is directed to the outlet 17 through the both-side ejection passages 16 and 16. After flowing, the blow-off port 17 is ejected linearly toward the surface of the resin sheet material 13, and the ejected plasma flares collide with each other on the surface of the resin sheet material 13 and are joined without interruption. Since the linear plasma flare is uniformly applied to the entire surface of the resin sheet material 13, the surface of the resin sheet material 13 can be hydrophilized at a high speed.
【0023】[0023]
【実験例】以下、本発明者らが行なった実験例をもとに
して本発明をさらに詳しく説明する。図1〜図6に示し
たような構成の大気圧プラズマ処理装置20を使用し、
表1に示すプラズマ処理条件のもとで、PET、PP,
ポリイミドの3種類の樹脂シート材表面に対し、比較例
として補助電極なしでバイアス電圧を印加しないNOB
IASと、バイアス印加電圧0V(接地もしくはフロー
ティング)及びバイアス印加電圧−100Vでの親水化
処理を行ない、各処理後の水滴接触角(°)を測定した
ところ、表2〜表4及び図8〜図10に示す結果が得ら
れた。なお、水滴接触角の測定には、協和界面科学
(株)製のCA−X150型を使用した。EXPERIMENTAL EXAMPLES The present invention will be described in more detail below based on experimental examples conducted by the present inventors. Using an atmospheric pressure plasma processing apparatus 20 having a configuration as shown in FIGS.
Under the plasma processing conditions shown in Table 1, PET, PP,
NOB which does not apply a bias voltage without an auxiliary electrode as a comparative example on the surface of three kinds of polyimide resin sheet materials
The IAS was subjected to a hydrophilization treatment at a bias applied voltage of 0 V (ground or floating) and a bias applied voltage of −100 V, and the water droplet contact angle (°) after each treatment was measured. Tables 2 to 4 and FIGS. The result shown in FIG. 10 was obtained. In addition, CA-X150 type manufactured by Kyowa Interface Science Co., Ltd. was used for measuring the water droplet contact angle.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【表4】 [Table 4]
【0028】なお、表2〜表4では、測定接触角を上下
三段に記載しているが、最上段が最少値、最下段が最大
値、中段が平均値を示し、照射後における測定時間の僅
かなずれや測定者による測定操作の違いによって測定値
に多少のばらつきが生じることは避けられない。In Tables 2 to 4, the measured contact angles are shown in the upper and lower three rows. The uppermost row shows the minimum value, the lowermost row shows the maximum value, and the middle row shows the average value. It is unavoidable that the measured values slightly vary due to slight deviations in the measurement and differences in the measurement operation by the operator.
【0029】上記の表2〜表4及び図8〜図10から明
らかなように、PET、PP、ポリイミドいずれの種類
の樹脂シート材を対象とするであっても、同じ照射時間
において比較例のNO BIASの場合よりもバイアス
印加電圧0V(接地もしくはフローティング)の方が接
触角は小さく、さらに、バイアス印加電圧0Vの場合よ
りもバイアス印加電圧−100Vの方が接触角が一層小
さくなり、親水化処理速度及び親水性能の向上を達成可
能であることが確認できた。このことから、処理速度を
一定とした場合、被処理物の種類に応じてバイアス印加
電圧を調整することで、処理性能や処理範囲(厚み)を
適宜にコントロールすることも可能であり、さらに、被
処理物が不織布や多孔性フィルムである場合、バイアス
電圧の調整によって内層部まで処理することが可能とな
ることも分かった。As is clear from Tables 2 to 4 and FIGS. 8 to 10, even if the target is a resin sheet material of any of PET, PP, and polyimide, the comparative example has the same irradiation time. The contact angle is smaller at a bias applied voltage of 0 V (ground or floating) than in the case of NO BIAS, and the contact angle is smaller at a bias applied voltage of −100 V than at a bias applied voltage of 0 V. It was confirmed that the processing speed and hydrophilic performance could be improved. From this, when the processing speed is constant, the processing performance and the processing range (thickness) can be appropriately controlled by adjusting the bias application voltage according to the type of the processing object. It was also found that when the object to be treated is a nonwoven fabric or a porous film, it is possible to treat the inner layer by adjusting the bias voltage.
【0030】図11ないし図13は本発明に係る大気圧
プラズマ処理装置の第2の実施形態を示す縦断正面図及
び半横断底面図であり、この第2の実施形態における大
気圧プラズマ処理装置30は、円形平板状に形成された
高圧電極1と、それと同形状の円形平板状でその全面に
多数のガス流吹出孔24(第1の実施形態の吹出口17
に対応する)がパンチング加工されたステンレス製パン
チングメタルなどの接地電極3とを、図13に示すよう
な薄い円板状絶縁体25及び円環状の絶縁リング体26
を挟んで対向配置することにより、両電極1,3間に微
小間隙からなる放電ギャップ15及び混合反応ガス噴出
通路16を形成するとともに、高圧電極1の外周部及び
円環状絶縁リング体26の外周部に配置された円筒状の
絶縁体27並びに高圧電極1の背面側に当接させた円環
状の絶縁体28の全体をアルミニウム製のカバーケーシ
ング29(第1の実施形態のカバーケーシング4に対応
する)で包囲させて構成されており、多数のガス流吹出
孔24に対向する箇所には直流電圧22によりバイアス
電圧を印加可能な円形状の補助電極21が配置されてい
る。FIGS. 11 to 13 are a vertical sectional front view and a half-cross sectional bottom view showing an atmospheric pressure plasma processing apparatus according to a second embodiment of the present invention. The atmospheric pressure plasma processing apparatus 30 according to the second embodiment is shown in FIGS. Is a high-voltage electrode 1 formed in a circular flat plate shape, and a circular flat plate shape having the same shape as the high-pressure electrode 1 and a large number of gas flow blowout holes 24 (the blowout holes 17 in the first embodiment).
13) and a thin disk-shaped insulator 25 and an annular insulating ring 26 as shown in FIG.
, A discharge gap 15 consisting of a minute gap and a mixed reaction gas ejection passage 16 are formed between the electrodes 1 and 3, and the outer periphery of the high-voltage electrode 1 and the outer periphery of the annular insulating ring member 26 are formed. The entirety of the cylindrical insulator 27 and the annular insulator 28 that is in contact with the back side of the high-voltage electrode 1 is covered with an aluminum cover casing 29 (corresponding to the cover casing 4 of the first embodiment). A circular auxiliary electrode 21 to which a bias voltage can be applied by a DC voltage 22 is disposed at a position facing a number of gas flow outlets 24.
【0031】この第2の実施形態の大気圧プラズマ処理
装置30では、一端が放電ギャップ15を形成する側と
は異なる側の表面に開口し、他端が円環状絶縁リング体
26に形成された環状溝31を経て混合反応ガス噴出通
路16に開口接続される反応ガス供給通路32(第1の
実施形態における反応ガス供給通路6に対応する)が高
圧電極1の中実内部に形成されているとともに、この反
応ガス供給通路32を避けた箇所の中実内部には、冷却
水循環用通路を有する水冷ジャケット33が組み込まれ
ている。In the atmospheric pressure plasma processing apparatus 30 of the second embodiment, one end is opened on the surface on the side different from the side where the discharge gap 15 is formed, and the other end is formed on the annular insulating ring body 26. A reaction gas supply passage 32 (corresponding to the reaction gas supply passage 6 in the first embodiment) that is opened and connected to the mixed reaction gas ejection passage 16 via the annular groove 31 is formed inside the solid inside of the high-pressure electrode 1. At the same time, a water cooling jacket 33 having a cooling water circulation passage is incorporated in a solid portion other than the reaction gas supply passage 32.
【0032】一方、補助電極21の内部には、図14及
び図15に例示するように、仕切壁34を介して冷却水
を外周側から内周側に向けて半円弧を描くように流入さ
せた後、内周側から外周側に半円弧を描くように流して
排出させる冷却水循環用通路35(第1の実施形態の通
路23に対応する)が形成されている。On the other hand, as illustrated in FIGS. 14 and 15, cooling water flows into the auxiliary electrode 21 from the outer peripheral side toward the inner peripheral side through a partition wall 34 so as to draw a semicircular arc. After that, a cooling water circulation passage 35 (corresponding to the passage 23 of the first embodiment) is formed to flow and discharge in a semicircular arc from the inner peripheral side to the outer peripheral side.
【0033】また、円環状の絶縁リング体26の円周方
向に等間隔を隔てた複数箇所には、図12に明示するよ
うに、上記環状溝31から混合反応ガス噴出通路16に
向けて電極1,3の中心を通る径方向に対して30〜6
0°の傾き角θを有する複数のスリット状ガス供給孔3
4が形成されており、これら複数のスリット状ガス供給
孔34から混合反応ガスを混合反応ガス吹出通路16に
噴出させることにより、放電ギャップ15及び混合反応
ガス噴出通路16内に矢印bで示すような旋回流を形成
するように構成している。As shown in FIG. 12, electrodes are provided at a plurality of locations on the annular insulating ring body 26 at equal intervals in the circumferential direction, from the annular groove 31 toward the mixed reaction gas ejection passage 16. 30 to 6 in the radial direction passing through the center of 1, 3
Plural slit-shaped gas supply holes 3 having an inclination angle θ of 0 °
4 are formed, and the mixed reactant gas is ejected from the plurality of slit-shaped gas supply holes 34 into the mixed reactant gas outlet passage 16 so as to be formed in the discharge gap 15 and the mixed reactant gas outlet passage 16 as shown by an arrow b. The swirling flow is formed.
【0034】上記第2の実施形態による大気圧プラズマ
処理装置30において、反応ガス供給通路32に供給さ
れた混合反応ガスは複数のスリット状ガス供給孔34を
通して放電ギャップ15及び混合反応ガス噴出通路16
内に噴出されることで矢印bで示すような旋回流を形成
することになり、その滞留時間を長く確保して放電ギャ
ップ15の全域に亘ってほぼ等しいガス分布及び圧力分
布が得られる。このような条件下で高圧電極1に高周波
電圧を印加すると同時に、補助電極21に直流電源22
を介して直流のバイアス電圧(0V〜−100V)を印
加することによって、高周波電圧をスパークやアーク放
電などの異常放電に伴う電力ロスがない比較的低い値に
設定しながらも、放電ギャップ15の全域に亘って均一
かつ反応活性の大きいグロー放電プラズマを確実かつ安
定よく発生させることが可能であり、このグロー放電プ
ラズマにより励起分解されたイオン、電子及び化学的に
活性な中性励起種を含む反応性ガス流を多数の吹出孔2
4から樹脂シート材13の表面に照射させることで、第
1の実施形態と同様に、樹脂シート材13の表面に対す
る親水化処理を高速度に行なうことが可能である。In the atmospheric pressure plasma processing apparatus 30 according to the second embodiment, the mixed reactant gas supplied to the reactant gas supply passage 32 passes through the plurality of slit-shaped gas supply holes 34 and the discharge gap 15 and the mixed reactant gas ejection passage 16.
As a result, a swirling flow as shown by an arrow b is formed, and the residence time of the swirling flow is long, so that substantially the same gas distribution and pressure distribution can be obtained over the entire discharge gap 15. Under such conditions, a high-frequency voltage is applied to the high-voltage electrode 1 and a DC power supply 22
By applying a DC bias voltage (0V to -100V) through the, the high-frequency voltage is set to a relatively low value without power loss due to abnormal discharge such as spark or arc discharge, and the discharge gap 15 It is possible to reliably and stably generate a glow discharge plasma that is uniform and has high reaction activity over the entire region, and includes ions, electrons, and chemically active neutral excited species that are excited and decomposed by the glow discharge plasma. The reactive gas flow is supplied to a number of outlets 2
By irradiating the surface of the resin sheet 13 from 4, it is possible to perform the hydrophilic treatment on the surface of the resin sheet 13 at a high speed, as in the first embodiment.
【0035】なお、上記第2の実施形態による大気圧プ
ラズマ処理装置30においては、複数のスリット状ガス
供給孔34を、電極1,3の中心を通る径方向に対して
30〜60°の傾き角θを有するように形成し、これに
よって、混合反応ガス噴出通路16内に噴出された混合
反応ガスに旋回流を形成させて、その滞留時間を長く確
保し放電ギャップ15の全域に亘ってほぼ等しいガス分
布及び圧力分布が得られるようにしたが、複数のスリッ
ト状ガス供給孔34を電極1,3の中心に向けて放射状
に形成してもよい。In the atmospheric pressure plasma processing apparatus 30 according to the second embodiment, the plurality of slit-shaped gas supply holes 34 are inclined at an angle of 30 to 60 ° with respect to the radial direction passing through the centers of the electrodes 1 and 3. Is formed so as to have an angle θ, whereby a swirling flow is formed in the mixed reaction gas ejected into the mixed reaction gas ejection passage 16, so that the residence time is ensured long and almost all over the discharge gap 15. Although the same gas distribution and pressure distribution are obtained, a plurality of slit-shaped gas supply holes 34 may be formed radially toward the centers of the electrodes 1 and 3.
【0036】また、上記各実施形態では、補助電極21
に印加するバイアス電圧として直流電圧を用いたが、交
流あるいは高周波電圧を印加してもよい。In each of the above embodiments, the auxiliary electrode 21
Although a DC voltage is used as a bias voltage to be applied to the power supply, an AC or a high-frequency voltage may be applied.
【0037】[0037]
【発明の効果】以上のように、本発明によれば、板状高
圧電極と接地電極とを絶縁体を挟んで対向配置するとい
う簡易な組立手段で混合反応ガスの供給機能及びガス流
噴出機能を備えた電極部を構成することが可能で、低圧
グロー放電プラズマによる処理装置に比べて、装置全体
の著しい小型軽量化および低コスト化、面積や厚み、形
状など多種多様な被処理物に対する適用性の拡充及び生
産プロセスのインラインへの組込みの容易性を図ること
ができる。As described above, according to the present invention, the function of supplying the mixed reaction gas and the function of jetting out the gas flow can be achieved by a simple assembling means in which the plate-shaped high-voltage electrode and the ground electrode are arranged to face each other with the insulator interposed therebetween. It is possible to configure the electrode part with the, and compared with the processing equipment using low-pressure glow discharge plasma, the whole equipment is remarkably smaller and lighter and the cost is lower, and it is applicable to a wide variety of workpieces such as area, thickness, and shape. It is possible to enhance the performance and facilitate the incorporation of the production process into the in-line.
【0038】しかも、放電プラズマにより生成される化
学的に活性な励起種を含むガス流を被処理物の表面に向
けて吹出す混合反応ガス噴出部の吹出口に対向する箇所
に配置した補助電極に直流もしくは高周波のバイアス電
圧を印加することにより、プラズマ発生用の高圧電極と
接地電極とに印加する高周波電圧をスパークやアーク放
電などの異常放電に伴う電力ロスがない比較的低い値に
設定して電力消費をできるだけ節減しながらも、大気圧
下でのグロー放電プラズマの発生を確実かつ安定化する
とともに、反応活性度を大きくして所定の処理速度及び
処理性能の向上を達成することができる。それゆえにま
た、処理速度を一定とした場合、バイアス電圧を調整す
ることにより、被処理物に応じて処理性能や処理範囲
(厚み)を適宜コントロールすることも可能であり、さ
らに、被処理物が不織布や多孔性フィルムである場合
は、バイアス電圧の調整によって内層部まで処理するこ
とができるという効果を奏する。In addition, an auxiliary electrode disposed at a position opposite to the outlet of the mixed reaction gas outlet for blowing a gas flow containing a chemically active excited species generated by the discharge plasma toward the surface of the workpiece. By applying a DC or high-frequency bias voltage to the high-voltage electrode and the ground electrode for plasma generation, the high-frequency voltage applied to the high-voltage electrode and the ground electrode is set to a relatively low value that does not cause power loss due to abnormal discharge such as spark or arc discharge. While reducing power consumption as much as possible, it is possible to reliably and stabilize the generation of glow discharge plasma under atmospheric pressure, and to increase the reaction activity to achieve a predetermined processing speed and an improvement in processing performance. . Therefore, when the processing speed is constant, the processing performance and the processing range (thickness) can be appropriately controlled in accordance with the processing target by adjusting the bias voltage. In the case of a nonwoven fabric or a porous film, there is an effect that the inner layer can be treated by adjusting the bias voltage.
【0039】また、請求項2に記載のような構成を採用
することにより上記効果に加えて、混合反応ガス噴出部
の両側吹出口から吹出されるガス流同士を衝突させて途
切れのない一直線状のガス流を被処理物の表面全域に均
等に作用させることが可能となり、バイアス電圧の印加
作用と相俟って、所定の表面処理を適正均一かつ非常に
効率よく行なわせることができ、さらに請求項4に記載
の構成を採用することで、電極の長期耐久性を維持しな
がらも、所定の処理速度及び処理性能の向上を達成する
ことができる。In addition to the above-mentioned effects, by adopting the configuration as set forth in claim 2, in addition to the above-mentioned effects, the gas flows blown from the both-side outlets of the mixed-reaction-gas blowing section collide with each other to form a continuous straight line. Can be applied uniformly over the entire surface of the object to be processed, and in combination with the application of the bias voltage, the predetermined surface treatment can be performed appropriately uniformly and very efficiently. By adopting the configuration of the fourth aspect, it is possible to achieve a predetermined improvement in processing speed and processing performance while maintaining long-term durability of the electrode.
【図1】本発明の第1の実施形態による大気圧プラズマ
処理装置の側面図である。FIG. 1 is a side view of an atmospheric pressure plasma processing apparatus according to a first embodiment of the present invention.
【図2】図1の底面図である。FIG. 2 is a bottom view of FIG.
【図3】図1のA−A線に沿った縦断正面図である。FIG. 3 is a vertical sectional front view taken along line AA of FIG. 1;
【図4】図3の要部の拡大図である。FIG. 4 is an enlarged view of a main part of FIG. 3;
【図5】図2のB−B線に沿った縦断側面図である。FIG. 5 is a longitudinal sectional side view taken along line BB of FIG. 2;
【図6】第1の実施形態による大気圧プラズマ処理装置
における接地電極の要部拡大斜視図である。FIG. 6 is an enlarged perspective view of a main part of a ground electrode in the atmospheric pressure plasma processing apparatus according to the first embodiment.
【図7】同上大気圧プラズマ処理装置の使用形態を示す
概略斜視図である。FIG. 7 is a schematic perspective view showing a usage mode of the atmospheric pressure plasma processing apparatus.
【図8】第1の実施形態による大気圧プラズマ処理装置
を用いた実験例のうち、PETを被処理物とした場合の
結果(照射時間−接触角の関係)を示すグラフである。FIG. 8 is a graph showing a result (a relationship between irradiation time and contact angle) when PET is used as an object to be processed in an experimental example using the atmospheric pressure plasma processing apparatus according to the first embodiment.
【図9】同上実験例のうち、PPを被処理物とした場合
の結果(照射時間−接触角の関係)を示すグラフであ
る。FIG. 9 is a graph showing the results (relationship between irradiation time and contact angle) when PP is used as an object to be processed in the experimental example.
【図10】同上実験例のうち、ポリイミドを被処理物と
した場合の結果(照射時間−接触角の関係)を示すグラ
フである。FIG. 10 is a graph showing the results (relationship between irradiation time and contact angle) in the case of using polyimide as an object to be processed in the experimental example.
【図11】本発明の第2の実施形態による大気圧プラズ
マ処理装置の縦断正面図である。FIG. 11 is a vertical sectional front view of an atmospheric pressure plasma processing apparatus according to a second embodiment of the present invention.
【図12】図11の半横断底面図である。FIG. 12 is a half-cross sectional bottom view of FIG. 11;
【図13】図11の要部の拡大縦断正面図である。FIG. 13 is an enlarged longitudinal sectional front view of a main part of FIG. 11;
【図14】第2の実施形態による大気圧プラズマ処理装
置における補助電極の一例を示す拡大平面図である。FIG. 14 is an enlarged plan view illustrating an example of an auxiliary electrode in an atmospheric pressure plasma processing apparatus according to a second embodiment.
【図15】図14のC−C線に沿った縦断正面図であ
る。FIG. 15 is a vertical sectional front view taken along line CC of FIG. 14;
1 高圧電極 1A 略二等辺三角形部分 1a 傾斜面 2 絶縁板 3 接地電極 3a 傾斜面 6,32 反応ガス供給通路 8,18,23,35 冷却水循環用通路 9,9´ 絶縁体 13 樹脂シート材 15 放電ギャツプ 16 混合反応ガス噴出通路 17 吹出口 21 補助電極 22 直流電源 24 ガス流吹出孔(吹出口に対応) REFERENCE SIGNS LIST 1 high voltage electrode 1A approximately isosceles triangular portion 1a inclined surface 2 insulating plate 3 ground electrode 3a inclined surface 6,32 reaction gas supply passage 8,18,23,35 cooling water circulation passage 9,9 'insulator 13 resin sheet material 15 Discharge gap 16 Mixed reaction gas ejection passage 17 Outlet 21 Auxiliary electrode 22 DC power supply 24 Gas flow outlet (corresponding to outlet)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05H 1/24 H05H 1/24 // C08L 101:00 C08L 101:00 (72)発明者 石倉 康哉 大阪府大阪市住之江区南加賀屋3丁目8番 13号 パール工業株式会社内 Fターム(参考) 3B116 AA02 AA46 AB14 BB24 BB88 4F073 AA01 BA06 BA07 BA08 BA16 CA01 CA07 4G075 AA24 BA05 BA10 BC10 CA03 CA15 CA25 CA47 CA62 CA63 DA02 EB31 EB41 EC21 ED11 FA20 FC15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05H 1/24 H05H 1/24 // C08L 101: 00 C08L 101: 00 (72) Inventor Yasuya Ishikura Osaka 3-8-13 Minamikagaya, Suminoe-ku, Osaka F-term in Pearl Industries Co., Ltd. 3B116 AA02 AA46 AB14 BB24 BB88 4F073 AA01 BA06 BA07 BA08 BA16 CA01 CA07 4G075 AA24 BA05 BA10 BC10 CA03 CA15 CA25 CA47 CA62 CA63 DA02 EB31EB EC21 ED11 FA20 FC15
Claims (5)
を挟んで対向配置された接地電極との間に微小隙間から
なる放電ギャップ及び混合反応ガス噴出部が形成されて
いると共に、 接地電極側には、少なくともヘリウムまたは水素を含む
不活性ガスと酸素またはフルオロカーボン系の含フッ素
化合物ガスを含む反応性気体との混合反応ガスの供給通
路が形成されており、 この混合反応ガス供給通路から上記放電ギャップ及び混
合反応ガス噴出部に向けて上記混合反応ガスを大気圧も
しくは大気圧近傍下で導入するとともに、両電極に高周
波電圧を印加して放電ギャップにグロー放電プラズマを
発生させることによって、その放電プラズマにより生成
される化学的に活性な励起種を含むガス流を上記混合反
応ガス噴出部の吹出口から被処理物の表面に吹き出し照
射させるように構成している大気圧プラズマ処理装置に
おいて、 上記混合反応ガス噴出部の吹出口に対向する箇所に補助
電極を配置し、この補助電極に直流もしくは高周波のバ
イアス電圧を印加可能に構成していることを特徴とする
大気圧プラズマ処理装置。A discharge gap comprising a minute gap and a mixed reaction gas ejection portion are formed between a plate-shaped high-voltage electrode and a ground electrode opposed to the high-voltage electrode with an insulator interposed therebetween. A supply passage for a mixed reaction gas of an inert gas containing at least helium or hydrogen and a reactive gas containing oxygen or a fluorocarbon-based fluorine-containing compound gas is formed on the electrode side. By introducing the mixed reaction gas under the atmospheric pressure or near the atmospheric pressure toward the discharge gap and the mixed reaction gas ejection portion, and applying a high frequency voltage to both electrodes to generate a glow discharge plasma in the discharge gap, The gas flow containing the chemically active excited species generated by the discharge plasma is passed through the outlet of the mixed reactant gas outlet to discharge the target object. In an atmospheric pressure plasma processing apparatus configured to blow and irradiate a surface, an auxiliary electrode is disposed at a position facing the outlet of the mixed reaction gas outlet, and a DC or high frequency bias voltage is applied to the auxiliary electrode. An atmospheric pressure plasma processing apparatus characterized in that it can be configured.
部が、中実帯板状に形成されている高圧電極の短辺方向
の一端側部分で、その先端部に近付くほど漸次接近する
ように形成された略二等辺三角形状部分の両側傾斜面
と、高圧電極の厚み方向の両側にそれぞれ絶縁体を挟ん
で対向配置された一対の接地電極の短辺方向の一端部側
で高圧電極の略二等辺三角形状部分の両側傾斜面に各々
対向するように形成された傾斜面との間にそれぞれ形成
されている請求項1に記載の大気圧プラズマ処理装置。2. The discharge gap and the mixed reactant gas ejection portion are formed at one end in the short side direction of a high-voltage electrode formed in a solid band plate shape so as to gradually approach the tip portion. The two inclined surfaces of the substantially isosceles triangular portion and the two ends of the high voltage electrode at one end in the short side direction of a pair of ground electrodes opposed to each other with an insulator on both sides in the thickness direction of the high voltage electrode. The atmospheric pressure plasma processing apparatus according to claim 1, wherein the atmospheric pressure plasma processing apparatus is formed between inclined surfaces formed opposite to the inclined surfaces on both sides of the equilateral triangular portion.
部が、平板状の高圧電極とそれと同形状の平板状でその
全面に多数のガス流吹出孔を有する接地電極とをそれら
両電極の周辺部間に絶縁体を挟んで対向配置することに
より、両電極間に形成されている請求項1に記載の大気
圧プラズマ処理装置。3. The discharge gap and the mixed reactant gas ejection part are formed by a flat plate-shaped high-voltage electrode and a grounded electrode having the same shape as the plate-shaped electrode and having a large number of gas flow blowing holes on the entire surface thereof. 2. The atmospheric pressure plasma processing apparatus according to claim 1, wherein the apparatus is disposed between both electrodes by being opposed to each other with an insulator interposed therebetween.
部分の両側傾斜面を含む全面及び一対の接地電極の傾斜
面を含む全面のうちの少なくとも一方が絶縁体で被覆さ
れている請求項2に記載の大気圧プラズマ処理装置。4. An insulator covering at least one of the entire surface including the inclined surfaces on both sides of the substantially isosceles triangular portion of the strip-shaped high voltage electrode and the entire surface including the inclined surfaces of the pair of ground electrodes. Item 3. An atmospheric pressure plasma processing apparatus according to item 2.
内部にはそれぞれ、冷却水循環用通路が形成されている
請求項1ないし4のいずれかに記載の大気圧プラズマ処
理装置。5. The atmospheric pressure plasma processing apparatus according to claim 1, wherein a cooling water circulation passage is formed inside each of the high voltage electrode, the ground electrode, and the auxiliary electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208160A JP2002018276A (en) | 2000-07-10 | 2000-07-10 | Atmospheric pressure plasma treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208160A JP2002018276A (en) | 2000-07-10 | 2000-07-10 | Atmospheric pressure plasma treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002018276A true JP2002018276A (en) | 2002-01-22 |
Family
ID=18704789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000208160A Pending JP2002018276A (en) | 2000-07-10 | 2000-07-10 | Atmospheric pressure plasma treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002018276A (en) |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004021748A1 (en) * | 2002-08-30 | 2004-03-11 | Sekisui Chemical Co., Ltd. | Plasma processing system |
JP2004259484A (en) * | 2003-02-24 | 2004-09-16 | Sharp Corp | Plasma processing unit |
KR100462772B1 (en) * | 2002-12-02 | 2004-12-23 | 에이치아이티 주식회사 | Cleaning apparatus using plasma |
JP2005019150A (en) * | 2003-06-25 | 2005-01-20 | Sekisui Chem Co Ltd | Atmospheric pressure plasma processing device |
JP2005108482A (en) * | 2003-09-29 | 2005-04-21 | E Square:Kk | Plasma surface treatment device |
JP2005243600A (en) * | 2003-06-04 | 2005-09-08 | Sekisui Chem Co Ltd | Plasma processing apparatus |
JP2005238219A (en) * | 2003-06-04 | 2005-09-08 | Sekisui Chem Co Ltd | Plasma treatment apparatus |
JP2005268170A (en) * | 2004-03-22 | 2005-09-29 | Sharp Corp | Plasma processing device |
JP2006019067A (en) * | 2004-06-30 | 2006-01-19 | Sharp Corp | Plasma treatment device and plasma treatment method |
JP2006073342A (en) * | 2004-09-02 | 2006-03-16 | E Square:Kk | Plasma surface treatment device |
KR100572858B1 (en) * | 2004-01-30 | 2006-04-24 | (주)창조엔지니어링 | Atmospheric pressure bulk plasma generator |
JP2006128085A (en) * | 2004-09-29 | 2006-05-18 | Sekisui Chem Co Ltd | Plasma treatment device |
KR100603434B1 (en) | 2004-12-30 | 2006-07-20 | (주)프로닉스 | Cleaning Apparatus using plasma generating device |
JP2006303075A (en) * | 2005-04-19 | 2006-11-02 | E Square:Kk | Method and device for drying substrate |
KR100662210B1 (en) | 2006-01-24 | 2006-12-28 | 주식회사 셈테크놀러지 | Apparatus of nozzle type for treating the surface of a substrate with plasma in atmospheric pressure |
WO2007016999A2 (en) * | 2005-06-24 | 2007-02-15 | Softal Electronic Erik Blumenfeld Gmbh & Co. Kg | Method for treating plasma under continuous atmospheric pressure of work pieces, in particular, material plates or strips |
JP2007048661A (en) * | 2005-08-11 | 2007-02-22 | Sharp Corp | Plasma forming electrode, plasma treatment device, and plasma treatment method |
KR100693818B1 (en) | 2004-01-30 | 2007-03-12 | (주)창조엔지니어링 | Cold atmospheric pressure plasma generator for a wide surface plasma treatment |
JP2008161772A (en) * | 2006-12-27 | 2008-07-17 | Gyoseiin Genshino Iinkai Kakuno Kenkyusho | Atmospheric plasma cleaning apparatus |
US20100068413A1 (en) * | 2008-09-17 | 2010-03-18 | Synos Technology, Inc. | Vapor deposition reactor using plasma and method for forming thin film using the same |
JP2010059308A (en) * | 2008-09-03 | 2010-03-18 | Fujimori Kogyo Co Ltd | Surface-modified resin film and method for modifying surface of resin film |
JP2010518555A (en) * | 2007-02-02 | 2010-05-27 | バンクォン カン | Uniform atmospheric pressure plasma generator |
US7886689B2 (en) | 2004-09-29 | 2011-02-15 | Sekisui Chemical Co., Ltd. | Plasma processing apparatus |
KR101030712B1 (en) | 2009-08-25 | 2011-04-26 | 글로벌텍 주식회사 | Plasma processing device |
WO2011038344A3 (en) * | 2009-09-28 | 2011-07-28 | Lam Research Corporation | Unitized confinement ring arrangements and methods thereof |
US8142608B2 (en) * | 2007-09-11 | 2012-03-27 | Atomic Energy Council—Institute of Nuclear Energy Research | Atmospheric pressure plasma reactor |
US8758512B2 (en) | 2009-06-08 | 2014-06-24 | Veeco Ald Inc. | Vapor deposition reactor and method for forming thin film |
US8771791B2 (en) | 2010-10-18 | 2014-07-08 | Veeco Ald Inc. | Deposition of layer using depositing apparatus with reciprocating susceptor |
US8770142B2 (en) | 2008-09-17 | 2014-07-08 | Veeco Ald Inc. | Electrode for generating plasma and plasma generator |
US8871628B2 (en) | 2009-01-21 | 2014-10-28 | Veeco Ald Inc. | Electrode structure, device comprising the same and method for forming electrode structure |
US8877300B2 (en) | 2011-02-16 | 2014-11-04 | Veeco Ald Inc. | Atomic layer deposition using radicals of gas mixture |
US8895108B2 (en) | 2009-02-23 | 2014-11-25 | Veeco Ald Inc. | Method for forming thin film using radicals generated by plasma |
US9163310B2 (en) | 2011-02-18 | 2015-10-20 | Veeco Ald Inc. | Enhanced deposition of layer on substrate using radicals |
EP2960358A1 (en) * | 2014-06-25 | 2015-12-30 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and surface treatment method |
WO2016186431A1 (en) * | 2015-05-20 | 2016-11-24 | 주식회사 플라즈맵 | Linear dielectric barrier discharge plasma generating device for surface treatment |
WO2017135571A1 (en) * | 2016-02-02 | 2017-08-10 | Plasmapp Co., Ltd. | Linear plasma generator for selective surface treatment |
WO2017164508A1 (en) * | 2016-03-24 | 2017-09-28 | 주식회사 플라즈맵 | Linear plasma generating device having high degree of space selectivity |
KR101843770B1 (en) | 2017-05-12 | 2018-03-30 | 주식회사 플라즈맵 | Linear type plasma source for selective surface treatment |
JP2019075364A (en) * | 2017-09-04 | 2019-05-16 | コリア ベーシック サイエンス インスティテュート | Plasma apparatus having dual-type plasma discharge unit |
WO2019245372A1 (en) * | 2018-06-21 | 2019-12-26 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Plasma source and method of operating the same |
CN112717739A (en) * | 2020-12-04 | 2021-04-30 | 中国科学技术大学 | Chemical substance mixing device and method suitable for high-speed flow field environment |
JP7561055B2 (en) | 2021-02-19 | 2024-10-03 | グンゼ株式会社 | Method for manufacturing conductive film, and corona discharge treated conductive film |
-
2000
- 2000-07-10 JP JP2000208160A patent/JP2002018276A/en active Pending
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004021748A1 (en) * | 2002-08-30 | 2004-03-11 | Sekisui Chemical Co., Ltd. | Plasma processing system |
US7762209B2 (en) | 2002-08-30 | 2010-07-27 | Sekisui Chemical Co., Ltd. | Plasma processing apparatus |
US7322313B2 (en) | 2002-08-30 | 2008-01-29 | Sekisui Chemical Co., Ltd. | Plasma processing system |
KR100462772B1 (en) * | 2002-12-02 | 2004-12-23 | 에이치아이티 주식회사 | Cleaning apparatus using plasma |
JP2004259484A (en) * | 2003-02-24 | 2004-09-16 | Sharp Corp | Plasma processing unit |
JP2005243600A (en) * | 2003-06-04 | 2005-09-08 | Sekisui Chem Co Ltd | Plasma processing apparatus |
JP2005238219A (en) * | 2003-06-04 | 2005-09-08 | Sekisui Chem Co Ltd | Plasma treatment apparatus |
JP2005019150A (en) * | 2003-06-25 | 2005-01-20 | Sekisui Chem Co Ltd | Atmospheric pressure plasma processing device |
JP2005108482A (en) * | 2003-09-29 | 2005-04-21 | E Square:Kk | Plasma surface treatment device |
JP4579522B2 (en) * | 2003-09-29 | 2010-11-10 | 株式会社イー・スクエア | Plasma surface treatment equipment |
KR100572858B1 (en) * | 2004-01-30 | 2006-04-24 | (주)창조엔지니어링 | Atmospheric pressure bulk plasma generator |
KR100693818B1 (en) | 2004-01-30 | 2007-03-12 | (주)창조엔지니어링 | Cold atmospheric pressure plasma generator for a wide surface plasma treatment |
KR100768374B1 (en) | 2004-03-22 | 2007-10-18 | 샤프 가부시키가이샤 | Plasma Processing Apparatus |
JP2005268170A (en) * | 2004-03-22 | 2005-09-29 | Sharp Corp | Plasma processing device |
JP2006019067A (en) * | 2004-06-30 | 2006-01-19 | Sharp Corp | Plasma treatment device and plasma treatment method |
JP2006073342A (en) * | 2004-09-02 | 2006-03-16 | E Square:Kk | Plasma surface treatment device |
US7886688B2 (en) | 2004-09-29 | 2011-02-15 | Sekisui Chemical Co., Ltd. | Plasma processing apparatus |
JP2006128085A (en) * | 2004-09-29 | 2006-05-18 | Sekisui Chem Co Ltd | Plasma treatment device |
JP4499005B2 (en) * | 2004-09-29 | 2010-07-07 | 積水化学工業株式会社 | Plasma processing equipment |
US7886689B2 (en) | 2004-09-29 | 2011-02-15 | Sekisui Chemical Co., Ltd. | Plasma processing apparatus |
KR100603434B1 (en) | 2004-12-30 | 2006-07-20 | (주)프로닉스 | Cleaning Apparatus using plasma generating device |
JP2006303075A (en) * | 2005-04-19 | 2006-11-02 | E Square:Kk | Method and device for drying substrate |
WO2007016999A2 (en) * | 2005-06-24 | 2007-02-15 | Softal Electronic Erik Blumenfeld Gmbh & Co. Kg | Method for treating plasma under continuous atmospheric pressure of work pieces, in particular, material plates or strips |
WO2007016999A3 (en) * | 2005-06-24 | 2009-09-03 | Softal Electronic Erik Blumenfeld Gmbh & Co. Kg | Method for treating plasma under continuous atmospheric pressure of work pieces, in particular, material plates or strips |
JP4693544B2 (en) * | 2005-08-11 | 2011-06-01 | シャープ株式会社 | Plasma generating electrode, plasma processing apparatus, and plasma processing method |
JP2007048661A (en) * | 2005-08-11 | 2007-02-22 | Sharp Corp | Plasma forming electrode, plasma treatment device, and plasma treatment method |
KR100662210B1 (en) | 2006-01-24 | 2006-12-28 | 주식회사 셈테크놀러지 | Apparatus of nozzle type for treating the surface of a substrate with plasma in atmospheric pressure |
JP2008161772A (en) * | 2006-12-27 | 2008-07-17 | Gyoseiin Genshino Iinkai Kakuno Kenkyusho | Atmospheric plasma cleaning apparatus |
JP2010518555A (en) * | 2007-02-02 | 2010-05-27 | バンクォン カン | Uniform atmospheric pressure plasma generator |
US8142608B2 (en) * | 2007-09-11 | 2012-03-27 | Atomic Energy Council—Institute of Nuclear Energy Research | Atmospheric pressure plasma reactor |
JP2010059308A (en) * | 2008-09-03 | 2010-03-18 | Fujimori Kogyo Co Ltd | Surface-modified resin film and method for modifying surface of resin film |
US20100068413A1 (en) * | 2008-09-17 | 2010-03-18 | Synos Technology, Inc. | Vapor deposition reactor using plasma and method for forming thin film using the same |
US8770142B2 (en) | 2008-09-17 | 2014-07-08 | Veeco Ald Inc. | Electrode for generating plasma and plasma generator |
US8851012B2 (en) * | 2008-09-17 | 2014-10-07 | Veeco Ald Inc. | Vapor deposition reactor using plasma and method for forming thin film using the same |
US8871628B2 (en) | 2009-01-21 | 2014-10-28 | Veeco Ald Inc. | Electrode structure, device comprising the same and method for forming electrode structure |
US8895108B2 (en) | 2009-02-23 | 2014-11-25 | Veeco Ald Inc. | Method for forming thin film using radicals generated by plasma |
US8758512B2 (en) | 2009-06-08 | 2014-06-24 | Veeco Ald Inc. | Vapor deposition reactor and method for forming thin film |
KR101030712B1 (en) | 2009-08-25 | 2011-04-26 | 글로벌텍 주식회사 | Plasma processing device |
WO2011038344A3 (en) * | 2009-09-28 | 2011-07-28 | Lam Research Corporation | Unitized confinement ring arrangements and methods thereof |
US8771791B2 (en) | 2010-10-18 | 2014-07-08 | Veeco Ald Inc. | Deposition of layer using depositing apparatus with reciprocating susceptor |
US8877300B2 (en) | 2011-02-16 | 2014-11-04 | Veeco Ald Inc. | Atomic layer deposition using radicals of gas mixture |
US9163310B2 (en) | 2011-02-18 | 2015-10-20 | Veeco Ald Inc. | Enhanced deposition of layer on substrate using radicals |
WO2015199539A1 (en) * | 2014-06-25 | 2015-12-30 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Plasma source and surface treatment method |
US11352696B2 (en) | 2014-06-25 | 2022-06-07 | Nederlandse Organisatie Voor Toegepast—Natuurwetenschappelijk Onderzoek Tno | Plasma source and surface treatment method |
EP2960358A1 (en) * | 2014-06-25 | 2015-12-30 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and surface treatment method |
WO2016186431A1 (en) * | 2015-05-20 | 2016-11-24 | 주식회사 플라즈맵 | Linear dielectric barrier discharge plasma generating device for surface treatment |
KR20160136551A (en) * | 2015-05-20 | 2016-11-30 | 주식회사 플라즈맵 | Linear type Dielectric barrier discharge plasma source for surface treatment |
KR101682903B1 (en) * | 2015-05-20 | 2016-12-20 | 주식회사 플라즈맵 | Linear type Dielectric barrier discharge plasma source for surface treatment |
CN107624268A (en) * | 2015-05-20 | 2018-01-23 | 普拉斯有限公司 | Linear medium barrier discharge plasma generating means for surface treatment |
CN107624268B (en) * | 2015-05-20 | 2019-11-05 | 普拉斯有限公司 | Linear medium barrier discharge plasma generating device for surface treatment |
WO2017135571A1 (en) * | 2016-02-02 | 2017-08-10 | Plasmapp Co., Ltd. | Linear plasma generator for selective surface treatment |
KR101774816B1 (en) * | 2016-02-02 | 2017-09-06 | 주식회사 플라즈맵 | Linear type plasma source for selective surface treatment |
WO2017164508A1 (en) * | 2016-03-24 | 2017-09-28 | 주식회사 플라즈맵 | Linear plasma generating device having high degree of space selectivity |
KR101804561B1 (en) * | 2016-03-24 | 2017-12-06 | 주식회사 플라즈맵 | Linear type plasma source with high spatial selectivity |
KR101843770B1 (en) | 2017-05-12 | 2018-03-30 | 주식회사 플라즈맵 | Linear type plasma source for selective surface treatment |
JP2019075364A (en) * | 2017-09-04 | 2019-05-16 | コリア ベーシック サイエンス インスティテュート | Plasma apparatus having dual-type plasma discharge unit |
EP3588533A1 (en) * | 2018-06-21 | 2020-01-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and method of operating the same |
JP2021529416A (en) * | 2018-06-21 | 2021-10-28 | ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO | Plasma source and its operation method |
WO2019245372A1 (en) * | 2018-06-21 | 2019-12-26 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Plasma source and method of operating the same |
US11610764B2 (en) | 2018-06-21 | 2023-03-21 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Plasma source and method of operating the same |
JP7295892B2 (en) | 2018-06-21 | 2023-06-21 | ネーデルランセ オルハニサチエ フォール トゥーヘパスト-ナツールウェーテンシャッペルック オンデルズク テーエヌオー | Plasma source and method of operation |
CN112717739A (en) * | 2020-12-04 | 2021-04-30 | 中国科学技术大学 | Chemical substance mixing device and method suitable for high-speed flow field environment |
JP7561055B2 (en) | 2021-02-19 | 2024-10-03 | グンゼ株式会社 | Method for manufacturing conductive film, and corona discharge treated conductive film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002018276A (en) | Atmospheric pressure plasma treatment apparatus | |
US8328982B1 (en) | Low-temperature, converging, reactive gas source and method of use | |
JP7355872B2 (en) | Dual channel shower head with improved profile | |
TWI647978B (en) | Atmospheric-pressure plasma processing apparatus and method | |
EP2153704B1 (en) | Enhancing plasma surface modification using high intensity and high power ultrasonic acoustic waves | |
US20090200267A1 (en) | Injection type plasma treatment apparatus and method | |
US20100006226A1 (en) | Apparatus for generating hollow cathode plasma and apparatus for treating large area substrate using hollow cathode plasma | |
US20080193329A1 (en) | Method and System for Plasma Treatment Under High Pressure | |
JP2005095744A (en) | Surface treatment method of insulating member, and surface treatment apparatus for insulating member | |
US9474141B1 (en) | Arc atmospheric pressure plasma device | |
JP2010212424A (en) | Shower head and plasma processing apparatus | |
WO2020021831A1 (en) | Plasma generation device | |
JP2010009890A (en) | Plasma processing device | |
JP3154058B2 (en) | Swirling type atmospheric pressure plasma processing system | |
TWI778081B (en) | Gas exhaust plate and plasma processing apparatus | |
RU2196394C1 (en) | Method and device for plasma treatment of material and plasma generation process | |
US20210225621A1 (en) | Two-Phased Atmospheric Plasma Generator | |
JP4103565B2 (en) | Surface treatment apparatus and surface treatment method | |
KR100788505B1 (en) | Injection type plasma treatment apparatus | |
JP2006277953A (en) | Plasma formation device and plasma treatment device as well as plasma formation method and plasma treatment method | |
JP3984514B2 (en) | Plasma processing apparatus and plasma processing method | |
KR100578136B1 (en) | Plasma enhanced semiconductor deposition apparatus | |
US20230158517A1 (en) | Shower head electrode assembly and plasma processing apparatus | |
JP2000302902A (en) | Continuous plasma-treating and surface processing method | |
JPH11333287A (en) | Plain plate-type plasma treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091027 |