JP2002014065A - Method and apparatus for measuring heating amount of electronic component - Google Patents
Method and apparatus for measuring heating amount of electronic componentInfo
- Publication number
- JP2002014065A JP2002014065A JP2000193890A JP2000193890A JP2002014065A JP 2002014065 A JP2002014065 A JP 2002014065A JP 2000193890 A JP2000193890 A JP 2000193890A JP 2000193890 A JP2000193890 A JP 2000193890A JP 2002014065 A JP2002014065 A JP 2002014065A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- temperature
- measuring
- heat
- calorific value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、実際に製品レベル
の実装をしているプリント板上の個別の素子の発熱量と
熱的な特性を測定する電子部品発熱測定方法およびその
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the heat generation of electronic parts for measuring the heat generation and thermal characteristics of individual elements on a printed circuit board actually mounted on a product level.
【0002】[0002]
【従来の技術】従来プリント板上の電子部品の発熱測定
は、図9に示すようにプリント基板1上に設けられてい
る測定対象素子2の主要回路の電流、電圧を、電流計
A、電圧計Vを用いて直接測定し、又は測定プロープ1
0aを有する測定器10で間接測定して消費電力を求
め、測定対象素子の発熱量を測定する方法が用いられて
いる。2. Description of the Related Art Conventionally, the measurement of heat generation of an electronic component on a printed board is performed by measuring the current and voltage of a main circuit of an element 2 to be measured provided on a printed circuit board 1 as shown in FIG. Measure directly using meter V, or measure probe 1
A method is used in which the power consumption is obtained by indirectly measuring with the measuring instrument 10 having 0a, and the calorific value of the element to be measured is measured.
【0003】[0003]
【発明が解決しようとする課題】しかし、電子機器内に
実装されているプリント板上に実装されている素子は、
各素子の動作状態を想定して発熱量を予測しているの
で、実際に動作している状態での発熱量の把握は非常に
困難であった。However, elements mounted on a printed board mounted in an electronic device are:
Since the amount of heat generation is estimated assuming the operation state of each element, it is very difficult to grasp the amount of heat generation in the state of actual operation.
【0004】特に上記素子の電流をプロープで測定する
間接測定では小電流の場合精度良く測定することはでき
ない。[0004] In particular, in the indirect measurement in which the current of the above-mentioned element is measured with a probe, it is not possible to measure accurately with a small current.
【0005】また、BGA(Ball Grid Ar
ray)のような素子の場合、素子にリードがないため
形状的に回路の電流値を直接測定することがより困難で
あり、素子の発熱量を測定することは現実的に不可能に
近かった。また治具を使用して電圧や電流値を測定して
も実際の使用状態でないため放熱特性を同時に測定する
ことが困難であった。さらに高速に動作する素子の場
合、治具に取り付けても所定の動作をしないという問題
もあった。Further, BGA (Ball Grid Ar)
ray), it is more difficult to directly measure the current value of the circuit due to the lack of leads on the element, and it is practically impossible to measure the heating value of the element. . Further, even when the voltage and current values are measured using a jig, it is difficult to measure the heat radiation characteristics at the same time because the actual use state is not obtained. In the case of an element operating at a higher speed, there is a problem that a predetermined operation is not performed even when the element is attached to a jig.
【0006】LSIなどの半導体は、ジャンクション温
度Tjを許容温度以下にする必要がある。しかし、実際
に使用している素子ではジャンクション温度Tjを直接
測定することができないため、従来は素子の周囲温度T
aまたは素子の表面温度Tcを測定してジャンクション
温度Tjを測定している。これは各温度間の熱抵抗があ
らかじめLSIメーカーで測定さえいるため、別途設定
した素子の発熱量Pから以下の基本式を用いて算出する
ものである。In a semiconductor such as an LSI, the junction temperature Tj needs to be lower than an allowable temperature. However, since the junction temperature Tj cannot be directly measured in the element actually used, conventionally, the ambient temperature Tj of the element is conventionally used.
a or the surface temperature Tc of the element is measured to measure the junction temperature Tj. Since the thermal resistance between the temperatures is measured in advance by the LSI maker, the thermal resistance is calculated from the heat value P of the element set separately using the following basic formula.
【0007】素子周囲許容温度 Ta(max)=Tj
(max)・α1−P×Rja ここでRjaは熱抵抗、α1:ディレーティング率であ
る。[0007] Element ambient allowable temperature Ta (max) = Tj
(Max) · α1−P × Rja Here, Rja is a thermal resistance, and α1: a derating rate.
【0008】素子表面許容温度 Tc(max)=Tj
(max)・α2−P×Rjc ここでRjcは熱抵抗、α2:ディレーティング率であ
る。Element surface allowable temperature Tc (max) = Tj
(Max) · α2−P × Rjc where Rjc is a thermal resistance and α2 is a derating rate.
【0009】これを図2に示す。しかし、上記のとお
り、この発熱量Pが推定値でありジャンクション温度T
jの厳密な判定ができなかった。This is shown in FIG. However, as described above, the heat value P is an estimated value and the junction temperature T
j could not be determined exactly.
【0010】現在、プリント板上の素子の熱的なモデル
は一般的に図3のように考えられている。しかし個別の
熱抵抗を測定することはLSIメーカーの研究所レベル
を除ききわめて困難であった。At present, a thermal model of an element on a printed board is generally considered as shown in FIG. However, it was extremely difficult to measure individual thermal resistance except at the laboratory level of LSI manufacturers.
【0011】なお、図2、図3において、Taは素子周
囲温度、Tc素子の表面温度、Tbは素子の下面(素子
プリント板側)温度、Tjは素子のジャンクション温
度、RcaおよびRbaは素子の表面と周囲間および下
面と周囲間の熱抵抗、Rja,Rjc,Rjbは素子の
ジャンクションと周囲、表面、下面間のジャンクション
熱抵抗、Pは素子発熱量、Pc,Pbは素子の上面、下
面の発熱量である。本発明は、上記課題に鑑みてなされ
たものであり、その目的とするところは、従来測定困難
であったプリント板上の素子の発熱量および熱特性を同
時に実際の製品レベルのプリント板に実装された状態で
測定できる電子部品発熱量測定方法およびその装置を提
供することにある。In FIGS. 2 and 3, Ta is the element ambient temperature, Tc element surface temperature, Tb is element lower surface (element printed board side) temperature, Tj is element junction temperature, Rca and Rba are element element temperatures. Rja, Rjc, Rjb are the junction thermal resistances of the junction and periphery of the element, the surface and the lower surface, P is the heat generation of the element, Pc and Pb are the upper and lower surfaces of the element. The calorific value. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to simultaneously mount the calorific value and thermal characteristics of elements on a printed board, which were conventionally difficult to measure, on a printed board of an actual product level. It is an object of the present invention to provide a method and an apparatus for measuring the calorific value of an electronic component which can be measured in a state where the electronic component is measured.
【0012】[0012]
【課題を解決するための手段】本発明の第1の電子部品
発熱量測定方法は、プリント基板に実装された測定対象
素子の上に電流により冷却量が変化する冷却素子を設
け、この冷却素子の電流を制御することで、測定対象素
子上面と冷却素子間の熱抵抗をダイナミックに変化さ
せ、この熱抵抗変化の前後における測定対象素子の上面
発熱量および上面温度と下面温度を測定し、上記測定し
た各温度と熱吸収量およびメーカ試験で明らかになって
いる測定対象素子のジャンクションと上面間の熱抵抗値
から、計算により測定対象素子の発熱量を求めることを
特徴とする。According to a first method of measuring the amount of heat generated by an electronic component of the present invention, a cooling element whose cooling amount is changed by an electric current is provided on an element to be measured mounted on a printed circuit board. By controlling the current of the target element, the thermal resistance between the upper surface of the element to be measured and the cooling element is dynamically changed, and the calorific value of the upper surface and the upper and lower temperatures of the element to be measured before and after the change in the thermal resistance are measured. It is characterized in that the calorific value of the measurement target element is obtained by calculation from the measured temperature and heat absorption amount and the thermal resistance value between the junction and the upper surface of the measurement target element, which is clarified by a manufacturer test.
【0013】この第1の方法を実施する第1の電子部品
発熱量測定装置は、電流によって冷却量が変化する冷却
素子を有する測定対象素子の上面発熱量を測定する発熱
量測定装置と、測定対象素子の上面温度および下面温度
を検出する各センサを有する温度測定器と、前記発熱測
定器と温度測定器で測定した発熱量と各温度およびメー
カ試験で明らかになっている測定対象素子のジャンクシ
ョンと上面間の熱抵抗値から前記測定対象素子の発熱量
を計算をする演算手段とを有することを特徴とする。[0013] A first electronic component calorific value measuring device for carrying out the first method comprises: a calorific value measuring device for measuring an upper surface calorific value of an element to be measured having a cooling element whose cooling amount changes with an electric current; A temperature measuring device having respective sensors for detecting the upper surface temperature and the lower surface temperature of the target element, and the heat generation amount measured by the heat measuring device and the temperature measuring device, and the junction of the measuring target element clarified by each temperature and a maker test And a calculating means for calculating a calorific value of the element to be measured from a thermal resistance value between the upper surface and the upper surface.
【0014】また、本発明の第2の電子部品発熱量測定
方法は、プリント基板に実装された測定対象素子の上に
熱伝導部材からなる発熱測定部を設け、この発熱測定部
の上に冷却装置を設け、この冷却装置の性能を変化さ
せ、その性能を変化させる前後における測定対象素子の
上面と下面の温度および前記発熱測定部上面の温度を測
定し、 前記測定した各温度とメーカ試験で明らかにな
っている測定対象素子のジャンクションと上面間の熱抵
抗値から測定対象素子の発熱量を計算により求めること
を特徴とする。According to a second method of measuring the calorific value of an electronic component according to the present invention, a calorific value measuring section made of a heat conductive member is provided on an element to be measured mounted on a printed circuit board, and cooling is provided on the calorific value measuring section. Provide a device, change the performance of this cooling device, measure the temperature of the upper and lower surfaces of the element to be measured and the temperature of the upper surface of the heat generation measurement unit before and after the change of the performance, by the measured temperature and manufacturer test The method is characterized in that the calorific value of the device to be measured is calculated from the thermal resistance value between the junction and the upper surface of the device to be measured that is known.
【0015】この第2の方法を実施する電子部品発熱量
測定装置は、プリント基板に実装された測定対象素子の
上に載置される熱伝導部材からなる発熱測定部と、この
発熱測定部の上に設けられた冷却装置と、前記測定対象
素子の上面温度と下面温度および前記発熱測定部の上面
温度を検出する各センサを有する温度測定器と、前記温
度測定器で測定した上記各温度とメーカ試験で明らかに
なっている測定対象素子のジャンクションと上面間の熱
抵抗値から測定対象素子の発熱量を計算する演算手段と
を有することを特徴とする。An electronic component calorific value measuring apparatus for carrying out the second method includes a calorific value measuring section composed of a heat conducting member mounted on an element to be measured mounted on a printed circuit board; A cooling device provided on the top, a temperature measuring device having each sensor for detecting the upper surface temperature and the lower surface temperature of the element to be measured, and the upper surface temperature of the heat generation measuring section, and the respective temperatures measured by the temperature measuring device. An arithmetic unit for calculating a heat generation amount of the measurement target element from a junction between the measurement target element and a thermal resistance value between the upper surface, which is clarified in a manufacturer test.
【0016】上記冷却装置は例えば、ペルチェ素子とフ
ァン又はヒートシンクとファンで構成するとよい。The cooling device may be constituted by a Peltier element and a fan or a heat sink and a fan.
【0017】また、上記冷却装置の下部に周囲が断熱材
で覆われ下面中心に発熱測定部取付孔を有する伝熱部を
一体に設け、上記発熱測定部の上部に上記冷却装置伝熱
部の取付孔に嵌合する突起を有する伝熱片を一体に設
け、発熱測定部を上記冷却装置に着脱可能するとよい。In addition, a heat transfer portion whose periphery is covered with a heat insulating material and has a heat measurement portion mounting hole at the center of the lower surface is integrally provided below the cooling device, and the heat transfer portion of the cooling device heat transfer portion is provided above the heat generation measurement portion. It is preferable that a heat transfer piece having a projection that fits into the mounting hole is provided integrally, and the heat generation measuring section is detachable from the cooling device.
【0018】この場合、発熱測定部は大きさの異なるも
のを複数用意しておいて、測定対象素子の大きさに合わ
せて交換しうるようにするとよい。In this case, it is preferable to prepare a plurality of heat measurement units having different sizes so that they can be exchanged according to the size of the element to be measured.
【0019】[0019]
【発明の実施の形態】実施の形態1 実施の形態1にかかる電子部品発熱量測定装置を図1に
示す。図中、1は製品レベルのプリント板、2はプリン
ト板上の測定対象素子、3はペルチェ素子など冷却器を
用いた発熱測定器、4は素子2の上面、下面温度Tc,
Tbを検出するセンサを有する温度測定器、Aは発熱測
定器3のペルチェ素子電流を測定する電流計である。FIG. 1 shows an electronic component calorific value measuring apparatus according to a first embodiment. In the figure, 1 is a printed board at the product level, 2 is an element to be measured on the printed board, 3 is an exothermic measuring device using a cooler such as a Peltier element, 4 is an upper surface, lower surface temperature Tc of the element 2,
A temperature measuring device having a sensor for detecting Tb, and A is an ammeter for measuring the Peltier element current of the heat measuring device 3.
【0020】素子2の上面、下面温度Tb,Tcは温度
測定器4により測定でき、素子2の上面と発熱測定器3
の冷却器間の熱抵抗Rcaを大きく変化させる素子2の
上面発熱量Pcは発熱測定器3により測定できる。この
測定可能な温度Tc,Tbおよび発熱量Pcを測定して
素子2のジャンクションと下面間の熱抵抗Rjbおよび
素子2の発熱量Pを算出する。なお、熱抵抗Rcaを変
化させると図4に示すように温度Tcが変化する。The upper and lower temperatures Tb and Tc of the element 2 can be measured by a temperature measuring device 4, and the upper surface of the element 2 and the heat measuring device 3
The heat generation amount Pc of the upper surface of the element 2 which greatly changes the thermal resistance Rca between the coolers can be measured by the heat measurement device 3. By measuring the measurable temperatures Tc and Tb and the heat value Pc, the thermal resistance Rjb between the junction and the lower surface of the element 2 and the heat value P of the element 2 are calculated. When the thermal resistance Rca is changed, the temperature Tc changes as shown in FIG.
【0021】以下にRjbおよびPの算出方法を説明す
る 。Hereinafter, a method of calculating Rjb and P will be described.
【0022】図3の実装状態における熱モデルの熱の関
係式は一般的には以下のようになる。The relational expression of heat of the thermal model in the mounting state of FIG. 3 is generally as follows.
【0023】 1/Rja=1/(Rjc+Rca)+1/(Rjb+Rba)…(1) P=Pc+Pb ここで(Rjc+Rca+Rjb+R
ba=R)とすると、 Pc=(Rjb+Rba)/R,Pb=(Rjc+Rc
a)/R である。各温度Tc,Tj,Tb,Taの関係式は、 Tj=Rjc×Pc+Tc,Tc=Rja×Pc+Ta,Tb=Tj−Rjb ×Pb…(2) である。1 / Rja = 1 / (Rjc + Rca) + 1 / (Rjb + Rba) (1) P = Pc + Pb where (Rjc + Rca + Rjb + R
If ba = R, Pc = (Rjb + Rba) / R, Pb = (Rjc + Rc)
a) / R 2. The relational expression of each temperature Tc, Tj, Tb, Ta is as follows: Tj = Rjc × Pc + Tc, Tc = Rja × Pc + Ta, Tb = Tj−Rjb × Pb (2)
【0024】このモデルは次の式でも表わすことができ
る。This model can also be represented by the following equation.
【0025】Tc=Tb+Rjb×Pb−Rjc×Pc ここでPb=P−Pcなので Tc=Tb+Rjb×(P−Pc)−Rjc×Pc =Tb+Rjb×P−(Rjb+Rjc)×Pc…(3) となる。しかし通常、Rjcはデータ的に公開されてい
るがRjbは不明である。よってこの状態でのPcを計
算しても全体の発熱量Pは不明である。Tc = Tb + Rjb × Pb-Rjc × Pc Since Pb = P−Pc, Tc = Tb + Rjb × (P−Pc) −Rjc × Pc = Tb + Rjb × P− (Rjb + Rjc) × Pc (3) However, Rjc is usually disclosed in terms of data, but Rjb is unknown. Therefore, even if Pc is calculated in this state, the overall heat generation amount P is unknown.
【0026】素子2の上面に接続した発熱測定器3の熱
抵抗(図3のRcaに相当)を変化させる(例えば;ペ
ルチェ素子の電流値を制御することにより熱抵抗Rca
をダイナミックに変化させる)ことにより、2つ以上の
状態のRcaで上記の内容を測定する。これにより各部
の温度が変化するがその温度差によって以下の式により
直接RjbとPを求めることができるものである。The thermal resistance (corresponding to Rca in FIG. 3) of the exothermic measuring device 3 connected to the upper surface of the element 2 is changed (for example, by controlling the current value of the Peltier element, the thermal resistance Rca).
Is dynamically changed), and the above contents are measured with Rca in two or more states. As a result, the temperature of each part changes, but Rjb and P can be directly obtained by the following equation based on the temperature difference.
【0027】1)Rcaが大きい状態;RcaI(各値
I) 2)Rcaが小さい状態;RcaII(各値II) Rjc,Rjbは変化しないのでI、IIで同じであ
る。各I、IIの状態では上記(3)式は以下の様にな
る。1) Rca is large; RcaI (each value I) 2) Rca is small; RcaII (each value II) Since Rjc and Rjb do not change, I and II are the same. In each of the states I and II, the above equation (3) becomes as follows.
【0028】 TcI=TbI+Rjb×P−(Rjb+Rjc)×PcI…(4) TcII=TbII+Rjb×P−(Rjb+Rjc)×PcII…(5) (4)式−(5)式は以下となる。TcI = TbI + Rjb × P− (Rjb + Rjc) × PcI (4) TcII = TbII + Rjb × P− (Rjb + Rjc) × PcII (5) Equation (5) is as follows.
【0029】TcI−TcII=(TbI−TbII)
−(Rjb+Rjc)×(PcI−PcII) これを変形すると、 (Rjb+Rjc)×(PcI−PcII)=(TbI
−TbII)−(TcI−TcII) (Rjb+Rjc)={(TbI−TbII)−(Tc
I−TcII)}/(PcI−PcII) よって、Rjb={(TbI−TbII)−(TcI−
TcII)}/(PcI−PcII)−Rjc…(6) となる。TcI-TcII = (TbI-TbII)
− (Rjb + Rjc) × (PcI−PcII) By transforming this, (Rjb + Rjc) × (PcI−PcII) = (TbI
−TbII) − (TcI−TcII) (Rjb + Rjc) = {(TbI−TbII) − (Tc
I−TcII)} / (PcI−PcII) Therefore, Rjb = {(TbI−TbII) − (TcI−
TcII)} / (PcI-PcII) -Rjc (6)
【0030】また、(3)式を変形すると P={Tc−Tb+(Rjb+Rjc)×Pc}/Rjb…(7) となる。(6)(7)式において、Rjc以外は全て製
品と同等なレベルのプリント板に実装した状態で測定可
能である。Rjcは基本的なメーカ試験であきらかにな
っている。従って、RjbとPcを同時に容易に算出す
ることが可能となり、Pを計算で求めることができる。By transforming equation (3), P = {Tc−Tb + (Rjb + Rjc) × Pc} / Rjb (7) In the equations (6) and (7), measurement can be performed with all components except for Rjc mounted on a printed board at the same level as the product. Rjc is evident in basic manufacturer tests. Therefore, Rjb and Pc can be easily calculated at the same time, and P can be obtained by calculation.
【0031】なお、素子が1つだけの簡単なモデルで説
明したが、プリント板上に他の部品が実装されていても
本測定方法は有効である。Although a simple model having only one element has been described, the present measuring method is effective even when other components are mounted on a printed board.
【0032】また、Rbaは任意に変化させても上記測
定結果に影響がないのでRbaとRcaを同時に変化さ
せることで、精度向上や測定時間の短縮などに有効であ
る。Further, since Rba can be arbitrarily changed without affecting the measurement result, simultaneously changing Rba and Rca is effective for improving accuracy and reducing measurement time.
【0033】実施の形態2 実施の形態2にかかる電子部品発熱測定装置を図5に示
す。図中、1は製品レベルのプリント板、2は測定対象
素子、4は各部温度Tx,Tc,Tbを検出するセンサ
を有する温度測定器、5は素子2の上面に設けられた発
熱測定部、6は発熱測定部5の上面に設けられたペルチ
ェ素子又はファンなどからなる冷却装置、Aは冷却装置
6に流す電流を検出する電流計である。Second Embodiment FIG. 5 shows an electronic component heat generation measuring apparatus according to a second embodiment. In the figure, 1 is a printed board at the product level, 2 is an element to be measured, 4 is a temperature measuring instrument having a sensor for detecting each part temperature Tx, Tc, Tb, 5 is a heat generation measuring section provided on the upper surface of the element 2, Reference numeral 6 denotes a cooling device including a Peltier element or a fan provided on the upper surface of the heat measurement unit 5, and A denotes an ammeter for detecting a current flowing through the cooling device 6.
【0034】素子2の上面と下面の温度Tc,Tbおよ
び発熱測定部5の上面の温度Txは温度測定器4により
測定できる。この温度Tc,Tx,Tbを測定し、素子
上面発熱量Pcと素子ジャンクションと下面間の熱抵抗
Rjbを算出し、素子の発熱量Pを計算する。The temperatures Tc and Tb of the upper and lower surfaces of the element 2 and the temperature Tx of the upper surface of the heat measurement section 5 can be measured by the temperature measuring device 4. The temperatures Tc, Tx, and Tb are measured, and the calorific value Pc of the upper surface of the element and the thermal resistance Rjb between the element junction and the lower surface are calculated to calculate the calorific value P of the element.
【0035】図6に実施の形態2における熱抵抗モデル
を示す。図中、Txは発熱測温部上面温度、Rxaは発
熱測温部上面温度Txと冷却装置温度Ta間の熱抵抗を
示す。FIG. 6 shows a thermal resistance model according to the second embodiment. In the drawing, Tx indicates the temperature of the upper surface of the heat measurement part, and Rxa indicates the thermal resistance between the upper surface temperature Tx of the heat measurement part and the cooling device temperature Ta.
【0036】実施の形態2では、発熱測定部5の上に接
続した冷却装置6の性能を変化させる。(図6の熱抵抗
Rxaに相当を変化させる)。例えば、 1)ペルチェ素子の電流値を制御することにより熱抵抗
Rxaをダイナミックに変化させる、または 2)ファンの風量を変化させる このことにより、2つ以上の状態のRxaで上記の内容
を測定する。これにより各部の温度が変化するがその温
度差によって以下の式により直接RjbとPを求めるこ
とができるものである。In the second embodiment, the performance of the cooling device 6 connected above the heat measurement unit 5 is changed. (Equivalent to the thermal resistance Rxa in FIG. 6). For example, 1) dynamically changing the thermal resistance Rxa by controlling the current value of the Peltier element, or 2) changing the airflow of the fan. As a result, the above contents are measured with Rxa in two or more states. . As a result, the temperature of each part changes, but Rjb and P can be directly obtained by the following equation based on the temperature difference.
【0037】1)Rxaが大きい状態;RxaI(各値
I) 2)Rxaが小さい状態;RxaII(各値II) Rjc,Rjbは変化しないのでI、IIで同じであ
る。各I、IIの状態では上記(3)式は以下の様にな
る。1) Rxa is large; RxaI (each value I) 2) Rxa is small; RxaII (each value II) Since Rjc and Rjb do not change, I and II are the same. In each of the states I and II, the above equation (3) becomes as follows.
【0038】 TcI=TbI+Rjb×P−(Rjb+Rjc)×PcI…(4) TcII=TbII+Rjb×P−(Rjb+Rjc)×PcII…(5) (4)式−(5)式は以下となる。TcI = TbI + Rjb × P− (Rjb + Rjc) × PcI (4) TcII = TbII + Rjb × P− (Rjb + Rjc) × PcII (5) Equation (5) is as follows.
【0039】TcI−TcII=(TbI−TbII)
−(Rjb+Rjc)×(PcI−PcII) これを変形すると (Rjb+Rjc)×(PcI−PcII)=(TbI
−TbII)−(TcI−TcII) ∴(Rjb+Rjc)={(TbI−TbII)−(T
cI−TcII)}/(PcI−PcII)TcI-TcII = (TbI-TbII)
− (Rjb + Rjc) × (PcI−PcII) By transforming this, (Rjb + Rjc) × (PcI−PcII) = (TbI
−TbII) − (TcI−TcII) ∴ (Rjb + Rjc) = {(TbI−TbII) − (T
cI-TcII)} / (PcI-PcII)
【0040】[0040]
【数1】 (Equation 1)
【0041】また、上記(3)式を変形するとP={T
c−Tb+(Rjb+Rjc)×Pc}/Rjb…
(7)である。By transforming the above equation (3), P = {T
c−Tb + (Rjb + Rjc) × Pc} / Rjb ...
(7).
【0042】[0042]
【数2】 (Equation 2)
【0043】(6′)(7′)式においてTc,Tb,
Txは全て製品と同等なレベルのプリント板に実装した
状態で測定可能である。またRcxは既知の材質を使用
しているので確定できる。Rjcは基本的なメーカ試験
であきらかになっている。従ってRjbとPcを同時に
容易に算出することが可能となりPを計算で求めること
ができる。In equations (6 ') and (7'), Tc, Tb,
Tx can be measured while all are mounted on a printed circuit board of the same level as the product. Rcx can be determined because a known material is used. Rjc is evident in basic manufacturer tests. Therefore, Rjb and Pc can be easily calculated at the same time, and P can be obtained by calculation.
【0044】なお、このモデルは素子が1つだけの簡単
なモデルで説明したが、プリント板上に他の製品が実装
されていて発熱していても本測定方法は有効である。Although this model has been described as a simple model having only one element, the present measuring method is effective even when another product is mounted on a printed board and heat is generated.
【0045】またRbaは任意に変化させても上記測定
結果に影響がないのでRbaとRxaを同時に変化させ
ることで、精度向上や測定時間の短縮などに有効であ
る。Further, even if Rba is arbitrarily changed, the above measurement result is not affected. Therefore, simultaneously changing Rba and Rxa is effective for improving accuracy and reducing measurement time.
【0046】実施例1 この発熱量測定装置の実施例を図7に示す。冷却装置6
としてペルチェ素子を用いその上にファン8を設けてい
る。発熱測定装置7は温度測定部7aと、冷却装置6の
ペルチェ素子に電流を流すための直流電源Eと、上記
(6′)(7′)式の計算をする演算部7bを備えてい
る。Embodiment 1 FIG. 7 shows an embodiment of the calorific value measuring apparatus. Cooling device 6
And a fan 8 is provided thereon. The heat generation measuring device 7 includes a temperature measuring unit 7a, a DC power supply E for supplying a current to the Peltier element of the cooling device 6, and a calculating unit 7b for calculating the above equations (6 ') and (7').
【0047】冷却装置6は下部にペルチェ素子に接続さ
れた伝熱部6aが接続されている。この伝熱部6aの下
面中心には測定ヘッド9接続用のピン孔6bが設けられ
ており、伝熱部6aの周囲には断熱材6cが施されてい
る。The lower part of the cooling device 6 is connected to a heat transfer part 6a connected to a Peltier element. A pin hole 6b for connecting the measuring head 9 is provided at the center of the lower surface of the heat transfer section 6a, and a heat insulating material 6c is provided around the heat transfer section 6a.
【0048】測定ヘッド9は下面に発熱測定部5が施さ
れた本体9aの上面中心に上記伝熱部6aのピン孔6b
に嵌合するピン9bを有し、上記伝熱部6aの下端に着
脱可能としてある。測定ヘッド9の周囲には断熱材9c
が施されている。なお、測定ヘッド9の本体9aと発熱
測定部5との間には温度測定用センサが挿入可能として
ある。The measuring head 9 is provided with a pin hole 6b of the heat transfer portion 6a at the center of the upper surface of the main body 9a having the heat generation measuring portion 5 on the lower surface.
The pin 9b is fitted to the heat transfer portion 6a and is detachable from the lower end of the heat transfer portion 6a. Insulation material 9c around the measuring head 9
Is given. Note that a temperature measurement sensor can be inserted between the main body 9a of the measurement head 9 and the heat generation measurement section 5.
【0049】測定ヘッド9は大中小数種類用意されてお
り、測定対象素子の大きさや発熱量に応じて交換可能に
してある。The measuring head 9 is prepared in several types, large, medium and small, and can be replaced according to the size of the element to be measured and the amount of heat generated.
【0050】測定ヘッド9を冷却装置6の伝熱部6aに
取り付け、発熱測定部5を測定対象素子上面に当て、ペ
ルチェ素子に通電し電熱部6aを冷却して上記温度T
a,Tb,Tcを測定する。演算部4bは既知のRjb
と測定されたTa,Tb,Tcを用いて上記(6′)式
および(7′)式を演算する。The measurement head 9 is attached to the heat transfer section 6a of the cooling device 6, the heat generation measurement section 5 is brought into contact with the upper surface of the element to be measured, and a current is supplied to the Peltier element to cool the electric heating section 6a.
a, Tb and Tc are measured. The calculation unit 4b uses a known Rjb
Using the measured Ta, Tb, and Tc, the equations (6 ') and (7') are calculated.
【0051】実施例2 発熱量測定装置の冷却装置としてヒートシンクを用いた
実施例を図8に示す。冷却装置6として基台6dの上に
多数のヒートシンク6′を立設し、その上にファン8を
設けている。ヒートシンク6′の基台6dの下側に実施
例1と同様に伝熱部6aが一体に設けられ、伝熱部6a
の下端に発熱測定部5を有する測定ヘッド9が着脱可能
に設けられている。Embodiment 2 FIG. 8 shows an embodiment in which a heat sink is used as a cooling device of the calorific value measuring device. A number of heat sinks 6 'are erected on a base 6d as a cooling device 6, and a fan 8 is provided thereon. A heat transfer section 6a is integrally provided below the base 6d of the heat sink 6 'in the same manner as in the first embodiment.
A measuring head 9 having a heat generation measuring unit 5 is detachably provided at a lower end of the measuring head 9.
【0052】ヒートシンク6′は内部に媒体が封入され
ており、媒体が伝熱部6a側からの熱を吸収し気化し、
ファン8側へ熱を放散させると液化して再び伝熱部側か
らの熱を吸収することを繰返して伝熱部6aを冷却す
る。A medium is sealed in the heat sink 6 ', and the medium absorbs heat from the heat transfer section 6a and is vaporized.
When the heat is dissipated to the fan 8 side, it liquefies and absorbs the heat from the heat transfer section again, thereby cooling the heat transfer section 6a.
【0053】しかして、測定ヘッド9をヒートシンク
6′で冷却される電熱部6aに取り付け、発熱測定部5
を測定対象素子上面に当て、上記温度Ta,Tb,Tc
を測定し、演算部7bで(6′)式および(7′)式を
演算する。Then, the measuring head 9 is attached to the electric heating section 6a cooled by the heat sink 6 ',
Is applied to the upper surface of the element to be measured, and the temperatures Ta, Tb, Tc
Is calculated, and the calculation unit 7b calculates the expressions (6 ′) and (7 ′).
【0054】[0054]
【発明の効果】本発明は、上述のとおり構成されている
ので、従来測定困難であったプリント板上の素子の発熱
量および熱特性を同時に実際の製品レベルのプリント板
に実装された状態で測定できる。Since the present invention is configured as described above, the calorific value and the thermal characteristics of the elements on the printed board, which have been difficult to measure in the past, can be measured at the same time when mounted on the printed board of the actual product level. Can be measured.
【0055】実施例1,2のように、発熱測定装置と冷
却装置を任意に選択することができ、測定対象素子の発
熱量に応じて冷却部にペルチェ素子やヒートシンク(各
ファン付き)を任意に選択できる。また発熱測定部は測
定対象の素子の発熱量や大きさに応じて大きさや熱抵抗
を選択することにより、高精度で効率的な測定が可能で
ある。As in the first and second embodiments, a heat generation measuring device and a cooling device can be arbitrarily selected, and a Peltier element and a heat sink (with each fan) are optionally provided in the cooling portion according to the heat generation amount of the element to be measured. Can be selected. In addition, the heat generation measuring section can perform high-precision and efficient measurement by selecting the size and the thermal resistance according to the heat generation amount and the size of the element to be measured.
【0056】発熱測定部でPcを測定するため、冷却部
はファンの速度やペルチェ素子の電圧などを変化させる
ことにより、冷却部性能を変化させることができればよ
く高価なコントローラやセンサーは必要ない。Since the heat measurement unit measures Pc, the cooling unit only needs to be able to change the performance of the cooling unit by changing the speed of the fan, the voltage of the Peltier element, etc., and does not require an expensive controller or sensor.
【図1】実施の形態1にかかる発熱量測定装置の構成説
明図。FIG. 1 is a configuration explanatory view of a calorific value measuring device according to a first embodiment.
【図2】測定対象素子の熱抵抗説明図。FIG. 2 is an explanatory diagram of a thermal resistance of a measurement target element.
【図3】測定対象素子の熱抵抗モデル。FIG. 3 is a thermal resistance model of an element to be measured.
【図4】測定対象素子の温度と発熱量の関係を示す線
図。FIG. 4 is a diagram showing a relationship between a temperature of a measurement target element and a calorific value;
【図5】実施の形態2にかかる発熱量測定装置の構成説
明図。FIG. 5 is a configuration explanatory view of a calorific value measuring device according to a second embodiment.
【図6】測定対象素子の熱抵抗モデル。FIG. 6 is a thermal resistance model of an element to be measured.
【図7】実施の形態2の実施例1にかかる発熱量測定装
置の構成説明図。FIG. 7 is a configuration explanatory diagram of a calorific value measuring device according to Example 1 of Embodiment 2;
【図8】実施の形態2の実施例2にかかる発熱量測定装
置の構成説明図。FIG. 8 is a configuration explanatory diagram of a calorific value measuring device according to a second example of the second embodiment.
【図9】従来例にかかる発熱量測定方法の説明図。FIG. 9 is an explanatory diagram of a calorific value measuring method according to a conventional example.
1…製品レベルのプリント板 2…測定対象素子 3…ペルチェ素子などを用いた発熱測定器 4…温度測定器 4′,4′′…発熱測定装置 5…発熱測定部 6…ペルチェ素子等冷却装置 6′…ヒートシンク 6a…伝熱部 7…測定ヘッド 8…ファン DESCRIPTION OF SYMBOLS 1 ... Printed board of a product level 2 ... Device to be measured 3 ... Heat generation measuring device using Peltier device etc. 4 ... Temperature measuring device 4 ', 4 "... Heat generation measuring device 5 ... Heat generation measuring unit 6 ... Cooling device such as Peltier device 6 ': heat sink 6a: heat transfer section 7: measuring head 8: fan
Claims (8)
の上に電流により冷却量が変化する冷却素子を設け、 この冷却素子の電流を制御することで、測定対象素子上
面と冷却素子間の熱抵抗をダイナミックに変化させ、こ
の熱抵抗変化の前後における測定対象素子の上面発熱量
および上面温度と下面温度を測定し、 上記測定した各温度と熱吸収量およびメーカ試験で明ら
かになっている測定対象素子のジャンクションと上面間
の熱抵抗値から計算により測定対象素子の発熱量を求め
ることを特徴とする電子部品発熱量測定方法。1. A cooling element whose cooling amount changes according to an electric current is provided on an element to be measured mounted on a printed circuit board. By controlling the current of the cooling element, heat between the upper surface of the element to be measured and the cooling element is controlled. The resistance is changed dynamically, and the upper surface heat generation amount and the upper surface temperature and lower surface temperature of the element to be measured before and after the change in the thermal resistance are measured. A method for measuring the calorific value of an electronic component, comprising calculating a calorific value of a device to be measured from a thermal resistance value between a junction and an upper surface of the device.
って、 電流によって冷却量が変化する冷却素子を有する測定対
象素子の上面発熱量を測定する発熱量測定器と、 測定対象素子の上面温度および下面温度を検出する各セ
ンサを有する温度測定器と、 前記発熱量測定器と温度測定器で測定した発熱量と各温
度およびメーカ試験で明らかになっている測定対象素子
のジャンクションと上面間の熱抵抗値から前記測定対象
素子の発熱量を計算する演算手段とを有することを特徴
とする電子部品発熱量測定装置。2. An apparatus for performing the method according to claim 1, further comprising: a calorific value measuring device for measuring an upper surface calorific value of the measurement target element having a cooling element whose cooling amount changes according to an electric current; A temperature measuring device having respective sensors for detecting the upper surface temperature and the lower surface temperature; the calorific value measured by the calorific value measuring device and the junction and the upper surface of the element to be measured which are clarified in each temperature and a maker test; Calculating means for calculating a calorific value of the element to be measured from a thermal resistance value therebetween.
の上に熱伝導部材からなる発熱測定部を設け、 この発熱測定部の上に冷却装置を設け、 この冷却装置の性能を変化させ、その性能を変化させる
前後における測定対象素子の上面と下面の温度および前
記発熱測定部上面の温度を測定し、 前記測定した各温度とメーカ試験で明らかになっている
測定対象素子のジャンクションと上面間の熱抵抗値から
測定対象素子の発熱量を計算により求めることを特徴と
する電子部品発熱量測定方法。3. A heat generation unit made of a heat conductive member is provided on a device to be measured mounted on a printed circuit board, a cooling device is provided on the heat measurement unit, and the performance of the cooling device is changed. Measure the temperature of the upper and lower surfaces of the device under test and the temperature of the upper surface of the heat generation measurement unit before and after changing the performance, and measure the temperature between the measured temperature and the junction of the device under test and the upper surface that are clarified in the manufacturer test. A method for measuring the calorific value of an electronic component, wherein a calorific value of the element to be measured is calculated from a thermal resistance value.
置であって、 プリント基板に実装された測定対象素子の上に載置され
る熱伝導部材からなる発熱測定部と、 この発熱測定部の上に設けられた冷却装置と、 前記温度測定対象素子の上面温度と下面温度および前記
発熱測定部の上面温度を検出する各センサを有する温度
測定器と、 前記測定器で測定した上記各温度とメーカ試験で明らか
になっている測定対象素子のジャンクションと上面間の
熱抵抗値から測定対象素子の発熱量を計算する演算手段
とを有することを特徴とする電子部品発熱量測定装置。4. An apparatus for carrying out the method according to claim 3, wherein the heat generation measuring unit is formed of a heat conductive member mounted on a device to be measured mounted on a printed circuit board; A cooling device provided on the portion, a temperature measuring device having respective sensors for detecting the upper surface temperature and the lower surface temperature of the temperature measurement target element and the upper surface temperature of the heat generation measuring portion, and each of the above-described temperature measured by the measuring device. An electronic component calorific value measuring device, comprising: arithmetic means for calculating a calorific value of a device to be measured from a thermal resistance value between a junction and an upper surface of the device to be measured, which is clarified by a temperature and a manufacturer test.
特徴とする電子部品発熱測定装置。5. The apparatus according to claim 4, wherein the cooling device comprises a Peltier element and a fan.
特徴とする電子部品発熱測定装置。6. The apparatus according to claim 4, wherein the cooling device comprises a heat sink and a fan.
て、 前記冷却装置は下部に、周囲が断熱材で覆われ下面中心
に発熱測定部取付孔を有する伝熱部を有し、 前記発熱測定部は上部に前記伝熱部の発熱測定部取付孔
に嵌合する突起を有する伝熱片を一体に有し、前記伝熱
部の下面に着脱可能となっていることを特徴とする電子
部品発熱量測定装置。7. The cooling device according to claim 4, wherein the cooling device has a heat transfer portion at a lower portion, the periphery of which is covered with a heat insulating material, and a heat generation measurement portion mounting hole at the center of the lower surface. The electronic device is characterized in that the measuring section integrally has a heat transfer piece having a projection on an upper portion thereof which fits into a heat measurement section mounting hole of the heat transfer section, and is detachable on a lower surface of the heat transfer section. Component calorific value measurement device.
おり、測定対象素子の大きさに合わせて交換しうるよう
になっていることを特徴とする電子部品発熱量測定装
置。8. The apparatus according to claim 7, wherein a plurality of heat generation measuring units having different sizes are prepared and can be replaced according to the size of the element to be measured. Electronic component calorific value measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193890A JP2002014065A (en) | 2000-06-28 | 2000-06-28 | Method and apparatus for measuring heating amount of electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193890A JP2002014065A (en) | 2000-06-28 | 2000-06-28 | Method and apparatus for measuring heating amount of electronic component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002014065A true JP2002014065A (en) | 2002-01-18 |
Family
ID=18692804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000193890A Pending JP2002014065A (en) | 2000-06-28 | 2000-06-28 | Method and apparatus for measuring heating amount of electronic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002014065A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736051B2 (en) | 2004-03-30 | 2010-06-15 | Yamatake Corporation | Thermoelectric device and mirror surface state detection device |
WO2015174698A1 (en) * | 2014-05-14 | 2015-11-19 | 서울대학교 산학협력단 | Heating value measurement apparatus and heating value measurement method |
KR101813952B1 (en) * | 2016-02-24 | 2018-01-02 | 포톤데이즈(주) | A Method for Measuring a Heating Value and an Apparatus for the Same |
WO2019198504A1 (en) * | 2018-04-10 | 2019-10-17 | パナソニックIpマネジメント株式会社 | Generated-heat-quantity measuring method and generated-heat-quantity measuring apparatus |
JP2020024147A (en) * | 2018-08-08 | 2020-02-13 | パナソニックIpマネジメント株式会社 | Heating value measuring method and heating value measuring apparatus |
CN113484363A (en) * | 2021-06-29 | 2021-10-08 | 重庆长安新能源汽车科技有限公司 | Test device and method for simulating internal heating of controller |
-
2000
- 2000-06-28 JP JP2000193890A patent/JP2002014065A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736051B2 (en) | 2004-03-30 | 2010-06-15 | Yamatake Corporation | Thermoelectric device and mirror surface state detection device |
WO2015174698A1 (en) * | 2014-05-14 | 2015-11-19 | 서울대학교 산학협력단 | Heating value measurement apparatus and heating value measurement method |
KR20150130782A (en) * | 2014-05-14 | 2015-11-24 | 서울대학교산학협력단 | Apparatus for measuring heating value and method of measuring heating value |
KR101596794B1 (en) | 2014-05-14 | 2016-03-07 | 서울대학교 산학협력단 | Apparatus for measuring heating value and method of measuring heating value |
KR101813952B1 (en) * | 2016-02-24 | 2018-01-02 | 포톤데이즈(주) | A Method for Measuring a Heating Value and an Apparatus for the Same |
WO2019198504A1 (en) * | 2018-04-10 | 2019-10-17 | パナソニックIpマネジメント株式会社 | Generated-heat-quantity measuring method and generated-heat-quantity measuring apparatus |
JPWO2019198504A1 (en) * | 2018-04-10 | 2021-02-12 | パナソニックIpマネジメント株式会社 | Calorific value measuring method and calorific value measuring device |
EP3760994A4 (en) * | 2018-04-10 | 2021-05-05 | Panasonic Intellectual Property Management Co., Ltd. | Generated-heat-quantity measuring method and generated-heat-quantity measuring apparatus |
JP7065308B2 (en) | 2018-04-10 | 2022-05-12 | パナソニックIpマネジメント株式会社 | Calorific value measuring method and calorific value measuring device |
JP2020024147A (en) * | 2018-08-08 | 2020-02-13 | パナソニックIpマネジメント株式会社 | Heating value measuring method and heating value measuring apparatus |
US11467040B2 (en) * | 2018-08-08 | 2022-10-11 | Panasonic Intellectual Property Management Co., Ltd. | Heat amount measuring method and heat amount measuring apparatus |
CN113484363A (en) * | 2021-06-29 | 2021-10-08 | 重庆长安新能源汽车科技有限公司 | Test device and method for simulating internal heating of controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7394271B2 (en) | Temperature sensing and prediction in IC sockets | |
US5997174A (en) | Method for determining a thermal parameter of a device by measuring thermal resistance of a substrate carrying the device | |
US6476627B1 (en) | Method and apparatus for temperature control of a device during testing | |
JP5509443B2 (en) | Measuring apparatus and thermal conductivity estimation method | |
CN110673015B (en) | Test method for simulating heating power and surface temperature of chip | |
US6491426B1 (en) | Thermal bond verification | |
KR20070114310A (en) | Temperature sensing and prediction in ic sockets | |
Avenas et al. | Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions–Comparison with infrared measurements | |
US6438504B2 (en) | Method of calculating thermal resistance in semiconductor package accommodating semiconductor chip within a case which can be applied to calculation for semiconductor package with radiation fins | |
JP2000304804A (en) | Burn-in device and burn-in method | |
Steffens et al. | Thermal transient characterization methodology for single-chip and stacked structures | |
CN109815596A (en) | Semiconductor devices environment temperature simulation system and method based on temperature-controlled radiator | |
JP2002014065A (en) | Method and apparatus for measuring heating amount of electronic component | |
CN111771120B (en) | Chip for evaluating substrate and substrate evaluating device | |
Dieker et al. | Comparison of different LED Packages | |
JP2004361197A (en) | Method for measuring heat value of electronic component | |
CN214473738U (en) | Device for measuring thermal resistance of semiconductor chip | |
Galloway et al. | Developing a Theta JC standard for electronic packages | |
TWI446492B (en) | A circuit lid with a thermocouple | |
US8814425B1 (en) | Power measurement transducer | |
US9069039B1 (en) | Power measurement transducer | |
Siegal | Thermal characterization of surface mount devices | |
Sikka | Advanced thermal tester for accurate measurement of internal thermal resistance of high power electronic modules | |
US8814424B1 (en) | Power measurement transducer | |
Lee | Thermal evaluations of 144 pin plastic flat packs |