JP2002005421A - Flying ash melting furnace - Google Patents
Flying ash melting furnaceInfo
- Publication number
- JP2002005421A JP2002005421A JP2000184190A JP2000184190A JP2002005421A JP 2002005421 A JP2002005421 A JP 2002005421A JP 2000184190 A JP2000184190 A JP 2000184190A JP 2000184190 A JP2000184190 A JP 2000184190A JP 2002005421 A JP2002005421 A JP 2002005421A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- fly ash
- melting furnace
- burner
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002844 melting Methods 0.000 title claims abstract description 92
- 230000008018 melting Effects 0.000 title claims abstract description 92
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 179
- 239000001301 oxygen Substances 0.000 claims abstract description 179
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 179
- 239000007789 gas Substances 0.000 claims abstract description 77
- 239000002893 slag Substances 0.000 claims abstract description 53
- 239000010881 fly ash Substances 0.000 claims description 111
- 238000002485 combustion reaction Methods 0.000 claims description 79
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 238000007664 blowing Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 21
- 239000002699 waste material Substances 0.000 abstract description 5
- 239000002912 waste gas Substances 0.000 abstract 2
- 239000002956 ash Substances 0.000 description 12
- 238000007599 discharging Methods 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Chimneys And Flues (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等の廃棄物を焼却処理するストーカ式焼却炉や流動
床式焼却炉の排ガス処理設備で捕集された焼却飛灰を溶
融処理する溶融炉に係り、特に、焼却飛灰を単独で灯油
や天然ガス等の化石燃料の燃焼熱により溶融処理するよ
うにした燃料燃焼式の飛灰溶融炉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for melting incineration fly ash collected in an exhaust gas treatment facility of a stoker type incinerator or a fluidized bed type incinerator for incinerating waste such as municipal solid waste and industrial waste. More particularly, the present invention relates to a fuel combustion type fly ash melting furnace in which incinerated fly ash is melted independently by the combustion heat of fossil fuel such as kerosene or natural gas.
【0002】[0002]
【従来の技術】一般に、都市ごみ等の廃棄物は、その多
くがストーカ式焼却炉や流動床式焼却炉により焼却処理
されている。前者のストーカ式焼却炉に於いては、焼却
残渣として炉内に残る焼却灰と、排ガス中に持ち出され
て集塵器等の排ガス処理設備により捕集される焼却飛灰
とが発生する。一方、後者の流動床式焼却炉に於いて
は、その構造上、焼却残渣は全て焼却飛灰として排ガス
処理設備により捕集されている。2. Description of the Related Art Generally, most waste such as municipal waste is incinerated by a stoker type incinerator or a fluidized bed type incinerator. In the former stoker-type incinerator, incineration ash remaining in the furnace as incineration residue and incineration fly ash taken out of the exhaust gas and collected by an exhaust gas treatment facility such as a dust collector are generated. On the other hand, in the latter fluidized bed incinerator, due to its structure, all incineration residues are collected as incineration fly ash by an exhaust gas treatment facility.
【0003】ところで、ストーカ式焼却炉や流動床式焼
却炉から排出されて排ガス処理設備で捕集された焼却飛
灰は、粉体状で低沸点の重金属類等の揮散成分やダイオ
キシン類を多く含んでいるばかりでなく、排ガス処理設
備に於いて排ガス中に含まれるHClやSOx等の酸性
ガス処理として消石灰Ca(OH)2 を吹き込む乾式処
理を行った場合には、高塩基度(CaO/SiO2 )で
且つ高融点物質となっている。[0003] By the way, incinerated fly ash discharged from a stoker type incinerator or a fluidized bed type incinerator and collected by an exhaust gas treatment facility contains a large amount of volatile components such as heavy metals having low boiling point and dioxins. Not only that, but also in the case of performing a dry treatment in which slaked lime Ca (OH) 2 is blown in an exhaust gas treatment facility as a treatment for an acidic gas such as HCl or SOx contained in the exhaust gas, a high basicity (CaO / SiO 2 ) and a high melting point substance.
【0004】そこで、近年、焼却灰や焼却飛灰の減容化
や無害化、安定化を図る為、焼却灰や焼却飛灰の溶融固
化処理が注目され、現実に実用に供されている。特に、
焼却飛灰は、焼却灰に比べてダイオキシン類の濃度や重
金属類の含有量が高く、溶融固化することが強く求めら
れている。[0004] In recent years, in order to reduce the volume, detoxify, and stabilize incinerated ash and incinerated fly ash, attention has been paid to the melting and solidification of incinerated ash and incinerated fly ash. In particular,
Incinerated fly ash has a higher concentration of dioxins and a higher content of heavy metals than incinerated ash, and is strongly required to be melted and solidified.
【0005】焼却灰や焼却飛灰の溶融処理には、灯油や
天然ガス等の化石燃料の燃焼熱を熱源とする燃料燃焼式
溶融炉(例えば表面溶融炉、旋回溶融炉、コークスベッ
ド炉)や、電気エネルギーを熱源とする電気式溶融炉
(例えばアーク溶融炉、プラズマアーク炉、電気抵抗
炉)等があり、何れも実用に供している。一般的に、発
電設備を有する焼却設備の場合には電気式溶融炉が、
又、発電設備を持たない場合や広域処理を行う場合には
燃料燃焼式溶融炉が用いられている。For melting of incinerated ash and incinerated fly ash, a fuel combustion type melting furnace (for example, a surface melting furnace, a rotary melting furnace, a coke bed furnace) using a combustion heat of fossil fuel such as kerosene or natural gas as a heat source, And an electric melting furnace (for example, an arc melting furnace, a plasma arc furnace, and an electric resistance furnace) using electric energy as a heat source, all of which are practically used. Generally, in the case of an incineration facility having a power generation facility, an electric melting furnace is used.
In addition, a fuel combustion type melting furnace is used when there is no power generation equipment or when performing wide area processing.
【0006】燃料燃焼式溶融炉の代表的なものとしては
表面溶融炉が挙げられる。即ち、表面溶融炉は、炉内に
4方向から焼却灰や焼却飛灰が供給されて傾斜状の溶融
面を形成する4面式構造若しくは炉内に対面2方向から
焼却灰や焼却飛灰が供給されて傾斜状の溶融面を形成す
る対面式構造となっており、溶融炉の周囲のホッパに貯
められた焼却灰や焼却飛灰を灰供給装置により炉内に押
し出し、炉天井に設けた予熱空気を支燃ガスとするバー
ナの燃焼熱により押し出された焼却灰や焼却飛灰の表面
を溶融するようにしたものである。この表面溶融炉は、
焼却灰のように粗物を含む粒径の不均一な被溶融物を溶
融するのに適していること、構造が簡単で多様な化石燃
料を使用できること等の利点を有している。A typical example of the fuel combustion type melting furnace is a surface melting furnace. That is, in the surface melting furnace, incineration ash or incineration fly ash is supplied from four directions into the furnace to form an inclined molten surface by incineration ash or incineration fly ash being supplied from four directions. It has a face-to-face structure that is supplied and forms an inclined melting surface, and incineration ash and incineration fly ash stored in a hopper around the melting furnace are pushed out into the furnace by an ash supply device and installed on the furnace ceiling. The surface of incinerated ash and incinerated fly ash extruded by the combustion heat of a burner using preheated air as a supporting gas is melted. This surface melting furnace
It has advantages such as being suitable for melting a material having a non-uniform particle size including a coarse material such as incineration ash, and having a simple structure and capable of using various fossil fuels.
【0007】[0007]
【発明が解決しようとする課題】ところで、焼却飛灰を
表面溶融炉等の燃料燃焼式溶融炉で単独溶融する場合に
は次の〜のような問題がある。 酸性ガス処理として消石灰Ca(OH)2 を吹き込
んだ焼却飛灰は、高塩基度で且つ高融点となっている
為、焼却飛灰を燃料燃焼式溶融炉で溶融する場合には、
通常の空気を支燃ガスとしたバーナでは燃焼温度が低
く、完全溶融は困難である。 焼却飛灰には重金属類等の揮散成分が多く含まれ且
つ粉粒状である為、未溶融のまま排ガスと一緒に持ち出
される焼却飛灰も多く、排ガス中に含まれるダスト濃度
が高くなってダクト等の閉塞を招く虞があるうえ、スラ
グ化率の低下を招くと云う問題がある。 燃料燃焼式溶融炉に於いては、灯油等の化石燃料を
燃焼するに予熱空気を用いるのが一般的であるが、排ガ
スの持出熱量が多くなって燃比が高くなると云う問題が
ある。 焼却飛灰がバーナの燃焼熱を受けるのは、炉内に押
し出されて安息角で形成された溶融面の表面であり、溶
融するのに十分な受熱をする為には大きな表面積を必要
とする。However, when the incinerated fly ash is solely melted in a fuel combustion type melting furnace such as a surface melting furnace, there are the following problems. Since incinerated fly ash blown with slaked lime Ca (OH) 2 as an acid gas treatment has a high basicity and a high melting point, when the incinerated fly ash is melted in a fuel combustion type melting furnace,
A burner using ordinary air as a supporting gas has a low combustion temperature and is difficult to completely melt. Since incineration fly ash contains a large amount of volatile components such as heavy metals and is in the form of powder, there are many incineration fly ash taken out together with the exhaust gas without melting, and the dust concentration in the exhaust gas increases and the duct In addition, there is a problem that blockage of the slag may be caused, and that a slag conversion rate may be reduced. In a fuel combustion type melting furnace, preheated air is generally used to burn fossil fuel such as kerosene, but there is a problem that the amount of heat carried out of exhaust gas increases and the fuel ratio increases. The incineration fly ash receives the heat of combustion from the burner is the surface of the molten surface that is extruded into the furnace and formed at the angle of repose, and requires a large surface area to receive enough heat to melt .
【0008】本発明は、このような問題点に鑑みて為さ
れたものであり、その目的は廃棄物を焼却炉で焼却処理
した際に発生する焼却飛灰を低燃比で安定溶融すること
ができるようにした飛灰溶融炉を提供することにある。The present invention has been made in view of the above problems, and an object of the present invention is to stably melt incinerated fly ash generated when waste is incinerated in an incinerator at a low fuel ratio. An object of the present invention is to provide a fly ash melting furnace which can be used.
【0009】[0009]
【課題を解決するための手段】上記目的を達成する為
に、本発明の請求項1の発明は、下端部に溶融スラグの
出滓口及び排ガス出口を有する耐火物構造の縦型円筒状
の溶融炉本体と、溶融炉本体の天井壁に下向き姿勢で設
けた酸素バーナとを具備した飛灰溶融炉であって、焼却
炉の排ガス処理設備で捕集された焼却飛灰を酸素バーナ
に供給される酸素により気体輸送し、該焼却飛灰を酸素
と一緒に酸素バーナの高温火炎中に吹き込んで燃焼溶融
するようにしたことに特徴がある。In order to achieve the above object, the invention of claim 1 of the present invention is directed to a vertical cylindrical refractory structure having a molten slag discharge port and an exhaust gas outlet at the lower end. A fly ash melting furnace equipped with a melting furnace main body and an oxygen burner provided on a ceiling wall of the melting furnace main body in a downward position, and supplies incinerated fly ash collected by an exhaust gas treatment facility of the incinerator to the oxygen burner. It is characterized in that the gas is transported by the generated oxygen, and the incinerated fly ash is blown into the high-temperature flame of the oxygen burner together with the oxygen to burn and melt.
【0010】本発明の請求項2の発明は、酸素バーナ
が、支燃ガスである酸素を炉内へ一次酸素と二次酸素に
分けて二段供給できる構造であり、焼却飛灰を気体輸送
する一次酸素を焼却飛灰と一緒に酸素バーナの中心部か
ら旋回させながら酸素バーナの高温火炎中に吹き込める
と共に、二次酸素を溶融炉本体に形成した二次酸素ノズ
ルから旋回させながら炉内へ吹き込めるように構成され
ていることに特徴がある。According to a second aspect of the present invention, the oxygen burner has a structure in which oxygen as a supporting gas can be divided into primary oxygen and secondary oxygen and supplied to the furnace in two stages. Primary oxygen is blown into the high-temperature flame of the oxygen burner while swirling from the center of the oxygen burner together with the incineration fly ash, and secondary oxygen is swirled from the secondary oxygen nozzle formed in the melting furnace body. It is characterized in that it is configured to blow air into.
【0011】本発明の請求項3の発明は、溶融炉本体の
炉底に溶融スラグを溜める湯溜まり部を設け、湯溜まり
部に溜まった溶融スラグを出滓口からオーバーフローさ
せて出湯すると共に、炉内で発生した燃焼排ガスを出滓
口と反対方向に形成した排ガス出口から排出するように
したことに特徴がある。According to a third aspect of the present invention, there is provided a basin for storing molten slag at the bottom of a melting furnace main body, and the molten slag stored in the basin overflows from a slag port to discharge hot water. It is characterized in that the combustion exhaust gas generated in the furnace is discharged from an exhaust gas outlet formed in a direction opposite to the slag outlet.
【0012】本発明の請求項4の発明は、溶融炉本体の
排ガス出口に連通する二次燃焼室及び二次燃焼室内に二
次燃焼用酸素を吹き込む酸素吹込みノズルを有する二次
燃焼塔を溶融炉本体に接続し、溶融炉本体から二次燃焼
室内に送り込まれた燃焼排ガス中の未燃ガスを二次燃焼
室内に於いて二次燃焼用酸素により完全燃焼させるよう
にしたことに特徴がある。According to a fourth aspect of the present invention, there is provided a secondary combustion tower having a secondary combustion chamber communicating with an exhaust gas outlet of a melting furnace main body and an oxygen injection nozzle for blowing oxygen for secondary combustion into the secondary combustion chamber. It is connected to the melting furnace main body, and the unburned gas in the combustion exhaust gas sent from the melting furnace main body into the secondary combustion chamber is completely burned by the secondary combustion oxygen in the secondary combustion chamber. is there.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は本発明の実施の形態
に係る飛灰溶融炉1を用いた焼却飛灰Aの溶融処理設備
の一例を示すものであり、図1於いて、1は飛灰溶融
炉、2は溶融炉本体、3は酸素バーナ、4は酸素飛灰供
給機構、5は一次酸素供給管、6は二次酸素供給管、7
は二次燃焼用酸素供給管、8は酸素供給源、9は制御
弁、10は流量計、11は二次燃焼塔、12は二次燃焼
室、13は酸素吹込みノズル、14は減温塔、15はス
ラグ冷却水槽、16は水封式スラグコンベヤ、17は焼
却飛灰供給装置、18は飛灰用サイロ、19はサイロ定
量切出し装置、20は飛灰供給コンベヤ、21は飛灰計
量機、22は計量機排出装置、23はホッパ、24はホ
ッパ定量切出し装置、25はホッパレベルセンサーであ
る。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of a facility for melting incineration fly ash A using a fly ash melting furnace 1 according to an embodiment of the present invention. In FIG. Furnace body 3, oxygen burner 4, oxygen fly ash supply mechanism 5, primary oxygen supply pipe 6, secondary oxygen supply pipe 6,
Is an oxygen supply pipe for secondary combustion, 8 is an oxygen supply source, 9 is a control valve, 10 is a flow meter, 11 is a secondary combustion tower, 12 is a secondary combustion chamber, 13 is an oxygen injection nozzle, and 14 is a temperature reduction. Tower, 15 is a slag cooling water tank, 16 is a water-sealed slag conveyor, 17 is an incineration fly ash supply device, 18 is a fly ash silo, 19 is a silo quantitative cut-out device, 20 is a fly ash supply conveyor, and 21 is fly ash measurement. , 22 is a weighing machine discharge device, 23 is a hopper, 24 is a hopper fixed amount cutout device, and 25 is a hopper level sensor.
【0014】前記飛灰溶融炉1は、耐火物構造の縦型円
筒状の溶融炉本体2と、溶融炉本体2に設けた酸素バー
ナ3と、酸素バーナ3に接続されて酸素バーナ3へ酸素
及び焼却飛灰Aを供給する酸素飛灰供給機構4と、溶融
炉本体2に接続した二次燃焼塔11等から構成されてお
り、酸素バーナ3の支燃ガスである酸素により焼却飛灰
Aを酸素バーナ3へ気体輸送してこれを酸素バーナ3の
高温火炎中に吹き込んで燃焼溶融すると共に、炉内で発
生した燃焼排ガスGを二次燃焼塔11に導いて燃焼排ガ
スG中の未燃ガスを二次燃焼塔11内で二次燃焼用酸素
Dにより完全燃焼するようにしたものである。The fly ash melting furnace 1 includes a vertical cylindrical melting furnace main body 2 having a refractory structure, an oxygen burner 3 provided in the melting furnace main body 2, and an oxygen burner 3 connected to the oxygen burner 3. And a secondary combustion tower 11 and the like connected to the melting furnace main body 2 and the like. The incineration fly ash A is supplied by oxygen as a supporting gas of the oxygen burner 3. Is transported to the oxygen burner 3 and is blown into the high-temperature flame of the oxygen burner 3 to burn and melt, and the flue gas G generated in the furnace is guided to the secondary combustion tower 11 so that the unburned The gas is completely burned by the secondary combustion oxygen D in the secondary combustion tower 11.
【0015】即ち、前記溶融炉本体2は、図1に示す如
く、金属製のケーシング及びキャスタブル耐火物や耐火
煉瓦等の耐火物で夫々形成された側壁2a、天井壁2b
及び炉底2cにより縦型円筒状に構成されており、側壁
2aの下部には溶融スラグHを排出する出滓口2d及び
傾斜状の樋2eと燃焼排ガスGを排出する排ガス出口2
fとが夫々形成されている。この出滓口2dと排ガス出
口2fとは、側壁2aの下部に対向状で且つ反対方向に
形成されている。又、溶融炉本体2の炉底2cには、溶
融スラグHを溜める窪み状の湯溜まり部2gが形成され
ており、湯溜まり部2gに溜まった溶融スラグHが出滓
口2dからオーバーフローして出湯されるようになって
いる。更に、溶融炉本体2の出滓口2dには、耐火物構
造の溶融スラグ落下シュート26が接続されており、出
滓口2d及び樋2eから排出された溶融スラグHが溶融
スラグ落下シュート26を経てスラグ冷却水槽15内へ
落下するようになっている。That is, as shown in FIG. 1, the melting furnace main body 2 has a side wall 2a and a ceiling wall 2b formed of a metal casing and a refractory such as a castable refractory or a refractory brick.
And a furnace bottom 2c in a vertical cylindrical shape, and a lower part of the side wall 2a has a slag outlet 2d for discharging molten slag H, an inclined trough 2e, and an exhaust gas outlet 2 for discharging combustion exhaust gas G.
f are formed respectively. The slag outlet 2d and the exhaust gas outlet 2f are formed in the lower part of the side wall 2a so as to face each other and in the opposite directions. In the bottom 2c of the melting furnace body 2 is formed a recessed pool 2g for storing the molten slag H, and the molten slag H stored in the pool 2g overflows from the slag port 2d. Hot water is to be taken out. Further, a molten slag dropping chute 26 having a refractory structure is connected to the slag port 2d of the melting furnace main body 2, and the molten slag H discharged from the slag port 2d and the gutter 2e passes through the molten slag falling chute 26. After that, it falls into the slag cooling water tank 15.
【0016】前記酸素バーナ3は、溶融炉本体2の天井
壁2bの中心部に下向き姿勢で設けられており、後述す
る酸素飛灰供給機構4により供給された支燃ガスである
酸素を炉内へ一次酸素Bと二次酸素Cに分けて二段供給
できると共に、一次酸素Bにより気体輸送された焼却飛
灰Aを一次酸素Bと一緒に炉内へ吹き込める構造となっ
ている。即ち、酸素バーナ3は、一次酸素Bを焼却飛灰
Aと一緒に酸素バーナ3の中心部から旋回させながら酸
素バーナ3の高温火炎中に吹き込めると共に、二次酸素
Cを溶融炉本体2に形成した二次酸素ノズル33から旋
回させながら炉内へ吹き込めるように構成されている。The oxygen burner 3 is provided at the center of the ceiling wall 2b of the melting furnace main body 2 in a downward posture, and converts oxygen, which is a supporting gas supplied by an oxygen fly ash supply mechanism 4 described later, into the furnace. The primary incineration fly ash A transported in gas by the primary oxygen B can be blown into the furnace together with the primary oxygen B while the primary oxygen B and the secondary oxygen C can be supplied in two stages. That is, the oxygen burner 3 injects the primary oxygen B into the high-temperature flame of the oxygen burner 3 while swirling the primary oxygen B together with the incineration fly ash A from the center of the oxygen burner 3, and the secondary oxygen C to the melting furnace main body 2. It is configured such that it can be blown into the furnace while swirling from the formed secondary oxygen nozzle 33.
【0017】具体的には、酸素バーナ3は、図2に示す
如く、溶融炉本体2の天井壁2bの中心に形成したバー
ナスロート27及びバーナタイル28と、バーナスロー
ト27の中心位置に配置され、先端部に炉内へ燃料E
(灯油等の液体燃料や天然ガス等の気体燃料)を吹き込
むノズル29aを備えたバーナガン29と、バーナガン
29に接続された燃料供給管30と、バーナガン29に
接続された噴霧媒体供給管31(燃料Eが気体燃料の場
合には不要)と、バーナスロート27に連通状に接続さ
れ、バーナスロート27へ一次酸素Bと焼却飛灰Aを供
給するウインドボックス32と、天井壁2b(若しくは
側壁2a)に設けられ、炉内へ二次酸素Cを吹き込む複
数の二次酸素ノズル33等から構成されており、バーナ
スロート27及び二次酸素ノズル33から炉内へ一次酸
素B及び二次酸素Cを吹き込みつつ、バーナガン29か
ら炉内へ燃料Eを吹き込み、これらをパイロットバーナ
等の着火器(図示省略)で着火燃焼させることによっ
て、炉内に下向きの高温火炎を形成できるようになって
いる。又、酸素バーナ3のウインドボックス32には、
後述する酸素飛灰供給機構4の一次酸素供給管5が接線
方向に接続されており、ウインドボックス32内に供給
された一次酸素B及び焼却飛灰Aが旋回しながらバーナ
スロート27から炉内へ吹き込まれるようになってい
る。更に、酸素バーナ3の二次酸素ノズル33は、炉内
へ吹き込まれる二次酸素Cが一次酸素Bと同じ方向へ旋
回するように溶融炉本体2の天井壁2bの数箇所に設け
られており、二次酸素Cを炉内へ吹き込んで炉内に旋回
流を形成できるようになっている。この二次酸素ノズル
33は、後述する酸素飛灰供給機構4の二次酸素供給管
6に接続されている。Specifically, as shown in FIG. 2, the oxygen burner 3 is disposed at the center of the burner throat 27 and the burner throat 27 and the burner tile 28 formed at the center of the ceiling wall 2b of the melting furnace main body 2. , Fuel E into the furnace at the tip
(A liquid fuel such as kerosene or a gaseous fuel such as natural gas), a burner gun 29 provided with a nozzle 29a, a fuel supply pipe 30 connected to the burner gun 29, and a spray medium supply pipe 31 connected to the burner gun 29 (fuel (Not necessary if E is a gaseous fuel), a wind box 32 connected in communication with the burner throat 27 and supplying primary oxygen B and incineration fly ash A to the burner throat 27, and a ceiling wall 2b (or a side wall 2a). And a plurality of secondary oxygen nozzles 33 for blowing secondary oxygen C into the furnace. Primary oxygen B and secondary oxygen C are blown into the furnace from the burner throat 27 and the secondary oxygen nozzle 33. Meanwhile, fuel E is blown into the furnace from the burner gun 29, and is ignited and burned by an igniter (not shown) such as a pilot burner. And to be able to form a hot flame. In the wind box 32 of the oxygen burner 3,
The primary oxygen supply pipe 5 of the oxygen fly ash supply mechanism 4 described later is connected in a tangential direction, and the primary oxygen B and the incinerated fly ash A supplied into the wind box 32 are swirled from the burner throat 27 into the furnace. It is to be blown. Further, the secondary oxygen nozzles 33 of the oxygen burner 3 are provided at several places on the ceiling wall 2b of the melting furnace main body 2 so that the secondary oxygen C blown into the furnace turns in the same direction as the primary oxygen B. The secondary oxygen C can be blown into the furnace to form a swirling flow in the furnace. The secondary oxygen nozzle 33 is connected to a secondary oxygen supply pipe 6 of the oxygen fly ash supply mechanism 4 described later.
【0018】而して、前記酸素バーナ3によれば、一次
酸素供給管5からウインドボックス32内に供給された
一次酸素B及び焼却飛灰Aは、ウインドボックス32内
で旋回を与えられ、旋回しながらバーナスロート27か
ら酸素バーナ3の高温火炎中に吹き込まれる。又、二次
酸素Cは、二次燃焼用酸素供給管7から二次酸素ノズル
33へ供給された二次酸素Cは、二次酸素ノズル33か
ら一次酸素Bと同じ方向の旋回を与えられて炉内へ吹き
込まれる。According to the oxygen burner 3, the primary oxygen B and the incinerated fly ash A supplied from the primary oxygen supply pipe 5 into the wind box 32 are swirled in the wind box 32, and swirled. The gas is blown from the burner throat 27 into the high-temperature flame of the oxygen burner 3. The secondary oxygen C is supplied from the secondary combustion oxygen supply pipe 7 to the secondary oxygen nozzle 33, and the secondary oxygen C is supplied from the secondary oxygen nozzle 33 to a swirl in the same direction as the primary oxygen B. It is blown into the furnace.
【0019】尚、この酸素バーナ3に於いては、燃料E
に液体燃料を使用する場合、噴霧媒体Fとして蒸気、酸
素、圧縮空気を使用することができるが、NOxの発生
量は蒸気<酸素<圧縮空気の順で高くなることから、N
Oxの抑制を考えると、噴霧媒体Fとして蒸気の使用が
望まれる。In the oxygen burner 3, the fuel E
When liquid fuel is used, steam, oxygen, and compressed air can be used as the spray medium F. However, since the amount of generated NOx increases in the order of steam <oxygen <compressed air, N
Considering the suppression of Ox, the use of steam as the spray medium F is desired.
【0020】前記酸素飛灰供給機構4は、酸素バーナ3
に支燃ガスとして一次酸素B及び二次酸素Cを供給する
と共に、酸素バーナ3に気体輸送により焼却飛灰Aを供
給するものであり、図1に示す如く、酸素バーナ3のウ
インドボックス32に接続され、ウインドボックス32
に一次酸素B及び焼却飛灰Aを供給する一次酸素供給管
5と、二次酸素ノズル33に接続された二次酸素供給管
6と、一次酸素供給管5及び二次酸素供給管6に接続さ
れた酸素供給源8と、一次酸素供給管5及び二次酸素供
給管6に夫々介設された制御弁9及び流量計10等から
構成されている。The oxygen fly ash supply mechanism 4 includes an oxygen burner 3
The primary oxygen B and the secondary oxygen C are supplied to the oxygen burner 3 and the incineration fly ash A is supplied to the oxygen burner 3 by gas transportation. As shown in FIG. Connected and wind box 32
Primary oxygen supply pipe 5 for supplying primary oxygen B and incineration fly ash A to the secondary oxygen supply pipe 6 connected to the secondary oxygen nozzle 33, and connection to the primary oxygen supply pipe 5 and the secondary oxygen supply pipe 6 And a control valve 9 and a flow meter 10 provided in the primary oxygen supply pipe 5 and the secondary oxygen supply pipe 6, respectively.
【0021】前記二次燃焼塔11は、図1に示す如く、
内部に二次燃焼室12を有する縦型円筒状の耐火物構造
となっており、溶融炉本体2の排ガス出口2fに連通状
に接続されている。この二次燃焼塔11は、酸素バーナ
3の酸素吹込み量を燃料Eの燃焼に必要な酸素量より少
なくして炉内を還元性雰囲気とした場合に、燃焼排ガス
G中に含まれる未燃ガスを完全燃焼するものである。こ
の場合には、炉内を還元性雰囲気にすることができ、燃
焼排ガスGの低NOx化を図れる。又、二次燃焼塔11
の上流側位置(図1に示す二次燃焼塔11の下部位置)
には、二次燃焼室12内に二次燃焼用酸素Dを吹き込む
酸素吹込みノズル13が設けられている。この酸素吹込
みノズル13は、二次燃焼室12の内周面に沿ってその
接線方向に二次燃焼用酸素Dを吹き込んで二次燃焼室1
2内に旋回流を形成できるようになっており、二次燃焼
用酸素供給管7を介して酸素供給源8に接続されてい
る。The secondary combustion tower 11, as shown in FIG.
It has a vertical cylindrical refractory structure having a secondary combustion chamber 12 therein, and is connected to an exhaust gas outlet 2 f of the melting furnace main body 2 in a communicating manner. The secondary combustion tower 11, when the oxygen injection amount of the oxygen burner 3 is made smaller than the oxygen amount required for combustion of the fuel E and the inside of the furnace is set to a reducing atmosphere, the unburned It completely burns the gas. In this case, the inside of the furnace can be set to a reducing atmosphere, and the NOx of the combustion exhaust gas G can be reduced. Also, the secondary combustion tower 11
Upstream position (lower position of secondary combustion tower 11 shown in FIG. 1)
Is provided with an oxygen blowing nozzle 13 for blowing oxygen D for secondary combustion into the secondary combustion chamber 12. The oxygen blowing nozzle 13 blows oxygen D for secondary combustion in the tangential direction along the inner peripheral surface of the secondary combustion chamber 12 to
A swirling flow can be formed in the inside 2 and is connected to an oxygen supply source 8 via a secondary combustion oxygen supply pipe 7.
【0022】前記焼却飛灰供給装置17は、ストーカ式
焼却炉や流動床式焼却炉の排ガス処理設備で捕集された
焼却飛灰Aを貯留する飛灰用サイロ18と、飛灰用サイ
ロ18内の焼却飛灰Aを切り出すサイロ定量切出し装置
19と、切り出した焼却飛灰Aを搬送する飛灰供給コン
ベヤ20と、焼却飛灰Aを計量する飛灰計量機21と、
飛灰計量機21内の焼却飛灰Aを排出する計量機排出装
置22と、計量機排出装置22から排出された焼却飛灰
Aを貯留するホッパ23と、ホッパ23内の焼却飛灰A
を一次酸素供給管5内へ切り出すホッパ定量切出し装置
24と、ホッパ23内の焼却飛灰Aの貯留量を検出する
ホッパレベルセンサー25と、サイロ定量切出し装置1
9、飛灰供給コンベヤ20及び計量機排出装置22等を
制御する制御装置(図示省略)等から構成されており、
ホッパ23内の焼却飛灰Aをホッパ定量切出し装置24
により定量ずつ切り出して一次酸素供給管5内へ供給す
るようになっている。一次酸素供給管5内に切り出され
た焼却飛灰Aは、酸素供給源8から供給される一次酸素
Bにより気体輸送され、一次酸素Bと一緒に酸素バーナ
3へ供給される。又、焼却飛灰供給装置17は、ホッパ
23内へ随時焼却飛灰Aを供給してホッパ23内の焼却
飛灰Aのレベルが一定となるように制御装置(図示省
略)により駆動制御されている。即ち、制御装置は、ホ
ッパレベルセンサー25からホッパ23内の焼却飛灰A
のレベルが低下した信号を受けると、飛灰計量機21が
設定された重量を検出するまでサイロ定量切出し装置1
9及び飛灰供給コンベヤ20を運転し、次に飛灰計量機
21が設定された重量を検出すると、サイロ定量切出し
装置19及び飛灰供給コンベヤ20を順次停止し、その
後計量機排出装置22を運転して焼却飛灰Aをホッパ2
3へ供給するようになっている。The incineration fly ash supply device 17 includes a fly ash silo 18 for storing incineration fly ash A collected in an exhaust gas treatment facility of a stoker type incinerator or a fluidized bed incinerator, and a fly ash silo 18. A silo quantitative cut-out device 19 that cuts out incinerated fly ash A, a fly ash supply conveyor 20 that conveys the cut out incinerated fly ash A, a fly ash meter 21 that measures the incinerated fly ash A,
A weighing machine discharging device 22 for discharging the incinerated fly ash A in the fly ash measuring device 21, a hopper 23 for storing the incinerated fly ash A discharged from the weighing machine discharging device 22, and an incinerated fly ash A in the hopper 23
24, a hopper level sensor 25 for detecting the amount of incinerated fly ash A stored in the hopper 23, and a silo quantitative cutting device 1
9, a control device (not shown) for controlling the fly ash supply conveyor 20, the weighing machine discharge device 22, and the like.
A hopper quantitative cutout device 24 for incinerated fly ash A in the hopper 23
Thus, the primary oxygen supply pipe 5 is cut out by a predetermined amount and supplied into the primary oxygen supply pipe 5. The incinerated fly ash A cut into the primary oxygen supply pipe 5 is gas-transported by the primary oxygen B supplied from the oxygen supply source 8 and supplied to the oxygen burner 3 together with the primary oxygen B. The incineration fly ash supply device 17 is driven and controlled by a control device (not shown) such that the incineration fly ash A is supplied into the hopper 23 as needed and the level of the incineration fly ash A in the hopper 23 becomes constant. I have. That is, the control device detects the incineration fly ash A in the hopper 23 from the hopper level sensor 25.
Receives a signal indicating that the level of the silo has decreased, the fly ash meter 21 detects the set weight until the silo quantitative cutout device 1 is detected.
9 and the fly ash supply conveyor 20 are operated, and then, when the fly ash measuring machine 21 detects the set weight, the silo quantitative cut-out device 19 and the fly ash supply conveyor 20 are sequentially stopped, and then the weighing machine discharge device 22 is turned off. Driving incineration fly ash A in hopper 2
3.
【0023】次に、上述した飛灰溶融炉1を備えた溶融
処理設備を用いて焼却炉の排ガス処理設備で捕集された
焼却飛灰Aを溶融処理する場合について説明する。焼却
飛灰Aの溶融開始に際しては、予め酸素バーナ3等を作
動させて溶融炉本体2の炉内温度を所定の温度(焼却飛
灰Aを溶融できる温度)に予熱しておく。Next, the case where the incineration fly ash A collected in the exhaust gas treatment equipment of the incinerator is melted using the melting processing equipment provided with the above-mentioned fly ash melting furnace 1 will be described. When melting the incineration fly ash A, the oxygen burner 3 and the like are activated in advance to preheat the furnace temperature of the melting furnace body 2 to a predetermined temperature (a temperature at which the incineration fly ash A can be melted).
【0024】溶融炉本体2の炉内が所定の温度まで達す
ると、焼却飛灰供給装置17及び酸素飛灰供給機構4に
より焼却飛灰Aが一次酸素Bと一緒に酸素バーナ3へ供
給される。即ち、飛灰用サイロ18に投入された焼却飛
灰Aは、サイロ定量切出し装置19、飛灰供給コンベヤ
20、飛灰計量機21、計量機排出装置22、ホッパ2
3及びホッパ定量切出し装置24を順次経て一次酸素供
給管5に供給され、一次酸素供給管5内を流れる一次酸
素Bにより気体輸送されて一次酸素Bと一緒にウインド
ボックス32内に供給される。When the temperature in the furnace of the melting furnace body 2 reaches a predetermined temperature, the incinerated fly ash A is supplied to the oxygen burner 3 together with the primary oxygen B by the incinerated fly ash supply device 17 and the oxygen fly ash supply mechanism 4. . That is, the incinerated fly ash A charged into the fly ash silo 18 is supplied to the silo quantitative cut-out device 19, the fly ash supply conveyor 20, the fly ash measuring machine 21, the measuring machine discharging device 22, the hopper 2
The primary oxygen supply pipe 5 is supplied to the primary oxygen supply pipe 5 sequentially through the primary oxygen supply pipe 3 and the hopper fixed amount cutout device 24, is gas-transported by the primary oxygen B flowing in the primary oxygen supply pipe 5, and is supplied into the wind box 32 together with the primary oxygen B.
【0025】ウインドボックス32内に供給された一次
酸素B及び焼却飛灰Aは、旋回を与えられてバーナスロ
ート27から炉内へ吹き込まれ、酸素バーナ3の高温火
炎中で燃焼溶融されて溶融スラグHとなる。このとき、
酸素バーナ3は、支燃ガスとして酸素を用いている為、
支燃ガスに空気を用いるバーナに比較して高温の火炎が
得られる。その結果、高融点の焼却飛灰Aでも単独で確
実に燃焼溶融することができる。又、支燃ガスである一
次酸素Bにより焼却飛灰Aを高温火炎中に気体輸送する
ようにしている為、個々の飛灰粒子の表面積を受熱面と
して十分活用することができ、焼却飛灰Aを効率良く溶
融することができる。The primary oxygen B and the incinerated fly ash A supplied into the wind box 32 are swirled and blown into the furnace from the burner throat 27, and are burned and melted in the high-temperature flame of the oxygen burner 3 to form molten slag. H. At this time,
Since the oxygen burner 3 uses oxygen as a combustion supporting gas,
A higher temperature flame is obtained as compared to a burner using air as a supporting gas. As a result, even incinerated fly ash A having a high melting point can be reliably burned and melted alone. In addition, since the incinerated fly ash A is transported by gas to the high-temperature flame by the primary oxygen B which is a supporting gas, the surface area of each fly ash particle can be fully utilized as a heat receiving surface, and the incinerated fly ash can be used. A can be efficiently melted.
【0026】前記溶融スラグHは、炉内へ旋回しながら
吹き込まれる一次酸素B及び二次酸素Cにより生じる燃
焼排ガスGの旋回流により溶融炉本体2の側壁2a内面
に付着して炉底2c側へ流れて行く。このとき、溶融炉
本体2の側壁2a内面に付着する溶融スラグHによっ
て、側壁2a内面には溶融スラグHのコーティング層が
形成される。これによって、側壁2aを形成する耐火物
の表面を酸素バーナ3の高温火炎から保護することがで
きる。The molten slag H adheres to the inner surface of the side wall 2a of the melting furnace main body 2 by the swirling flow of the combustion exhaust gas G generated by the primary oxygen B and the secondary oxygen C which are blown while being swirled into the furnace, and is attached to the furnace bottom 2c side. Flow to At this time, a coating layer of the molten slag H is formed on the inner surface of the side wall 2a by the molten slag H attached to the inner surface of the side wall 2a of the melting furnace main body 2. Thereby, the surface of the refractory forming the side wall 2 a can be protected from the high-temperature flame of the oxygen burner 3.
【0027】そして、炉底2c側へ流れた溶融スラグH
は、炉底2cに形成した湯溜まり部2gに一時的に貯留
された後、出滓口2dから順次オーバーフローして樋2
eを流れてその下方のスラグ冷却水槽15内へ落下し、
冷却水により急冷固化されて粒状の水砕スラグとなって
水封式スラグコンベヤ16により運び出される。このと
き、溶融炉本体2の炉底2cに形成した湯溜まり部2g
に溶融スラグHを一時的に貯留するようにしている為、
炉底2cを形成する耐火物の表面を酸素バーナ3の高温
火炎から保護することができる。又、炉底2cの湯溜ま
り部2gに溶融スラグHを溜めるようにしている為、溶
融スラグHの炉内への滞留時間が長くなって溶融スラグ
H中の重金属類の含有量が低下すると共に、燃焼排ガス
G中の未溶融物が湯溜まり部2gに落下して完全溶融さ
れる。The molten slag H flowing to the furnace bottom 2c side
Is temporarily stored in a hot water pool 2g formed in the furnace bottom 2c, and then overflows sequentially from the slag outlet 2d to form a gutter 2
e, and falls into the slag cooling water tank 15 thereunder,
The slag is rapidly cooled and solidified by the cooling water to form granular granulated slag, which is carried out by the water-seal slag conveyor 16. At this time, the pool 2g formed in the furnace bottom 2c of the melting furnace body 2
Because the molten slag H is temporarily stored in
The surface of the refractory forming the furnace bottom 2c can be protected from the high-temperature flame of the oxygen burner 3. Further, since the molten slag H is stored in the pool 2g of the furnace bottom 2c, the residence time of the molten slag H in the furnace is prolonged, and the content of heavy metals in the molten slag H is reduced. Then, the unmelted material in the combustion exhaust gas G falls to the pool 2g and is completely melted.
【0028】一方、炉内で発生した高温の燃焼排ガスG
は、排ガス出口2fを通って二次燃焼室12内に送り込
まれ、ここで酸素吹込みノズル13から二次燃焼室12
内に吹き込まれる二次燃焼用酸素Dにより二次燃焼室1
2内に於いて二次燃焼される。このとき、酸素吹込みノ
ズル13から二次燃焼室12の内周面に沿ってその接線
方向に二次燃焼用酸素Dを吹き込んで二次燃焼室12内
に旋回流を形成するようにしている為、排ガスG中に含
まれる未燃ガスは二次燃焼室12内に於いて十分な滞留
時間と温度をもって攪拌・燃焼される。その結果、溶融
炉本体2から排出される排ガスG中の未燃ガスは完全燃
焼されることになる。On the other hand, high-temperature flue gas G generated in the furnace
Is sent into the secondary combustion chamber 12 through the exhaust gas outlet 2 f, where the oxygen is injected from the oxygen injection nozzle 13 to the secondary combustion chamber 12.
Secondary combustion chamber 1 by secondary combustion oxygen D blown into the
The secondary combustion is performed in 2. At this time, oxygen D for secondary combustion is blown from the oxygen injection nozzle 13 along the inner peripheral surface of the secondary combustion chamber 12 in a tangential direction to form a swirling flow in the secondary combustion chamber 12. Therefore, the unburned gas contained in the exhaust gas G is stirred and burned in the secondary combustion chamber 12 with a sufficient residence time and temperature. As a result, the unburned gas in the exhaust gas G discharged from the melting furnace body 2 is completely burned.
【0029】二次燃焼室12内で二次燃焼された後の排
ガスGは、引き続き減温塔14へ送られ、ここで冷却水
や圧縮空気等の冷却媒体Iの噴射によって減温された
後、集塵器や触媒脱硝塔等の排ガス処理設備(図示省
略)を経てクリーンガスとなって煙突(図示省略)から
大気中へ放出される。The exhaust gas G after the secondary combustion in the secondary combustion chamber 12 is continuously sent to the temperature reducing tower 14, where the temperature of the exhaust gas G is reduced by injection of a cooling medium I such as cooling water or compressed air. After passing through an exhaust gas treatment facility (not shown) such as a dust collector and a catalytic denitration tower, the gas becomes a clean gas and is released into the atmosphere from a chimney (not shown).
【0030】[0030]
【発明の効果】上述の通り、本発明の飛灰溶融炉は、溶
融炉本体に高温火炎を作る酸素バーナを設けると共に、
酸素バーナの支燃ガスである酸素により焼却飛灰を気体
輸送し、該焼却飛灰を酸素と一緒に酸素バーナの高温火
炎中に吹き込んで燃焼溶融するようにしている為、高融
点の焼却飛灰を単独で溶融処理することができると共
に、支燃ガスである酸素により焼却飛灰を高温火炎中に
気体輸送することで個々の飛灰粒子の表面積を受熱面と
して十分活用することができ、焼却飛灰を効率良く溶融
することが可能になり、炉自体をコンパクト化すること
ができる。然も、飛灰溶融炉は、酸素バーナを用いてい
る為、排ガス量を減少することができる。その結果、排
ガスの持ち出し熱量を低減することができ、燃比の削減
が可能になると共に、溶融炉以降の排ガス処理設備を縮
小することができ、設置スペースや設備コストの低減を
図れる。又、本発明の飛灰溶融炉は、酸素バーナの支燃
ガスである酸素を炉内へ一次酸素と二次酸素に分けて二
段供給し、一次酸素及び二次酸素を旋回させながら炉内
へ吹き込めるようにしている為、炉内へ旋回しながら吹
き込まれる一次酸素及び二次酸素により生じる燃焼排ガ
スの旋回流により、溶融スラグは溶融炉本体の側壁内面
に付着して炉底側へ流れて行く。その結果、溶融炉本体
の側壁内面に付着する溶融スラグによって、側壁を形成
する耐火物の表面を酸素バーナの高温火炎から保護する
ことができる。更に、本発明の飛灰溶融炉は、溶融炉本
体の炉底に溶融スラグを溜める湯溜まり部を設け、湯溜
まり部に溜まった溶融スラグを出滓口からオーバーフロ
ーさせて出湯するようにしている為、湯溜まり部に一時
的に貯留した溶融スラグよって、炉底を形成する耐火物
の表面を酸素バーナの高温火炎から保護することができ
る。然も、溶融スラグの炉内への滞留時間が長くなって
溶融スラグ中の重金属類の含有量の低減を図れると共
に、燃焼排ガス中の未溶融物が湯溜まり部に落下して完
全溶融される。加えて、本発明の飛灰溶融炉は、溶融炉
本体に二次燃焼室及び酸素吹込みノズルを有する二次燃
焼塔を接続し、溶融炉本体から二次燃焼室内に送り込ま
れた燃焼排ガス中の未燃ガスを二次燃焼室内に於いて二
次燃焼用酸素により二次燃焼させるようにしている為、
燃焼排ガス中の未燃ガスを完全燃焼することができると
共に、酸素バーナへの酸素を少なくして炉内を還元性雰
囲気にすることができ、燃焼排ガスの低NOx化を図れ
る。然も、焼却飛灰を高温火炎中で且つ還元性雰囲気で
溶融することで、溶融スラグ中の重金属類の含有量を低
減することができる。As described above, the fly ash melting furnace of the present invention is provided with an oxygen burner for producing a high-temperature flame in the melting furnace body,
The incineration fly ash is gas-transported by oxygen, which is the supporting gas of the oxygen burner, and the incineration fly ash is blown into the high-temperature flame of the oxygen burner together with the oxygen to be burned and melted. The ash can be melted by itself, and the surface area of the individual fly ash particles can be fully utilized as a heat receiving surface by gas transporting the incinerated fly ash into a high-temperature flame by oxygen as a supporting gas. The incineration fly ash can be efficiently melted, and the furnace itself can be made compact. Since the fly ash melting furnace uses an oxygen burner, the amount of exhaust gas can be reduced. As a result, the amount of heat taken out of the exhaust gas can be reduced, the fuel ratio can be reduced, and the exhaust gas processing equipment after the melting furnace can be reduced, so that the installation space and equipment cost can be reduced. In the fly ash melting furnace of the present invention, oxygen, which is a supporting gas of the oxygen burner, is divided into primary oxygen and secondary oxygen into the furnace and supplied in two stages. The molten slag adheres to the inner surface of the side wall of the melting furnace body and flows to the bottom of the furnace due to the swirling flow of the combustion exhaust gas generated by the primary oxygen and secondary oxygen that are blown while swirling into the furnace. Go. As a result, the surface of the refractory forming the side wall can be protected from the high-temperature flame of the oxygen burner by the molten slag attached to the inner surface of the side wall of the melting furnace main body. Furthermore, the fly ash melting furnace of the present invention is provided with a pool in which the molten slag is stored at the furnace bottom of the melting furnace main body, and the molten slag stored in the pool is overflowed from the slag port to discharge hot water. Therefore, the surface of the refractory forming the furnace bottom can be protected from the high-temperature flame of the oxygen burner by the molten slag temporarily stored in the pool. Of course, the residence time of the molten slag in the furnace is prolonged to reduce the content of heavy metals in the molten slag, and the unmelted material in the combustion exhaust gas falls into the pool and is completely melted. . In addition, the fly ash melting furnace of the present invention connects a secondary combustion chamber having a secondary combustion chamber and an oxygen injection nozzle to the melting furnace main body, so that the flue gas discharged from the melting furnace main body into the secondary combustion chamber can be used. Of the unburned gas in the secondary combustion chamber in the secondary combustion with oxygen for secondary combustion,
The unburned gas in the combustion exhaust gas can be completely burned, and the oxygen in the oxygen burner can be reduced to make the inside of the furnace a reducing atmosphere, so that the NOx of the combustion exhaust gas can be reduced. Naturally, the content of heavy metals in the molten slag can be reduced by melting the incinerated fly ash in a high-temperature flame and in a reducing atmosphere.
【図1】本発明の実施の形態に係る飛灰溶融炉を用いた
溶融処理設備の概略系統図である。FIG. 1 is a schematic system diagram of a melting processing facility using a fly ash melting furnace according to an embodiment of the present invention.
【図2】飛灰溶融炉に用いる酸素バーナの概略縦断面図
である。FIG. 2 is a schematic longitudinal sectional view of an oxygen burner used in a fly ash melting furnace.
1は飛灰溶融炉、2は溶融炉本体、2bは天井壁、2c
は炉底、2dは出滓口、2fは排ガス出口、2gは湯溜
まり部、3は酸素バーナ、11は二次燃焼塔、12は二
次燃焼室、13は酸素吹込みノズル、33は二次酸素ノ
ズル、Aは焼却飛灰、Bは一次酸素、Cは二次酸素、D
は二次燃焼用酸素、Gは燃焼排ガス、Hは溶融スラグ。1 is a fly ash melting furnace, 2 is a melting furnace body, 2b is a ceiling wall, 2c
Is a furnace bottom, 2d is a slag outlet, 2f is an exhaust gas outlet, 2g is a pool, 3 is an oxygen burner, 11 is a secondary combustion tower, 12 is a secondary combustion chamber, 13 is an oxygen injection nozzle, and 33 is a secondary burner. Primary oxygen nozzle, A is incineration fly ash, B is primary oxygen, C is secondary oxygen, D
Is oxygen for secondary combustion, G is combustion exhaust gas, and H is molten slag.
フロントページの続き (72)発明者 片岡 静夫 兵庫県尼崎市金楽寺町2丁目2番33号 株 式会社タクマ内 Fターム(参考) 3K061 NB03 NB13 NB15 NB24 NB27 3K070 DA07 DA37 4D004 AA37 AB03 AB07 AC04 CA29 CA30 CB02 CB34 CB42 Continued on the front page (72) Inventor Shizuo Kataoka 2-33, Kinrakuji-cho, Amagasaki-shi, Hyogo F-term in Takuma Co., Ltd. (Reference) 3K061 NB03 NB13 NB15 NB24 NB27 3K070 DA07 DA37 4D004 AA37 AB03 AB07 AC04 CA29 CA30 CB02 CB34 CB42
Claims (4)
出口を有する耐火物構造の縦型円筒状の溶融炉本体と、
溶融炉本体の天井壁に下向き姿勢で設けた酸素バーナと
を具備した飛灰溶融炉であって、焼却炉の排ガス処理設
備で捕集された焼却飛灰を酸素バーナに供給される酸素
により気体輸送し、該焼却飛灰を酸素と一緒に酸素バー
ナの高温火炎中に吹き込んで燃焼溶融するようにしたこ
とを特徴とする飛灰溶融炉。A vertical cylindrical melting furnace body having a refractory structure having a molten slag discharge port and an exhaust gas outlet at a lower end;
A fly ash melting furnace having an oxygen burner provided in a downward position on a ceiling wall of a melting furnace body, wherein incinerated fly ash collected in an exhaust gas treatment facility of an incinerator is gasified by oxygen supplied to the oxygen burner. A fly ash melting furnace which is transported and blows the incinerated fly ash together with oxygen into a high-temperature flame of an oxygen burner to be burned and melted.
内へ一次酸素と二次酸素に分けて二段供給できる構造で
あり、焼却飛灰を気体輸送する一次酸素を焼却飛灰と一
緒に酸素バーナの中心部から旋回させながら酸素バーナ
の高温火炎中に吹き込めると共に、二次酸素を溶融炉本
体に形成した二次酸素ノズルから旋回させながら炉内へ
吹き込めるように構成されていることを特徴とする請求
項1に記載の飛灰溶融炉。2. An oxygen burner has a structure in which oxygen, which is a supporting gas, can be divided into primary oxygen and secondary oxygen and supplied to the furnace in two stages. While being swirled together from the center of the oxygen burner, it can be blown into the high-temperature flame of the oxygen burner, and secondary oxygen can be blown into the furnace while swirling from the secondary oxygen nozzle formed in the melting furnace body. The fly ash melting furnace according to claim 1, wherein:
湯溜まり部を設け、湯溜まり部に溜まった溶融スラグを
出滓口からオーバーフローさせて出湯すると共に、炉内
で発生した燃焼排ガスを出滓口と反対方向に形成した排
ガス出口から排出するようにしたことを特徴とする請求
項1又は請求項2に記載の飛灰溶融炉。3. A basin for storing molten slag is provided at the bottom of the main body of the smelting furnace. The slag accumulated in the basin overflows from a slag port to discharge hot water, and the combustion exhaust gas generated in the furnace is discharged. The fly ash melting furnace according to claim 1 or 2, wherein the fly ash is discharged from an exhaust gas outlet formed in a direction opposite to the slag outlet.
燃焼室及び二次燃焼室内に二次燃焼用酸素を吹き込む酸
素吹込みノズルを有する二次燃焼塔を溶融炉本体に接続
し、溶融炉本体から二次燃焼室内に送り込まれた燃焼排
ガス中の未燃ガスを二次燃焼室内に於いて二次燃焼用酸
素により完全燃焼させるようにしたことを特徴とする請
求項1、請求項2又は請求項3に記載の飛灰溶融炉。4. A secondary combustion chamber communicating with an exhaust gas outlet of the melting furnace main body and a secondary combustion tower having an oxygen injection nozzle for blowing oxygen for secondary combustion into the secondary combustion chamber are connected to the melting furnace main body. An unburned gas in the combustion exhaust gas sent from the furnace body into the secondary combustion chamber is completely burned by the oxygen for secondary combustion in the secondary combustion chamber. Or the fly ash melting furnace according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000184190A JP3748364B2 (en) | 2000-06-20 | 2000-06-20 | Fly ash melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000184190A JP3748364B2 (en) | 2000-06-20 | 2000-06-20 | Fly ash melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002005421A true JP2002005421A (en) | 2002-01-09 |
JP3748364B2 JP3748364B2 (en) | 2006-02-22 |
Family
ID=18684662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000184190A Expired - Fee Related JP3748364B2 (en) | 2000-06-20 | 2000-06-20 | Fly ash melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3748364B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7459373B2 (en) | 2004-11-15 | 2008-12-02 | Verticle, Inc. | Method for fabricating and separating semiconductor devices |
KR101569378B1 (en) * | 2014-05-15 | 2015-11-16 | 고등기술연구원연구조합 | Partial slagging type-pulverized coal gasifier and pulverized coal gasification method |
CN107860010A (en) * | 2017-12-04 | 2018-03-30 | 山西大学 | A kind of superhigh temperature flame melting furnace system for being used to handle incineration of refuse flyash |
CN108613199A (en) * | 2018-07-05 | 2018-10-02 | 上海环境工程设计研究院有限公司 | A kind of dangerous waste incineration melting integrated apparatus |
JP2022508878A (en) * | 2019-08-19 | 2022-01-19 | 中南大学 | Pre-chlorination-sintering process for high chlorine metallurgical waste and incinerator fly ash |
CN114949721A (en) * | 2022-05-11 | 2022-08-30 | 三河发电有限责任公司 | Heavy metal solidification device and boiler system in fly ash of coal-fired power plant |
-
2000
- 2000-06-20 JP JP2000184190A patent/JP3748364B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7459373B2 (en) | 2004-11-15 | 2008-12-02 | Verticle, Inc. | Method for fabricating and separating semiconductor devices |
KR101569378B1 (en) * | 2014-05-15 | 2015-11-16 | 고등기술연구원연구조합 | Partial slagging type-pulverized coal gasifier and pulverized coal gasification method |
CN107860010A (en) * | 2017-12-04 | 2018-03-30 | 山西大学 | A kind of superhigh temperature flame melting furnace system for being used to handle incineration of refuse flyash |
CN107860010B (en) * | 2017-12-04 | 2023-07-21 | 山西大学 | An ultra-high temperature flame melting furnace system for treating waste incineration fly ash |
CN108613199A (en) * | 2018-07-05 | 2018-10-02 | 上海环境工程设计研究院有限公司 | A kind of dangerous waste incineration melting integrated apparatus |
JP2022508878A (en) * | 2019-08-19 | 2022-01-19 | 中南大学 | Pre-chlorination-sintering process for high chlorine metallurgical waste and incinerator fly ash |
JP7204156B2 (en) | 2019-08-19 | 2023-01-16 | 中南大学 | Pre-dechlorination and sintering process for highly chlorinated metallurgical waste and incineration fly ash |
CN114949721A (en) * | 2022-05-11 | 2022-08-30 | 三河发电有限责任公司 | Heavy metal solidification device and boiler system in fly ash of coal-fired power plant |
Also Published As
Publication number | Publication date |
---|---|
JP3748364B2 (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861262A (en) | Method and apparatus for waste disposal | |
CN101713543B (en) | Sludge incinerator with no auxiliary fuel | |
JP2002081624A (en) | Waste Gasification Melting Furnace and Operating Method of the Melting Furnace | |
USRE34298E (en) | Method for waste disposal | |
JP4295291B2 (en) | Fluidized bed gasifier and its fluidized bed monitoring and control method | |
WO2003031873A1 (en) | Ash melting type u-firing combustion boiler and method of operating the boiler | |
JP4548785B2 (en) | Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace | |
CN112240553B (en) | Plasma gasification melting furnace system and control method thereof | |
CN201152531Y (en) | Industrial dangerous waste incineration processing equipment for realizing multiple physical states | |
JP3764634B2 (en) | Oxygen burner type melting furnace | |
JP3748364B2 (en) | Fly ash melting furnace | |
JP3430295B2 (en) | Method and equipment for reducing dioxin and furan generated during refuse incineration | |
JP2009058216A (en) | Gasification melting system, and its combustion control method | |
JP2002295817A (en) | Gasification melting furnace for combustible refuse, and method for gasification melting | |
JP2003042429A (en) | Ash melting furnace equipment for gasifying/melting plasma, and method for its control | |
JP5162285B2 (en) | Gasification melting method and gasification melting apparatus | |
CA1333973C (en) | Method and apparatus for waste disposal | |
JPH11118123A (en) | Combustion furnace and powder combustion method | |
JPH10185115A (en) | Powder combustion burner of industrial waste incinerator | |
CN218972677U (en) | Tail gas incinerator | |
JP3754472B2 (en) | Surface melting furnace using gas fuel | |
JP3556525B2 (en) | Surface melting furnace melting burner | |
AU621059B2 (en) | A method and apparatus for waste disposal | |
JP2566260B2 (en) | Sludge melting incinerator | |
JP2001336720A (en) | Waste gasification and melting equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |