[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002013412A - Exhaust emission control system - Google Patents

Exhaust emission control system

Info

Publication number
JP2002013412A
JP2002013412A JP2000196404A JP2000196404A JP2002013412A JP 2002013412 A JP2002013412 A JP 2002013412A JP 2000196404 A JP2000196404 A JP 2000196404A JP 2000196404 A JP2000196404 A JP 2000196404A JP 2002013412 A JP2002013412 A JP 2002013412A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
catalyst
diffusion control
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000196404A
Other languages
Japanese (ja)
Other versions
JP3682851B2 (en
Inventor
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000196404A priority Critical patent/JP3682851B2/en
Publication of JP2002013412A publication Critical patent/JP2002013412A/en
Application granted granted Critical
Publication of JP3682851B2 publication Critical patent/JP3682851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system capable of sufficiently enjoying a fuel consumption improving effect by travelling mainly in an oxygen excessive region (for example, in a lean state) and effectively using H2 contained in exhaust gas as a reducer. SOLUTION: The exhaust emission control system is constituted by arranging at least an NOx removing catalyst to reduce and treat nitrogen oxides with hydrogen as a reducer as well as an H2 diffusion control material to control diffusivity of hydrogen in an exhaust passage of an internal combustion engine or combustion equipment to be mainly driven in the oxygen excessive region and it increases H2 density in the exhaust gas to be supplied at the time when the NOx removing catalyst reduces and treats the nitrogen oxides by controlling diffusing speed of H2 by the H2 diffusion control material. The H2 diffusion control material and the NOx removing catalyst are laminated on an integral structured catalyst support and make a multilayer structure, and either one or both of an inner surface and an outer surface of this NOx removing catalyst layer makes or make contact with the H2 diffusion control layer. The H2 diffusion control material contains more than two kinds of fire resistance inorganic matters modes of pore diameter distribution of which are less than 4A and less than 10A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関や燃焼器
等から排出される排気ガスを浄化するシステムに係り、
特に、排気ガス中の窒素酸化物(NOx)を高効率で浄
化する排気ガス浄化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for purifying exhaust gas discharged from an internal combustion engine, a combustor or the like.
In particular, it relates to an exhaust gas purification system that purifies nitrogen oxides (NOx) in exhaust gas with high efficiency.

【0002】[0002]

【従来の技術】従来より、自動車等の内燃機関から排出
される排気ガスに含まれる一酸化炭素(CO)、炭化水
素(HC)及び窒素酸化物(NOx)等を浄化する触媒
などとしては、理論空燃比で働く三元触媒やこれを用い
た排気ガス浄化システムなどが知られている。また、内
燃機関の排気ガスが酸素過剰のときのように、窒素酸化
物の浄化が三元触媒では不可能な場合の窒素酸化物の浄
化方法としては、特許掲載第2600429号公報で示
されているように、排気ガスが酸素過剰の時にNOxを
吸収させ、吸収させたNOxをNOx吸収剤に流入する
排気ガス中の酸素の濃度を低下させて放出させて浄化処
理するという排気ガス浄化システムが用いらている。
2. Description of the Related Art Conventionally, catalysts for purifying carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx) and the like contained in exhaust gas discharged from internal combustion engines such as automobiles include: There are known three-way catalysts that operate at a stoichiometric air-fuel ratio and an exhaust gas purification system using the same. Further, as a method for purifying nitrogen oxides in a case where purification of nitrogen oxides is impossible with a three-way catalyst, such as when the exhaust gas of an internal combustion engine is in excess of oxygen, a method disclosed in Japanese Patent Publication No. 2640029 is disclosed. As described above, an exhaust gas purification system that absorbs NOx when the exhaust gas is in excess of oxygen, and reduces the concentration of oxygen in the exhaust gas flowing into the NOx absorbent to release the absorbed NOx to perform a purification process. Used.

【0003】しかし、かかる三元触媒を用いた排気ガス
浄化システムや特許掲載第2600429号公報に示さ
れているような排気ガス浄化システムでは、吸収させた
NOxを脱離して浄化する際に、還元剤としてHCやC
Oを用いており、これら従来技術では、NOxを反応浄
化させるためにはHCやCOをNOx浄化触媒に供給す
る必要がある。このため、NOx浄化触媒には、HCや
COの一部が残ってしまうことがあり、より高いレベル
で排気ガスを浄化することが困難であった。また、消費
されなかったHCやCOを浄化する方法として、NOx
触媒上で同時に酸化反応させる方法やNOx浄化触媒の
後段に三元触媒を配置する方法が採用されているが、N
Ox浄化触媒やその後段の三元触媒が排気流路のエンジ
ンから離れた位置に配置されるため排気ガスの排気温度
が低下してしまい、十分なHCやCONOx浄化性能が
得られない。特にエンジン始動直後に排出されるHCや
CO成分浄化が困難であるという問題もあった。
However, in such an exhaust gas purifying system using a three-way catalyst or an exhaust gas purifying system as disclosed in Japanese Patent Publication No. 2640029, when the absorbed NOx is desorbed and purified, a reduction is required. HC and C as agents
O is used, and in these conventional technologies, it is necessary to supply HC and CO to the NOx purification catalyst in order to purify NOx by reaction. For this reason, a part of HC and CO may remain in the NOx purification catalyst, and it has been difficult to purify exhaust gas at a higher level. As a method of purifying HC and CO that have not been consumed, NOx
A method of simultaneously performing an oxidation reaction on the catalyst and a method of disposing a three-way catalyst after the NOx purification catalyst have been adopted.
Since the Ox purification catalyst and the three-way catalyst at the subsequent stage are arranged at positions away from the engine in the exhaust passage, the exhaust gas temperature of the exhaust gas decreases, and sufficient HC and CONOx purification performance cannot be obtained. In particular, there is a problem that it is difficult to purify HC and CO components discharged immediately after the engine is started.

【0004】更に、NOxの反応浄化に水素を用いる触
媒としては、特開平6−1216174号公報に示され
ているように、水素吸蔵合金に吸蔵された水素を用い
て、リーン領域の還元性ガスを含まない排気ガス中のN
Oxを浄化する排気ガス浄化触媒が提案されている。
Further, as a catalyst using hydrogen for NOx reaction purification, as disclosed in Japanese Patent Application Laid-Open No. 6-126174, hydrogen stored in a hydrogen storage alloy is used to reduce a reducing gas in a lean region. N in exhaust gas containing no
An exhaust gas purifying catalyst for purifying Ox has been proposed.

【0005】一方、触媒において排気ガス中のガス拡散
性を制御する方法としては、特開平10−43588号
公報に、貴金属触媒層の上に細孔径分布の最頻地が異な
る2種以上の耐火性無機物からなる炭化水素脱離抑制層
をコートして、エンジンの冷間始動時に排出されるHC
を一時的に吸着させておき、脱離時のHCの拡散性を制
御してHCの脱離を遅らせる排気ガス浄化触媒が記載さ
れている。また、特開平11−22645号公報には、
細孔径分布が4〜9Åで、細孔径のピーク(最頻値)の
異なる2種以上の炭化水素吸着材を多層構造体として用
いることで同様に冷間始動時の炭化水素の吸着効率に優
れ、更に吸着した炭化水素の脱離遅延化を図った触媒が
記載されている。
On the other hand, as a method of controlling gas diffusivity in exhaust gas in a catalyst, Japanese Patent Application Laid-Open No. H10-43588 discloses a method for controlling two or more types of refractory having different pore diameter distribution modes on a noble metal catalyst layer. HC that is coated at the time of cold start of the engine by coating a hydrocarbon desorption suppressing layer made of a volatile inorganic substance
Describes an exhaust gas purifying catalyst that temporarily adsorbs and controls the diffusivity of HC at the time of desorption to delay the desorption of HC. Also, JP-A-11-22645 discloses that
The use of two or more types of hydrocarbon adsorbents having a pore size distribution of 4 to 9 ° and different pore size peaks (modes) as a multilayer structure also provides excellent hydrocarbon adsorption efficiency at cold start. And a catalyst for delaying the desorption of adsorbed hydrocarbons.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、かかる
触媒等では、以下のような課題があった。即ち、特開平
6−1216174号公報に示されているように、水素
吸蔵合金に吸蔵された水素を用いて、リーン領域の還元
性ガスを含まない排気ガス中のNOxを浄化する排気ガ
ス浄化触媒では、水素吸蔵合金そのもののNOx浄化機
能でリーン領域のNOxを浄化するために、十分な触媒
性能が得られないという課題があった。
However, such a catalyst has the following problems. That is, as disclosed in JP-A-6-126174, an exhaust gas purifying catalyst for purifying NOx in exhaust gas not containing a reducing gas in a lean region using hydrogen stored in a hydrogen storage alloy. Thus, there is a problem that sufficient catalytic performance cannot be obtained in order to purify NOx in a lean region by the NOx purification function of the hydrogen storage alloy itself.

【0007】また、特開平10−43588号公報及び
特開平11−22645号公報に記載の触媒では、ガス
の拡散性を制御する対象が炭化水素であり、そのため拡
散層に用いる材料としては、細孔径分布が炭化水素の吸
着性能に適しており、且つ炭化水素の脱離を抑制できる
ような細孔分布を持つものが選ばれている。しかし、炭
化水素に比較し分子径のより小さいH2ガスの拡散性の
制御が充分に行なえず、また、NOx浄化のための還元
剤としてH2が存在する排気ガス中で適切なH2ガスの
ガス拡散制御が行なえず、十分なNOx浄化性能が得ら
れないという課題があった。
Further, in the catalysts described in JP-A-10-43588 and JP-A-11-22645, the target for controlling the gas diffusivity is a hydrocarbon, and therefore, the material used for the diffusion layer is fine. Those having a pore size distribution suitable for the adsorption performance of hydrocarbons and having a pore distribution capable of suppressing desorption of hydrocarbons are selected. However, the diffusivity of H2 gas, which has a smaller molecular diameter than that of hydrocarbons, cannot be sufficiently controlled, and appropriate H2 gas diffusion in exhaust gas in which H2 exists as a reducing agent for NOx purification. There was a problem that control could not be performed and sufficient NOx purification performance could not be obtained.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、酸素過剰領域(例えばリーン状態)で走行すること
による燃費向上効果を十分に享有し、排気ガス中に含ま
れるH2を還元剤として有効に活用し得る排気ガス浄化
システムを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to sufficiently improve the fuel efficiency by running in an oxygen-excess region (for example, in a lean state). It is an object of the present invention to provide an exhaust gas purification system that can effectively utilize H2 contained in exhaust gas as a reducing agent.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究を重ねた結果、所定のH2拡散制御
材によって水素の拡散速度を制御してNOx浄化触媒が
NOxを浄化する際の水素濃度を増大することにより、
上記課題が解決することを見出し、本発明を完成するに
至った。
The inventor of the present invention has made intensive studies to solve the above-mentioned problems, and as a result, the NOx purification catalyst purifies NOx by controlling the diffusion rate of hydrogen by a predetermined H2 diffusion control material. By increasing the hydrogen concentration at the time,
The inventors have found that the above-mentioned problems can be solved, and have completed the present invention.

【0010】即ち、本発明の排気ガス浄化システムは、
主として酸素過剰領域で運転される内燃機関又は燃焼装
置の排気通路に、水素の拡散性をコントロールするH2
拡散制御材と、少なくとも水素を還元剤として窒素酸化
物を還元処理するNOx浄化触媒を配置して成り、上記
NOx浄化触媒が窒素酸化物を還元処理する際に供給さ
れる排気ガス中のH2濃度を、上記H2拡散制御材によ
るH2の拡散速度制御により増大することを特徴とす
る。
That is, the exhaust gas purifying system of the present invention comprises:
H2 for controlling the diffusivity of hydrogen in the exhaust passage of an internal combustion engine or a combustion device mainly operated in an oxygen excess region
A diffusion control material, and a NOx purification catalyst for reducing nitrogen oxides by using at least hydrogen as a reducing agent. The H2 concentration in the exhaust gas supplied when the NOx purification catalyst reduces nitrogen oxides Is increased by controlling the diffusion rate of H2 by the H2 diffusion control material.

【0011】また、本発明の排気ガス浄化システムの好
適形態は、上記H2拡散制御材の上流側に水素供給源を
付加して成り、この水素供給源が水素生成排ガス浄化触
媒であり、短時間の理論空燃比ないし燃料過剰領域の運
転を加えることを特徴とする。
In a preferred embodiment of the exhaust gas purifying system of the present invention, a hydrogen supply source is added to the upstream side of the H2 diffusion control material, and the hydrogen supply source is a hydrogen generation exhaust gas purifying catalyst. The operation is performed in the stoichiometric air-fuel ratio or the excess fuel region.

【0012】更に、本発明の排気ガス浄化システムの他
の好適形態は、上記H2拡散制御材及びNOx浄化触媒
がそれぞれH2拡散制御層及びNOx浄化触媒層を形成
し、これら両層が一体構造型担体に積層されて多層構造
をなし、このNOx浄化触媒層の内表面及び外表面のい
ずれか一方又は双方に上記H2拡散制御層が接している
ことを特徴とする。
Further, in another preferred embodiment of the exhaust gas purifying system of the present invention, the H2 diffusion control material and the NOx purifying catalyst form an H2 diffusion control layer and a NOx purifying catalyst layer, respectively. The H2 diffusion control layer is in contact with one or both of the inner surface and the outer surface of the NOx purification catalyst layer by being laminated on a carrier.

【0013】更にまた、本発明の排気ガス浄化システム
の更に他の好適形態は、上記H2拡散制御材が、細孔径
分布のピークが4Å以下である耐火性無機物と、10Å
以下である耐火性無機物とを含む2種以上の耐火性無機
物を含有することを特徴とする。
Still another preferred embodiment of the exhaust gas purifying system according to the present invention is characterized in that the H2 diffusion control material comprises a refractory inorganic substance having a pore diameter distribution peak of 4 ° or less;
It is characterized by containing two or more kinds of refractory inorganic substances including the following refractory inorganic substances.

【0014】[0014]

【作用】本発明においては、内燃機関又は燃焼装置の排
気通路に、水素の拡散性をコントロールするH2拡散制
御材を配置して排気ガス中のH2の拡散速度を制御し、
NOx浄化触媒が窒素酸化物を還元処理する際に排気ガ
スの水素濃度を増大することとした。また、H2拡散制
御材の近傍又は下流にNOx浄化触媒を配置し、少なく
とも水素を還元剤としてNOx浄化処理ができるように
した。更に、所要に応じて、H2拡散制御材の上流側に
水素供給源を付加し、短時間の理論空燃比ないし燃料過
剰領域の運転を加えることとした。このように、本発明
の排気ガス浄化システムでは、H2拡散制御材とNOx
浄化触媒とを所望の構成で配置し、NOx浄化触媒がN
Ox浄化の際の還元剤として用いるH2をH2拡散制御
材で適切に制御することにより、より高いレベルの排気
ガス浄化を行うことができる。
According to the present invention, an H2 diffusion control material for controlling the diffusivity of hydrogen is disposed in an exhaust passage of an internal combustion engine or a combustion apparatus to control the diffusion rate of H2 in exhaust gas.
The hydrogen concentration of the exhaust gas is increased when the NOx purification catalyst reduces the nitrogen oxides. Further, a NOx purification catalyst is arranged near or downstream of the H2 diffusion control material, so that NOx purification processing can be performed using at least hydrogen as a reducing agent. Further, if necessary, a hydrogen supply source is added to the upstream side of the H2 diffusion control material, and a short-time operation in the stoichiometric air-fuel ratio or the excess fuel region is added. Thus, in the exhaust gas purification system of the present invention, the H2 diffusion control material and the NOx
The purifying catalyst and the NOx purifying catalyst are arranged in a desired configuration.
By appropriately controlling H2 used as a reducing agent in the purification of Ox with the H2 diffusion control material, it is possible to purify the exhaust gas at a higher level.

【0015】ここで、排気ガスに含まれる主な還元成分
としては、HC、CO及びH2が知られており、特許掲
載第2600429号公報に記載の手法では、リーン域
においてNOxを吸収し、理論空燃比又は燃料過剰領域
においてNOxを放出させ還元剤により還元浄化する場
合の還元剤として、主にHCが用いられている。また、
リーン域でNOxを還元浄化する触媒においても、還元
剤としては主にHCが用いられている。
Here, HC, CO and H2 are known as the main reducing components contained in the exhaust gas. According to the method described in Japanese Patent Publication No. 2600429, NOx is absorbed in a lean region, HC is mainly used as a reducing agent in the case of releasing NOx in the air-fuel ratio or excess fuel region and reducing and purifying with a reducing agent. Also,
In a catalyst for reducing and purifying NOx in a lean region, HC is mainly used as a reducing agent.

【0016】しかしながら、大気環境保全の意味から、
昨今、内燃機関から排出される排出ガス成分をよりいっ
そう浄化することが必要とされている。そのために、内
燃機関の改良や排気ガス浄化用触媒の改良が進められて
いるが、HC、COの還元成分をあまり減らしてしまう
と、NOx浄化を行う還元成分が無くなり、充分なNO
x浄化が行えない。そこで、HC、COをある程度排気
ガス中に残した状態でNOx浄化触媒に排出する必要が
あるが、より高いレベルの排気ガス浄化を行うことが困
難であった。これに対し、本発明では上述の如くH2を
還元剤とするため、このような問題も回避され得る。
However, from the point of view of air quality conservation,
Recently, there is a need to further purify exhaust gas components discharged from an internal combustion engine. For this purpose, improvement of the internal combustion engine and improvement of the exhaust gas purifying catalyst are being promoted. However, if the reducing components of HC and CO are reduced too much, the reducing component for purifying NOx disappears, and sufficient NO
x Purification cannot be performed. Therefore, it is necessary to discharge HC and CO to the NOx purification catalyst in a state where they are left in the exhaust gas to some extent, but it has been difficult to purify the exhaust gas at a higher level. On the other hand, in the present invention, since H2 is used as the reducing agent as described above, such a problem can be avoided.

【0017】[0017]

【発明の実施の形態】以下、本発明の排気ガス浄化シス
テムについて、詳細に説明する。上述の如く、本発明の
排気ガス浄化システムは、主として酸素過剰領域で運転
される内燃機関又は燃焼装置の排気通路にH2拡散制御
材とNOx浄化触媒を配置したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an exhaust gas purification system of the present invention will be described in detail. As described above, the exhaust gas purification system of the present invention is one in which the H2 diffusion control material and the NOx purification catalyst are arranged in the exhaust passage of an internal combustion engine or a combustion device that is operated mainly in an oxygen excess region.

【0018】ここで、上記H2拡散制御材としては、N
Oxを浄化する際の還元剤となる水素(H2)の拡散性
をコントロールできるものである限り使用することがで
きるが、特に本発明の排気ガス浄化システムでは、2種
以上の耐火性無機物を含み、この耐火性無機物には、少
なくとも細孔径分布のピーク(最頻値)が4Å以下であ
る耐火性無機物と、10Å以下である耐火性無機物とが
含まれているH2拡散制御材を用いることが好ましい。
なお、H2ガスにおけるH−H結合間距離は、0.74
Å程度であるので、理論的には0.74Å以上の細孔径
であれば分子篩作用によるH2の吸着・脱離を行い得る
と推測できる。かかる細孔径を有する少なくとも2種類
以上のH2拡散制御材を使用すれば、H2がより適切な
吸着・脱離を行うようになり、拡散速度が好適に制御さ
れる。なお、拡散速度の制御は拡散速度の遅延によって
行われ、また、H2分子に拡散速度差が付与されるの
で、H2が上記NOx浄化触媒に供給される時間を延長
することができる。
Here, as the H2 diffusion controlling material, N 2
It can be used as long as it can control the diffusivity of hydrogen (H2) as a reducing agent when purifying Ox. In particular, the exhaust gas purification system of the present invention contains two or more types of refractory inorganic substances. As the refractory inorganic material, an H2 diffusion control material containing at least a refractory inorganic material having a pore size distribution peak (mode value) of 4 ° or less and a refractory inorganic material having a pore size distribution of 10 ° or less may be used. preferable.
The distance between H—H bonds in H 2 gas is 0.74
Since it is about Å, it can be estimated that the adsorption and desorption of H2 by molecular sieving can be performed theoretically if the pore diameter is 0.74Å or more. If at least two or more types of H2 diffusion controlling materials having such pore diameters are used, H2 will perform more appropriate adsorption / desorption, and the diffusion rate will be suitably controlled. The diffusion speed is controlled by delaying the diffusion speed, and a difference in diffusion speed is given to H2 molecules, so that the time during which H2 is supplied to the NOx purification catalyst can be extended.

【0019】また、上記耐火性無機物としては、具体的
にはゼオライト、アルミナ、シリカ、シリカアルミナ又
はアルミナシリケイト及びこれらを任意に組合せたもの
を使用することができる。
Further, as the refractory inorganic substance, specifically, zeolite, alumina, silica, silica-alumina or alumina silicate and any combination thereof can be used.

【0020】一方、上記NOx浄化触媒としては、少な
くともH2を含む還元成分によってNOxを還元浄化で
きれば十分であるが、本排気ガス浄化システムでは、こ
の還元成分は、上述のH2拡散制御材の作用により主成
分がH2ということになる。
On the other hand, it is sufficient for the NOx purifying catalyst to be able to reduce and purify NOx with a reducing component containing at least H2. However, in the present exhaust gas purifying system, this reducing component is reduced by the action of the H2 diffusion controlling material. The main component is H2.

【0021】かかるNOx浄化触媒としては、NOx吸
着/吸蔵型浄化触媒、NOx選択還元触媒又は所定の三
元触媒が適しており、NOx吸着/吸蔵型浄化触媒は、
酸素過剰領域(リーン状態など)においてNOxを一時
的に吸着/吸収し理論空燃比(ストイキ)及び/又は燃
料過剰領域(リッチ状態など)でNOxを放出して還元
成分によりNOxを浄化し、NOx選択還元触媒は、リ
ーン状態においてNOxを還元成分と選択的に反応させ
て浄化し、所定の三元触媒は、ストイキ近傍のリーン条
件下でNOxを還元浄化する機能を有する。
As such a NOx purifying catalyst, a NOx adsorbing / occluding type purifying catalyst, a NOx selective reduction catalyst or a predetermined three-way catalyst is suitable.
NOx is temporarily adsorbed / absorbed in an oxygen-excess region (lean state, etc.), and NOx is released in a stoichiometric air-fuel ratio (stoichiometric) and / or in a fuel-excess region (rich state, etc.) to purify NOx by a reducing component. The selective reduction catalyst purifies by selectively reacting NOx with a reducing component in a lean state, and the predetermined three-way catalyst has a function of reducing and purifying NOx under lean conditions near stoichiometry.

【0022】本発明の排気ガス浄化システムでは、上記
NOx吸着/吸蔵型浄化触媒として、セシウム(C
s)、バリウム(Ba)、ナトリウム(Na)、カリウ
ム(K)、マグネシウム(Mg)、ランタン(La)又
はカルシウム(Ca)及びこれらの混合金属元素、並び
に白金(Pt)、パラジウム(Pd)又はロジウム(R
h)及びこれらの混合貴金属元素とを含む触媒を使用す
ることができる。
In the exhaust gas purifying system of the present invention, cesium (C) is used as the NOx adsorbing / occluding type purifying catalyst.
s), barium (Ba), sodium (Na), potassium (K), magnesium (Mg), lanthanum (La) or calcium (Ca) and mixed metal elements thereof, and platinum (Pt), palladium (Pd) or Rhodium (R
h) and a catalyst containing these mixed noble metal elements can be used.

【0023】また、本発明の排気ガス浄化システムで
は、上記NOx選択還元触媒として、銅(Cu)、コバ
ルト(Co)、ニッケル(Ni)、鉄(Fe)、ガリウ
ム(Ga)、ランタン(La)、セリウム(Ce)、亜
鉛(Zn)、チタン(Ti)、カルシウム(Ca)、バ
リウム(Ba)又は銀(Ag)及びこれらの混合元素、
及び/又は白金(Pt)、イリジウム(Ir)、パラジ
ウム(Pd)又はロジウム(Rh)及びこれらの混合貴
金属元素を含むゼオライト若しくはアルミナを用いてな
る触媒を使用することができる。
Further, in the exhaust gas purifying system of the present invention, as the NOx selective reduction catalyst, copper (Cu), cobalt (Co), nickel (Ni), iron (Fe), gallium (Ga), lanthanum (La) are used. , Cerium (Ce), zinc (Zn), titanium (Ti), calcium (Ca), barium (Ba) or silver (Ag) and mixed elements thereof,
And / or a catalyst using platinum (Pt), iridium (Ir), palladium (Pd) or rhodium (Rh) and a zeolite or alumina containing a mixed noble metal element thereof can be used.

【0024】更に、本発明の排気ガス浄化システムで
は、上記所定の三元触媒として、Pt、Pd又はRh及
びこれらの混合金属元素と、ランタン(La)、セリウ
ム(Ce)、プラセオジウム(Pr)、ネオジム(N
d)又はサマリウム(Sm)及びこれらの混合希土類元
素、Zr又はBa及びこれらの任意の組合せにかかるも
のとを含む触媒を使用することができる。
Further, in the exhaust gas purifying system of the present invention, Pt, Pd or Rh and a mixed metal element thereof, lanthanum (La), cerium (Ce), praseodymium (Pr), Neodymium (N
Catalysts comprising d) or samarium (Sm) and mixed rare earths thereof, Zr or Ba and any combination thereof can be used.

【0025】上述したNOx浄化触媒に含まれる貴金属
の量は、これら触媒の機能が十分に得られる限り、特に
限定されないが、代表的には、H2拡散制御材及びNO
x浄化触媒を含む一体構造型担体1L容量当たりに貴金
属を0.5〜10gの割合で含んでいることが好まし
い。
The amount of the noble metal contained in the above-mentioned NOx purification catalyst is not particularly limited as long as the functions of these catalysts can be sufficiently obtained.
It is preferable that noble metal is contained in a ratio of 0.5 to 10 g per 1 L of the integral structure type carrier including the x purification catalyst.

【0026】また、本発明の排気ガス浄化システムで
は、上記排気通路における上記H2拡散制御材の上流側
に水素供給源を付加することが好ましい。これにより、
NOx浄化触媒がNOx浄化の際に必要とされる還元剤
を十分に供給できる。かかる水素供給源としては、排気
ガス中より水素を生成し得る水素生成排ガス浄化触媒や
外部からH2を供給し得る水素ボンベなどを例示でき
る。なお、水素生成排ガス浄化触媒を使用するときは、
短時間の理論空燃比ないし燃料過剰領域の運転を加える
ことが好ましく、これにより水素の供給量を増大でき
る。
In the exhaust gas purifying system of the present invention, it is preferable that a hydrogen supply source is added to the exhaust passage on the upstream side of the H2 diffusion controlling material. This allows
The NOx purification catalyst can sufficiently supply a reducing agent required for NOx purification. Examples of such a hydrogen supply source include a hydrogen generation exhaust gas purifying catalyst capable of generating hydrogen from exhaust gas and a hydrogen cylinder capable of supplying H2 from the outside. When using a hydrogen generation exhaust gas purification catalyst,
It is preferable to add a short-time operation in the stoichiometric air-fuel ratio or the excess fuel region, so that the supply amount of hydrogen can be increased.

【0027】更に、本発明の排気ガス浄化システムで
は、上述したH2拡散制御材がH2の拡散速度を制御
し、上述したNOx浄化触媒が窒素酸化物を還元処理す
る際に供給される排気ガス中のH2濃度を増大させるこ
とにより、NOxの浄化が効率良く行われるものであ
る。即ち、H2拡散制御材が、H2ガスの分子径に対応
した一定の細孔径を有し、H2ガスの分子径はHCやC
Oの分子径よりも遥かに小さいことから、分子篩作用に
よりH2ガスが優先的に選択されて上記H2拡散制御材
に吸着し、所望の拡散速度でH2を脱離・放出し、かか
るH2を用いてNOx浄化触媒がNOxを浄化するもの
である。
Further, in the exhaust gas purifying system of the present invention, the above-mentioned H2 diffusion controlling material controls the diffusion speed of H2, and the above-mentioned NOx purifying catalyst supplies the exhaust gas with which the NOx purifying catalyst reduces the nitrogen oxides. By increasing the H2 concentration, NOx can be efficiently purified. That is, the H2 diffusion controlling material has a certain pore size corresponding to the molecular size of H2 gas, and the molecular size of H2 gas is HC or C.
Since it is much smaller than the molecular diameter of O, H2 gas is preferentially selected by molecular sieve action and adsorbed on the H2 diffusion controlling material, and H2 is desorbed and released at a desired diffusion rate. Thus, the NOx purification catalyst purifies NOx.

【0028】ここで、上記NOx浄化触媒が窒素酸化物
を還元処理するタイミングとしては、NOx浄化触媒の
種類や量によって異なるが、吸蔵又は吸着したNOxを
放出・脱離したり、吸蔵NOxが飽和状態になったりし
て、NOx浄化のために還元剤が要求されるときを例示
できる。
The timing of the NOx purification catalyst for reducing the nitrogen oxides varies depending on the type and amount of the NOx purification catalyst. The NOx purification catalyst releases or desorbs the stored or adsorbed NOx, or the stored NOx is saturated. Or when a reducing agent is required for NOx purification.

【0029】具体的には、「水素生成排ガス浄化触媒−
H2拡散制御材−NOx浄化触媒」の場合、NOx吸着
/吸蔵型触媒を用いた場合には、リッチスパイクが入っ
た時に、NOxが触媒上から脱離し、還元処理される。
NOx選択還元触媒では、リッチスパイクが入った後の
リーン状態に入ってから、H2やHCを還元剤として還
元処理が行われる。三元触媒を用いた場合は、リッチス
パイクが入った時に、主に還元処理が行われるが、一部
はリーンに入った状態でもH2やHC、COを還元剤と
して、還元処理が行われる。H2拡散制御材の上流側に
H2吸蔵合金を配置した場合には、NOx浄化触媒で還
元剤が不足するタイミング、NOx吸着/吸蔵型触媒で
は、リッチスパイクが終わる時期、NOx選択還元触媒
では、リーン運転中でHC、H2及びCO等の還元剤が
少ない時期、三元触媒では、リッチ、リーンの運転条件
にかかわらず、NOxに対して、HC、H2及びCO等
の還元剤の量の少ない時期にH2を放出させて、NOx
を還元処理することができる。
More specifically, “Hydrogen-producing exhaust gas purifying catalyst—
In the case of the "H2 diffusion control material-NOx purification catalyst", when a NOx adsorbing / occluding catalyst is used, when a rich spike enters, NOx is desorbed from the catalyst and reduced.
In the NOx selective reduction catalyst, a reduction process is performed using H2 or HC as a reducing agent after entering a lean state after a rich spike has entered. When a three-way catalyst is used, the reduction treatment is mainly performed when a rich spike enters, but the reduction treatment is also performed using H2, HC, or CO as a reducing agent even in a partially lean state. When the H2 storage alloy is disposed upstream of the H2 diffusion control material, the timing at which the reducing agent runs short in the NOx purification catalyst, the time when the rich spike ends in the NOx adsorption / storage catalyst, and the lean time in the NOx selective reduction catalyst During operation, when the amount of reducing agents such as HC, H2, and CO is low, and when the three-way catalyst has a small amount of reducing agents such as HC, H2, and CO relative to NOx, regardless of the rich and lean operating conditions. To release H2 to NOx
Can be reduced.

【0030】また、H2の拡散速度は、上記H2拡散制
御材の有する細孔径の異なる材料を用いる、細孔を有す
る材料の表面状態を化学的に改質する、細孔径を有する
材料の使用量を変える(コート量を変える)、異なる細
胞径の配分比率を変えることにより制御される。
Further, the diffusion rate of H2 is determined by measuring the amount of the material having a pore diameter, which uses the materials having different pore diameters of the H2 diffusion controlling material, chemically modifies the surface state of the material having the pores. (By changing the amount of coating), and by controlling the distribution ratio of different cell diameters.

【0031】更に、H2拡散制御材に吸着されるH2と
しては、排気ガス中のH2、上流側に設置した水素生成
排ガス浄化触媒で排気ガス中のHCやCOなどを改質・
生成して得られるH2、及び上流側に設置した水素供給
装置から供給するH2などを挙げることができる。な
お、上記水素生成排ガス浄化触媒としては、例えば、酸
化触媒や三元触媒などを例示できる。更にまた、水素吸
蔵合金(La−Ni系、Mg−Ni系、Ti−Fe系及
びPd−Ce系合金等)やカーボンナノチューブなどの
水素吸蔵材を上記H2拡散制御材の上流、又は上記水素
供給源とこのH2拡散制御材との間に付加すれば、H2
拡散制御材に関わるH2を増大でき、H2の拡散速度を
更に有効に制御できる。
Further, H2 adsorbed on the H2 diffusion controlling material is H2 in the exhaust gas, and HC and CO in the exhaust gas are reformed by a catalyst for purifying hydrogen-producing exhaust gas installed on the upstream side.
Examples include H2 obtained by generation and H2 supplied from a hydrogen supply device installed on the upstream side. The catalyst for purifying hydrogen-producing exhaust gas may be, for example, an oxidation catalyst or a three-way catalyst. Furthermore, a hydrogen storage material such as a hydrogen storage alloy (La-Ni-based, Mg-Ni-based, Ti-Fe-based, Pd-Ce-based alloy, etc.) or a carbon nanotube may be provided upstream of the H2 diffusion controlling material or the hydrogen supply. If added between the source and this H2 diffusion control material, H2
H2 relating to the diffusion control material can be increased, and the diffusion rate of H2 can be more effectively controlled.

【0032】また、本排気ガス浄化システムでは、H2
拡散制御材がH2の拡散制御を行うが、この結果、上記
NOx浄化触媒に供給される排気ガスを、次式(A) H2量/TR量≧0.3…(A) (式中のTR量は、排気ガス中の全還元成分量を示す)
で表されるガス組成を満足するように制御することが望
ましい。この関係を満足すれば、NOx浄化触媒は、好
適なNOx浄化率を実現する。
Further, in the present exhaust gas purification system, H2
The diffusion control material controls the diffusion of H2. As a result, the exhaust gas supplied to the NOx purification catalyst is converted into the following equation (A) H2 amount / TR amount ≧ 0.3 (A) (TR in the equation) The amount indicates the amount of all reducing components in the exhaust gas.)
It is desirable to control so as to satisfy the gas composition represented by If this relationship is satisfied, the NOx purification catalyst realizes a suitable NOx purification rate.

【0033】更に、上記NOx浄化触媒と上記H2拡散
制御材とは、少なくとも同時(H2拡散制御材が先)
に、排気ガスに接触しなければH2の拡散速度が制御さ
れない。かかる観点から、本発明の排気ガス浄化システ
ムでは、H2拡散制御材をNOx浄化触媒と区分して又
は混合して配置することが可能である。なお、このとき
H2拡散制御材とNOx浄化触媒との配置比率又は混合
比率は、H2拡散制御材/NOx浄化触媒=1/9〜4
/6であることが好ましい。
Further, the NOx purifying catalyst and the H2 diffusion control material are at least simultaneous (H2 diffusion control material first).
In addition, the diffusion speed of H2 is not controlled unless it comes into contact with the exhaust gas. From such a viewpoint, in the exhaust gas purification system of the present invention, the H2 diffusion control material can be disposed separately from or mixed with the NOx purification catalyst. At this time, the arrangement ratio or the mixing ratio between the H2 diffusion control material and the NOx purification catalyst is H2 diffusion control material / NOx purification catalyst = 1/9 to 4
/ 6 is preferable.

【0034】上記H2拡散制御材及びNOx浄化触媒を
区分して配置するときは、例えば、ハニカム状担体など
の一体構造型担体に、H2拡散制御材の一例であるH2
拡散制御層とNOx浄化触媒材の一例であるNOx浄化
触媒層とを積層して成る多層構造とすることができる。
このとき、上記両層は少なくとも1以上で任意に積層す
ることができ、2層構造やサンドイッチ型構造などとす
ることができるが、上記NOx浄化触媒層の内表面及び
外表面のいずれか一方又は双方に上記H2拡散制御層が
接していることが好ましい。なお、特に経済性や生産性
を考慮すると、両層合わせて4層以下の構造であること
が望ましい。
When the H2 diffusion controlling material and the NOx purifying catalyst are separately arranged, for example, an H2 diffusion controlling material, which is an example of the H2 diffusion controlling material, is provided on a monolithic carrier such as a honeycomb-shaped carrier.
It is possible to have a multilayer structure in which a diffusion control layer and a NOx purification catalyst layer which is an example of a NOx purification catalyst material are laminated.
At this time, at least one of the two layers may be arbitrarily laminated, and may have a two-layer structure or a sandwich structure. However, either one of the inner surface and the outer surface of the NOx purification catalyst layer or It is preferable that the H2 diffusion control layer is in contact with both. In addition, it is desirable to have a structure having four layers or less in total, especially in consideration of economy and productivity.

【0035】また、上記H2拡散制御層は、同一又は異
なる成分・細孔径を有するH2拡散制御材の積層体であ
ることがより好ましく、H2の拡散速度の制御がより的
確に行われ易い。なお、上記多層構造とする場合の最上
層又は最下層は、H2拡散制御層及びNOx浄化触媒層
のいずれであっても良いが、特に、最上層となる排気ガ
ス接触層が、H2拡散制御層であれば、排気ガス中のH
2の拡散制御がより効率よく行われ、最下層となる担体
担持層が、NOx浄化触媒層であれば、排気ガス中の被
毒成分の影響を受けにくくなる。
The H2 diffusion control layer is more preferably a laminate of H2 diffusion control materials having the same or different components and pore diameters, so that the H2 diffusion rate can be more accurately controlled. The uppermost layer or the lowermost layer in the above-mentioned multilayer structure may be either an H2 diffusion control layer or a NOx purification catalyst layer. In particular, the uppermost exhaust gas contact layer is an H2 diffusion control layer. Then, H in the exhaust gas
2 is more efficiently performed, and if the lowermost carrier-supporting layer is a NOx purifying catalyst layer, it is less susceptible to poisoning components in exhaust gas.

【0036】更に、1つの担体上に上記H2拡散制御材
とNOx浄化触媒とを塗り分けて配置することや上記H
2拡散制御材とNOx浄化触媒とを別々の担体に独立さ
せてタンデム配置することもできる。この場合には、そ
れぞれの触媒反応に適した担体(セル密度、セル形状な
ど)の選択やコート層厚さの選択が可能と成るので好ま
しい。
Further, the H2 diffusion controlling material and the NOx purification catalyst are separately arranged on one carrier, and
(2) It is also possible to arrange the diffusion control material and the NOx purification catalyst in separate carriers in tandem independently of each other. In this case, it is possible to select a carrier (cell density, cell shape, etc.) and the thickness of the coat layer suitable for each catalytic reaction, which is preferable.

【0037】一方、H2拡散制御材及びNOx浄化触媒
を混合して配置することもできる。具体的には、各成分
を粒状やペレット状などにし、これらを混合して排気通
路内に配置することができる。但し、反応効率を向上す
べく、H2拡散制御材及びNOx浄化触媒を区分して配
置するときと同様に一体構造型担体に配置することが望
ましい。
On the other hand, the H2 diffusion control material and the NOx purification catalyst can be mixed and arranged. Specifically, each component can be made into a granular form or a pellet form, and these can be mixed and placed in the exhaust passage. However, in order to improve the reaction efficiency, it is desirable to dispose the H2 diffusion control material and the NOx purification catalyst on the monolithic carrier in the same manner as when disposing the H2 diffusion control material and the NOx purification catalyst separately.

【0038】ここで、かかる一体構造型担体としては、
耐熱性材料から成るモノリス担体やメタル担体などを例
示できる。特に、自動車の排気ガス浄化に使用するに当
たっては、ハニカム状担体にコートすることにより、H
2拡散制御材又はNOx浄化触媒と排気ガスとの接触面
積(反応表面積)を拡大でき、圧力損失も減少できるの
でより有効となる。なお、かかるハニカム状担体として
は、一般にセラミック等のコージェライト質のものが多
く用いられるが、フェライト系ステンレス等の金属材料
からなるハニカム材料を用いることも可能であり、更に
はH2拡散制御材又はNOx浄化触媒の粉末そのものを
ハニカム状に成形してもよい。
Here, as such a monolithic carrier,
Examples include a monolithic carrier and a metal carrier made of a heat-resistant material. In particular, when used for purifying exhaust gas from automobiles, a honeycomb-shaped carrier is coated with H
(2) The contact area (reaction surface area) between the diffusion control material or the NOx purification catalyst and the exhaust gas can be increased, and the pressure loss can be reduced, which is more effective. Note that, as such a honeycomb-shaped carrier, generally, cordierite materials such as ceramics are often used, but it is also possible to use a honeycomb material made of a metal material such as ferrite stainless steel, and further, an H2 diffusion control material or The powder itself of the NOx purification catalyst may be formed into a honeycomb shape.

【0039】また、上記ハニカム状担体にコートする場
合のH2拡散制御材又はNOx浄化触媒の担持量は、一
体構造型担体1L容量当たりにH2拡散制御材が30〜
100g、NOx浄化触媒が50〜300gであること
が好ましい。これは、触媒成分担持層は触媒活性や触媒
寿命の面からは厚い(担持量が多い)ことが好ましい
が、コート層が厚くなりすぎると、反応ガスが拡散不良
となりコート層内部の触媒と十分に接触できなくなる、
言い換えれば、活性に対する増量効果が飽和し、排気ガ
スの通過抵抗も大きくなるためである。
The amount of the H2 diffusion control material or NOx purification catalyst carried when coating the honeycomb-shaped carrier is 30 to 30 H2 / diffusion control material per 1 L of the integral structure type carrier.
Preferably, 100 g and the NOx purification catalyst are 50 to 300 g. This is because the catalyst component supporting layer is preferably thick (the supporting amount is large) from the viewpoint of catalytic activity and catalyst life, but if the coating layer is too thick, the reaction gas will be poorly diffused, and the catalyst inside the coating layer will be insufficient. Lose contact with
In other words, the effect of increasing the amount of activity is saturated, and the passage resistance of the exhaust gas is increased.

【0040】[0040]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0041】(実施例1)まず、排気ガス浄化触媒(H
2拡散制御材及びNOx浄化触媒)を調製し、その後得
られた排気ガス浄化触媒を用いたて、排ガス浄化システ
ムを構築した。
Example 1 First, an exhaust gas purifying catalyst (H
2 diffusion control material and NOx purification catalyst), and an exhaust gas purification system was constructed using the obtained exhaust gas purification catalyst.

【0042】[排気ガス浄化システムの構築]硝酸Pd
水溶液を活性アルミナ粉末に含浸し、乾燥後空気中40
0℃で1時間焼成して、Pd担持アルミナ粉末(粉末
B)を得た。この粉末のPd濃度は5.0重量%であっ
た。硝酸Rh水溶液を活性アルミナ粉末に含浸し、乾燥
後空気中400℃で1時間焼成して、Rh担持アルミナ
粉末(粉末C)を得た。この粉末のRh濃度は3.0重
量%であった。粉末Bを347g、粉末Cを58g、活
性アルミナ粉末を496g、水900gを磁性ボールミ
ルに投入し、混合粉砕してスラリ液を得た。粉砕時間を
1時間とした。このスラリ液をコーディライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリを取り除いて130℃で乾燥し
た後、400℃で1時間焼成し、コート層重量200g
/L−担体を得た。更に、このコートを行なった担体に
酢酸バリウム水溶液を用いて含浸担持を行ない、120
℃で乾燥後400℃で焼成を行ないNOx浄化触媒層と
した。
[Construction of exhaust gas purification system] Pd nitrate
The aqueous solution is impregnated with activated alumina powder, dried and then dried in air.
It was calcined at 0 ° C. for 1 hour to obtain Pd-supported alumina powder (powder B). The Pd concentration of this powder was 5.0% by weight. An activated alumina powder was impregnated with an aqueous solution of Rh nitrate, dried, and calcined in air at 400 ° C. for 1 hour to obtain a Rh-supported alumina powder (powder C). The Rh concentration of this powder was 3.0% by weight. 347 g of powder B, 58 g of powder C, 496 g of activated alumina powder, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. The grinding time was 1 hour. This slurry solution was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g
/ L-carrier was obtained. Further, the coated carrier was impregnated and supported by using barium acetate aqueous solution,
After drying at 400C, the mixture was calcined at 400C to obtain a NOx purification catalyst layer.

【0043】アルコキシド法等により細孔径のピーク
(最頻値)が10Å以下になるように調製した活性アル
ミナ500gと、細孔径が4Å以下であるA型ゼオライ
ト500gと、2%硝酸溶液1000gとを磁性ボール
ミルに投入し、混合粉砕してスラリ液を得た。粉砕時間
は1時間とした。このスラリ液を、上記NOx浄化触媒
層に付着させ、空気流にてセル内の余剰のスラリを取り
除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層重量50g/Lとした排気ガス浄化触媒と
し、この触媒を用いたシステム(No.1)を構築し
た。積層したH2拡散制御層及びNOx浄化触媒層の構
成を表1に示す。
500 g of activated alumina prepared by an alkoxide method or the like so that the peak (mode) of the pore diameter is 10 ° or less, 500 g of A-type zeolite having a pore diameter of 4 ° or less, and 1000 g of a 2% nitric acid solution It was put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. The grinding time was 1 hour. This slurry liquid was adhered to the NOx purification catalyst layer, excess slurry in the cell was removed by an air stream, dried at 130 ° C., and calcined at 400 ° C. for 1 hour to obtain a coat layer weight of 50 g / L. A system (No. 1) using this catalyst was constructed as an exhaust gas purification catalyst. Table 1 shows the configuration of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0044】(実施例2)活性アルミナを用いず、MF
Iゼオライトを用いた以外は、実施例1と同様の操作を
繰り返して、排気ガス浄化触媒とし、この触媒を用いた
システム(No.2)を構築した。積層したH2拡散制
御層及びNOx浄化触媒層の構成を表1に示す。
(Example 2) MF without using activated alumina
The same operation as in Example 1 was repeated except that I zeolite was used, and an exhaust gas purification catalyst was used to construct a system (No. 2) using this catalyst. Table 1 shows the configuration of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0045】(実施例3)H2拡散制御層として更にM
FIゼオライトを用いた以外は、実施例1と同様の操作
を繰り返して、排気ガス浄化システム(No.3)を構
築した。なお、以下に排気ガス浄化触媒の調製方法を示
す。また、積層したH2拡散制御層及びNOx浄化触媒
層の構成を表1に示す。
(Example 3) As the H2 diffusion control layer, M
An exhaust gas purification system (No. 3) was constructed by repeating the same operations as in Example 1 except that FI zeolite was used. The method for preparing the exhaust gas purifying catalyst will be described below. Table 1 shows the configurations of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0046】[排気ガス浄化触媒の調整]アルコキシド
法等により細孔径のピークが10Å以下になるように調
製した活性アルミナ400gと、MFIゼオライト(細
孔径分布のピーク 5.8Å)300gと、細孔径が4
Å以下であるA型ゼオライト300gと、シリカゾル2
00gと、水1000gとを磁性ボールミルに投入し、
混合粉砕してスラリ液を得た。粉砕時間は1時間とし
た。このスラリ液を、上記NOx浄化触媒層に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成し、H2拡散
制御層のコート層重量50g/Lとした排気ガス浄化触
媒を得た。
[Adjustment of Exhaust Gas Purifying Catalyst] 400 g of activated alumina prepared by an alkoxide method or the like so that the peak of the pore diameter becomes 10 ° or less, 300 g of MFI zeolite (peak of the pore diameter distribution 5.8 °), and the pore diameter Is 4
(3) 300 g of the following type A zeolite and silica sol 2
00g and 1000g of water are put into a magnetic ball mill,
The slurry was mixed and pulverized to obtain a slurry liquid. The grinding time was 1 hour. This slurry liquid is adhered to the NOx purification catalyst layer, and the excess slurry in the cell is removed by an air flow to remove the slurry.
After drying at 0 ° C., it was baked at 400 ° C. for 1 hour to obtain an exhaust gas purifying catalyst in which the H 2 diffusion control layer had a coat layer weight of 50 g / L.

【0047】(実施例4)アルコキシド法等により細孔
径のピークが10Å以下になるように調製した活性アル
ミナ500gと、細孔径が4Å以下であるA型ゼオライ
ト500gと、2%硝酸溶液1000gとを磁性ボール
ミルに投入し、混合粉砕してスラリ液を得た。粉砕時間
は1時間とした。このスラリ液をコーディライト質モノ
リス担体(1.3L、400セル)に付着させ、空気流
にてセル内の余剰のスラリを取り除いて130℃で乾燥
した後、400℃で1時間焼成しコート層重量50g/
Lとして、H2の拡散制御層とした。
Example 4 500 g of activated alumina prepared by an alkoxide method or the like so that the peak of the pore diameter becomes 10 ° or less, 500 g of A-type zeolite having a pore diameter of 4 ° or less, and 1000 g of a 2% nitric acid solution It was put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. The grinding time was 1 hour. This slurry solution was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and baked at 400 ° C. for 1 hour to form a coating layer. Weight 50g /
L is a diffusion control layer of H2.

【0048】実施例1で用いた、粉末Bを347g、粉
末Cを58g、活性アルミナ粉末を496g及び水90
0gを磁性ボールミルに投入し、混合粉砕してスラリ液
を得た。粉砕時間を1時間とした。このスラリ液を上記
H2拡散制御層に付着させ、空気流にてセル内の余剰の
スラリを取り除いて130℃で乾燥した後、400℃で
1時間焼成し、NOx浄化触媒層としてコート層重量2
00g/L−担体を得た。さらに、このコートを行なっ
た担体に酢酸バリウム水溶液を用いて含浸担持を行な
い、120℃で乾燥後400℃で焼成を行ない排気ガス
浄化触媒とし、この触媒を用いたシステム(N0.4)
を構築した。積層したH2拡散制御層及びNOx浄化触
媒層の構成を表1に示す。
347 g of powder B, 58 g of powder C, 496 g of activated alumina powder and 90 g of water used in Example 1 were used.
0 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. The grinding time was 1 hour. This slurry solution was adhered to the H2 diffusion control layer, excess slurry in the cell was removed by air flow, dried at 130 ° C., and calcined at 400 ° C. for 1 hour.
00 g / L-carrier was obtained. Further, the coated carrier was impregnated and supported with an aqueous barium acetate solution, dried at 120 ° C., and calcined at 400 ° C. to obtain an exhaust gas purifying catalyst. A system using this catalyst (N0.4)
Was built. Table 1 shows the configuration of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0049】(実施例5)実施例4の内層を25g/L
とし、更にNOx浄化触媒層に上に、実施例4の内層と
同様にして、H2拡散制御層が25g/Lとなるように
コートして排気ガス浄化触媒とし、この触媒を用いたシ
ステム(No.5)を構築した。積層したH2拡散制御
層及びNOx浄化触媒層の構成を表1に示す。
Example 5 25 g / L of the inner layer of Example 4
Further, the H2 diffusion control layer was coated on the NOx purification catalyst layer so that the H2 diffusion control layer became 25 g / L in the same manner as in the inner layer of Example 4, to obtain an exhaust gas purification catalyst, and a system using this catalyst (No. .5) was constructed. Table 1 shows the configuration of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0050】(実施例6)γ−アルミナを主たる成分と
する活性アルミナに硝酸セリウム溶液と硝酸バリウム溶
液を含浸し、乾燥した後500℃で1時間焼成した。こ
のときのセリウム担持濃度は7重量%、バリウム濃度は
5重量%とした。こうして得られた粉末に硝酸パラジウ
ム水溶液を含浸し、乾燥した後400 ℃で1時間焼成
して、Pd担持活性アルミナ粉末を得た。Pdの担持濃
度は1.00重量%。この粉末700gと、酸化セリウ
ム粉末300gと、アルミナゾル1000gとをボール
ミルで混合、粉砕して得られたスラリをモノリス担体基
材(1.3 L,400 セル)に付着させ焼成(40
0 ℃、1時間)した。この時の付着量は200g/L
に設定した。このようにしてNOx浄化触媒層を得た。
Example 6 Activated alumina containing γ-alumina as a main component was impregnated with a cerium nitrate solution and a barium nitrate solution, dried, and fired at 500 ° C. for 1 hour. At this time, the cerium carrying concentration was 7% by weight, and the barium concentration was 5% by weight. The powder thus obtained was impregnated with an aqueous solution of palladium nitrate, dried and calcined at 400 ° C. for 1 hour to obtain a Pd-supported activated alumina powder. The loading concentration of Pd was 1.00% by weight. A slurry obtained by mixing and pulverizing 700 g of this powder, 300 g of cerium oxide powder, and 1000 g of alumina sol with a ball mill is adhered to a monolith carrier base material (1.3 L, 400 cells) and fired (40).
0 ° C., 1 hour). At this time, the adhesion amount is 200 g / L.
Set to. Thus, a NOx purification catalyst layer was obtained.

【0051】更に、このNOx浄化触媒層上に、実施例
1と同様の操作を繰り返して、H2拡散制御層を焼成後
の付着量が50g/Lとなるように付着させ、排気ガス
浄化触媒とし、この触媒を用いたシステム(No.6)
を構築した。積層したH2拡散制御層及びNOx浄化触
媒層の構成を表1に示す。
Further, the same operation as in Example 1 was repeated on this NOx purification catalyst layer so that the H2 diffusion control layer was adhered so that the adhesion amount after firing became 50 g / L, and this was used as an exhaust gas purification catalyst. , A system using this catalyst (No. 6)
Was built. Table 1 shows the configuration of the stacked H2 diffusion control layer and NOx purification catalyst layer.

【0052】(比較例1)H2拡散制御層を積層せず、
NOx浄化触媒層のみとした以外は実施例1と同様の操
作を繰り返して、排気ガス浄化触媒とし、この触媒を用
いたシステムを構築した。NOx浄化触媒層の構成を表
1に示す。
(Comparative Example 1) Without stacking the H2 diffusion control layer,
The same operation as in Example 1 was repeated except that only the NOx purification catalyst layer was used, and a system using this catalyst was constructed as an exhaust gas purification catalyst. Table 1 shows the configuration of the NOx purification catalyst layer.

【0053】(比較例2)H2拡散制御層を積層せず、
NOx浄化触媒層のみとした以外は実施例6と同様の操
作を繰り返して、排気ガス浄化触媒とし、この触媒を用
いたシステムを構築した。NOx浄化触媒層の構成を表
1に示す。
(Comparative Example 2) Without stacking the H2 diffusion control layer,
The same operation as in Example 6 was repeated except that only the NOx purification catalyst layer was used, and a system using this catalyst was constructed as an exhaust gas purification catalyst. Table 1 shows the configuration of the NOx purification catalyst layer.

【0054】[0054]

【表1】 [Table 1]

【0055】[性能評価方法]上記方法で得たマニホー
ルド直下型触媒(Pd/Rh−2.82g/L触媒0.
7L)とNOx浄化触媒とを用いて、排気量1.8Lの
直噴ガソリンエンジンを搭載した乗用車の排気通路に、
エンジンの排気直後に上記マニホールド直下型触媒を、
その後段にNOx浄化触媒を配置して性能評価を行っ
た。性能評価(車両評価)は、北米のテストモードであ
るLA4−CHモード(FTP−75モード)にて走行
し、その時の排出量を測定することにより行った。この
結果を表2に示す。
[Performance Evaluation Method] The catalyst directly under the manifold obtained by the above method (Pd / Rh-2.82 g / L catalyst 0.8.
7L) and a NOx purification catalyst, and into an exhaust passage of a passenger car equipped with a 1.8L direct injection gasoline engine,
Immediately after the exhaust of the engine, the catalyst directly below the manifold is
A NOx purification catalyst was arranged at the subsequent stage, and the performance was evaluated. The performance evaluation (vehicle evaluation) was performed by traveling in the LA4-CH mode (FTP-75 mode), which is a test mode in North America, and measuring the emissions at that time. Table 2 shows the results.

【0056】また、表2に示す残存率は、次の式、 残存率=(1−NOx浄化触媒出口の排気ガス中のH
C、CO及びNOx排出量/エンジンアウトの排出ガス
中のHC、CO及びNOx排出量)×100 より求めた。排出ガス中のHC、CO及びNOx排出量
は、上記の車両評価モードを走行したときの排出量を示
す。表2のNOx/HCの比率は、上記の車両評価モー
ドを走行中のスタート直後の走行部分、具体的にはFT
P−75モードのスタート後、約200秒までの走行部
分を除いた部分のNOx、HCの各成分の平均濃度を用
いて計算した値である。また、HC濃度も同様にして計
算した平均濃度を示している。スタート直後の走行部分
を除くのは、エンジンスタート直後で未燃焼のHC排出
によりHC濃度が高いためである。
The residual rate shown in Table 2 is expressed by the following equation: Residual rate = (1−H in the exhaust gas at the outlet of the NOx purifying catalyst.
C, CO, and NOx emissions / HC, CO, and NOx emissions in engine-out exhaust gas) × 100. The HC, CO, and NOx emissions in the exhaust gas indicate the emissions when the vehicle travels in the above-described vehicle evaluation mode. The ratio of NOx / HC in Table 2 indicates the running portion immediately after the start while running in the vehicle evaluation mode, specifically, FT.
This is a value calculated using the average concentration of each component of NOx and HC in the portion excluding the running portion up to about 200 seconds after the start of the P-75 mode. The HC concentration also indicates the average concentration calculated in the same manner. The reason why the running portion immediately after the start is excluded is that the HC concentration is high due to the discharge of unburned HC immediately after the start of the engine.

【0057】[0057]

【表2】 [Table 2]

【0058】以上、本発明を好適実施例及び比較例によ
り詳細に説明したが、本発明の好適範囲内にある実施例
1〜6は、表2に示すように比較例に比べて排気ガス成
分の転化率が高く、HC、CO及びNOxの残存率が低
いことから、H2がH2拡散制御層から適度な拡散速度
でNOx浄化触媒層に供給され、優れた排気ガス浄化性
能を示すことがわかる。一方、比較例1及び2は、H
C、CO及びNOxの残存率が高く、特にH2拡散制御
層を積層しなかったため、NOx転化率が低いことがわ
かる。
As described above, the present invention has been described in detail with reference to preferred examples and comparative examples. Examples 1 to 6, which are within the preferred range of the present invention, show that exhaust gas components are smaller than those of the comparative examples as shown in Table 2. Is high and the residual ratios of HC, CO and NOx are low, indicating that H2 is supplied from the H2 diffusion control layer to the NOx purification catalyst layer at an appropriate diffusion rate and exhibits excellent exhaust gas purification performance. . On the other hand, Comparative Examples 1 and 2
It can be seen that the residual rates of C, CO and NOx are high, and the NOx conversion rate is low because the H2 diffusion control layer is not particularly laminated.

【0059】[0059]

【発明の効果】以上説明してきたように、本発明によれ
ば、所定のH2拡散制御材が吸着H2の拡散速度を制御
し、所定のNOx浄化触媒が排気ガス中のH2濃度を増
大することとしたため、主として酸素過剰領域(例えば
リーン状態)で走行することによる燃費向上効果を十分
に享有し、排気ガス中に含まれるH2を還元剤として有
効に活用し得る排気ガス浄化システムを提供することが
できる。
As described above, according to the present invention, the predetermined H2 diffusion controlling material controls the diffusion speed of adsorbed H2, and the predetermined NOx purification catalyst increases the H2 concentration in the exhaust gas. Therefore, it is possible to provide an exhaust gas purifying system which sufficiently enjoys an effect of improving fuel efficiency mainly by traveling in an oxygen excess region (for example, a lean state) and can effectively utilize H2 contained in exhaust gas as a reducing agent. Can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/10 F01N 3/28 301C 3/28 301 301G F02D 41/04 305A F02D 41/04 305 B01D 53/36 104A Fターム(参考) 3G091 AA02 AA12 AB01 AB03 AB05 AB06 AB08 AB09 BA14 BA33 CA19 CA26 CB02 DB10 FB10 FB12 FC02 GA06 GA16 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB07W GB09X GB09Y GB10X GB16W GB16X GB17X HA08 HA18 3G301 JA02 JA25 MA01 NE13 4D048 AA06 AA13 AA18 AB01 AB02 BA01Y BA02Y BA03X BA07Y BA08Y BA10X BA14Y BA16Y BA30Y BA31Y BA33Y BA35Y BA36Y BA38Y BA41Y BB02 EA04 4G069 AA03 AA08 AA09 BA01B BA13B BC02A BC03A BC06A BC09A BC10A BC13A BC13B BC31A BC35A BC42A BC50A BC51A BC66A BC67A BC71A BC71B BC71C BC72A BC75A BC75B BC75C CA02 CA03 CA07 CA08 CA09 DA06 EA19 EE06 FA02 FA03 FB14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/10 F01N 3/28 301C 3/28 301 301G F02D 41/04 305A F02D 41/04 305 B01D 53 / 36 104A F-term (reference) 3G091 AA02 AA12 AB01 AB03 AB05 AB06 AB08 AB09 BA14 BA33 CA19 CA26 CB02 DB10 FB10 FB12 FC02 GA06 GA16 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB07W GB09X GB09Y GB10X GB16A GB18 JA4 GB18A GB18 AA13 AA18 AB01 AB02 BA01Y BA02Y BA03X BA07Y BA08Y BA10X BA14Y BA16Y BA30Y BA31Y BA33Y BA35Y BA36Y BA38Y BA41Y BB02 EA04 4G069 AA03 AA08 AA09 BC01B BC13A BC13A BC13A BC13A BCBC BC BC CA07 CA08 CA09 DA06 EA19 EE06 FA02 FA03 FB14

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 主として酸素過剰領域で運転される内燃
機関又は燃焼装置の排気通路に、水素の拡散性をコント
ロールするH2拡散制御材と、少なくとも水素を還元剤
として窒素酸化物を還元処理するNOx浄化触媒を配置
して成り、 上記NOx浄化触媒が窒素酸化物を還元処理する際に供
給される排気ガス中のH2濃度を、上記H2拡散制御材
によるH2の拡散速度制御により増大することを特徴と
する排気ガス浄化システム。
1. An H2 diffusion control material for controlling the diffusivity of hydrogen in an exhaust passage of an internal combustion engine or a combustion device mainly operated in an oxygen excess region, and NOx for reducing nitrogen oxides using at least hydrogen as a reducing agent. A purification catalyst is arranged, and the concentration of H2 in the exhaust gas supplied when the NOx purification catalyst reduces nitrogen oxides is increased by controlling the H2 diffusion rate by the H2 diffusion control material. And exhaust gas purification system.
【請求項2】 上記排気通路における上記H2拡散制御
材の上流側に、水素供給源を付加して成ることを特徴と
する請求項1記載の排気ガス浄化システム。
2. The exhaust gas purification system according to claim 1, wherein a hydrogen supply source is added upstream of the H2 diffusion control material in the exhaust passage.
【請求項3】 上記水素供給源が水素生成排ガス浄化触
媒であり、短時間の理論空燃比ないし燃料過剰領域の運
転を加えることを特徴とする請求項1記載の排気ガス浄
化システム。
3. The exhaust gas purification system according to claim 1, wherein the hydrogen supply source is a hydrogen generation exhaust gas purification catalyst, and the operation is performed in a short period of time in a stoichiometric air-fuel ratio or an excess fuel region.
【請求項4】 上記H2拡散制御材の上流、又は上記水
素供給源とこのH2拡散制御材との間に、水素吸蔵材を
付加して成ることを特徴とする請求項1〜3のいずれか
1つの項に記載の排気ガス浄化システム。
4. A hydrogen storage material is added upstream of the H2 diffusion control material or between the hydrogen supply source and the H2 diffusion control material. An exhaust gas purification system according to one of the above paragraphs.
【請求項5】 上記H2拡散制御材及びNOx浄化触媒
がそれぞれH2拡散制御層及びNOx浄化触媒層を形成
し、これら両層が一体構造型担体に積層されて多層構造
をなし、このNOx浄化触媒層の内表面及び外表面のい
ずれか一方又は双方に上記H2拡散制御層が接している
ことを特徴とする請求項1〜4のいずれか1つの項に記
載の排気ガス浄化システム。
5. The H2 diffusion control material and the NOx purification catalyst form an H2 diffusion control layer and a NOx purification catalyst layer, respectively. These two layers are laminated on a monolithic carrier to form a multilayer structure. The exhaust gas purification system according to any one of claims 1 to 4, wherein the H2 diffusion control layer is in contact with one or both of an inner surface and an outer surface of the layer.
【請求項6】 上記窒素酸化物を還元処理する際に上記
NOx浄化触媒に供給される排気ガスが、次式(A) H2量/TR量≧0.3…(A) (式中のTR量はその排気ガス中の全還元成分量を示
す)で表される排気ガス組成を満足することを特徴とす
る請求項1〜5のいずれか1つの項に記載の排気ガス浄
化システム。
6. The exhaust gas supplied to the NOx purifying catalyst when the nitrogen oxide is subjected to a reduction treatment is represented by the following formula (A): H2 amount / TR amount ≧ 0.3 (A) The exhaust gas purification system according to any one of claims 1 to 5, wherein the amount satisfies an exhaust gas composition represented by the following formula:
【請求項7】上記H2拡散制御材が、細孔径分布の最頻
値が4Å以下である耐火性無機物と、10Å以下である
耐火性無機物とを含む2種以上の耐火性無機物を含有す
ることを特徴とする請求項1〜6のいずれか1つの項に
記載の排気ガス浄化システム。
7. The H2 diffusion controlling material contains at least two types of refractory inorganic substances including a refractory inorganic substance having a mode of pore diameter distribution of 4 ° or less and a refractory inorganic substance of 10 ° or less. The exhaust gas purification system according to any one of claims 1 to 6, characterized in that:
【請求項8】 上記耐火性無機物が、ゼオライト、アル
ミナ、シリカ、シリカアルミナ及びアルミナシリケイト
から成る群より選ばれた少なくとも1種のものであるこ
とを特徴とする請求項7記載の排気ガス浄化システム。
8. The exhaust gas purification system according to claim 7, wherein said refractory inorganic substance is at least one selected from the group consisting of zeolite, alumina, silica, silica alumina and alumina silicate. .
【請求項9】 上記NOx浄化触媒が、セシウム、バリ
ウム、ナトリウム、カリウム、マグネシウム、ランタン
及びカルシウムから成る群より選ばれた少なくとも1種
の金属元素と、白金、パラジウム及びロジウムから成る
群より選ばれた少なくとも1種の貴金属元素とを含む、
NOx吸蔵型浄化触媒であることを特徴とする請求項1
〜8のいずれか1つの項に記載の排気ガス浄化システ
ム。
9. The NOx purification catalyst is selected from the group consisting of at least one metal element selected from the group consisting of cesium, barium, sodium, potassium, magnesium, lanthanum and calcium, and the group consisting of platinum, palladium and rhodium. And at least one noble metal element,
2. The catalyst according to claim 1, wherein the catalyst is a NOx storage type purification catalyst.
An exhaust gas purification system according to any one of Items 1 to 8.
【請求項10】 上記NOx浄化触媒が、銅、コバル
ト、ニッケル、鉄、ガリウム、ランタン、セリウム、亜
鉛、チタン、カルシウム、バリウム及び銀から成る群よ
り選ばれた少なくとも1種の元素、及び/又は白金、イ
リジウム、パラジウム及びロジウムから成る群より選ば
れた少なくとも1種の貴金属元素を含むゼオライト若し
くはアルミナを含有する、NOx選択還元触媒であるこ
とを特徴とする請求項1〜8のいずれか1つの項に記載
の排気ガス浄化システム。
10. The NOx purification catalyst according to claim 1, wherein the NOx purification catalyst is at least one element selected from the group consisting of copper, cobalt, nickel, iron, gallium, lanthanum, cerium, zinc, titanium, calcium, barium and silver, and / or 9. A NOx selective reduction catalyst containing zeolite or alumina containing at least one noble metal element selected from the group consisting of platinum, iridium, palladium and rhodium, characterized in that it is a NOx selective reduction catalyst. The exhaust gas purification system according to the paragraph.
【請求項11】 上記NOx浄化触媒が、白金、パラジ
ウム及びロジウムから成る群より選ばれた少なくとも1
種の金属元素と、ランタン、セリウム、プラセオジウ
ム、ネオジウム及びサマリウムから成る群より選ばれた
少なくとも1種の希土類元素、ジルコニウム、及びバリ
ウムから成る群より選ばれた少なくとも1種のものとを
含有する、三元触媒であることを特徴とする請求項1〜
8のいずれか1つの項に記載の排気ガス浄化システム。
11. The NOx purification catalyst according to claim 1, wherein the NOx purification catalyst is at least one selected from the group consisting of platinum, palladium and rhodium.
At least one rare earth element selected from the group consisting of lanthanum, cerium, praseodymium, neodymium and samarium, at least one selected from the group consisting of zirconium and barium, 3. A three-way catalyst,
Item 8. The exhaust gas purification system according to any one of Items 8.
JP2000196404A 2000-06-29 2000-06-29 Exhaust gas purification system Expired - Lifetime JP3682851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196404A JP3682851B2 (en) 2000-06-29 2000-06-29 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196404A JP3682851B2 (en) 2000-06-29 2000-06-29 Exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2002013412A true JP2002013412A (en) 2002-01-18
JP3682851B2 JP3682851B2 (en) 2005-08-17

Family

ID=18694908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196404A Expired - Lifetime JP3682851B2 (en) 2000-06-29 2000-06-29 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP3682851B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332885A (en) * 2006-06-15 2007-12-27 Honda Motor Co Ltd Nox purification system and nox purification method
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen
JP2013096347A (en) * 2011-11-04 2013-05-20 Hino Motors Ltd Exhaust emission control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045420A (en) * 1990-04-19 1992-01-09 Iseki & Co Ltd Internal combustion engine
JPH07102948A (en) * 1993-10-04 1995-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH07136467A (en) * 1993-11-19 1995-05-30 Toyota Central Res & Dev Lab Inc Removal of nitrogen oxide
JPH10225636A (en) * 1997-02-14 1998-08-25 Toyota Motor Corp Waste gas purifying catalyst
JPH11226404A (en) * 1997-12-08 1999-08-24 Toyota Motor Corp Catalyst for purification of exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045420A (en) * 1990-04-19 1992-01-09 Iseki & Co Ltd Internal combustion engine
JPH07102948A (en) * 1993-10-04 1995-04-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH07136467A (en) * 1993-11-19 1995-05-30 Toyota Central Res & Dev Lab Inc Removal of nitrogen oxide
JPH10225636A (en) * 1997-02-14 1998-08-25 Toyota Motor Corp Waste gas purifying catalyst
JPH11226404A (en) * 1997-12-08 1999-08-24 Toyota Motor Corp Catalyst for purification of exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332885A (en) * 2006-06-15 2007-12-27 Honda Motor Co Ltd Nox purification system and nox purification method
JP4704964B2 (en) * 2006-06-15 2011-06-22 本田技研工業株式会社 NOx purification system and NOx purification method
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
JP2010163358A (en) * 2010-02-15 2010-07-29 Hitachi Ltd Hydrogen supply apparatus and method for supplying hydrogen
JP2013096347A (en) * 2011-11-04 2013-05-20 Hino Motors Ltd Exhaust emission control device

Also Published As

Publication number Publication date
JP3682851B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5802260B2 (en) Method for reducing nitrous oxide in exhaust gas aftertreatment for lean burn engines
JP3724708B2 (en) Exhaust gas purification catalyst
JP5826285B2 (en) NOx absorption catalyst
JP3981915B2 (en) Exhaust gas purification system
JP3859940B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5590640B2 (en) Exhaust gas purification system
JP2003200049A (en) Catalyst for exhaust gas purification
KR20050100650A (en) Sox trap for enhancing nox trap performance and methods of making and using the same
JP2000510762A (en) Method and apparatus for reducing NO x in lean gas streams
JP2001527189A (en) Catalytic converter for internal combustion engine powered vehicles
EP2629881B1 (en) NOx STORAGE COMPONENT
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3788141B2 (en) Exhaust gas purification system
JP3682851B2 (en) Exhaust gas purification system
JP2001293374A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning system
JP3560147B2 (en) Exhaust gas purification system
JP2002168117A (en) Exhaust emission control system
JP2003135970A (en) Exhaust gas cleaning catalyst
JP2004230241A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
JP3567507B2 (en) Exhaust gas purification catalyst for internal combustion engines
JP2004322022A (en) Catalyst for cleaning exhaust gas
JP2001205085A (en) Hydrogen supply/exhaust gas cleaning catalyst and exhaust gas cleaning system
JP2003343252A (en) Exhaust gas purifying system
JP2003200063A (en) Catalyst for exhaust gas purification, method for manufacturing the same and exhaust gas purification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3682851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

EXPY Cancellation because of completion of term