[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002016329A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method

Info

Publication number
JP2002016329A
JP2002016329A JP2000197387A JP2000197387A JP2002016329A JP 2002016329 A JP2002016329 A JP 2002016329A JP 2000197387 A JP2000197387 A JP 2000197387A JP 2000197387 A JP2000197387 A JP 2000197387A JP 2002016329 A JP2002016329 A JP 2002016329A
Authority
JP
Japan
Prior art keywords
wiring layer
wiring board
insulating substrate
thin film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197387A
Other languages
Japanese (ja)
Other versions
JP4557382B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197387A priority Critical patent/JP4557382B2/en
Publication of JP2002016329A publication Critical patent/JP2002016329A/en
Application granted granted Critical
Publication of JP4557382B2 publication Critical patent/JP4557382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board that has a smoothing surface, and an insulating board where a fine thin-film wiring layer with low resistance and uniform thickness is formed. SOLUTION: A wiring board X where a thin-film wiring layer 1 is formed is manufactured. In this case, the thin-film wiring layer 1 contains a glass phase containing SiO2, Al2O3, MgO, SrO, and CaO, diopside-type oxide crystal phase, and at least one kind of crystal phases selected from a group of at least Al2O3, MgSiO3, AlN, and MgTiO3, and also contains at least one kind selected from a group of Cu, Ag, and Au on the surface of an insulating board 3 made of ceramics with an opening porosity of 0.3% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁基板の表面に
薄膜配線層が形成された配線基板に関し、特に、薄膜配
線層が良好に形成可能な平滑な表面を有する絶縁基板を
具備する配線基板およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board having a thin film wiring layer formed on the surface of an insulating substrate, and more particularly to a wiring board having an insulating substrate having a smooth surface on which a thin film wiring layer can be formed satisfactorily. And a method of manufacturing the same.

【0002】[0002]

【従来技術】従来、配線基板は、例えば、アルミナ質セ
ラミックス等によって形成された絶縁基板と、この絶縁
基板の表面および/または表面に同時焼成されたメタラ
イズ配線層とを有し、また、絶縁基板表面に低抵抗で微
細なパターンの配線が可能な薄膜配線層を形成するに
は、例えば前記絶縁基板表面を研磨して平滑にした後、
該絶縁基板表面に薄膜形成法によって、クロム、チタ
ン、タンタル、銅などの金属からなる薄膜配線層とポリ
イミド等の有機高分子材料からなる絶縁膜を積層するこ
とによって形成される。
2. Description of the Related Art Conventionally, a wiring substrate has an insulating substrate formed of, for example, alumina ceramics, and a surface of the insulating substrate and / or a metallized wiring layer co-fired on the surface. In order to form a thin-film wiring layer capable of wiring a fine pattern with low resistance on the surface, for example, after polishing and smoothing the surface of the insulating substrate,
It is formed by laminating a thin film wiring layer made of a metal such as chromium, titanium, tantalum, or copper and an insulating film made of an organic polymer material such as polyimide on the surface of the insulating substrate by a thin film forming method.

【0003】ここで、配線基板を構成する絶縁基板はそ
の焼成温度が約1600℃と高温であるために絶縁基板
内部に形成されるメタライズ配線層としては、高融点金
属のタングステン、モリブデン等が用いられる。
[0003] Here, since the baking temperature of the insulating substrate constituting the wiring substrate is as high as about 1600 ° C., tungsten, molybdenum or the like of a high melting point metal is used as the metallized wiring layer formed inside the insulating substrate. Can be

【0004】前記のような従来の絶縁基板を構成するア
ルミナ質セラミックスは、その誘電率が高く、信号の高
速な伝播が行なえない。さらに、メタライズ配線層を構
成する上記高融点金属はその電気抵抗が高いので、同様
に高速に信号を伝播させることが出来ない。そこで、誘
電率が低くかつ焼成温度が1000℃以下の低温焼成可
能なガラスセラミックスを絶縁基板とし、導体として電
気抵抗の低いCuやAgを用いることが提案されてい
る。
[0004] Alumina ceramics constituting the conventional insulating substrate as described above has a high dielectric constant and cannot transmit signals at high speed. Further, since the high melting point metal constituting the metallized wiring layer has a high electric resistance, a signal cannot be similarly propagated at high speed. Therefore, it has been proposed to use a glass ceramic having a low dielectric constant and a low firing temperature of 1000 ° C. or less as an insulating substrate and using Cu or Ag having a low electric resistance as a conductor.

【0005】例えば、本出願人は特開平10−2121
36号公報において、リチウム珪酸系等のガラスとSi
2系のフィラーとの混合物を含むグリーンシート表面
にCuの導体配線層を形成して1000℃以下で焼成し
て配線基板を作製することを提案した。
[0005] For example, the present applicant has disclosed in
In JP-A-36-36, lithium silicate glass or the like and Si
It has been proposed that a copper wiring layer be formed on the surface of a green sheet containing a mixture with an O 2 -based filler and fired at 1000 ° C. or lower to produce a wiring substrate.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、絶縁基
板を上記リチウム珪酸系等のガラスとSiO2系のフィ
ラーとを含むガラスセラミックスで構成した場合では、
絶縁基板中に多量のボイドが存在し基板表面の平滑性が
損なわれることから、表面に形成する薄膜配線層の位置
精度が低下して微細配線化することができず、また、均
一な厚みの薄膜配線層を形成することができず、配線層
内を伝送する信号のインピーダンス特性が悪化して高周
波信号の反射が大きくなって信号を良好に伝送すること
ができないという問題があった。
However, when the insulating substrate is made of glass ceramics containing the above-mentioned glass such as lithium silicate and the filler of SiO 2 system,
Since a large amount of voids are present in the insulating substrate and the smoothness of the substrate surface is impaired, the positional accuracy of the thin film wiring layer formed on the surface is reduced, so that fine wiring cannot be performed. There is a problem that the thin film wiring layer cannot be formed, the impedance characteristics of the signal transmitted in the wiring layer deteriorate, the reflection of the high-frequency signal increases, and the signal cannot be transmitted well.

【0007】また、ボイドにより基板の平滑性が損なわ
れる結果、高周波信号が主に通過する薄膜配線層界面の
凹凸が大きくなって高周波帯での配線抵抗が増加するこ
とから、導体損失が増大して高周波信号の伝送特性が悪
くなるという問題もあった。
Also, as a result of the voids impairing the smoothness of the substrate, the unevenness of the interface of the thin film wiring layer through which high-frequency signals mainly pass is increased and the wiring resistance in the high-frequency band is increased. Therefore, there is a problem that the transmission characteristics of the high-frequency signal are deteriorated.

【0008】従って、本発明は、表面に、微細かつ均一
な厚みを有する薄膜配線を被着形成し、特に高周波信号
の導体損失を小さくすることができる絶縁基板を有する
配線基板およびその製造方法を提供することを目的とす
るものである。
Accordingly, the present invention provides a wiring substrate having an insulating substrate capable of reducing the conductor loss of high-frequency signals by forming a thin film wiring having a fine and uniform thickness on the surface, and a method of manufacturing the same. It is intended to provide.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の課題
に対して種々検討を行なった結果、SiO2、Al
2 3、MgO、SrOおよびCaOを含むディオプサイ
ド型酸化物結晶相を析出可能なガラスと、フィラーとし
て少なくともAl23、MgSiO3、AlN、MgT
iO3の群から選ばれる少なくとも1種との混合物を、
成形後、焼成したボイドの少ない絶縁基板表面に薄膜配
線層を形成することによって、微細で、低抵抗で、良好
なインピーダンス特性を有し、高周波信号の導体損失を
低減することができる配線層を有する配線基板を作製で
きることを知見した。
Means for Solving the Problems The present inventor has set forth the above object.
As a result of various studies onTwo, Al
TwoO ThreeContaining Si, MgO, SrO and CaO
Glass capable of precipitating oxide-type oxide crystal phase and filler
At least AlTwoOThree, MgSiOThree, AlN, MgT
iOThreeA mixture with at least one selected from the group of
After molding, a thin film is deposited on the fired insulating substrate surface with few voids.
By forming a line layer, fine, low resistance, good
Has high impedance characteristics and reduces conductor loss of high frequency signals.
The production of wiring boards with wiring layers that can be reduced
I learned that

【0010】すなわち、本発明の配線基板は、Si
2、Al23、MgO、SrOおよびCaOを含むガ
ラス相およびディオプサイド型酸化物結晶相と、少なく
ともAl 23、MgSiO3、AlN、MgTiO3の群
から選ばれる少なくとも1種の結晶相とを含有し、開気
孔率0.3%以下のセラミックスからなる絶縁基板の表
面に、Cu、AgおよびAuの群から選ばれる少なくと
も1種を含有する薄膜配線層を形成してなることを特徴
とするものである。
That is, the wiring board of the present invention is made of Si
OTwo, AlTwoOThreeContaining MgO, MgO, SrO and CaO
Lath phase and diopside oxide crystal phase
And Al TwoOThree, MgSiOThree, AlN, MgTiOThreeGroup of
Containing at least one crystal phase selected from the group consisting of
Table of insulating substrates made of ceramics with a porosity of 0.3% or less
On the surface, at least one selected from the group consisting of Cu, Ag and Au
Characterized by forming a thin film wiring layer containing one type
It is assumed that.

【0011】ここで、前記薄膜配線層が形成される前記
絶縁基板の表面の焼肌面での表面粗さ(Ra)が0.1
μm以下であることが望ましく、また、前記絶縁基板の
60〜77GHzにおける誘電損失が50×10-4
下、前記絶縁基板表面に形成される薄膜配線層の110
GHz以下における伝送特性S21が−1.5dB/cm
以下であることが望ましい。
Here, the surface roughness (Ra) of the surface of the insulating substrate on which the thin film wiring layer is to be formed is 0.1 to 0.1.
μm or less, the dielectric loss of the insulating substrate at 60 to 77 GHz is 50 × 10 −4 or less, and the dielectric loss of the thin film wiring layer formed on the surface of the insulating substrate is 110 × 10 −4 or less.
Transmission characteristics S 21 in GHz or less is -1.5 dB / cm
It is desirable that:

【0012】さらに、前記絶縁基板が複数層形成され、
かつ該絶縁基板間にCuまたはAgを主成分とする内部
配線層を形成してなることが望ましい。
Further, a plurality of the insulating substrates are formed,
It is preferable that an internal wiring layer containing Cu or Ag as a main component is formed between the insulating substrates.

【0013】また、本発明の配線基板の製造方法は、S
iO2、Al23、MgO、SrOおよびCaOを含む
ディオプサイド型酸化物結晶相を析出可能なガラスを4
0〜95重量%と、フィラーとして少なくともAl
23、MgSiO3、AlN、MgTiO3の群から選ば
れる少なくとも1種を5〜60重量%との割合で含有す
る混合物を成形してグリーンシートを作製し、800〜
1000℃にて0.2〜5時間加熱して焼成し、開気孔
率0.3%以下のセラミックスからなる絶縁基板を作製
した後、薄膜形成法によって、該絶縁基板の表面に、C
u、AgおよびAuの群から選ばれる少なくとも1種を
含有する薄膜配線層を形成することを特徴とするもので
ある。
Further, the method for manufacturing a wiring board according to the present invention
A glass capable of precipitating a diopside oxide crystal phase containing iO 2 , Al 2 O 3 , MgO, SrO, and CaO
0 to 95% by weight and at least Al as a filler
A green sheet is formed by molding a mixture containing at least one selected from the group consisting of 2 O 3 , MgSiO 3 , AlN, and MgTiO 3 at a ratio of 5 to 60% by weight to produce a green sheet.
After baking by heating at 1000 ° C. for 0.2 to 5 hours to produce an insulating substrate made of ceramics having an open porosity of 0.3% or less, C is applied to the surface of the insulating substrate by a thin film forming method.
A thin film wiring layer containing at least one selected from the group consisting of u, Ag and Au is formed.

【0014】ここで、前記ガラスが、SiO230〜5
5重量%と、Al234〜15重量%と、MgO14〜
30重量%と、CaO5〜20重量%と、SrO10〜
25重量%とからなることが望ましい。
Here, the glass is made of SiO 2 30 to 5
5% by weight, 4 to 15% by weight of Al 2 O 3 ,
30% by weight, 5-20% by weight of CaO, 10% by weight of SrO10
It is desirably 25% by weight.

【0015】また、前記グリーンシート表面にCuまた
はAgを含有する導体配線層を形成して積層後、焼成し
て内部配線層を形成することが望ましい。
It is preferable that a conductor wiring layer containing Cu or Ag is formed on the surface of the green sheet, laminated, and fired to form an internal wiring layer.

【0016】[0016]

【発明の実施の形態】以下、本発明について実施例を示
す添付図面に基づき詳細に説明する。図1は、本発明の
配線基板の応用の一例である多層配線基板からなる半導
体素子収納用パッケージの表面に形成される多層配線層
の構造を説明するための一部拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings showing embodiments. FIG. 1 is a partially enlarged cross-sectional view for explaining the structure of a multilayer wiring layer formed on the surface of a semiconductor element housing package formed of a multilayer wiring board, which is an example of application of the wiring board of the present invention.

【0017】かかる構成についてさらに詳細に説明する
と、図1に示すように、パッケージAは、配線基板Xと
その表面に形成される薄膜金属層1と絶縁膜2との積層
構造からなる多層配線層Yとから構成され、多層配線層
Yは配線基板Xの絶縁基板3表面に、薄膜金属層−絶縁
膜−・・・−絶縁膜−薄膜金属層の順で、薄膜金属層と
絶縁膜とが交互に積層された構造からなり、図1によれ
ば薄膜金属層1a、1b、1cが形成されており、絶縁
膜2の一部が除去された位置にて、薄膜金属層1a−1
b、1b−1cとが電気的に接続された構造からなる。
そして、半導体素子4の電極端子5は、この多層配線層
Yの最表面の薄膜金属層1aに実装接続されている。
The structure will be described in more detail. As shown in FIG. 1, a package A has a multilayer wiring layer having a laminated structure of a wiring board X and a thin film metal layer 1 and an insulating film 2 formed on the surface thereof. The multilayer wiring layer Y is formed on the surface of the insulating substrate 3 of the wiring substrate X, and the thin film metal layer and the insulating film are formed in the order of the thin film metal layer, the insulating film,. According to FIG. 1, the thin film metal layers 1a, 1b, and 1c are formed, and the thin film metal layers 1a-1 are formed at positions where a part of the insulating film 2 is removed.
b, 1b-1c.
The electrode terminals 5 of the semiconductor element 4 are mounted and connected to the thin film metal layer 1a on the outermost surface of the multilayer wiring layer Y.

【0018】本発明によれば、上記の構造のパッケージ
Aを構成する多層配線基板において、絶縁基板3がSi
2、Al23、MgO、SrOおよびCaOを含むガ
ラスおよびディオプサイド型酸化物結晶相と、フィラー
として、Al23、MgSiO3、AlN、MgTiO3
の群から選ばれる少なくとも1種とを含有し、開気孔率
0.3%以下のガラスセラミックスからなることが大き
な特徴である。
According to the present invention, in the multilayer wiring board constituting the package A having the above structure, the insulating substrate 3 is made of Si.
Glass and diopside oxide crystal phase containing O 2 , Al 2 O 3 , MgO, SrO and CaO, and Al 2 O 3 , MgSiO 3 , AlN, MgTiO 3 as filler
It is a great feature that it is made of a glass ceramic containing at least one selected from the group consisting of: and having an open porosity of 0.3% or less.

【0019】本発明によれば、SiO2、Al23、M
gO、CaOを含み、Ca(Mg,Al)(Si,A
l)26のディオプサイド型酸化物結晶相を析出可能な
ガラス中にSrOを含有せしめるとともに、フィラーと
して、Al23、MgSiO3、AlN、MgTiO3
群から選ばれる少なくとも1種とを組み合わせ、所定の
条件で焼成することによって、セラミックスの開気孔率
を0.3%以下、特に0.2%以下に低減してガラスセ
ラミックスの表面を平滑にできる結果、その表面にC
u、AgおよびAuの群から選ばれる少なくとも1種の
低抵抗金属を含有する、例えば、配線幅75μm以下、
配線間の間隔が75μm以下の微細で低抵抗な薄膜配線
層を均一な厚みで精度よく形成できる。すなわち、絶縁
基板3の開気孔率が0.3%を越えると、Cu、Agま
たはAuを含有する薄膜配線層の位置精度が低下して、
微細配線ができないとともに、配線層の厚みがばらつ
き、配線層内を伝送する信号のインピーダンス特性が悪
化し、高周波信号の伝送特性が劣化する。
According to the present invention, SiO 2 , Al 2 O 3 , M
gO, CaO, Ca (Mg, Al) (Si, A
l) SrO is contained in a glass capable of precipitating a diopside oxide crystal phase of 2 O 6 , and at least one selected from the group consisting of Al 2 O 3 , MgSiO 3 , AlN and MgTiO 3 as a filler By firing under predetermined conditions, the open porosity of the ceramic can be reduced to 0.3% or less, particularly 0.2% or less, and the surface of the glass ceramic can be smoothed.
containing at least one low-resistance metal selected from the group consisting of u, Ag and Au, for example, a wiring width of 75 μm or less;
A fine, low-resistance thin-film wiring layer having an interval between wirings of 75 μm or less can be accurately formed with a uniform thickness. That is, when the open porosity of the insulating substrate 3 exceeds 0.3%, the positional accuracy of the thin film wiring layer containing Cu, Ag or Au decreases,
Fine wiring cannot be performed, the thickness of the wiring layer varies, the impedance characteristics of signals transmitted in the wiring layer deteriorate, and the transmission characteristics of high-frequency signals deteriorate.

【0020】また、セラミックスの研磨工程を省いて生
産性を高め、工程を簡略化するため、ガラスセラミック
スの焼肌面での表面粗さ(Ra)が0.1μm以下、特
に0.05μm以下であることが望ましい。
Also, in order to improve productivity and simplify the process by omitting the polishing step of the ceramics, the surface roughness (Ra) of the glass ceramic on the burnt surface should be 0.1 μm or less, particularly 0.05 μm or less. Desirably.

【0021】なお、ガラスセラミックス中のボイドを低
減して開気孔率を小さくするため、高周波帯での誘電損
失を低減するために、ガラス中のアルカリ金属、Ba
O、B 23の含有量が、酸化物換算でそれぞれ5重量%
以下、特に1重量%以下であることが望ましい。
It should be noted that voids in glass ceramics are reduced.
Dielectric loss in the high frequency band to reduce the open porosity
To reduce the loss, the alkali metal in the glass, Ba
O, B TwoOThreeIs 5% by weight in oxide conversion
It is desirable that the content is not more than 1% by weight.

【0022】また、本発明によれば、上記ガラスに対し
て、フィラーとして少なくともAl 23、MgSi
3、AlN、MgTiO3の群から選ばれる少なくとも
1種を、望ましくは5〜60重量%、特に10〜50重
量%、さらに30〜40重量%の割合で添加、分散させ
るが、ガラスとの濡れ性を高めて焼結性を高める点、ボ
イド発生の抑制、セラミックスの高強度化、低誘電損失
化の点で、その平均粒径は2〜10μm、特に3〜7μ
mであることが望ましく、その形状は球状でもよいが、
高強度化、低誘電損失化の点で針状あるいは板状のアス
ペクト比が3以上の異方性粒子であってもよい。
Further, according to the present invention, the above glass
And at least Al as a filler TwoOThree, MgSi
OThree, AlN, MgTiOThreeAt least selected from the group of
One kind is desirably 5 to 60% by weight, particularly 10 to 50% by weight.
%, And then added and dispersed in a proportion of 30 to 40% by weight.
However, it is important to improve the wettability with glass to improve sinterability.
Suppression of void generation, high strength ceramics, low dielectric loss
The average particle size is from 2 to 10 μm, especially from 3 to 7 μm
m, and the shape may be spherical,
Needle-shaped or plate-shaped asbestos for high strength and low dielectric loss
Anisotropic particles having a pect ratio of 3 or more may be used.

【0023】なお、上記フィラーを含有させないとボイ
ドの発生率の増加、セラミックスの磁器強度の低下とい
う問題がある。
Unless the above filler is contained, there is a problem that the rate of generation of voids increases and the ceramic strength of ceramics decreases.

【0024】また、多層配線層Yにおける薄膜金属層1
は、Cu、AgおよびAuの群から選ばれる少なくとも
1種の低抵抗金属を含み、他の成分としてTi、W、M
o、Cr、Ni、Taの群から選ばれる少なくとも1種
の金属層が複数に積層された構造からなることが望まし
い。なお、上記の薄膜金属層1のうち、配線基板Xの表
面に直接形成される薄膜金属層1c中に接着強度を高め
るために0.1〜3μm、特に0.3〜1.5μmの厚
みのWもしくはMoを含有する金属層を形成することが
望ましく、これによって薄膜金属層の配線基板への密着
強度を高めることができる。
The thin metal layer 1 in the multilayer wiring layer Y
Contains at least one low-resistance metal selected from the group consisting of Cu, Ag and Au, and includes Ti, W, and M as other components.
It is desirable to have a structure in which at least one type of metal layer selected from the group consisting of o, Cr, Ni, and Ta is laminated in a plurality. In order to increase the adhesive strength in the thin film metal layer 1c formed directly on the surface of the wiring board X, the thickness of the thin film metal layer 1 is preferably 0.1 to 3 μm, particularly 0.3 to 1.5 μm. It is desirable to form a metal layer containing W or Mo, whereby the adhesion strength of the thin film metal layer to the wiring board can be increased.

【0025】また、上記W,Mo含有層は、Wおよび/
またはMoを50重量%以上、特に70重量%以上含有
することが望ましく、特にTiとの合金層からなること
が望ましい。
Further, the W and Mo-containing layer contains W and / or
Alternatively, it is desirable that Mo be contained in an amount of 50% by weight or more, particularly 70% by weight or more, and it is particularly preferable that the layer be made of an alloy layer with Ti.

【0026】また、薄膜金属層1cは、Cu層とW,M
o含有層との積層体でもよいが、配線基板Xにおける絶
縁基板3との接着力を高める上で、配線基板X表面に厚
さ0.05〜0.5μmのTi層を介してW,Mo含有
層を積層し、さらに主導体層として厚さ1〜10μmの
Cu含有層を形成し、全体として1.5〜15μmの厚
みとすることが望ましい。また、絶縁膜2との密着性を
高める上で絶縁膜と接触する表面にCr層を形成しても
よい。
The thin-film metal layer 1c is composed of a Cu layer and W, M
Although a laminate with an o-containing layer may be used, in order to increase the adhesive strength between the wiring substrate X and the insulating substrate 3, W, Mo is interposed on the surface of the wiring substrate X via a 0.05 to 0.5 μm thick Ti layer. It is desirable that a Cu-containing layer having a thickness of 1 to 10 μm is formed as a main conductor layer by laminating the Cu-containing layers, and the thickness is 1.5 to 15 μm as a whole. Further, a Cr layer may be formed on the surface in contact with the insulating film in order to enhance the adhesion to the insulating film 2.

【0027】さらに薄膜金属層1a,1bとしては、少
なくとも1〜10μmのCu、AgおよびAuの群から
選ばれる少なくとも1種の金属層を含み、さらに、T
i、W、Mo、Cr、Ni、Taの群から選ばれる少な
くとも1種の金属層を具備することが望ましく、特に、
Cu層と絶縁膜2との間にCr層を介在させることによ
って絶縁膜との接着力を高めることができる。また、同
様に薄膜金属層1a、1bの厚みは1.5〜15μmが
適当である。
Further, the thin-film metal layers 1a and 1b include at least one metal layer selected from the group consisting of Cu, Ag and Au having a thickness of at least 1 to 10 μm.
It is desirable to include at least one metal layer selected from the group consisting of i, W, Mo, Cr, Ni, and Ta.
By interposing a Cr layer between the Cu layer and the insulating film 2, the adhesive strength with the insulating film can be increased. Similarly, the thickness of the thin film metal layers 1a and 1b is suitably 1.5 to 15 μm.

【0028】また、多層配線層Yにおける絶縁膜2とし
ては、ポリイミド系、エポキシ系の有機高分子材料など
が用いることができるが、とりわけ、ポリイミド系有機
高分子材料を用いることによって、ポリイミド系の有機
高分子材料の線熱膨張係数が約20ppm/℃であるた
めに、絶縁基板3と絶縁膜2と線熱膨張係数差が小さく
なることによって、絶縁基板3がアルミナセラミックス
の場合に比べ、線熱膨張係数差によって発生する配線基
板の反りを低減させることができる。この絶縁膜2の厚
みは、1〜10μmであることが適当である。
As the insulating film 2 in the multilayer wiring layer Y, a polyimide-based or epoxy-based organic polymer material can be used. In particular, by using a polyimide-based organic polymer material, a polyimide-based organic polymer material can be used. Since the linear thermal expansion coefficient of the organic polymer material is about 20 ppm / ° C., the difference in the linear thermal expansion coefficient between the insulating substrate 3 and the insulating film 2 is reduced. The warpage of the wiring board caused by the difference in thermal expansion coefficient can be reduced. It is appropriate that the thickness of the insulating film 2 is 1 to 10 μm.

【0029】図1における半導体素子収納用パッケージ
Aは、少なくとも1層の絶縁基板3からなる配線基板X
とその表面に形成された多層配線層Yとから構成されて
いる。このパッケージAの表面には、半導体素子4が搭
載されており、半導体素子4はその下面に形成された電
極端子5とパッケージA表面の配線層と電気的に接続さ
れている。また、パッケージAの下面には、図2に示す
ように、外部回路基板Bへ電気的に接続するための接続
端子6が設けられており、外部回路基板B表面の配線導
体と電気的に接続されることによってパッケージAは外
部回路基板Bに実装される。
The package A for housing semiconductor elements in FIG. 1 is a wiring board X comprising at least one layer of an insulating substrate 3.
And a multilayer wiring layer Y formed on the surface thereof. The semiconductor element 4 is mounted on the surface of the package A, and the semiconductor element 4 is electrically connected to the electrode terminals 5 formed on the lower surface and the wiring layer on the surface of the package A. As shown in FIG. 2, connection terminals 6 for electrically connecting to the external circuit board B are provided on the lower surface of the package A, and are electrically connected to the wiring conductors on the surface of the external circuit board B. As a result, the package A is mounted on the external circuit board B.

【0030】なお、通常、上記の電極端子5や接続端子
6は、半田などのロウ材によって形成されることが望ま
しく、パッケージAが図1のようなBGA型パッケージ
の場合には、接続端子6は半田ボールによって形成され
る。
Usually, it is desirable that the above-mentioned electrode terminals 5 and connection terminals 6 are formed of a brazing material such as solder. When the package A is a BGA type package as shown in FIG. Are formed by solder balls.

【0031】また、外部回路基板Bは、例えば、少なく
とも有機樹脂を含む絶縁材料からなり、具体的には、ガ
ラス−エポキシ系複合材料からなり、一般には線熱膨張
係数が13〜16ppm/℃のプリント基板等が用いら
れ、この絶縁基板の表面にCu、Au、Al、Ni、P
b−Snなどの金属導体からなる配線が形成されてい
る。
The external circuit board B is made of, for example, an insulating material containing at least an organic resin, specifically, a glass-epoxy composite material, and generally has a linear thermal expansion coefficient of 13 to 16 ppm / ° C. A printed circuit board or the like is used, and Cu, Au, Al, Ni, P
A wiring made of a metal conductor such as b-Sn is formed.

【0032】また、パッケージAの裏面には外部回路基
板Bとの接続用のメタライズパッド7が形成されてお
り、多層配線層Y最表面の薄膜金属層1aとは、多層配
線層Y内の薄膜金属層1b、1cや絶縁基板3を貫通し
て形成されたビアホール導体8を介して電気的に接続さ
れている。
A metallized pad 7 for connection to the external circuit board B is formed on the back surface of the package A. The thin metal layer 1a on the outermost surface of the multilayer wiring layer Y is different from the thin metal layer 1a in the multilayer wiring layer Y. They are electrically connected via via-hole conductors 8 formed through the metal layers 1 b and 1 c and the insulating substrate 3.

【0033】(配線基板の製造方法)上記のガラスセラ
ミックスを用いてビアホール導体8やメタライズパッド
7を有する配線基板を作製するには、まず、例えば、平
均粒径1〜10μmの上記のガラス成分を40〜95重
量%、特に50〜90重量%、さらに60〜70重量%
と平均粒径2〜10μmのフィラー成分を5〜60重量
%、特に10〜50重量%、さらに30〜40重量%と
の混合物に適当な成形の有機樹脂バインダーを添加した
後、所望の成形手段、例えば、金型プレス、冷間静水圧
プレス、射出成形、押出し成形、ドクターブレード法、
カレンダーロール法、圧延法等により任意の形状に成形
する。特にグリーンシートを作製するには、ドクターブ
レード法が好適である。
(Method of Manufacturing Wiring Board) In order to manufacture a wiring board having via-hole conductors 8 and metallized pads 7 using the above-described glass ceramic, first, for example, the above-mentioned glass component having an average particle size of 1 to 10 μm is mixed with the above glass component. 40-95% by weight, especially 50-90% by weight, further 60-70% by weight
After adding an appropriate organic resin binder to a mixture of 5 to 60% by weight, particularly 10 to 50% by weight, and more preferably 30 to 40% by weight of a filler component having an average particle size of 2 to 10 μm, For example, mold press, cold isostatic press, injection molding, extrusion molding, doctor blade method,
It is formed into an arbitrary shape by a calender roll method, a rolling method, or the like. In particular, a doctor blade method is suitable for producing a green sheet.

【0034】次に、このセラミックグリーンシートにビ
アホール導体8を形成するための貫通穴を形成してその
貫通穴内に、特に銅または銀を主成分とする導体ペース
トを充填するとともに、導体ペーストをスクリーン印刷
法等によって、メタライズパッド7のパターンを形成す
る。そして、必要に応じて上記と同様にしてメタライズ
配線層やビアホール導体を形成したグリーンシートを積
層する。
Next, a through-hole for forming a via-hole conductor 8 is formed in the ceramic green sheet, and the through-hole is filled with a conductive paste containing copper or silver as a main component. The pattern of the metallized pad 7 is formed by a printing method or the like. Then, if necessary, a green sheet having a metallized wiring layer and a via-hole conductor formed thereon is laminated in the same manner as described above.

【0035】また、メタライズ配線層の形成方法は上記
印刷法に限定されるものではなく、表面に形成した所定
の配線パターンの金属箔を形成した転写フィルムを前記
グリーンシート表面に転写することによって形成するこ
ともできる。
The method of forming the metallized wiring layer is not limited to the printing method described above, but is formed by transferring a transfer film on which a metal foil of a predetermined wiring pattern formed on the surface is transferred to the surface of the green sheet. You can also.

【0036】次に、上記の成形体の焼成するにあたり、
まず、成形のために配合したバインダー成分を除去す
る。バインダーの除去は、700℃前後の大気雰囲気中
で行われるが、導体材料として例えばCuを用いる場合
には、100〜700℃の水蒸気を含有する窒素雰囲気
中で行われる。この時、成形体の収縮開始温度は700
〜850℃程度であることが望ましく、かかる収縮開始
温度がこれより低いとバインダーの除去が困難となるた
め、成形体中の結晶化ガラスの特性、特に屈伏点を前述
したように制御することが必要となる。
Next, in firing the above-mentioned molded body,
First, the binder component blended for molding is removed. The removal of the binder is performed in an air atmosphere at about 700 ° C., for example, when Cu is used as the conductive material, the removal is performed in a nitrogen atmosphere containing steam at 100 to 700 ° C. At this time, the shrinkage start temperature of the molded body is 700
It is preferable that the temperature is about 850 ° C., and if the shrinkage onset temperature is lower than the above range, it becomes difficult to remove the binder. Required.

【0037】そして、800〜1000℃の酸化性雰囲
気または非酸化性雰囲気中で0.2〜5時間、特に0.
5〜2時間焼成することによって、焼成後のガラスセラ
ミックスの開気孔率0.3%以下、特に0.2%以下、
また、ガラスセラミックス内部の気孔率3%以下、特に
1%以下となる。すなわち、上記焼成温度が800℃よ
り低いか、焼成時間が0.2時間より短いと、ガラスセ
ラミックスを緻密化することができず開気孔率が多くな
り、逆に焼成温度が1000℃を越えるか、焼成時間が
5時間より長いと、ガラスセラミックス中のボイドが再
度多くなるためである。
Then, in an oxidizing atmosphere or a non-oxidizing atmosphere at a temperature of 800 to 1000 ° C. for 0.2 to 5 hours, in particular, at 0.degree.
By firing for 5 to 2 hours, the open porosity of the fired glass ceramic is 0.3% or less, particularly 0.2% or less,
The porosity inside the glass ceramic is 3% or less, particularly 1% or less. That is, if the firing temperature is lower than 800 ° C. or the firing time is shorter than 0.2 hours, the glass ceramics cannot be densified and the open porosity increases, and conversely, the firing temperature exceeds 1000 ° C. If the firing time is longer than 5 hours, voids in the glass ceramics increase again.

【0038】なお、上記焼成についてはCu等の導体材
料と同時焼成する場合には、導体材料が酸化しない、窒
素、窒素/水素混合雰囲気などの非酸化性雰囲気中で焼
成される。これによって、メタライズパッド7及びビア
ホール導体8を有する配線基板Xが得られる。
When the above-mentioned firing is performed simultaneously with a conductive material such as Cu, the firing is performed in a non-oxidizing atmosphere such as a nitrogen or nitrogen / hydrogen mixed atmosphere where the conductive material is not oxidized. Thus, a wiring board X having the metallized pads 7 and the via-hole conductors 8 is obtained.

【0039】なお、上記のようにして作製されるガラス
セラミックス中には、ガラス成分から生成した結晶相、
ガラス成分とフィラー成分との反応により生成した結晶
相、あるいはフィラー成分、あるいはフィラー成分が分
解して生成した結晶相等が存在し、これらの結晶相の粒
界にはガラス相が存在する。 (多層配線層)本発明によれば、上記の絶縁基板3の表
面に、多層配線層Yを形成する。この多層配線層Yは以
下の工程によって形成される。 (1)配線基板Xの上面全面に、所定の金属からなる薄
膜金属層をスパッタリング法、イオンプレーティング
法、真空蒸着法等の薄膜法によって異なる蒸着源を用い
ながら複数の金属層からなる薄膜金属層を1.5〜15
μmの厚みで成膜する。次に、この薄膜上に感光性フォ
トレジストを一面に塗布する。そして周知のフォトリソ
グラフィー技術によりエッチングマスクを作成し、薄膜
金属層の一部を酸性エッチング液、あるいは反応ガス
(CCl4、BCl3)を用いた反応性イオンドライエ
ッチングにより不要部の薄膜金属層を除去して所定パタ
ーンの薄膜金属層1cを得る。この後、エッチングマス
クを剥離により除去する。 (2)次に、薄膜金属層1cの上に、ポリイミド系など
の有機高分子絶縁材料からなる絶縁膜2を形成する。例
えば、有機高分子材料のポリマー溶液を配線基板X上面
にスピンコーティング法などによって均一に塗布し、有
機高分子材料が硬化する温度に加熱する。 (3)次に、従来から周知のフォトリソグラフィー技術
を用いて上下の薄膜金属層を接続するための接続用スル
ーホールを形成する。
The glass ceramic produced as described above contains a crystal phase generated from a glass component,
There is a crystal phase generated by the reaction between the glass component and the filler component, a filler component, or a crystal phase generated by decomposition of the filler component, and the like, and a glass phase exists at the grain boundaries of these crystal phases. (Multilayer Wiring Layer) According to the present invention, a multilayer wiring layer Y is formed on the surface of the insulating substrate 3 described above. This multilayer wiring layer Y is formed by the following steps. (1) A thin-film metal layer made of a predetermined metal is formed on the entire upper surface of the wiring substrate X by a thin-film method such as a sputtering method, an ion plating method, or a vacuum evaporation method using a plurality of metal layers while using different evaporation sources. 1.5 to 15 layers
The film is formed with a thickness of μm. Next, a photosensitive photoresist is applied all over the thin film. Then, an etching mask is formed by a well-known photolithography technique, and an unnecessary portion of the thin film metal layer is removed by a reactive ion dry etching using an acidic etching solution or a reactive gas (CCl4, BCl3). Thus, a thin-film metal layer 1c having a predetermined pattern is obtained. Thereafter, the etching mask is removed by peeling. (2) Next, an insulating film 2 made of an organic polymer insulating material such as polyimide is formed on the thin film metal layer 1c. For example, a polymer solution of an organic polymer material is uniformly applied to the upper surface of the wiring substrate X by a spin coating method or the like, and heated to a temperature at which the organic polymer material is cured. (3) Next, connection through holes for connecting the upper and lower thin film metal layers are formed by using a conventionally known photolithography technique.

【0040】以上の(1)(2)(3)の工程を繰り返
し実施することによって、所定の複数層の薄膜金属層お
よび絶縁膜を形成することができ、これによって本発明
の多層配線基板を作製することができる。
By repeating the above steps (1), (2) and (3), a plurality of predetermined thin film metal layers and insulating films can be formed. Can be made.

【0041】なお、この多層配線基板には、適宜外部回
路基板と電気的に接続するための接続端子を取り付け、
また、多層配線基板に対して、シリコンなどの半導体素
子を準備し、多層配線基板の上面に設けられた接続パッ
ドに半導体素子の電極端子が接続されるように位置合わ
せし、周知のフリップチップ接続法により半田などによ
って実装される。
Note that connection terminals for electrically connecting to an external circuit board are appropriately attached to the multilayer wiring board.
In addition, a semiconductor element such as silicon is prepared for the multilayer wiring board, and is positioned so that an electrode terminal of the semiconductor element is connected to a connection pad provided on an upper surface of the multilayer wiring board. It is mounted by soldering or the like by a method.

【0042】[0042]

【実施例】本発明の多層配線基板の効果を確認すべく、
以下のようにして評価用の多層配線基板を作製した。ま
ず、下記組成のガラスを準備した。 ガラスA:SiO250.2重量%−Al235.0重量%− MgO16.1重量%−CaO15.1重量%− SrO13.6重量% ガラスB:SiO247.5重量%−Al234.9重量%− MgO16.1重量%−CaO11.5重量%− SrO20重量% ガラスC:SiO210.4重量%−Al232.5重量% −B2345.3重量%−ZnO35.2重量% −Li2O6.6重量% ガラスD:SiO250重量%−Al235.5重量%− MgO18.5重量%−CaO26重量% 上記ガラスに対して、表1に示す組成物をプレス成形し
てドクターブレード法によって成形体を作製し、この成
形体を700℃のN2+H2O中で脱バインダー処理した
後、窒素雰囲気中で表1の条件で焼成して絶縁基板用の
セラミックスを作製した。
EXAMPLES In order to confirm the effects of the multilayer wiring board of the present invention,
A multilayer wiring board for evaluation was produced as follows. First, a glass having the following composition was prepared. Glass A: SiO 2 50.2 wt% -Al 2 O 3 5.0 wt% -MgO 16.1 wt% -CaO 15.1 wt% -SrO 13.6 wt% Glass B: SiO 2 47.5 wt% -Al 2 O 3 4.9 wt% - MgO16.1 wt% -CaO11.5 wt% - SrO20 wt% glass C: SiO 2 10.4 wt% -Al 2 O 3 2.5 wt% -B 2 O 3 45 .3 wt% -ZnO35.2 wt% -Li 2 O6.6 wt% glass D: SiO 2 50 wt% -Al 2 O 3 5.5 wt% - MgO18.5 wt% -CaO26 wt% the glass to Then, the composition shown in Table 1 was press-molded to produce a molded body by a doctor blade method, and the molded body was subjected to a binder removal treatment in N 2 + H 2 O at 700 ° C. Firing under the conditions To prepare a La mix.

【0043】このセラミックスについて、アルキメデス
法に基づき開気孔率を測定し、また、誘電率、誘電損
失、抗折強度、熱膨張係数を以下の方法で評価した。
The open porosity of this ceramic was measured based on the Archimedes method, and the dielectric constant, dielectric loss, flexural strength, and coefficient of thermal expansion were evaluated by the following methods.

【0044】誘電率、誘電損失については、直径2〜7
mm、厚み2〜2.5mmの形状に切り出し、60GH
zにてネットワークアナライザー、シンセサイズドスイ
ーパーを用いて誘電体円柱共振器法により行った。測定
では、NRDガイド(非放射性誘電体線路)で、誘電体
共振器の励起を行い、TE021またはTE031モードの共
振特性より、誘電率、誘電損失を算出した。
The dielectric constant and dielectric loss were 2-7 diameters.
mm, cut into a shape with a thickness of 2-2.5 mm, 60 GH
At z, the measurement was performed by a dielectric cylinder resonator method using a network analyzer and a synthesized sweeper. In the measurement, the dielectric resonator was excited by an NRD guide (non-radiative dielectric line), and the dielectric constant and the dielectric loss were calculated from the resonance characteristics of the TE 021 or TE 031 mode.

【0045】また、試料を幅4mm×厚さ3mm×長さ
70mmの形状に切り出し、JISC−2141の規定
に基づいて3点曲げ試験を行った。さらに、室温から4
00℃における熱膨張曲線をとり、熱膨張係数を算出し
た。また、磁器の焼肌面の表面粗さ(Ra)を表面粗さ
計にて測定し、表1に示した。
Further, the sample was cut into a shape of 4 mm in width × 3 mm in thickness × 70 mm in length, and subjected to a three-point bending test in accordance with JISC-2141. In addition, from room temperature to 4
A coefficient of thermal expansion was calculated by taking a thermal expansion curve at 00 ° C. Further, the surface roughness (Ra) of the baked surface of the porcelain was measured with a surface roughness meter, and is shown in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】また、表1における各原料組成物を用い
て、ドクターブレード法により厚み500μmのグリー
ンシートを作製し、このシートにビアホールを形成し、
Cuメタライズペーストをスクリーン印刷法に充填し、
さらにメタライズパッドのパターンをスクリーン印刷で
塗布した。
Further, a green sheet having a thickness of 500 μm was prepared by the doctor blade method using each raw material composition shown in Table 1, and a via hole was formed in this sheet.
Fill the Cu metallized paste by screen printing method,
Further, a metallized pad pattern was applied by screen printing.

【0048】そして、メタライズペーストが塗布、充填
されたグリーンシートをスルーホールの位置合わせを行
いながら6枚積層し圧着した。この積層体を700℃で
2+H2O中で脱バインダー後、表1と同じ条件で焼成
して配線基板を作製した。
Then, six green sheets coated and filled with the metallizing paste were laminated and pressed together while positioning the through holes. After debinding the laminate in N 2 + H 2 O at 700 ° C., it was fired under the same conditions as in Table 1 to produce a wiring board.

【0049】また、上記配線基板の絶縁基板表面に、真
空蒸着法によって、Ti層を0.2μmの厚さで形成し
た後、種々のTiW,TiMo,Ni,Cr,Taの種
々の金属層を厚み10μmで形成した後、Cu層を3μ
mの厚みで形成した。なお、TiWおよびTiMoの合
金層中のW、Mo含有量は90重量%である。
After a Ti layer is formed to a thickness of 0.2 μm on the insulating substrate surface of the wiring substrate by a vacuum deposition method, various metal layers of various TiW, TiMo, Ni, Cr and Ta are formed. After forming with a thickness of 10 μm, the Cu layer is
m. The content of W and Mo in the alloy layer of TiW and TiMo is 90% by weight.

【0050】その後、この薄膜金属層に感光性フォトレ
ジストを一面に塗布し、フォトリソグラフィー技術によ
りエッチングマスクを作成し、薄膜層の一部を酸性エッ
チング液により不要部の薄膜を除去して、大きさが1×
1mmの評価用パッドを形成した。
Thereafter, a photosensitive photoresist is applied to the entire surface of the thin-film metal layer, an etching mask is formed by photolithography, and an unnecessary portion of the thin-film layer is removed with an acidic etchant to remove the unnecessary thin film. Saga 1 ×
An evaluation pad of 1 mm was formed.

【0051】そして、このパッドに対して、Cuからな
るピンを半田付けして、−40℃と125℃の各温度に
制御した恒温槽に配線基板を15分/15分の保持を1
サイクルとして100サイクルの熱サイクルを施した後
に、このピンを垂直に引き上げ、半田もしくは薄膜金属
層が離れた時の強度を薄膜金属層の接着強度として評価
し、その結果を表2に示した。
Then, a pin made of Cu is soldered to this pad, and the wiring board is held for 15 minutes / 15 minutes in a thermostatic chamber controlled at -40 ° C. and 125 ° C.
After a thermal cycle of 100 cycles, the pin was pulled up vertically, and the strength when the solder or the thin film metal layer was separated was evaluated as the adhesive strength of the thin film metal layer. The results are shown in Table 2.

【0052】また、上述と同様の方法により、絶縁基板
表面に長さ30.0mm、幅3.0mm、厚さ20μm
の評価用パッドを20個形成して各パッドのシート抵抗
を測定し、その平均値をシート抵抗として算出した。
In the same manner as described above, a length of 30.0 mm, a width of 3.0 mm and a thickness of 20 μm were formed on the surface of the insulating substrate.
20 evaluation pads were formed, the sheet resistance of each pad was measured, and the average value was calculated as the sheet resistance.

【0053】さらに、表1のガラスセラミックスの下面
全面に銅ペーストを用いてガラスセラミックスとの同時
焼成により形成したグランド層を設けるとともに、上述
と同様にして、ガラスセラミックスの上面に厚み150
μmの上面に配線幅260μm、厚み10μm、長さ1
0、20、30μmの薄膜配線層(インピーダンス50
Ω)を形成したマイクロストリップ線路3種を形成し、
入力端子から110GHzの信号を入力し、透過した伝
送信号強度をネットワークアナライザによって測定し、
配線層の長さと信号強度の関係から最小二乗法によって
薄膜配線層の伝送損失S21を評価した。
Further, a ground layer formed by simultaneous sintering with the glass ceramic using a copper paste is provided on the entire lower surface of the glass ceramic in Table 1, and a thickness of 150 mm is formed on the upper surface of the glass ceramic in the same manner as described above.
Wiring width 260 μm, thickness 10 μm, length 1
0, 20, 30 μm thin film wiring layer (impedance 50
Ω) to form three types of microstrip lines,
A 110 GHz signal is input from the input terminal, and the transmitted signal strength is measured by a network analyzer.
Were evaluated transmission loss S 21 of the thin-film wiring layer by a least square method from the relationship between the length and the signal strength of the wiring layer.

【0054】[0054]

【表2】 [Table 2]

【0055】表2の結果から明らかなように、本発明に
従い、所定のガラスとディオプサイド型酸化物結晶相と
所定のフィラーとを含有するガラスセラミックスを絶縁
基板として用いた試料No.2〜6、8〜10、12、
13、15〜18では、磁器の誘電損失が低くなり、ま
た、薄膜配線層の伝送損失が−1.5dB/cmより小
さくなった。さらに、接着強度が22.5MPa以上と
高い強度が得られた。
As is clear from the results shown in Table 2, in accordance with the present invention, sample No. 1 using a glass ceramic containing a predetermined glass, a diopside-type oxide crystal phase and a predetermined filler as an insulating substrate was used. 2-6, 8-10, 12,
In Nos. 13, 15 and 18, the dielectric loss of the porcelain was reduced, and the transmission loss of the thin film wiring layer was smaller than -1.5 dB / cm. Furthermore, a high adhesive strength of 22.5 MPa or more was obtained.

【0056】これに対して、フィラーを添加しない試料
No.1、ガラス量が40重量%より少ない試料No.
7、ガラスセラミックスの焼成時間が0.2時間より短
い試料No.11、5時間より長い試料No.14で
は、いずれも磁器の開気孔率が0.3%を越え、信号の
伝送損失が−2dB/cm以上悪くなった。
On the other hand, in sample No. Sample No. 1 having a glass content of less than 40% by weight.
Sample No. 7 in which the firing time of the glass ceramic was shorter than 0.2 hours. 11, sample No. longer than 5 hours. In No. 14, the open porosity of the porcelain exceeded 0.3%, and the signal transmission loss deteriorated by more than -2 dB / cm.

【0057】また、ディオプサイド型酸化物結晶相を析
出しないガラスを用いた試料No.19、ディオプサイ
ド型酸化物結晶相を析出するもののSrOを含まないガ
ラスを用いた試料No.20では、開気孔率が2%より
も多く伝送損失の大きなものであった。
In addition, Sample No. using a glass that does not precipitate a diopside oxide crystal phase. Sample No. 19 using a glass that precipitates a diopside oxide crystal phase but does not contain SrO. In No. 20, the open porosity was more than 2% and the transmission loss was large.

【0058】[0058]

【発明の効果】以上詳述したように、本発明によれば、
SiO2、Al23、MgO、SrOおよびCaOを含
むディオプサイド型酸化物結晶相を析出可能なガラス
と、フィラーとして少なくともAl23、MgSi
3、AlN、MgTiO3の群から選ばれる少なくとも
1種との混合物を、成形後、焼成して、SiO2、Al2
3、MgO、SrOおよびCaOを含むガラス相とデ
ィオプサイド型酸化物結晶相と、少なくともAl23
MgSiO3、AlN、MgTiO3の群から選ばれる少
なくとも1種を含有するボイドの少ない絶縁基板表面に
薄膜配線層を形成することによって、磁器の誘電損失が
小さいとともに磁器表面のボイド率を低下させることが
できることから、微細で、低抵抗で、良好なインピーダ
ンス特性を有し、高周波信号の導体損失を低減すること
ができる薄膜配線層を形成することができる。
As described in detail above, according to the present invention,
A glass capable of precipitating a diopside oxide crystal phase containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO, and at least Al 2 O 3 , MgSi as a filler
A mixture with at least one selected from the group consisting of O 3 , AlN, and MgTiO 3 is molded and then baked to form SiO 2 , Al 2
A glass phase containing O 3 , MgO, SrO and CaO, a diopside oxide crystal phase, at least Al 2 O 3 ,
Forming a thin film wiring layer on the surface of an insulating substrate containing at least one selected from the group consisting of MgSiO 3 , AlN and MgTiO 3 and having a small number of voids, thereby reducing the dielectric loss of the ceramic and reducing the void fraction on the surface of the ceramic. Therefore, it is possible to form a thin film wiring layer that is fine, has low resistance, has good impedance characteristics, and can reduce conductor loss of high-frequency signals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の応用の一例である半導
体素子収納用パッケージの多層配線層の構造を説明する
ための一部拡大断面図である。
FIG. 1 is a partially enlarged cross-sectional view illustrating a structure of a multilayer wiring layer of a package for housing a semiconductor element, which is an example of application of the multilayer wiring board of the present invention.

【図2】図1のパッケージを外部回路基板への実装構造
の一実施例を示した概略断面図である。
FIG. 2 is a schematic cross-sectional view showing one embodiment of a mounting structure of the package of FIG. 1 on an external circuit board.

【符号の説明】[Explanation of symbols]

A・・パッケージ B・・外部回路基板 X 配線基板 Y 多層配線層 1a,1b,1c 薄膜金属層 2 絶縁膜 3 絶縁基板 4 半導体素子 5 電極端子 6 接続端子 7 メタライズパッド 8 ビアホール導体 A. Package B. External circuit board X Wiring board Y Multilayer wiring layer 1a, 1b, 1c Thin metal layer 2 Insulating film 3 Insulating substrate 4 Semiconductor element 5 Electrode terminal 6 Connection terminal 7 Metallization pad 8 Via hole conductor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/46 C04B 35/18 Z H01L 23/12 C Fターム(参考) 4G030 AA07 AA08 AA09 AA16 AA36 AA37 AA51 BA09 BA12 CA01 CA03 CA08 GA27 5E346 AA02 AA04 AA12 AA14 AA15 AA29 CC10 CC17 CC18 CC21 CC32 CC35 CC36 CC39 DD03 DD16 DD17 EE15 EE19 EE23 EE27 EE29 FF01 FF22 FF45 FF50 HH02 HH06 HH26 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H05K 3/46 C04B 35/18 Z H01L 23/12 CF term (Reference) 4G030 AA07 AA08 AA09 AA16 AA36 AA37 AA51 BA09 BA12 CA01 CA03 CA08 GA27 5E346 AA02 AA04 AA12 AA14 AA15 AA29 CC10 CC17 CC18 CC21 CC32 CC35 CC36 CC39 DD03 DD16 DD17 EE15 EE19 EE23 EE27 EE29 FF01 FF22 FF45 FF50 HH02 HH06 HH26

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】SiO2、Al23、MgO、SrOおよ
びCaOを含むガラス相およびディオプサイド型酸化物
結晶相と、少なくともAl23、MgSiO3、Al
N、MgTiO3の群から選ばれる少なくとも1種の結
晶相とを含有し、開気孔率0.3%以下のセラミックス
からなる絶縁基板の表面に、Cu、AgおよびAuの群
から選ばれる少なくとも1種を含有する薄膜配線層を形
成してなることを特徴とする配線基板。
1. A glass phase containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO and a diopside oxide crystal phase, and at least Al 2 O 3 , MgSiO 3 , Al
At least one selected from the group consisting of Cu, Ag and Au is formed on the surface of an insulating substrate made of ceramics containing at least one crystal phase selected from the group consisting of N and MgTiO 3 and having an open porosity of 0.3% or less. A wiring substrate comprising a thin film wiring layer containing seeds.
【請求項2】前記薄膜配線層が形成される前記絶縁基板
の表面の焼肌面での表面粗さ(Ra)が0.1μm以下
であることを特徴とする請求項1記載の配線基板。
2. The wiring board according to claim 1, wherein the surface roughness (Ra) of the surface of the insulating substrate on which the thin film wiring layer is formed is 0.1 μm or less on a burnt surface.
【請求項3】前記絶縁基板の60〜77GHzにおける
誘電損失が50×10 -4以下であることを特徴とする請
求項1または2記載の配線基板。
3. The insulated substrate at a frequency of 60 to 77 GHz.
Dielectric loss is 50 × 10 -FourA contract characterized by the following:
3. The wiring board according to claim 1 or 2.
【請求項4】前記絶縁基板表面に形成される薄膜配線層
の110GHz以下における伝送特性S21が−1.5d
B/cm以下であることを特徴とする請求項1乃至3の
いずれか記載の配線基板。
4. A transmission characteristic S 21 in the following 110GHz of thin-film wiring layer formed on the insulating substrate surface -1.5d
4. The wiring board according to claim 1, wherein the wiring board has a thickness of B / cm or less.
【請求項5】前記絶縁基板が複数層形成され、かつ該絶
縁基板間にCuまたはAgを主成分とする内部配線層を
形成してなることを特徴とする請求項1乃至3のいずれ
か記載の配線基板。
5. The semiconductor device according to claim 1, wherein the insulating substrate is formed in a plurality of layers, and an internal wiring layer containing Cu or Ag as a main component is formed between the insulating substrates. Wiring board.
【請求項6】SiO2、Al23、MgO、SrOおよ
びCaOを含むディオプサイド型酸化物結晶相を析出可
能なガラスを40〜95重量%と、フィラーとして少な
くともAl23、MgSiO3、AlN、MgTiO3
群から選ばれる少なくとも1種を5〜60重量%との割
合で含有する混合物を成形してグリーンシートを作製
し、800〜1000℃にて0.2〜5時間加熱して焼
成し、開気孔率0.3%以下のセラミックスからなる絶
縁基板を作製した後、薄膜形成法によって、該絶縁基板
の表面に、Cu、AgおよびAuの群から選ばれる少な
くとも1種を含有する薄膜配線層を形成することを特徴
とする配線基板の製造方法。
6. A glass capable of precipitating a diopside oxide crystal phase containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO in an amount of 40 to 95% by weight, and at least Al 2 O 3 and MgSiO as fillers. A green sheet is formed by molding a mixture containing at least one selected from the group consisting of 3 , AlN and MgTiO 3 at a ratio of 5 to 60% by weight, and heating at 800 to 1000 ° C. for 0.2 to 5 hours. After baking to produce an insulating substrate made of ceramics having an open porosity of 0.3% or less, at least one selected from the group consisting of Cu, Ag and Au is formed on the surface of the insulating substrate by a thin film forming method. A method of manufacturing a wiring board, comprising forming a thin film wiring layer containing the same.
【請求項7】前記ガラスが、SiO230〜55重量%
と、Al234〜15重量%と、MgO14〜30重量
%と、CaO5〜20重量%と、SrO10〜25重量
%とからなることを特徴とする請求項6記載の配線基板
の製造方法。
7. The method according to claim 1, wherein said glass is 30 to 55% by weight of SiO 2.
When, Al 2 and O 3 4 to 15 wt%, and MgO14~30 wt%, and CaO5~20 wt%, method of manufacturing a wiring board according to claim 6, characterized in that it consists of a SrO10~25 wt% .
【請求項8】前記グリーンシート表面にCuまたはAg
を含有する導体配線層を形成して積層後、焼成して内部
配線層を形成することを特徴とする請求項6または7記
載の配線基板の製造方法。
8. The method according to claim 8, wherein the surface of the green sheet is Cu or Ag.
8. The method for manufacturing a wiring board according to claim 6, wherein after forming and laminating a conductor wiring layer containing, the internal wiring layer is formed by firing.
JP2000197387A 2000-06-29 2000-06-29 Wiring board and manufacturing method thereof Expired - Fee Related JP4557382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197387A JP4557382B2 (en) 2000-06-29 2000-06-29 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197387A JP4557382B2 (en) 2000-06-29 2000-06-29 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002016329A true JP2002016329A (en) 2002-01-18
JP4557382B2 JP4557382B2 (en) 2010-10-06

Family

ID=18695720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197387A Expired - Fee Related JP4557382B2 (en) 2000-06-29 2000-06-29 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4557382B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670623B1 (en) 2004-01-08 2007-01-17 티디케이가부시기가이샤 Multilayer ceramic capacitor and its production method
US7235148B2 (en) 2002-04-09 2007-06-26 International Business Machines Corporation Selectively roughening conductors for high frequency printed wiring boards
WO2011119558A2 (en) * 2010-03-23 2011-09-29 Lear Corporation Printed circuit board having aluminum traces with a solderable layer of material of applied thereto
WO2012081425A1 (en) * 2010-12-13 2012-06-21 株式会社トクヤマ Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278145A (en) * 1986-05-26 1987-12-03 Matsushita Electric Works Ltd Sintered material of glass ceramic
JPH10120436A (en) * 1996-10-22 1998-05-12 Nippon Electric Glass Co Ltd Glass ceramic dielectric material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278145A (en) * 1986-05-26 1987-12-03 Matsushita Electric Works Ltd Sintered material of glass ceramic
JPH10120436A (en) * 1996-10-22 1998-05-12 Nippon Electric Glass Co Ltd Glass ceramic dielectric material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235148B2 (en) 2002-04-09 2007-06-26 International Business Machines Corporation Selectively roughening conductors for high frequency printed wiring boards
KR100670623B1 (en) 2004-01-08 2007-01-17 티디케이가부시기가이샤 Multilayer ceramic capacitor and its production method
WO2011119558A2 (en) * 2010-03-23 2011-09-29 Lear Corporation Printed circuit board having aluminum traces with a solderable layer of material of applied thereto
WO2011119558A3 (en) * 2010-03-23 2012-03-01 Lear Corporation Printed circuit board having aluminum traces with a solderable layer of material of applied thereto
US9204553B2 (en) 2010-03-23 2015-12-01 Lear Corporation Method for producing a printed circuit board
WO2012081425A1 (en) * 2010-12-13 2012-06-21 株式会社トクヤマ Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both
JP2012129238A (en) * 2010-12-13 2012-07-05 Tokuyama Corp Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both
CN102986024A (en) * 2010-12-13 2013-03-20 株式会社德山 Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both
US9215801B2 (en) 2010-12-13 2015-12-15 Tokuyama Corporation Via-holed ceramic substrate, metallized via-holed ceramic substrate, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4557382B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP4557382B2 (en) Wiring board and manufacturing method thereof
JP4422453B2 (en) Wiring board
JP2989975B2 (en) Method for manufacturing aluminum nitride substrate
JP3774336B2 (en) High frequency wiring board and manufacturing method thereof
JP3377898B2 (en) Low temperature firing porcelain composition
JP3314130B2 (en) Low temperature firing porcelain composition
JP3363299B2 (en) Low temperature firing porcelain composition
JP3865967B2 (en) Porcelain and wiring board using the same
JP3441924B2 (en) Wiring board and its mounting structure
JP4422452B2 (en) Wiring board
JP3441941B2 (en) Wiring board and its mounting structure
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3441950B2 (en) Wiring board and its mounting structure
JP4575614B2 (en) Composite ceramic substrate
JP3363297B2 (en) Low temperature firing porcelain composition
JP3064273B2 (en) High frequency porcelain
JP3085669B1 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3582975B2 (en) Wiring board
JP3610226B2 (en) Wiring board and its mounting structure
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3663300B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP2002362974A (en) Sintered compact sintered at low temperature
JP2004115290A (en) Multiple oxide sintered compact and its production process and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees