[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002015732A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JP2002015732A
JP2002015732A JP2000196802A JP2000196802A JP2002015732A JP 2002015732 A JP2002015732 A JP 2002015732A JP 2000196802 A JP2000196802 A JP 2000196802A JP 2000196802 A JP2000196802 A JP 2000196802A JP 2002015732 A JP2002015732 A JP 2002015732A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
alloy powder
core material
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000196802A
Other languages
Japanese (ja)
Inventor
Minoru Koga
実 古賀
Tetsuyuki Morita
哲行 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000196802A priority Critical patent/JP2002015732A/en
Publication of JP2002015732A publication Critical patent/JP2002015732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary cell which has a better high-rate discharging characteristic than conventional ones. SOLUTION: A core material 2 which consists of porous nickel foil given a punching process so as to have burrs 2a intentionally formed, is adopted, and hydrogen storing alloy powder 4 which contains nickel powder 3 having a ratio of 2 to 10 wt.% as metal powder having ductility and conductivity is fixed at void ratio 18 to 24% by a current-carrying rolling (or warm rolling) to make up a negative electrode board 1, to be equipped for the secondary cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池に関し、特
に電気自動車等に用いられるニッケル電池、ニッカド電
池等の二次電池としての基本性能を高め得るようにした
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more particularly to a secondary battery such as a nickel battery or a nickel cadmium battery used for an electric vehicle or the like, which can improve the basic performance thereof.

【0002】[0002]

【従来の技術】従来より、ニッケル水素電池、ニッカド
水素電池のような二次電池の負極側の電極には、ランタ
ン−ニッケル系のような水素吸蔵合金粉末によって成形
された水素吸蔵板からなる負極板が用いられている。
2. Description of the Related Art Conventionally, an electrode on the negative electrode side of a secondary battery such as a nickel-metal hydride battery or a nickel-cadmium hydrogen battery has a negative electrode made of a hydrogen storage plate formed of a hydrogen storage alloy powder such as a lanthanum-nickel system. A plate is used.

【0003】図7はニッケル水素電池の場合で例示した
二次電池の構造を示す図であり、ここに図示されている
ニッケル水素電池は、底部aを有し上部が開口したケー
スbを備えており、ケースbの内部には、焼結ニッケル
に水酸化ニッケル:Ni(OH)2と導電剤を含む有機
バインダとを混合してなるペースト状の物質を注入した
正極板cと、水素吸蔵合金からなる負極板dと、正極板
cと負極板dとの間に介在させた布状を有して電解液を
染み込ませたセパレータeとを重ねて「なるとまき」状
に巻き重ねたものを収容している。
FIG. 7 is a diagram showing the structure of a secondary battery exemplified in the case of a nickel-metal hydride battery. The nickel-metal hydride battery shown here has a case b having a bottom a and an opening at the top. A positive electrode plate c in which a paste-like substance obtained by mixing nickel hydroxide: Ni (OH) 2 and an organic binder containing a conductive agent is injected into sintered nickel, and a hydrogen storage alloy A negative electrode plate d, and a separator e having a cloth shape interposed between the positive electrode plate c and the negative electrode plate d and impregnated with an electrolytic solution, which is wound in a shape of "Naruto Maki". Accommodating.

【0004】ケースbの開口部には、前記正極板cに接
続される正極集電体fが設けられ、更に正極集電体fの
上部には、絶縁ガスケットgを介して開口を閉塞するよ
うにした封口板hが設けられている。封口板hの中央に
は、安全弁iを介してキャップjが設けられている。
A positive electrode current collector f connected to the positive electrode plate c is provided at an opening of the case b. Further, an upper portion of the positive electrode current collector f is closed with an insulating gasket g so as to close the opening. A sealing plate h is provided. At the center of the sealing plate h, a cap j is provided via a safety valve i.

【0005】負極板dは、水素の吸収・放出によって充
電と放電を繰り返す。従って、このような負極板dは、
水素原子、分子、又はイオンを含んだ電解液或いはガス
等が透過可能な適宜の液体又は気体透過性を備えた多孔
質体である必要があると共に、所要の強度を備えている
必要がある。
[0005] The negative electrode plate d repeats charging and discharging by absorbing and releasing hydrogen. Therefore, such a negative electrode plate d
The porous body needs to be a porous body having an appropriate liquid or gas permeability through which an electrolytic solution or gas containing hydrogen atoms, molecules, or ions can pass, and have a required strength.

【0006】このため、従来の負極板dは、図8に一部
を拡大して示すように、20〜60μ程度に薄く延ばし
た鋼板kにパンチング等により貫通孔lを開けて多孔板
とし、この多孔板の表面に、ニッケルメッキmを施すこ
とにより芯材nを構成し、芯材nの表面に、例えばラン
タン−ニッケル(La−Ni)系等の水素吸蔵合金粉末
oと、樹脂等の接着剤pに導電微粒を添加して成る導電
性の有機バインダとを混合したスラリqを塗布し、これ
を乾燥させた後、プレス加圧することによって例えば2
50〜450μ程度の板厚精度を保持させた負極板dと
していた。
For this reason, as shown in a partially enlarged view in FIG. 8, a conventional negative electrode plate d is formed into a perforated plate by punching a through hole 1 in a steel plate k thinly extended to about 20 to 60 μm. A core material n is formed by performing nickel plating m on the surface of the perforated plate. For example, a hydrogen storage alloy powder o such as a lanthanum-nickel (La-Ni) system and a resin A slurry q mixed with a conductive organic binder obtained by adding conductive fine particles to the adhesive p is applied, dried, and then pressed with a press to obtain, for example, 2.
The negative electrode plate d had a thickness accuracy of about 50 to 450 μm.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うにして、芯材nにスラリqを塗布して乾燥させること
により負極板dを構成する方式の場合は、水素吸蔵合金
粉末oが芯材nに対し粗い状態で担持され、しかも、粉
末粒子同士が有機バインダの介在により電気的に殆ど接
続されないことから水素吸蔵合金粉末o同志の電気的な
接合力が小さくなってしまい、水素吸蔵合金粉末oに高
い導電性ネットワークを形成することができず、又、水
素吸蔵合金粉末oの粒子相互間の隙間に対し水酸化カリ
ウム等の電解液が有機バインダに阻まれて良好に行き亘
らないため、水素イオンの拡散速度も低下してしまうと
いう不具合があり、良好な高率放電特性を得ることが困
難であった。
However, in the case where the negative electrode plate d is formed by applying the slurry q to the core material n and drying the same as described above, the hydrogen storage alloy powder o is used for the core material n. , And the powder particles are hardly electrically connected to each other due to the interposition of the organic binder, so that the electric bonding force between the hydrogen storage alloy powders o decreases, and the hydrogen storage alloy powder o A high conductive network cannot be formed, and an electrolyte such as potassium hydroxide is blocked by the organic binder in the gaps between the particles of the hydrogen storage alloy powder o, and does not spread well. There was a problem that the diffusion rate of hydrogen ions also decreased, and it was difficult to obtain good high-rate discharge characteristics.

【0008】本発明は上述の実情に鑑みてなしたもの
で、従来より高率放電特性の優れた二次電池を提供する
ことを目的としている。
The present invention has been made in view of the above circumstances, and has as its object to provide a secondary battery having excellent high-rate discharge characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は、積極的にバリ
が形成されるようにパンチング加工を施した金属多孔質
箔の芯材の両面に、延性及び導電性を有する金属粉末を
2〜10重量%の比率で含んだ水素吸蔵合金粉末を通電
圧延又は温間圧延により空隙率18〜24%で固定して
成る負極板を装備したことを特徴とする二次電池、に係
るものである。
According to the present invention, a metal powder having ductility and conductivity is provided on both sides of a core material of a porous metal foil which has been subjected to a punching process so that burrs are formed actively. The present invention relates to a secondary battery comprising a negative electrode plate provided with a hydrogen storage alloy powder containing 10% by weight and fixed at a porosity of 18 to 24% by current rolling or warm rolling. .

【0010】而して、このような二次電池によれば、金
属粉末により水素吸蔵合金粉末の粒子相互間及び粒子と
芯材との間が連結され、しかも、芯材の表面にパンチン
グにより施されたバリが水素吸蔵合金粉末に対し食い込
み且つ多数のバリの形成により芯材と水素吸蔵合金粉末
との接触面積が増加されるので、水素吸蔵合金粉末が芯
材の両面に対し強固に固定されて芯材から剥離し難くな
る。
According to such a secondary battery, the metal powder connects the particles of the hydrogen-absorbing alloy powder and between the particles and the core material, and furthermore, punches the surface of the core material by punching. The burrs penetrate the hydrogen-absorbing alloy powder and the contact area between the core material and the hydrogen-absorbing alloy powder is increased by forming a large number of burrs, so that the hydrogen-absorbing alloy powder is firmly fixed to both surfaces of the core material. Hard to peel off from the core material.

【0011】又、導電性の金属粉末により水素吸蔵合金
粉末の粒子相互間が電気的に接続されて良好な導電性ネ
ットワークが形成されることにより高率放電特性が得ら
れ、従来と同じ出力を得るに際し大幅なコンパクト化を
図ることが可能となる。
In addition, since the conductive metal powder electrically connects the particles of the hydrogen-absorbing alloy powder to form a good conductive network, high-rate discharge characteristics can be obtained, and the same output as the conventional one can be obtained. In obtaining this, it is possible to achieve a significant reduction in size.

【0012】尚、このように有機バインダを使用せずに
水素吸蔵合金粉末を芯材に固定するにあたり、水素吸蔵
合金粉末に対しては2〜10重量%の比率で金属粉末を
含ませることが有効であり、この比率であれば、水素吸
蔵合金粉末の粒子相互間及び粒子と芯材との間の連結を
支障なく行わしめることが可能であり、しかも、活物質
でない金属粉末の比率をいたずらに増やさないことによ
り性能面を高く維持することが可能である。
Incidentally, in fixing the hydrogen storage alloy powder to the core material without using the organic binder as described above, the metal powder may be contained at a ratio of 2 to 10% by weight with respect to the hydrogen storage alloy powder. It is effective, and with this ratio, the connection between the particles of the hydrogen storage alloy powder and the connection between the particles and the core material can be performed without any trouble, and the ratio of the metal powder that is not an active material is mischievous. It is possible to maintain a high performance aspect by not increasing the number.

【0013】又、負極板の空隙率を18〜24%として
いるのは、空隙率を18%より小さくした場合に、負極
板の空隙に満たされた電解液におけるイオン泳動が阻害
されて高率放電特性が悪くなり、又、空隙率を24%よ
り大きくした場合に、負極板中に占める水素吸蔵合金粉
末の比率が所定レベル以下となって実用的に必要な電気
エネルギー貯蔵容量を得られなくなるという検証結果に
基づくものであり、このような空隙率で負極板を構成す
るが故に、有機バインダを使用しないことの最大効果を
引き出して極めて優れた高率放電特性を得ることが可能
となるのである。
The reason why the porosity of the negative electrode plate is set to 18 to 24% is that when the porosity is made smaller than 18%, ion migration in the electrolyte solution filled in the voids of the negative electrode plate is hindered, resulting in a high porosity. When the discharge characteristics are deteriorated, and when the porosity is larger than 24%, the ratio of the hydrogen storage alloy powder occupying in the negative electrode plate becomes a predetermined level or less, and a practically necessary electric energy storage capacity cannot be obtained. Since the negative electrode plate is configured with such a porosity, the maximum effect of not using an organic binder can be obtained and extremely excellent high-rate discharge characteristics can be obtained. is there.

【0014】更に、本発明においては、負極板の負極集
電板側に対峙する長辺部に対し、水素吸蔵合金粉末を固
定していない芯材の無地部を非加工のまま残しておくこ
とが好ましく、このようにすれば、水素吸蔵合金粉末や
パンチング加工により負極板の無地部と負極集電板との
接触性が損なわれることがなくなり、負極板の無地部と
負極集電板とを良好に接触させた状態で電気溶接して確
実に接合することが可能となる。
Further, in the present invention, the uncoated part of the core material, on which the hydrogen-absorbing alloy powder is not fixed, is left unprocessed on the long side portion of the negative electrode plate facing the negative electrode current collector plate side. In this case, the contact between the uncoated portion of the negative electrode plate and the negative electrode current collector plate is prevented from being impaired by the hydrogen storage alloy powder or punching, and the uncoated portion of the negative electrode plate and the negative electrode current collector plate are removed. It is possible to perform reliable welding by electric welding in a state of good contact.

【0015】又、本発明においては、負極集電板の円周
方向複数箇所に対し、半径方向に延びるスリットを電極
収納側に向け打ち抜き加工して該スリットの縁部にバリ
を形成することが好ましく、このようにすれば、前記ス
リットの縁部のバリを挾圧させた状態で負極板と負極集
電板とを電気溶接することにより、溶接電流がバリに集
中して溶接性が大幅に向上され、負極板と負極集電板と
をより一層確実に接合することが可能となる。
Further, in the present invention, it is possible to form a burr on the edge of the slit by punching a radially extending slit toward the electrode housing side at a plurality of circumferential positions of the negative electrode current collector plate. Preferably, in this case, by welding the negative electrode plate and the negative electrode current collector plate in a state where the burr at the edge of the slit is pressed, the welding current is concentrated on the burr and the weldability is greatly improved. It is possible to more reliably join the negative electrode plate and the negative electrode current collector plate.

【0016】[0016]

【発明の実施の形態】以下、本発明を実施する形態を図
面を参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の二次電池に装備される負極
板の一例を示すものであり、ここに図示している負極板
1は、積極的にバリ2aが形成されるようにパンチング
加工を施した多孔質のニッケル箔の芯材2を採用し、こ
の芯材2の両面にニッケル粉末3(延性及び導電性を有
する金属粉末)を2〜10重量%の比率で含んだランタ
ン−ニッケル系やミッシュメタル系などの水素吸蔵合金
粉末4を通電圧延により空隙率18〜24%で固定した
ものとなっている。
FIG. 1 shows an example of a negative electrode plate provided in a secondary battery of the present invention. The negative electrode plate 1 shown here is punched so that burrs 2a are positively formed. Lanthanum-nickel containing a nickel powder 3 (a metal powder having ductility and conductivity) on both sides of the core material 2 in a ratio of 2 to 10% by weight. A hydrogen-absorbing alloy powder 4 of a metal or misch metal type is fixed at a porosity of 18 to 24% by electric current rolling.

【0018】尚、本発明で言及している空隙率とは、負
極板1の全体積中に占める空隙の体積比率のことを指
し、この空隙の体積とは、水素吸蔵合金粉末4とニッケ
ル粉末3と芯材2とが占める体積を負極板1の全体積か
ら減算したものを指している。
The porosity referred to in the present invention refers to the volume ratio of voids in the total volume of the negative electrode plate 1, and the volume of the voids is defined as the hydrogen storage alloy powder 4 and the nickel powder. 3 is obtained by subtracting the volume occupied by the core material 2 from the total volume of the negative electrode plate 1.

【0019】ここで、芯材2に対するパンチング加工
は、例えば、芯材2に対し同時に逆向きに貫通孔2bの
打ち抜きが施されるようにして、芯材2の両面に交互に
バリ2aが形成されるようにしておく。
Here, the punching of the core 2 is performed, for example, so that the through holes 2b are simultaneously punched in the opposite direction to the core 2 so that burrs 2a are formed alternately on both surfaces of the core 2. To be done.

【0020】又、図1の負極板1を具体的に製造するに
際しては、ニッケル粉末3を混合した水素吸蔵合金粉末
4を、図2に模式的に示すように、一対の圧延ロール
5,6間に芯材2を通しながら該芯材2の両面に対し供
給し、これを通電圧延して前記芯材2の両面に焼結固定
させることにより負極板1を完成させれば良い。
When the negative electrode plate 1 of FIG. 1 is specifically manufactured, the hydrogen storage alloy powder 4 mixed with the nickel powder 3 is, as schematically shown in FIG. The negative electrode plate 1 may be completed by supplying the material to both surfaces of the core material 2 while passing the core material 2 therebetween, and conducting and rolling the resultant material on the both surfaces of the core material 2 by sintering.

【0021】即ち、前記各圧延ロール5,6は、導電性
材料にて構成されており、交流或いは直流の電源装置7
に接続されて該電源装置7により圧延ロール5,6間に
電流が流されるようにしてあり、水素吸蔵合金粉末4を
通電により瞬時に加熱して水素吸蔵合金粉末4に組織変
化(水素吸蔵合金粉末4は長時間高温下に晒されると金
属組織変化を起こして水素吸蔵能力が喪失する)を起こ
させないようにしてある。
That is, each of the rolling rolls 5 and 6 is made of a conductive material and has an AC or DC power supply device 7.
And the power supply device 7 allows current to flow between the rolling rolls 5 and 6. The hydrogen storage alloy powder 4 is instantaneously heated by energization to change the structure of the hydrogen storage alloy powder 4 (hydrogen storage alloy 4). If the powder 4 is exposed to a high temperature for a long time, the metal structure is not changed, and the hydrogen storage capacity is lost.

【0022】ここで、圧延ロール5,6の圧延部は、N
2、Ar等の不活性ガス雰囲気、H2等の還元性ガス雰囲
気、真空雰囲気等として、通電圧延時の酸化を防止し得
るようにしておくことが好ましく、図示する例では、圧
延ロール5,6の圧延部を酸化防止チャンバ8により包
囲して該酸化防止チャンバ8内を非酸化性の雰囲気に保
持するようにしている。
Here, the rolling portions of the rolling rolls 5 and 6 are N
2. It is preferable that an inert gas atmosphere such as Ar, a reducing gas atmosphere such as H 2 , a vacuum atmosphere, or the like is provided so as to prevent oxidation during energization rolling. The rolling section 6 is surrounded by an antioxidant chamber 8 so that the inside of the antioxidant chamber 8 is maintained in a non-oxidizing atmosphere.

【0023】尚、ここに図示している例では、芯材2の
両面に対し水素吸蔵合金粉末4を通電圧延により固定し
た場合を例示しているが、通電以外の加熱手段により水
素吸蔵合金粉末4を高温化して温間圧延することにより
芯材2に固定するようにしても良い。
In the example shown here, the case where the hydrogen-absorbing alloy powder 4 is fixed to both surfaces of the core material 2 by energizing rolling is exemplified. Alternatively, the core 4 may be fixed to the core material 2 by hot rolling at a high temperature.

【0024】更に、本形態例においては、図3に示すよ
うに、負極板1の負極集電板9側に対峙する長辺部(図
3中における下端部)に対しては、水素吸蔵合金粉末4
を固定していない芯材2の無地部10を非加工のまま残
すようにしており、しかも、負極集電板9の円周方向複
数箇所に対し、半径方向に延びるスリット11を電極収
納側に向け(図3中における上向きに)打ち抜き加工し
て該スリット11の縁部にバリ11a(図4参照)を形
成するようにしている。
Further, in this embodiment, as shown in FIG. 3, the long side (lower end in FIG. 3) of the negative electrode plate 1 facing the negative electrode current collector plate 9 is provided with a hydrogen storage alloy. Powder 4
The uncoated portion 10 of the core material 2 where the base material is not fixed is left unprocessed, and slits 11 extending in the radial direction are provided on the electrode housing side with respect to a plurality of circumferential positions of the negative electrode current collector plate 9. The burrs 11a (see FIG. 4) are formed at the edges of the slits 11 by punching (upward in FIG. 3).

【0025】又、正極板12についても負極板1と同様
の芯材13を使用し、この芯材13の両面に対し水酸化
ニッケル粉末14をニッケル粉末15(延性及び導電性
を有する金属粉末)を混ぜた上で通電圧延により固定す
るようにしてあり、このように構成した正極板12にお
ける正極集電板16側に対峙する長辺部(図3中におけ
る上端部)に対しても、水酸化ニッケル粉末14を固定
していない芯材13の無地部17を非加工のまま残し、
正極集電板16の円周方向複数箇所に対し、半径方向に
延びるスリット18を電極収納側に向け(図3中におけ
る下向きに)打ち抜き加工して該スリット18の縁部に
バリ18a(図5参照)を形成するようにしている。
The positive electrode plate 12 also uses the same core material 13 as the negative electrode plate 1, and applies nickel hydroxide powder 14 to both surfaces of the core material 13 with nickel powder 15 (a metal powder having ductility and conductivity). And then fixed by energizing rolling. Water is also applied to the long side (upper end in FIG. 3) of the positive electrode plate 12 thus configured, which faces the positive electrode current collector plate 16 side. The uncoated portion 17 of the core 13 to which the nickel oxide powder 14 is not fixed is left unprocessed,
At a plurality of locations in the circumferential direction of the positive electrode current collector plate 16, radially extending slits 18 are punched toward the electrode housing side (downward in FIG. 3), and burrs 18 a (FIG. Reference).

【0026】そして、負極板1と正極板12とをセパレ
ータ19を挟んで「なるとまき」状に巻き重ね、負極板
1の下端の無地部10を負極集電板9の内側面(図3中
における上面)に当接させて電気溶接し、又、正極板1
2の上端の無地部17を正極集電板16の内側面(図3
中における下面)に当接させて電気溶接し、これらを図
示しないケース内に収容して該ケース内を電解液で満た
し、最終的にキャップなどにより開口部を封じて二次電
池として完成させるようにしている。
Then, the negative electrode plate 1 and the positive electrode plate 12 are wound in a shape of a “slipper” with a separator 19 interposed therebetween, and the uncoated portion 10 at the lower end of the negative electrode plate 1 is placed on the inner surface of the negative electrode current collector plate 9 (in FIG. In contact with the upper surface), and electric welding is performed.
2 is connected to the inner surface of the positive current collector 16 (FIG. 3).
(The lower surface in the inside), and they are electrically welded. These are housed in a case (not shown), the inside of the case is filled with an electrolytic solution, and the opening is finally sealed with a cap or the like to complete the secondary battery. I have to.

【0027】而して、このように構成された二次電池に
よれば、その内部に装備される負極板1に関し、ニッケ
ル粉末3により水素吸蔵合金粉末4の粒子相互間及び粒
子と芯材2との間が連結され、しかも、芯材2の表面に
パンチングにより施されたバリ2aが水素吸蔵合金粉末
4に対し食い込み且つ多数のバリ2aの形成により芯材
2と水素吸蔵合金粉末4との接触面積が増加されるの
で、水素吸蔵合金粉末4が芯材2の両面に対し強固に固
定されて芯材2から剥離し難くなる。
According to the secondary battery constructed as described above, with respect to the negative electrode plate 1 mounted inside the secondary battery, the nickel powder 3 causes the particles of the hydrogen storage alloy powder 4 to inter-between the particles and the core material 2 And the burr 2a punched on the surface of the core material 2 penetrates the hydrogen storage alloy powder 4 and forms a large number of burrs 2a to form the core material 2 and the hydrogen storage alloy powder 4. Since the contact area is increased, the hydrogen-absorbing alloy powder 4 is firmly fixed to both surfaces of the core material 2, and it is difficult to peel off the hydrogen storage alloy powder 4 from the core material 2.

【0028】又、導電性のニッケル粉末3により水素吸
蔵合金粉末4の粒子相互間が電気的に接続されて良好な
導電性ネットワークが形成されることにより高率放電特
性が得られ、従来と同じ出力を得るに際し大幅なコンパ
クト化を図ることが可能となる。
Further, since the conductive nickel powder 3 electrically connects the particles of the hydrogen storage alloy powder 4 to form a good conductive network, a high rate discharge characteristic is obtained. When obtaining an output, it is possible to greatly reduce the size.

【0029】尚、前述した如く、有機バインダを使用せ
ずに水素吸蔵合金粉末4を芯材2に固定して負極板1を
構成するにあたり、水素吸蔵合金粉末4に対して2〜1
0重量%の比率でニッケル粉末3を含ませることが有効
であり、この比率であれば、水素吸蔵合金粉末4の粒子
相互間及び粒子と芯材2との間の連結を支障なく行わし
めることが可能であり、しかも、活物質でない金属粉末
の比率をいたずらに増やさないことにより性能面を高く
維持することが可能である。
As described above, when the negative electrode plate 1 is formed by fixing the hydrogen storage alloy powder 4 to the core material 2 without using an organic binder, the hydrogen storage alloy powder
It is effective to include the nickel powder 3 at a ratio of 0% by weight. With this ratio, the connection between the particles of the hydrogen storage alloy powder 4 and the connection between the particles and the core material 2 can be performed without any trouble. It is possible to maintain high performance by not unnecessarily increasing the ratio of the metal powder that is not an active material.

【0030】ここで、ニッケル粉末3の含有比率を2%
まで下げられる理由につき付言しておくと、水素吸蔵合
金粉末4をアルカリ煮沸処理することによりニッケルリ
ッチ層を形成することができるので、このようなニッケ
ルリッチ層を形成させるようにすれば、ニッケル粉末3
の含有比率を2%まで少なくすることが可能となるので
ある。
Here, the content ratio of the nickel powder 3 is 2%
It should be added that the nickel-rich layer can be formed by subjecting the hydrogen-absorbing alloy powder 4 to an alkaline boiling treatment. 3
Can be reduced to 2%.

【0031】又、負極板1の空隙率を18〜24%とし
ているのは、空隙率を18%より小さくした場合に、負
極板1の空隙に満たされた電解液におけるイオン泳動が
阻害されて高率放電特性が悪くなり、又、空隙率を24
%より大きくした場合に、負極板1中に占める水素吸蔵
合金粉末4の比率が所定レベル以下となって実用的に必
要な電気エネルギー貯蔵容量を得られなくなるという検
証結果に基づくものであり、このような空隙率で負極板
1を構成しているが故に、有機バインダを使用しないこ
との最大効果を引き出して極めて優れた高率放電特性を
得ることが可能となるのである。
The reason why the porosity of the negative electrode plate 1 is set to 18 to 24% is that when the porosity is smaller than 18%, ion migration in the electrolyte filled in the voids of the negative electrode plate 1 is hindered. The high-rate discharge characteristics deteriorate, and the porosity is 24
%, The ratio of the hydrogen-absorbing alloy powder 4 in the negative electrode plate 1 falls below a predetermined level, which makes it impossible to obtain a practically necessary electric energy storage capacity. Since the negative electrode plate 1 is configured with such a porosity, it is possible to obtain the maximum effect of not using an organic binder and obtain extremely excellent high-rate discharge characteristics.

【0032】例えば、本発明者らによる検証実験によれ
ば、図6に一例として示す如く、空隙率20%の負極板
と、空隙率17%の負極板とを性能比較した場合に、特
に放電容量の高い領域において、空隙率17%の負極板
の方が空隙率20%の負極板よりも電池電圧が大幅に低
くなることが判明しており、このような同一放電容量に
対する電池電圧の低下が、負極板の空隙率が20%より
低くなったケースで顕著に現れることが確認されてい
る。
For example, according to a verification experiment by the present inventors, as shown in FIG. 6 as an example, when the performance of a negative electrode plate having a porosity of 20% is compared with that of a negative electrode plate having a porosity of 17%, discharge is particularly high. In the high capacity region, it has been found that the battery voltage of the negative electrode plate having a porosity of 17% is much lower than that of the negative electrode plate having a porosity of 20%. However, it has been confirmed that this appears remarkably in the case where the porosity of the negative electrode plate is lower than 20%.

【0033】一方、二次電池は、決められた容積に対
し、活物質である水素吸蔵合金粉末4の占める体積を可
能な限り大きく確保することで電気エネルギー貯蔵容量
を大きくする必要があるが、現状のニッケル水素二次電
池における水素吸蔵合金粉末4の占める体積が約60%
であることを考慮すると、この約60%を確保するため
に、高率放電特性を損なわない範囲で、負極板1の厚
さ、ニッケル粉末3の量、芯材2の厚さをパラメータと
して調整を行なったとしても、負極板1の空隙率を24
%より大きくして水素吸蔵合金粉末4の占める体積を約
60%に確保することが極めて困難であるという事情が
ある。
On the other hand, in the secondary battery, it is necessary to increase the electric energy storage capacity by securing the volume occupied by the hydrogen storage alloy powder 4 as the active material as much as possible with respect to the determined volume. The volume occupied by the hydrogen storage alloy powder 4 in the current nickel-metal hydride secondary battery is about 60%
In consideration of this, in order to secure about 60%, the thickness of the negative electrode plate 1, the amount of the nickel powder 3, and the thickness of the core material 2 are adjusted as parameters within a range that does not impair the high-rate discharge characteristics. Is performed, the porosity of the negative electrode
%, It is extremely difficult to secure the volume occupied by the hydrogen storage alloy powder 4 to about 60%.

【0034】尚、従来品以上の更なる電気エネルギー貯
蔵容量の増加を目指して、ニッケル水素二次電池におけ
る水素吸蔵合金粉末4の占める体積を約68〜71%に
増加することを検討した場合には、負極板1の空隙率を
18〜22%まで絞り込むことが好ましい。
In order to further increase the electric energy storage capacity over conventional products, it is considered that the volume occupied by the hydrogen storage alloy powder 4 in the nickel-metal hydride secondary battery should be increased to about 68 to 71%. Preferably, the porosity of the negative electrode plate 1 is reduced to 18 to 22%.

【0035】従って、上記形態例によれば、二次電池の
負極板1に関し、従来の如き有機バインダを使用しなく
ても、水素吸蔵合金粉末4を芯材2の両面に対し強固に
固定することができ、しかも、水素吸蔵合金粉末4の粒
子相互間を電気的に接続し且つ芯材2と水素吸蔵合金粉
末4との接触面積を大きく確保して良好な導電性ネット
ワークを形成させることができ、更には、水素吸蔵合金
粉末4の粒子相互間の隙間に対し水酸化カリウム等の電
解液を良好に行き亘らせて水素イオンの拡散速度を大幅
に向上させることもできるので、これらの相乗的な作用
により極めて優れた高率放電特性を得ることができる。
Therefore, according to the above-described embodiment, the hydrogen storage alloy powder 4 is firmly fixed to both surfaces of the core material 2 without using an organic binder as in the related art for the negative electrode plate 1 of the secondary battery. In addition, the particles of the hydrogen storage alloy powder 4 can be electrically connected to each other, and a large contact area between the core material 2 and the hydrogen storage alloy powder 4 can be ensured to form a good conductive network. Further, an electrolyte such as potassium hydroxide can be spread well in the gaps between the particles of the hydrogen storage alloy powder 4 to greatly improve the diffusion rate of hydrogen ions. Due to the synergistic action, extremely excellent high-rate discharge characteristics can be obtained.

【0036】更に、特に本形態例に示したように、負極
板1及び正極板12の負極集電板9側及び正極集電板1
6に対峙する長辺部に対し、水素吸蔵合金粉末4や水酸
化ニッケル粉末14を固定していない無地部10,17
を非加工のまま残しておけば、水素吸蔵合金粉末4や水
酸化ニッケル粉末14、パンチング加工により、負極板
1及び正極板12の無地部10,17と負極集電板9及
び正極集電板16との接触性が損なわれることがなくな
り、負極板1の無地部10と負極集電板9、正極板12
の無地部17と正極集電板16を良好に接触させた状態
で電気溶接して確実に接合することができる。
Further, as shown particularly in the present embodiment, the negative electrode plate 1 and the positive electrode plate 12 on the side of the negative electrode current collector 9 and the positive electrode current collector 1
6, the uncoated portions 10 and 17 where the hydrogen storage alloy powder 4 and the nickel hydroxide powder 14 are not fixed.
Is left unprocessed, the uncoated portions 10 and 17 of the negative electrode plate 1 and the positive electrode plate 12, the negative current collector 9 and the positive current collector The uncontacted portion 10 of the negative electrode plate 1, the negative electrode current collector 9, and the positive electrode 12
In this state, the uncoated portion 17 and the positive electrode current collector plate 16 are satisfactorily contacted with each other, and can be reliably joined by electric welding.

【0037】又、負極集電板9及び正極集電板16の円
周方向複数箇所に対し、半径方向に延びるスリット1
1,18を電極収納側に向け打ち抜き加工して該スリッ
ト11,18の縁部にバリ11a,18aを形成させれ
ば、前記スリット11,18の縁部のバリ11a,18
aを挾圧させた状態で負極板1と負極集電板9、正極板
12と正極集電板16とを電気溶接することにより、溶
接電流がバリ11a,18aに集中して溶接性が大幅に
向上され、負極板1と負極集電板9、正極板12と正極
集電板16を、より一層確実に接合することができる。
The slits 1 extending in the radial direction are provided at a plurality of locations in the circumferential direction of the negative electrode current collector plate 9 and the positive electrode current collector plate 16.
If the burrs 11a and 18a are formed at the edges of the slits 11 and 18 by punching the electrodes 1 and 18 toward the electrode housing side, the burrs 11a and 18 at the edges of the slits 11 and 18 are formed.
By welding the negative electrode plate 1 and the negative electrode current collector plate 9 and the positive electrode plate 12 and the positive electrode current collector plate 16 in a state where the pressure a is sandwiched, the welding current is concentrated on the burrs 11a and 18a, thereby greatly improving the weldability. Thus, the negative electrode plate 1 and the negative electrode current collector 9 and the positive electrode plate 12 and the positive electrode current collector 16 can be more reliably bonded.

【0038】尚、本発明は上述した形態例にのみ限定さ
れるものではなく、空隙率の規定を除いた同様の構造
を、ニッケル水素電池の正極板及びリチウムイオン電池
の正及び負極板にも適用可能であること、水素吸蔵合金
粉末、芯材、延性及び導電性を有する金属粉末に関する
具体的な材質に関しては、明細書中に具体的に記述した
もの以外の材質を選定しても良いこと、その他、本発明
の要旨を逸脱しない範囲内において種々変更を加え得る
ことは勿論である。
It should be noted that the present invention is not limited only to the above-described embodiment, and the same structure except for the definition of the porosity is applied to the positive electrode plate of a nickel hydride battery and the positive and negative electrode plates of a lithium ion battery. Applicability, with regard to specific materials for hydrogen storage alloy powder, core material, metal powder having ductility and conductivity, materials other than those specifically described in the specification may be selected Of course, various changes can be made without departing from the spirit of the present invention.

【0039】[0039]

【発明の効果】上記した本発明の二次電池によれば、下
記の如き種々の優れた効果を奏し得る。
According to the above-mentioned secondary battery of the present invention, various excellent effects as described below can be obtained.

【0040】(I)本発明の請求項1に記載の発明によ
れば、二次電池の負極板に関し、従来の如き有機バイン
ダを使用しなくても、水素吸蔵合金粉末を芯材の両面に
対し強固に固定することができ、しかも、水素吸蔵合金
粉末の粒子相互間を電気的に接続し且つ芯材と水素吸蔵
合金粉末との接触面積を大きく確保して良好な導電性ネ
ットワークを形成させることができ、更には、水素吸蔵
合金粉末の粒子相互間の隙間に対し水酸化カリウム等の
電解液を良好に行き亘らせて水素イオンの拡散速度を大
幅に向上させることもできるので、これらの相乗的な作
用により極めて優れた高率放電特性を得ることができ
る。
(I) According to the first aspect of the present invention, with respect to the negative electrode plate of the secondary battery, the hydrogen storage alloy powder is applied to both surfaces of the core material without using the conventional organic binder. In addition, it can be firmly fixed, and furthermore, electrically connects the particles of the hydrogen storage alloy powder and secures a large contact area between the core material and the hydrogen storage alloy powder to form a good conductive network. In addition, since the electrolyte such as potassium hydroxide can be spread well in the gaps between the particles of the hydrogen storage alloy powder, the diffusion rate of hydrogen ions can be greatly improved. By the synergistic action of the above, extremely excellent high rate discharge characteristics can be obtained.

【0041】(II)本発明の請求項2に記載の発明に
よれば、水素吸蔵合金粉末やパンチング加工により負極
板の無地部と負極集電板との接触性が損なわれることが
なくなり、負極板の無地部と負極集電板とを良好に接触
させた状態で電気溶接して確実に接合することができ
る。
(II) According to the second aspect of the present invention, the contact between the uncoated portion of the negative electrode plate and the negative electrode current collector plate is not impaired by the hydrogen storage alloy powder or punching, and the negative electrode The solid part of the plate and the negative electrode current collector plate can be securely joined by electric welding in a state where they are in good contact with each other.

【0042】(III)本発明の請求項3に記載の発明
によれば、スリットの縁部のバリを挾圧させた状態で負
極板と負極集電板とを電気溶接することにより、溶接電
流がバリに集中して溶接性が大幅に向上され、負極板と
負極集電板とをより一層確実に接合することができる。
(III) According to the third aspect of the present invention, the welding current is obtained by electrically welding the negative electrode plate and the negative electrode current collector plate with the burrs at the edges of the slit being pressed. Is concentrated on the burrs, the weldability is greatly improved, and the negative electrode plate and the negative electrode current collector plate can be more reliably joined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例を模式的に示す断
面図である。
FIG. 1 is a cross-sectional view schematically showing one example of an embodiment of the present invention.

【図2】芯材の両面に水素吸蔵合金粉末を通電圧延して
いる状態を示す概略図である。
FIG. 2 is a schematic diagram showing a state in which hydrogen storage alloy powder is electrically rolled on both surfaces of a core material.

【図3】図1の負極板を装備した二次電池の内部構造の
詳細を示す斜視図である。
FIG. 3 is a perspective view showing details of an internal structure of a secondary battery equipped with the negative electrode plate of FIG. 1;

【図4】図3の負極集電板のスリット打ち抜き部分の断
面図である。
FIG. 4 is a cross-sectional view of a slit punched portion of the negative electrode current collector plate of FIG.

【図5】図3の正極集電板のスリット打ち抜き部分の断
面図である。
FIG. 5 is a sectional view of a slit punched portion of the positive electrode current collector plate of FIG. 3;

【図6】ニッケル水素二次電池の高率放電特性の試験デ
ータの一例を示すグラフである。
FIG. 6 is a graph showing an example of test data of a high-rate discharge characteristic of a nickel-hydrogen secondary battery.

【図7】二次電池の一例における一部を破断して展開し
た斜視図である。
FIG. 7 is an exploded perspective view showing a part of an example of the secondary battery in a broken state.

【図8】従来の負極板の一例を模式的に示す断面図であ
る。
FIG. 8 is a cross-sectional view schematically showing one example of a conventional negative electrode plate.

【符号の説明】[Explanation of symbols]

1 負極板 2 芯材 2a バリ 3 ニッケル粉末(金属粉末) 4 水素吸蔵合金粉末 9 負極集電板 10 無地部 11 スリット 11a バリ DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Core material 2a Burr 3 Nickel powder (metal powder) 4 Hydrogen storage alloy powder 9 Negative current collector plate 10 Solid part 11 Slit 11a Burr

フロントページの続き Fターム(参考) 5H017 AA02 CC01 DD08 5H022 AA04 BB02 CC22 5H028 AA05 BB15 CC12 5H050 AA02 BA14 CA03 CB16 DA03 DA10 EA02 FA05 HA01 Continued on the front page F term (reference) 5H017 AA02 CC01 DD08 5H022 AA04 BB02 CC22 5H028 AA05 BB15 CC12 5H050 AA02 BA14 CA03 CB16 DA03 DA10 EA02 FA05 HA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 積極的にバリが形成されるようにパンチ
ング加工を施した金属多孔質箔の芯材の両面に、延性及
び導電性を有する金属粉末を2〜10重量%の比率で含
んだ水素吸蔵合金粉末を通電圧延又は温間圧延により空
隙率18〜24%で固定して成る負極板を装備したこと
を特徴とする二次電池。
1. A metal powder having ductility and conductivity is contained at a ratio of 2 to 10% by weight on both sides of a core material of a porous metal foil subjected to a punching process so that burrs are formed actively. A secondary battery comprising a negative electrode plate formed by fixing a hydrogen storage alloy powder at a porosity of 18 to 24% by current rolling or warm rolling.
【請求項2】 負極板の負極集電板側に対峙する長辺部
に対し、水素吸蔵合金粉末を固定していない芯材の無地
部を非加工のまま残したことを特徴とする請求項1に記
載の二次電池。
2. A non-processed portion of a core material on which the hydrogen-absorbing alloy powder is not fixed is left unprocessed on a long side portion of the negative electrode plate facing the negative electrode current collector plate side. 2. The secondary battery according to 1.
【請求項3】 負極集電板の円周方向複数箇所に対し、
半径方向に延びるスリットを電極収納側に向け打ち抜き
加工して該スリットの縁部にバリを形成したことを特徴
とする請求項1又は2に記載の二次電池。
3. The method according to claim 1, wherein a plurality of positions on the negative electrode current collector plate in the circumferential direction are provided.
The secondary battery according to claim 1, wherein a slit extending in a radial direction is punched toward the electrode housing side to form a burr at an edge of the slit.
JP2000196802A 2000-06-29 2000-06-29 Secondary cell Pending JP2002015732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196802A JP2002015732A (en) 2000-06-29 2000-06-29 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196802A JP2002015732A (en) 2000-06-29 2000-06-29 Secondary cell

Publications (1)

Publication Number Publication Date
JP2002015732A true JP2002015732A (en) 2002-01-18

Family

ID=18695240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196802A Pending JP2002015732A (en) 2000-06-29 2000-06-29 Secondary cell

Country Status (1)

Country Link
JP (1) JP2002015732A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803564A (en) * 2017-02-16 2017-06-06 广西卓能新能源科技有限公司 A kind of pole piece tape splicing instrument and pole piece tape splicing method
JP2018045994A (en) * 2016-09-08 2018-03-22 Fdk株式会社 Cylindrical alkaline secondary battery
WO2022177360A1 (en) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 Secondary battery, and battery pack and vehicle comprising same
WO2022177355A1 (en) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 Secondary battery, and battery pack and vehicle comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045994A (en) * 2016-09-08 2018-03-22 Fdk株式会社 Cylindrical alkaline secondary battery
CN106803564A (en) * 2017-02-16 2017-06-06 广西卓能新能源科技有限公司 A kind of pole piece tape splicing instrument and pole piece tape splicing method
CN106803564B (en) * 2017-02-16 2023-07-07 广西卓能新能源科技有限公司 Pole piece tape splicing tool and pole piece tape splicing method
WO2022177360A1 (en) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 Secondary battery, and battery pack and vehicle comprising same
WO2022177355A1 (en) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 Secondary battery, and battery pack and vehicle comprising same

Similar Documents

Publication Publication Date Title
JP4825344B2 (en) Battery / capacitor composite element
JP3831525B2 (en) battery
CN109428124B (en) Method for manufacturing all-solid battery and all-solid battery manufactured by the method
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
US6309775B1 (en) Prismatic electrochemical cell
JP2002015732A (en) Secondary cell
US3672998A (en) Extended area zinc anode having low density for use in a high rate alkaline galvanic cell
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JP2002343417A (en) Alkaline storage battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2001052711A (en) Electrode plate for storage battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JPH1186897A (en) Sealed nickel hydrogen battery
JP3429684B2 (en) Hydrogen storage electrode
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP3684935B2 (en) Method for producing secondary battery negative electrode plate
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JP2001035487A (en) Secondary battery negative electrode plate and its manufacture
JPH0547366A (en) Rectangular metal hydride storage battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JP2000030736A (en) Nickel hydrogen secondary battery
JP2003282052A (en) Electrode and cell
JP3267156B2 (en) Nickel hydride rechargeable battery