JP2002003865A - Carbon monoxide remover - Google Patents
Carbon monoxide removerInfo
- Publication number
- JP2002003865A JP2002003865A JP2000189450A JP2000189450A JP2002003865A JP 2002003865 A JP2002003865 A JP 2002003865A JP 2000189450 A JP2000189450 A JP 2000189450A JP 2000189450 A JP2000189450 A JP 2000189450A JP 2002003865 A JP2002003865 A JP 2002003865A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- heat pipe
- catalyst
- carbon monoxide
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Industrial Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、COを含むガスか
らCOを除去するための一酸化炭素除去器に関し、CO
除去能力の優れた一酸化炭素除去器を提供するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon monoxide remover for removing CO from a gas containing CO.
An object of the present invention is to provide a carbon monoxide remover having excellent removal ability.
【0002】[0002]
【従来の技術】燃料電池システムにおいては、燃料電池
のアノードに水素リッチな燃料ガスを供給すると共に、
カソードに酸化剤を供給し、電気化学的に反応させるこ
とにより発電を行う。上記水素リッチな燃料ガスとして
は、天然ガス等の炭化水素系ガスやメタノール等の原燃
料を、改質器内で水蒸気改質することにより得られた改
質を用いることができる。2. Description of the Related Art In a fuel cell system, a hydrogen-rich fuel gas is supplied to an anode of a fuel cell.
An oxidant is supplied to the cathode and electrochemically reacted to generate power. As the hydrogen-rich fuel gas, reforming obtained by steam reforming a hydrocarbon-based gas such as natural gas or a raw fuel such as methanol in a reformer can be used.
【0003】ところで、改質器による水蒸気改質反応で
は水素と共に一酸化炭素も生成されるが、この一酸化炭
素はアノードに用いられる白金等の触媒を劣化させるた
め、改質ガス中の一酸化炭素濃度はできるだけ小さいこ
とが望ましい。そこで、従来は改質器の後段に一酸化炭
素変成器及び一酸化炭素除去器を設け、一酸化炭素濃度
を100ppm程度まで低減した後に改質ガスをアノー
ドに供給している。ここで、上記一酸化炭素除去器は、
反応器内に選択酸化触媒が充填されて構成されており、
この反応器内に改質ガスを空気と共に導入することによ
り一酸化炭素が選択酸化され、除去される。[0003] By the way, in the steam reforming reaction by the reformer, carbon monoxide is generated together with hydrogen, and this carbon monoxide degrades a catalyst such as platinum used for the anode. It is desirable that the carbon concentration be as low as possible. Therefore, conventionally, a carbon monoxide converter and a carbon monoxide remover are provided at the subsequent stage of the reformer, and after the carbon monoxide concentration is reduced to about 100 ppm, the reformed gas is supplied to the anode. Here, the carbon monoxide remover is:
The reactor is configured by being filled with a selective oxidation catalyst,
By introducing reformed gas together with air into the reactor, carbon monoxide is selectively oxidized and removed.
【0004】[0004]
【発明が解決しようとする課題】一酸化炭素除去器を用
いて効率的に一酸化炭素を除去するためには、反応器内
に充填された選択酸化触媒を適正な温度範囲に維持する
ことが必要である。しかしながら、一酸化炭素除去器で
の反応は発熱反応であるために改質ガスの入口付近で急
激に反応が生じ、入口付近での温度が上昇するため、改
質ガスの流れ方向に沿って触媒の温度分布が不均一とな
る。このため、反応器の全体にわたって触媒の温度を適
正な温度範囲に維持することが困難となり、一酸化炭素
の除去を効率良く行うことができない、という課題があ
った。In order to efficiently remove carbon monoxide using a carbon monoxide remover, it is necessary to maintain the selective oxidation catalyst filled in the reactor within an appropriate temperature range. is necessary. However, since the reaction in the carbon monoxide remover is an exothermic reaction, a reaction occurs rapidly near the inlet of the reformed gas, and the temperature rises near the inlet, so that the catalyst flows along the flow direction of the reformed gas. Temperature distribution becomes non-uniform. For this reason, it has been difficult to maintain the temperature of the catalyst in an appropriate temperature range over the entire reactor, and there has been a problem that carbon monoxide cannot be efficiently removed.
【0005】本発明は、このような従来の問題を解消す
るためになされ、反応器内の入口付近での触媒層温度の
急激な温度上昇を抑制し、触媒層温度の平準化を図るこ
とができる一酸化炭素除去器を提供することを目的とす
る。The present invention has been made to solve such a conventional problem, and it is intended to suppress a rapid rise in the temperature of the catalyst layer near the inlet in the reactor and to level the temperature of the catalyst layer. It is an object of the present invention to provide a carbon monoxide remover that can be used.
【0006】[0006]
【課題を解決するための手段】この目的を達成させるた
めの手段として、本発明は、反応器内に触媒が充填され
てなる一酸化炭素除去器であって、前記触媒層中にこの
触媒層を通過するガスの流れ方向に沿って熱伝導性の棒
体を挿着したことを要旨とするものである。又、この一
酸化炭素除去器において、前記熱伝導性の棒体が、ヒー
トパイプであること、前記熱伝導性の棒体の断面積が、
前記反応器の断面積の1〜62%であること、前記触媒
層中に挿入された前記熱伝導性の棒体の長さが、当該触
媒層全体の長さの50%以上であること、を特徴とする
ものである。As a means for achieving this object, the present invention relates to a carbon monoxide remover in which a catalyst is filled in a reactor, wherein the catalyst layer is contained in the catalyst layer. The point is that a thermally conductive rod is inserted along the flow direction of the gas passing through. Further, in this carbon monoxide remover, the heat conductive rod is a heat pipe, and the cross section of the heat conductive rod is
1 to 62% of the cross-sectional area of the reactor, the length of the thermally conductive rod inserted into the catalyst layer is 50% or more of the entire length of the catalyst layer, It is characterized by the following.
【0007】本発明は、発熱反応を伴う反応器の内部に
充填された触媒層の中に、熱伝導性の棒体をガスの流れ
方向に沿って挿着したので、熱伝導性の棒体によって高
熱側から低熱側に伝熱することができ、触媒層の温度分
布の平準化を図ることで触媒反応の均一化を達成するこ
とができる。According to the present invention, a thermally conductive rod is inserted along a gas flow direction into a catalyst layer filled in a reactor accompanied by an exothermic reaction. As a result, heat can be transferred from the high heat side to the low heat side, and the temperature distribution of the catalyst layer can be leveled to achieve uniform catalytic reaction.
【0008】[0008]
【発明の実施の形態】次に、本発明に係る一酸化炭素除
去器の実施形態を添付図面に基づいて説明する。図1
(a)、(b)は、一酸化炭素除去器の基本構造を示す
概略断面図であり、図中1は円筒状の反応器で、内部に
触媒2が充填されると共にその触媒層中に熱伝導性の棒
体、この場合はヒートパイプ3が反応器1の軸線方向に
沿って挿着されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a carbon monoxide remover according to the present invention will be described with reference to the accompanying drawings. Figure 1
(A), (b) is a schematic sectional view showing a basic structure of a carbon monoxide remover, in which 1 is a cylindrical reactor, in which a catalyst 2 is filled inside and a catalyst layer is provided in the catalyst layer. A heat conductive rod, in this case a heat pipe 3, is inserted along the axial direction of the reactor 1.
【0009】ヒートパイプ3は、円筒状の真空密閉容器
内に作動流体が封入されており、この作動流体を介して
熱伝導機能を発揮する。即ち、作動流体はヒートパイプ
3の一方の端部3a(高温となる反応器1の入口側1a
領域)で熱せられて蒸発し、その際蒸発熱を吸収すると
共に他方の端部3b(低温となる出口側1b領域)側に
移動し、そこで凝縮することで凝縮熱を放出し、凝縮に
より液体となった作動流体はヒートパイプ3内に装着さ
れたウイック3cを介して入口側端部3aに戻される。
ウイック3cは凝縮した作動流体を毛管現象によって移
動させるためのものである。従って、ヒートパイプ3は
何ら外部動力を必要とすることなく、作動流体が自己循
環して高温側から低温側に熱エネルギーを伝達すること
ができる。この場合、作動流体としては、反応器1内の
触媒温度を考慮して150℃〜300℃で使用可能なフ
レオン、メタノール、アンモニア、水等が適している。In the heat pipe 3, a working fluid is sealed in a cylindrical vacuum sealed container, and the heat pipe 3 exhibits a heat conducting function through the working fluid. That is, the working fluid is supplied to one end 3a of the heat pipe 3 (the inlet side 1a of the reactor 1 where the temperature becomes high).
Area), heats and evaporates. At that time, it absorbs the heat of evaporation and moves to the other end 3b (the outlet side 1b area where the temperature is low), where it is condensed to release heat of condensation, and the liquid is condensed. Is returned to the inlet end 3a via the wick 3c mounted in the heat pipe 3.
The wick 3c is for moving the condensed working fluid by capillary action. Accordingly, the heat pipe 3 does not require any external power, and the working fluid can self-circulate to transmit heat energy from the high temperature side to the low temperature side. In this case, as the working fluid, Freon, methanol, ammonia, water, or the like which can be used at 150 ° C. to 300 ° C. in consideration of the catalyst temperature in the reactor 1 is suitable.
【0010】このようなヒートパイプ3は、反応器1内
の触媒層との関係で大きさ(長さ、断面積等)が重要な
要素となるため、先ず長さについて実験を行った。図2
は、ヒートパイプ3の長さLを反応器1内の触媒充填層
長L0に対して50%、つまりL=1/2L0とした場
合の触媒層の温度分布実験結果を示すものである。これ
によると、実線で示す本発明の場合と、破線で示す従来
例の場合とはいずれも反応器1の入口側1a領域で触媒
層温度が上昇している。しかしながら、本発明の場合に
は、反応器1内に挿着したヒートパイプ3により入口側
1a領域から出口側1b領域に熱が伝達されるために、
反応器1内の触媒層温度は入口側1a領域では従来例よ
りも低くなり、出口側1b領域では従来例よりも高くな
る。従って、本発明の場合には図2に示すように入口側
1a領域での温度と出口側1b領域での温度との温度差
が従来よりも小さくなり、反応器1内での触媒層温度を
従来よりも平準化することができた。[0010] Since the size (length, cross-sectional area, etc.) of such a heat pipe 3 is an important factor in relation to the catalyst layer in the reactor 1, an experiment was first conducted on the length. FIG.
Shows the experimental results of the temperature distribution of the catalyst layer when the length L of the heat pipe 3 is 50% of the length L 0 of the catalyst packed bed in the reactor 1, that is, when L = 1 / L 0. . According to this, in both the case of the present invention shown by the solid line and the case of the conventional example shown by the broken line, the temperature of the catalyst layer rises in the region 1a on the inlet side of the reactor 1. However, in the case of the present invention, since heat is transferred from the inlet side 1a region to the outlet side 1b region by the heat pipe 3 inserted into the reactor 1,
The temperature of the catalyst layer in the reactor 1 is lower in the region 1a on the inlet side than in the conventional example and higher in the region 1b on the outlet side than in the conventional example. Therefore, in the case of the present invention, as shown in FIG. 2, the temperature difference between the temperature in the inlet side 1a region and the temperature in the outlet side 1b region becomes smaller than before, and the catalyst layer temperature in the reactor 1 decreases. The leveling could be leveled than before.
【0011】この実験結果から、ヒートパイプ3による
熱伝導の有効性が十分認められ、入口側1aで生じる激
しい温度上昇の領域を除けば反応器1内の触媒層の温度
分布はほぼ平準化が図れ、且つ温度コントロールが容易
となり、触媒2(種類によって異なるが)の反応適正温
度例えば140℃〜190℃を確保することができた。From the results of this experiment, the effectiveness of heat conduction by the heat pipe 3 is sufficiently recognized, and the temperature distribution of the catalyst layer in the reactor 1 is almost leveled except for a region where the temperature rises sharply at the inlet side 1a. In addition, the temperature control became easy, and a proper reaction temperature of the catalyst 2 (depending on the type), for example, 140 ° C. to 190 ° C. could be secured.
【0012】図3は、ヒートパイプ3の長さLを触媒充
填層長L0に対して100%(L=L0)とした場合の
触媒層の温度分布実験結果を示す。この場合は、ヒート
パイプの端部3aが反応器1の入口側1aに位置してい
るため、この入口側1aでの急激な温度上昇に伴ってヒ
ートパイプ3の作動流体が効率良く蒸発し、蒸発熱を多
量に吸収することで触媒層の急激な温度上昇を抑える。
この結果、入口側1aでの触媒温度は図2の場合より低
くなる。そこから出口側1b領域にかけては前記多量に
吸収された蒸発熱に伴って凝縮する際に、多量の凝縮熱
が放出される。従って、触媒層の温度分布は図2の場合
よりも一層緩やかな下降線を示し、入口側1a領域と出
口側1b領域との温度差は一層小さくなる。FIG. 3 shows a temperature distribution experiment result of the catalyst layer when the length L of the heat pipe 3 is 100% (L = L 0 ) with respect to the length L 0 of the catalyst packed layer. In this case, since the end 3a of the heat pipe is located on the inlet side 1a of the reactor 1, the working fluid in the heat pipe 3 evaporates efficiently with the rapid temperature rise on the inlet side 1a, By absorbing a large amount of heat of evaporation, a rapid rise in temperature of the catalyst layer is suppressed.
As a result, the catalyst temperature on the inlet side 1a becomes lower than in the case of FIG. From there, a large amount of heat of condensation is released when condensing along with the large amount of heat of evaporation absorbed in the region 1b on the outlet side. Accordingly, the temperature distribution of the catalyst layer shows a gentler downward line than in the case of FIG. 2, and the temperature difference between the inlet side 1a region and the outlet side 1b region becomes smaller.
【0013】この実験結果から、ヒートパイプ3による
熱伝導の効果は図2の場合より優れており、触媒層の温
度分布の平準化が十分達成できることが判明した。即
ち、反応器1の入口側1aでの触媒の急激な温度上昇を
抑えると共に、作動流体を介しての多量の熱伝導によっ
て触媒層の入口側1aでの温度分布の上限を下げる一
方、出口側1bでの温度分布の下限を上げることができ
る。From the results of this experiment, it was found that the effect of heat conduction by the heat pipe 3 was superior to that of FIG. 2, and that the temperature distribution of the catalyst layer could be leveled sufficiently. That is, while suppressing the rapid temperature rise of the catalyst at the inlet side 1a of the reactor 1, the upper limit of the temperature distribution at the inlet side 1a of the catalyst layer is lowered by a large amount of heat conduction through the working fluid, while the outlet side The lower limit of the temperature distribution in 1b can be raised.
【0014】図4は、ヒートパイプ3の長さLを触媒充
填層長L0に対して40%(L=0.4L0)とした場
合の触媒層の温度分布実験結果を示す。この場合は、入
口側1aでの急激な温度上昇に伴って触媒温度は従来例
の場合とほぼ同じ程度に上昇し、その上昇温度が下降し
た箇所でヒートパイプ3の作動流体が熱せられて蒸発す
るが、その蒸発量は少ない。従って、そこから出口側1
b領域には十分な熱伝導が行われず、触媒層の温度分布
は従来例よりは多少高温ではあるが、従来例とほぼ同様
の下降線をたどることになる。FIG. 4 shows the experimental results of the temperature distribution of the catalyst layer when the length L of the heat pipe 3 is 40% (L = 0.4L 0 ) with respect to the length L 0 of the catalyst packed layer. In this case, the catalyst temperature rises to almost the same level as in the conventional example with the rapid temperature rise at the inlet side 1a, and the working fluid of the heat pipe 3 is heated and evaporated at the place where the temperature rises. However, the amount of evaporation is small. Therefore, from there exit 1
In region b, sufficient heat conduction is not performed, and the temperature distribution of the catalyst layer is slightly higher than that of the conventional example, but follows a downward line substantially similar to that of the conventional example.
【0015】この場合は、ヒートパイプ3による熱伝導
の有効性が十分とは認められず、触媒層の温度分布の平
準化が十分には図れないことが判明した。従って、触媒
層中に挿入されたヒートパイプ3の長さは、触媒の充填
層長に対して50%以上とすることが好ましい。尚、ヒ
ートパイプ3の挿入位置は図2及び図3に示した位置に
限らず、触媒層の中央部付近であっても良い。更に、ヒ
ートパイプ3の一端を入口側1a領域に挿入し、他端を
反応器1外に出すようにしても良い。この場合には、入
口側1a領域での熱をヒートパイプ3を介して外部に放
熱することができるので、入口側1a領域における触媒
層温度を下げることができ、触媒層温度の平準化を図る
ことができる。In this case, the effectiveness of heat conduction by the heat pipe 3 was not recognized to be sufficient, and it was found that the temperature distribution of the catalyst layer could not be leveled sufficiently. Therefore, it is preferable that the length of the heat pipe 3 inserted in the catalyst layer be 50% or more of the length of the catalyst packed layer. The insertion position of the heat pipe 3 is not limited to the position shown in FIGS. 2 and 3, but may be near the center of the catalyst layer. Further, one end of the heat pipe 3 may be inserted into the area 1a on the inlet side, and the other end may be taken out of the reactor 1. In this case, the heat in the region 1a on the inlet side can be radiated to the outside via the heat pipe 3, so that the temperature of the catalyst layer in the region 1a on the inlet side can be lowered and the temperature of the catalyst layer can be leveled. be able to.
【0016】次に、ヒートパイプ3の好ましい断面積に
ついて実験した。図5は、その実験結果を示すもので、
ヒートパイプ3の断面積Sを反応器1の断面積S0に対
して1〜62%とすることで、出口側1bでのCO濃度
を100ppm以下とすることができ、2〜58%とす
ることで、出口側1bでのCO濃度を50ppm以下と
することができ、10〜50%とすることで、出口側1
bでのCO濃度を10ppm程度とすることができた。
これは、前記のようにヒートパイプ3による触媒層の温
度分布を平準化できたため、COを有効に除去できたこ
とによるものと考えられる。従って、ヒートパイプ3の
断面積は、反応器1の断面積に対して1〜62%とする
ことが好ましく、2〜58%とすることがより好まし
く、10〜50%とすることが更に好ましい。Next, an experiment was conducted on a preferable sectional area of the heat pipe 3. FIG. 5 shows the results of the experiment.
With 1-62% cross-sectional area S of the heat pipe 3 with respect to the cross-sectional area S 0 of the reactor 1, the CO concentration at the outlet side 1b can be 100ppm or less, and 2-58% This allows the CO concentration at the outlet side 1b to be 50 ppm or less, and the CO concentration at the outlet side 1b can be reduced to 10 to 50%.
The CO concentration at b could be reduced to about 10 ppm.
This is considered to be because the temperature distribution of the catalyst layer by the heat pipe 3 could be leveled as described above, so that CO could be effectively removed. Therefore, the cross-sectional area of the heat pipe 3 is preferably 1 to 62%, more preferably 2 to 58%, further preferably 10 to 50% with respect to the cross-sectional area of the reactor 1. .
【0017】一酸化炭素除去器では、COを含む水素リ
ッチガスを酸素と共に触媒中を通過させてCOを選択的
に酸化してCO濃度を下げるが、その際の好ましい酸素
供給量について実験した。図6はその実験結果であり、
水素リッチガス中に含有されるCOに対してO2の割合
が0.75〜1であると、出口側1bのCO濃度を10
ppm以下にすることができた。In the carbon monoxide remover, a hydrogen-rich gas containing CO is passed through a catalyst together with oxygen to selectively oxidize CO and lower the CO concentration. An experiment was conducted on a preferable oxygen supply amount at that time. FIG. 6 shows the experimental results.
When the ratio of O 2 to CO contained in the hydrogen-rich gas is 0.75 to 1, the CO concentration at the outlet side 1b is reduced to 10%.
ppm or less.
【0018】ヒートパイプ3の材質に関しては、熱伝導
性が良好で、耐熱性に優れ且つ水素の非透過性の観点か
ら、例えばCr:17〜25重量%、Ni:10〜35
重量%を含む合金が適している。又、本発明にあって
は、ヒートパイプに限らず他の熱伝導性の棒体を触媒中
に挿入しても同様の効果を奏することができる。The heat pipe 3 is made of, for example, 17 to 25% by weight of Cr and 10 to 35% of Ni from the viewpoints of good thermal conductivity, excellent heat resistance and non-permeability of hydrogen.
Alloys containing% by weight are suitable. Further, in the present invention, the same effect can be obtained by inserting not only the heat pipe but also another heat conductive rod into the catalyst.
【0019】[0019]
【発明の効果】以上説明したように、本発明は、発熱反
応を伴う一酸化炭素除去器において、その反応器内に充
填された触媒層にヒートパイプ等の熱伝導性の棒体をガ
スの流れ方向に沿って挿着したので、反応器の入口側で
起きる急激な触媒反応による温度上昇を抑制すると共
に、反応器内のガス流れ方向に沿っての触媒層の温度分
布を平準化することができ、温度コントロールも容易に
することができる。従って、一酸化炭素除去器の機能を
高めると共に、CO濃度の低い安定した水素リッチガス
を燃料電池に供給できる等の優れた効果が得られる。
又、熱伝導性の棒体としてヒートパイプを用い、反応器
に対するヒートパイプの長さ、断面積及びヒートパイプ
の材質、作動流体等を特定することで上記効果をより一
層高めることができる。As described above, according to the present invention, in a carbon monoxide remover accompanied by an exothermic reaction, a thermally conductive rod such as a heat pipe is provided on a catalyst layer filled in the reactor. Since it is inserted along the flow direction, it is necessary to suppress the temperature rise due to sudden catalytic reaction occurring at the inlet side of the reactor, and to level the temperature distribution of the catalyst layer along the gas flow direction in the reactor. And temperature control can be facilitated. Therefore, an excellent effect is obtained such that the function of the carbon monoxide remover is enhanced and a stable hydrogen-rich gas having a low CO concentration can be supplied to the fuel cell.
Further, by using a heat pipe as the heat conductive rod and specifying the length and cross-sectional area of the heat pipe with respect to the reactor, the material of the heat pipe, the working fluid, and the like, the above effects can be further enhanced.
【図1】本発明に係る一酸化炭素除去器の実施形態を示
すもので、(a)は概略縦断面図、(b)は概略横断面
図FIG. 1 shows an embodiment of a carbon monoxide remover according to the present invention, wherein (a) is a schematic longitudinal sectional view, and (b) is a schematic transverse sectional view.
【図2】触媒の充填層長に対して50%の長さのヒート
パイプを挿入した時の触媒層の温度分布図FIG. 2 is a temperature distribution diagram of a catalyst layer when a heat pipe having a length of 50% with respect to the length of a catalyst packed bed is inserted.
【図3】触媒の充填層長に対して100%の長さのヒー
トパイプを挿入した時の触媒層の温度分布図FIG. 3 is a temperature distribution diagram of the catalyst layer when a heat pipe having a length of 100% with respect to the length of the packed bed of the catalyst is inserted.
【図4】触媒の充填層長に対して50%未満の長さのヒ
ートパイプを挿入した時の触媒層の温度分布図FIG. 4 is a temperature distribution diagram of the catalyst layer when a heat pipe having a length of less than 50% of the length of the packed bed of the catalyst is inserted.
【図5】反応器の断面積に対するヒートパイプ断面積比
と、出口CO濃度との関係図FIG. 5 is a diagram showing the relationship between the ratio of the cross-sectional area of the heat pipe to the cross-sectional area of the reactor and the outlet CO concentration.
【図6】O2/COによる出口CO濃度の関係を示す図FIG. 6 is a diagram showing the relationship between outlet CO concentration due to O 2 / CO.
1…反応器 2…触媒 3…ヒートパイプ(熱伝導性の棒体) 1. Reactor 2. Catalyst 3. Heat pipe (thermally conductive rod)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤生 昭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4G040 EA02 EA03 EA06 EB31 EB43 EB46 EC07 4H060 AA02 BB11 CC18 FF02 GG02 5H027 AA02 BA01 BA17 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Fujio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. (reference) 4G040 EA02 EA03 EA06 EB31 EB43 EB46 EC07 4H060 AA02 BB11 CC18 FF02 GG02 5H027 AA02 BA01 BA17
Claims (4)
素除去器であって、前記触媒層中にこの触媒層を通過す
るガスの流れ方向に沿って熱伝導性の棒体を挿着したこ
とを特徴とする一酸化炭素除去器。1. A carbon monoxide remover having a catalyst filled in a reactor, wherein a thermally conductive rod is inserted into the catalyst layer along a flow direction of a gas passing through the catalyst layer. A carbon monoxide remover characterized by being worn.
る請求項1記載の一酸化炭素除去器。2. The carbon monoxide remover according to claim 1, wherein said heat conductive rod is a heat pipe.
器の断面積の1〜62%であることを特徴とする請求項
1又は2記載の一酸化炭素除去器。3. The carbon monoxide remover according to claim 1, wherein a cross-sectional area of the heat conductive rod is 1 to 62% of a cross-sectional area of the reactor.
体の長さが、当該触媒層全体の長さの50%以上である
ことを特徴とする請求項1乃至3のいずれかに記載の一
酸化炭素除去器。4. The catalyst according to claim 1, wherein the length of the thermally conductive rod inserted into the catalyst is 50% or more of the entire length of the catalyst layer. A carbon monoxide remover according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000189450A JP2002003865A (en) | 2000-06-23 | 2000-06-23 | Carbon monoxide remover |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000189450A JP2002003865A (en) | 2000-06-23 | 2000-06-23 | Carbon monoxide remover |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002003865A true JP2002003865A (en) | 2002-01-09 |
Family
ID=18689079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000189450A Pending JP2002003865A (en) | 2000-06-23 | 2000-06-23 | Carbon monoxide remover |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002003865A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140078603A (en) * | 2011-07-05 | 2014-06-25 | 린데 악티엔게젤샤프트 | Process for production of synthesis gas |
-
2000
- 2000-06-23 JP JP2000189450A patent/JP2002003865A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140078603A (en) * | 2011-07-05 | 2014-06-25 | 린데 악티엔게젤샤프트 | Process for production of synthesis gas |
JP2014520739A (en) * | 2011-07-05 | 2014-08-25 | リンデ アクチエンゲゼルシャフト | Syngas production method |
KR101909626B1 (en) | 2011-07-05 | 2018-10-18 | 린데 악티엔게젤샤프트 | Process for production of synthesis gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6451466B1 (en) | Functional integration of multiple components for a fuel cell power plant | |
KR100972617B1 (en) | Hydrogen production equipment and fuel cell system with the same | |
JP4624670B2 (en) | Integration of the functions of many components of a fuel cell power plant | |
JP2018110122A (en) | Fuel cell system | |
JP2015127273A (en) | Hydrogen generating apparatus and hydrogen generating method | |
JP2007280797A (en) | Solid oxide fuel cell (sofc) system and its operation method | |
JP4013692B2 (en) | Reformer steam generator for fuel cell generator | |
JP3643729B2 (en) | Fuel reformer and fuel cell system including the same | |
JP4599618B2 (en) | Thermosyphon reactor and hydrogen generator equipped with the same | |
JP2002003865A (en) | Carbon monoxide remover | |
JP4202993B2 (en) | Fuel reforming system and fuel cell system | |
US20030148157A1 (en) | Functional integration of multiple components for a fuel cell power plant | |
JPS6249703B2 (en) | ||
JP2013163624A (en) | Device and method for producing hydrogen | |
KR101199134B1 (en) | Preferential Oxidation Reactor and fuel cell system thereof | |
JP2005263603A (en) | Reformer and fuel cell system | |
JP2009043669A (en) | Fuel cell system, and vaporizing method of raw material to be reformed | |
JP2000095506A (en) | Fuel reformer | |
JPH10302824A (en) | Carbon monoxide removing device | |
JP2006179386A (en) | Fuel cell system | |
JP2009082810A (en) | Insulating device and fuel cell system, and cooling method for insulated container | |
JP5090875B2 (en) | Fuel cell system | |
JP2005040660A (en) | Catalytic reaction apparatus, heat exchanger and system for reforming fuel | |
JP2002231285A (en) | Solid polymer fuel cell system | |
JP2005085598A (en) | Chemical heat-storage hydrogen-storage device |