JP2002003415A - Method for producing hexafluoroethane and its use - Google Patents
Method for producing hexafluoroethane and its useInfo
- Publication number
- JP2002003415A JP2002003415A JP2000185654A JP2000185654A JP2002003415A JP 2002003415 A JP2002003415 A JP 2002003415A JP 2000185654 A JP2000185654 A JP 2000185654A JP 2000185654 A JP2000185654 A JP 2000185654A JP 2002003415 A JP2002003415 A JP 2002003415A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hexafluoroethane
- producing
- chlorine atom
- pentafluoroethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 239000007789 gas Substances 0.000 claims abstract description 111
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 claims abstract description 79
- 150000001875 compounds Chemical class 0.000 claims abstract description 73
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 52
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 42
- 125000001309 chloro group Chemical group Cl* 0.000 claims abstract description 41
- 239000003054 catalyst Substances 0.000 claims abstract description 39
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 30
- 239000011737 fluorine Substances 0.000 claims abstract description 30
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 29
- RFCAUADVODFSLZ-UHFFFAOYSA-N 1-Chloro-1,1,2,2,2-pentafluoroethane Chemical compound FC(F)(F)C(F)(F)Cl RFCAUADVODFSLZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 235000019406 chloropentafluoroethane Nutrition 0.000 claims abstract description 22
- 239000003085 diluting agent Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims description 57
- 238000003682 fluorination reaction Methods 0.000 claims description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 20
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 20
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 15
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 claims description 13
- BOUGCJDAQLKBQH-UHFFFAOYSA-N 1-chloro-1,2,2,2-tetrafluoroethane Chemical compound FC(Cl)C(F)(F)F BOUGCJDAQLKBQH-UHFFFAOYSA-N 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 10
- CYXIKYKBLDZZNW-UHFFFAOYSA-N 2-Chloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)CCl CYXIKYKBLDZZNW-UHFFFAOYSA-N 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 9
- 239000004340 Chloropentafluoroethane Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 claims description 5
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 claims description 5
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 claims description 4
- 229960004065 perflutren Drugs 0.000 claims description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 abstract 1
- 238000004821 distillation Methods 0.000 description 27
- 238000004458 analytical method Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000012535 impurity Substances 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 238000004817 gas chromatography Methods 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 6
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000004773 chlorofluoromethyl group Chemical group [H]C(F)(Cl)* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 5
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 229910001055 inconels 600 Inorganic materials 0.000 description 4
- 229950011008 tetrachloroethylene Drugs 0.000 description 4
- DASQIKOOFDJYKA-UHFFFAOYSA-N CCIF Chemical compound CCIF DASQIKOOFDJYKA-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- OMRRUNXAWXNVFW-UHFFFAOYSA-N fluoridochlorine Chemical compound ClF OMRRUNXAWXNVFW-UHFFFAOYSA-N 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 101150042515 DA26 gene Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000012629 purifying agent Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/10—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/21—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/383—Separation; Purification; Stabilisation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/395—Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、分子内に塩素原子
を含有する化合物を含むペンタフルオロエタンを、フッ
素化触媒の存在下、フッ化水素と気相で反応させて、前
記分子内に塩素原子を含有する化合物をフッ素化する工
程と、フッ素化された化合物を含むペンタフルオロエタ
ンとフッ素ガスとを気相で希釈ガスの存在下にて反応さ
せる工程とを含むヘキサフルオロエタンの製造方法及び
その用途に関する。BACKGROUND OF THE INVENTION The present invention relates to a method for reacting pentafluoroethane containing a compound containing a chlorine atom in a molecule with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to obtain chlorine in the molecule. A process for fluorinating a compound containing atoms, and a method for producing hexafluoroethane comprising a step of reacting pentafluoroethane containing a fluorinated compound and fluorine gas in the gas phase in the presence of a diluent gas and Regarding its use.
【0002】[0002]
【従来の技術】ペンタフルオロエタン(以下「HFC−
125」または「CF3CHF2」という。)は、例えば
低温用冷媒として、あるいはヘキサフルオロエタン(以
下「FC−116」または「CF3CF3」という。)製
造用の原料として使用される。HFC−125の製造方
法としては、従来から次のような方法が知られている。
例えば、(1)パークロロエチレン(CCl2=CC
l2)またはそのフッ化物をフッ化水素でフッ素化する
方法(特開平5−97724号公報、特開平6−506
221号公報、特開平7−76534号公報、特開平7
−118182号公報、特開平8−268932号公
報、特開平9−511515号公報)、(2)クロロペ
ンタフルオロエタン(CClF2CF3)を水素化分解す
る方法(特許第2540409号公報)、(3)ハロゲ
ン含有エチレンにフッ素ガスを反応させる方法(特開平
1−38034号公報)、等が挙げられる。2. Description of the Related Art Pentafluoroethane (hereinafter "HFC-
125 "or that" CF 3 CHF 2 ". ) Is used, for example, as a low-temperature refrigerant or as a raw material for producing hexafluoroethane (hereinafter referred to as “FC-116” or “CF 3 CF 3 ”). As a method for producing HFC-125, the following method is conventionally known.
For example, (1) perchlorethylene (CCl 2 = CC
l 2 ) or a method of fluorinating its fluoride with hydrogen fluoride (JP-A-5-97724, JP-A-6-506)
221 and JP-A-7-76534 and JP-A-7-76534
-118182, JP-A No. 8-268932 and JP-Hei 9-511515), (2) chloropentafluoroethane (CClF 2 CF 3) How hydrogenolysis (Japanese Patent No. 2540409), ( 3) a method of reacting fluorine gas with halogen-containing ethylene (JP-A-1-38034).
【0003】これらのHFC−125を製造する方法を
用いると、目的物であるHFC−125中に、分子内に
塩素原子を含有する化合物が主な不純物として含まれ
る。分子内に塩素原子を含有する化合物としては、例え
ば分子内に炭素原子1個を含む化合物である、クロロメ
タン、クロロジフルオロメタン、クロロトリフルオロメ
タン、分子内に炭素原子2個を含む化合物である、クロ
ロペンタフルオロエタン、ジクロロテトラフルオロエタ
ン、クロロテトラフルオロエタン、クロロトリフルオロ
エタン、あるいは不飽和化合物であるクロロトリフルオ
ロエチレン等が挙げられる。[0003] When these methods for producing HFC-125 are used, a compound containing a chlorine atom in a molecule is contained as a main impurity in the target product, HFC-125. As the compound containing a chlorine atom in the molecule, for example, a compound containing one carbon atom in the molecule, chloromethane, chlorodifluoromethane, chlorotrifluoromethane, a compound containing two carbon atoms in the molecule, Examples thereof include chloropentafluoroethane, dichlorotetrafluoroethane, chlorotetrafluoroethane, chlorotrifluoroethane, and chlorotrifluoroethylene which is an unsaturated compound.
【0004】HFC−125とフッ素ガス(F2)とを
反応させる直接フッ素化反応によりFC−116を製造
する場合、HFC−125中に、前記の分子内に塩素原
子を含有する化合物が含まれていると、フッ素ガスとの
反応で、塩素、塩化水素、フッ化塩素、あるいは異種の
クロロフルオロカーボン類を生成する。HFC−125
中に、分子内に塩素原子を含まないハイドロフルオロカ
ーボン(HFC)類やパーフルオロカーボン(PFC)
類が含まれていても特に問題は生じないが、例えば、ク
ロロメタン(CH3Cl)やクロロジフルオロメタン
(CHClF2)はフッ素ガスと反応してクロロトリフ
ルオロメタン(CClF3)を生成する。目的物である
FC−116とクロロトリフルオロメタン(以下「CF
C−13」という。)は共沸組成物を形成するため、蒸
留や吸着精製等を行ってもCFC−13の除去は困難を
伴うという問題が発生する。従って、HFC−125と
フッ素ガスとを反応させてFC−116を製造する場合
には、分子内に塩素原子を含有する化合物を極力含まな
いHFC−125を使用することが望ましい。When FC-116 is produced by a direct fluorination reaction of reacting HFC-125 with fluorine gas (F 2 ), the compound containing a chlorine atom in the molecule is contained in HFC-125. In this case, chlorine, hydrogen chloride, chlorine fluoride, or different kinds of chlorofluorocarbons are produced by the reaction with fluorine gas. HFC-125
Hydrofluorocarbons (HFCs) and perfluorocarbons (PFC) that do not contain chlorine atoms in the molecule
Although no particular problem arises even if they are contained, for example, chloromethane (CH 3 Cl) or chlorodifluoromethane (CHClF 2 ) reacts with fluorine gas to generate chlorotrifluoromethane (CCIF 3 ). FC-116 and chlorotrifluoromethane (hereinafter referred to as “CF
C-13 ". ) Forms an azeotropic composition, so that there is a problem that removal of CFC-13 is difficult even when distillation, adsorption purification, or the like is performed. Therefore, when producing FC-116 by reacting HFC-125 with fluorine gas, it is desirable to use HFC-125 containing as little as possible a compound containing a chlorine atom in the molecule.
【0005】従来のHFC−125を製造する方法によ
ると、HFC−125中に含まれる、分子内に塩素原子
を含有する化合物の総量は、多い場合には約1vol%
含まれることがある。このため、HFC−125中に含
まれるこれらの化合物を除去し、HFC−125の純度
を上げるために蒸留操作を繰り返すことなどが考えられ
るが、蒸留コストの上昇や蒸留ロスが発生するなど経済
的でないうえに、分子内に塩素原子を含有する化合物の
中にはHFC−125と共沸混合物や共沸様混合物を形
成するものがあり、蒸留操作だけではその分離が極めて
困難であるという問題がある。特にクロロペンタフルオ
ロエタン(以下「CFC−115」または「CClF2
CF3」という。)は、通常HFC−125中に数千p
pm以上の濃度で含まれるが、HFC−125とCFC
−115は共沸混合物を形成するため、一般的な分離精
製手法である蒸留では分離が困難である。According to the conventional method for producing HFC-125, the total amount of compounds containing a chlorine atom in a molecule contained in HFC-125 is about 1 vol.
May be included. For this reason, it is conceivable to remove these compounds contained in HFC-125 and repeat the distillation operation in order to increase the purity of HFC-125. However, it is economical to increase the distillation cost and generate distillation loss. In addition, some compounds containing a chlorine atom in the molecule may form an azeotrope or azeotrope-like mixture with HFC-125. is there. In particular, chloropentafluoroethane (hereinafter “CFC-115” or “CCIF 2
CF 3 ". ) Is typically several thousand p
pm or more, but HFC-125 and CFC
Since -115 forms an azeotrope, it is difficult to separate it by distillation, which is a general separation and purification technique.
【0006】HFC−125中に含まれるCFC−11
5を分離する方法については様々な方法が提案されてい
る。例えば、(1)HFC−125とCFC−115の
混合物に第三成分を添加して抽出蒸留を行う方法(特開
平6−510980号公報、特開平7−133240号
公報、特開平7−258123号公報、特開平8−30
82号公報、特開平8−143486号公報、特開平1
0−513190号公報)、(2)HFC−125中に
含まれるCFC−115を、吸着剤を用いて除去する方
法(特開平6−92879号公報、特表平8−5084
79号公報)、(3)HFC−125中に含まれるCF
C−115を、水素化触媒の存在下、HFC−125に
転化する方法(特開平7−509238号公報、特開平
8−40949号公報、特開平8−301801号公
報、特開平10−87525号公報)、等が挙げられ
る。CFC-11 contained in HFC-125
Various methods have been proposed for the method of separating 5. For example, (1) a method of adding a third component to a mixture of HFC-125 and CFC-115 and performing extractive distillation (JP-A-6-510980, JP-A-7-133240, JP-A-7-258123) Gazette, JP-A-8-30
No. 82, JP-A-8-143486, JP-A-1
0-513190), (2) A method of removing CFC-115 contained in HFC-125 using an adsorbent (Japanese Patent Application Laid-Open No. 6-92879, Japanese Patent Application Laid-Open No. 8-50884).
No. 79), (3) CF contained in HFC-125
A method for converting C-115 to HFC-125 in the presence of a hydrogenation catalyst (JP-A-7-509238, JP-A-8-40949, JP-A-8-301801, and JP-A-10-87525) Gazette).
【0007】しかしながら、(1)の方法は、CFC−
115と第三成分の混合物から第三成分を回収する工程
が必要であり、(2)の方法は、吸着剤を再生する工程
が必要である。また、(3)の方法は、生成した塩化水
素により、触媒寿命が短くなるという問題がある。However, the method (1) uses a CFC-
A step of recovering the third component from the mixture of 115 and the third component is required, and the method (2) requires a step of regenerating the adsorbent. Further, the method (3) has a problem that the catalyst life is shortened by the generated hydrogen chloride.
【0008】[0008]
【発明が解決しようとする課題】本発明はこのような背
景の下になされたものであって、本発明は半導体デバイ
スの製造工程でエッチングガスあるいはクリーニングガ
スとして使用されるFC−116を製造する方法におい
て、分子内に塩素原子を含有する化合物を含むHFC−
125を用いて、経済的にFC−116を製造する方法
及びその用途を提供することを課題とする。SUMMARY OF THE INVENTION The present invention has been made under such a background, and the present invention is to produce FC-116 which is used as an etching gas or a cleaning gas in a semiconductor device manufacturing process. The method comprises the steps of: using a HFC containing a compound containing a chlorine atom in the molecule.
It is an object of the present invention to provide a method for economically producing FC-116 using 125 and a use thereof.
【0009】[0009]
【課題を解決するための手段】本発明者らは、前記の課
題を解決すべく鋭意検討した結果、FC−116を製造
する方法において、分子内に塩素原子を含有する化合物
を不純物として含む粗HFC−125をフッ素化触媒の
存在下、フッ化水素と反応させ、主として含まれるCF
C−115をFC−116に転化し、FC−116を含
有するHFC−125とフッ素ガスとを気相で希釈ガス
の存在下にて反応させる直接フッ素化反応を行うと、前
記の課題を解決できることを見出し、本発明を完成する
に至った。本発明は以下の〔1〕〜〔19〕に示される
FC−116の製造方法及びその用途である。Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in a method for producing FC-116, a crude compound containing a compound containing a chlorine atom in a molecule as an impurity. HFC-125 is reacted with hydrogen fluoride in the presence of a fluorination catalyst, and mainly contains CF
The direct fluorination reaction in which C-115 is converted to FC-116 and HFC-125 containing FC-116 and fluorine gas are reacted in the gas phase in the presence of a diluting gas to solve the above-mentioned problem. They have found that they can do this and have completed the present invention. The present invention is a method for producing FC-116 shown in the following [1] to [19] and uses thereof.
【0010】〔1〕以下の2つの工程を含むことを特徴
とするヘキサフルオロエタンの製造方法。 (1)分子内に塩素原子を含有する化合物を含むペンタ
フルオロエタンを、フッ素化触媒の存在下、フッ化水素
と気相で反応させて、前記分子内に塩素原子を含有する
化合物をフッ素化する工程 (2)前記(1)の工程で得られる、フッ素化された化
合物を含むペンタフルオロエタンとフッ素ガスとを、気
相で希釈ガスの存在下にて反応させる工程 〔2〕前記分子内に塩素原子を含有する化合物が、クロ
ロメタンタン、クロロトリフルオロメタン、クロロペン
タフルオロエタン、ジクロロテトラフルオロエタン、ク
ロロテトラフルオロエタン、クロロトリフルオロエタン
及びクロロトリフルオロエチレンからなる群より選ばれ
る少なくとも1種の化合物である上記〔1〕に記載のヘ
キサフルオロエタンの製造方法。 〔3〕ペンタフルオロエタン中に含まれる、分子内に塩
素原子を含有する化合物の総量が1vol%以下である
上記〔1〕または〔2〕に記載のヘキサフルオロエタン
の製造方法。 〔4〕ペンタフルオロエタン中に含まれる、分子内に塩
素原子を含有する化合物の総量が0.5vol%以下で
ある上記〔1〕または〔2〕に記載のヘキサフルオロエ
タンの製造方法。 〔5〕前記(1)の工程において、フッ素化触媒が、ク
ロムの酸化物にインジウムを添加してなる塊状触媒であ
る上記〔1〕〜〔4〕のいずれかに記載のヘキサフルオ
ロエタンの製造方法。[1] A method for producing hexafluoroethane, comprising the following two steps: (1) Pentafluoroethane containing a compound containing a chlorine atom in the molecule is reacted with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to fluorinate the compound containing a chlorine atom in the molecule. (2) a step of reacting pentafluoroethane containing a fluorinated compound and a fluorine gas obtained in the step (1) in the presence of a diluent gas in the gas phase [2] the intramolecular At least one compound selected from the group consisting of chloromethanetan, chlorotrifluoromethane, chloropentafluoroethane, dichlorotetrafluoroethane, chlorotetrafluoroethane, chlorotrifluoroethane and chlorotrifluoroethylene The method for producing hexafluoroethane according to the above [1], which is a compound of the above [1]. [3] The method for producing hexafluoroethane according to [1] or [2], wherein the total amount of the compound containing a chlorine atom in the molecule contained in pentafluoroethane is 1 vol% or less. [4] The method for producing hexafluoroethane according to [1] or [2], wherein the total amount of the compound containing a chlorine atom in the molecule contained in pentafluoroethane is 0.5 vol% or less. [5] The production of hexafluoroethane according to any one of the above [1] to [4], wherein in the step (1), the fluorination catalyst is a bulk catalyst obtained by adding indium to chromium oxide. Method.
【0011】〔6〕前記(1)の工程において、フッ素
化触媒の存在下、フッ化水素と反応させる反応温度が1
50〜480℃の範囲である上記〔1〕〜〔5〕のいず
れかに記載のヘキサフルオロエタンの製造方法。 〔7〕前記(1)の工程において、フッ化水素/有機物
のモル比が0.5〜5の範囲である上記〔1〕〜〔6〕
のいずれかに記載のヘキサフルオロエタンの製造方法。 〔8〕前記(2)の工程の前に、生成する塩化水素を含
む酸分を除去する工程を含む上記〔1〕〜〔7〕のいず
れかに記載のヘキサフルオロエタンの製造方法。[6] In the above step (1), the reaction temperature for reacting with hydrogen fluoride in the presence of a fluorination catalyst is 1
The method for producing hexafluoroethane according to any one of the above [1] to [5], which is in a range of 50 to 480 ° C. [7] In the step (1), the molar ratio of hydrogen fluoride / organic substance is in the range of 0.5 to 5, [1] to [6].
The method for producing hexafluoroethane according to any one of the above. [8] The method for producing hexafluoroethane according to any one of the above [1] to [7], further comprising a step of removing an acid component containing hydrogen chloride to be formed before the step (2).
〔9〕前記(2)の工程の前に、クロロテトラフルオロ
エタン及び/またはクロロトリフルオロエタンを分離
し、分離されたクロロテトラフルオロエタン及び/また
はクロロトリフルオロエタンを(1)の工程に戻す工程
を含む上記〔1〕〜〔8〕のいずれかに記載のヘキサフ
ルオロエタンの製造方法。 〔10〕前記(2)の工程において、ペンタフルオロエ
タン中に含まれる、分子内に塩素原子を含有する化合物
の総量が0.02vol%以下である上記〔1〕〜
[9] Before the step (2), chlorotetrafluoroethane and / or chlorotrifluoroethane are separated, and the separated chlorotetrafluoroethane and / or chlorotrifluoroethane is returned to the step (1). The method for producing hexafluoroethane according to any one of the above [1] to [8], including a step. [10] In the above (1) to (2), the total amount of the compound containing a chlorine atom in the molecule contained in pentafluoroethane is 0.02 vol% or less in the step (2).
〔9〕のいずれかに記載のヘキサフルオロエタンの製造
方法。The method for producing hexafluoroethane according to any one of [9].
【0012】〔11〕前記(2)の工程において、ペン
タフルオロエタン中に含まれるフッ素化された化合物
が、ヘキサフルオロエタンを主成分とするものである上
記〔1〕〜〔10〕のいずれかに記載のヘキサフルオロ
エタンの製造方法。 〔12〕前記(2)の工程において、希釈ガスが、テト
ラフルオロメタン、ヘキサフルオロエタン、オクタフル
オロプロパン及びフッ化水素からなる群から選ばれる少
なくとも1つを含むガスである上記〔1〕〜〔11〕の
いずれかに記載のヘキサフルオロエタンの製造方法。 〔13〕前記(2)の工程において、希釈ガスが、フッ
化水素に富むガスである上記〔1〕〜〔12〕のいずれ
かに記載のヘキサフルオロエタンの製造方法。 〔14〕前記(2)の工程において、フッ素化された化
合物を含むペンタフルオロエタンとフッ素ガスとの反応
温度が、250〜500℃の範囲である上記〔1〕〜
〔13〕のいずれかに記載のヘキサフルオロエタンの製
造方法。 〔15〕前記(2)の工程において、フッ素化された化
合物を含むペンタフルオロエタンとフッ素ガスとの反応
温度が、350〜450℃の範囲である上記〔1〕〜
〔14〕のいずれかに記載のヘキサフルオロエタンの製
造方法。[11] In any one of the above [1] to [10], wherein in the step (2), the fluorinated compound contained in pentafluoroethane contains hexafluoroethane as a main component. 3. The method for producing hexafluoroethane according to item 1. [12] In the step (2), the diluent gas is a gas containing at least one selected from the group consisting of tetrafluoromethane, hexafluoroethane, octafluoropropane, and hydrogen fluoride. [11] The method for producing hexafluoroethane according to any of [11]. [13] The method for producing hexafluoroethane according to any one of the above [1] to [12], wherein in the step (2), the diluent gas is a gas rich in hydrogen fluoride. [14] In the step (2), the reaction temperature between pentafluoroethane containing a fluorinated compound and fluorine gas is in the range of 250 to 500 ° C.
[13] The method for producing hexafluoroethane according to any of [13]. [15] In the above (1) to (2), the reaction temperature between pentafluoroethane containing a fluorinated compound and fluorine gas is in the range of 350 to 450 ° C.
[14] The method for producing hexafluoroethane according to any of [14].
【0013】〔16〕純度が99.9997vol%以
上であるヘキサフルオロエタンを含むことを特徴とする
ヘキサフルオロエタン製品。 〔17〕分子内に塩素原子を含有する化合物が1vol
ppm以下であり、ペンタフルオロエタンが1volp
pm以下である上記〔16〕に記載のヘキサフルオロエ
タン製品。 〔18〕上記〔16〕または〔17〕に記載のヘキサフ
ルオロエタン製品を含有することを特徴とするエッチン
グガス。 〔19〕上記〔16〕または〔17〕に記載のヘキサフ
ルオロエタン製品を含有することを特徴とするクリーニ
ングガス。[16] A hexafluoroethane product containing hexafluoroethane having a purity of 99.9997 vol% or more. [17] 1 vol. Of a compound containing a chlorine atom in the molecule
ppm or less, and 1 volp
pm or less, the hexafluoroethane product according to the above [16]. [18] An etching gas comprising the hexafluoroethane product according to [16] or [17]. [19] A cleaning gas containing the hexafluoroethane product according to [16] or [17].
【0014】すなわち、本発明は「分子内に塩素原子を
含有する化合物を含むHFC−125を、フッ素化触媒
の存在下、フッ化水素と気相で反応させて、分子内に塩
素原子を含有する化合物をフッ素化する工程と、前記の
工程で得られる、フッ素化された化合物を含むHFC−
125とフッ素ガスとを気相で希釈ガスの存在下にて反
応させる工程とを含むことを特徴とするFC−116の
製造方法」、「純度が99.9997vol%以上であ
るFC−116を含むことを特徴とするFC−116製
品」、「前記のFC−116製品を含有することを特徴
とするエッチングガス」及び「前記のFC−116製品
を含有することを特徴とするクリーニングガス」であ
る。That is, the present invention provides a method for reacting HFC-125 containing a compound containing a chlorine atom in the molecule with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to obtain a compound containing a chlorine atom in the molecule. Fluorinating the compound to be obtained, and the HFC-containing fluorinated compound obtained in the above step.
Reacting 125 with fluorine gas in the gas phase in the presence of a diluent gas, the method comprising the steps of: "including FC-116 having a purity of 99.9997 vol% or more." FC-116 product "," etching gas characterized by containing said FC-116 product "and" cleaning gas characterized by containing said FC-116 product ". .
【0015】[0015]
【発明の実施の形態】以下に、本発明のFC−116の
製造方法及びその用途についてさらに詳しく説明する。
本発明で用いられるHFC−125は、前述したよう
に、一般的にはパークロロエチレン(CCl2=CC
l2)またはそのフッ化物をフッ化水素(HF)でフッ
素化することにより製造され、HFC−125中には出
発原料に由来する塩素原子を含有する化合物として、ク
ロロメタン、クロロジフルオロメタン、クロロトリフル
オロメタン、クロロペンタフルオロエタン、ジクロロテ
トラフルオロエタン、クロロテトラフルオロエタン、ク
ロロトリフルオロエタン等が含まれる。これらの化合物
を含むHFC−125を高純度に精製するためには、公
知の蒸留操作による方法等が採用されるが、前記化合物
とHFC−125が共沸混合物や共沸様混合物を形成す
るため、分離精製は極めて困難であり、蒸留塔の段数を
増やしたり、蒸留塔の本数を多くするなどの必要があ
り、設備費やエネルギーコストがかさみ経済的でないと
いう問題がある。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing FC-116 of the present invention and its use will be described in more detail.
As described above, HFC-125 used in the present invention is generally perchlorethylene (CCl 2 = CC).
l 2) or produced by fluorinating with hydrogen fluoride (HF) and fluorides thereof, a compound containing a chlorine atom derived from the starting material in the HFC-125, chloromethane, chlorodifluoromethane, chloro Examples include trifluoromethane, chloropentafluoroethane, dichlorotetrafluoroethane, chlorotetrafluoroethane, chlorotrifluoroethane, and the like. In order to purify HFC-125 containing these compounds to high purity, a method by a known distillation operation or the like is adopted. However, since the compound and HFC-125 form an azeotropic mixture or an azeotropic mixture, However, separation and purification are extremely difficult, and it is necessary to increase the number of distillation columns and the number of distillation columns, and thus there is a problem in that equipment costs and energy costs are increased, and it is not economical.
【0016】本発明は、先ず、HFC−125中に不純
物として含まれる、分子内に塩素原子を含有する化合物
を、フッ素化触媒の存在下、高められた温度でフッ化水
素でフッ素化し、ハイドロフルオロカーボン(HFC)
やパーフルオロカーボン(PFC)に転化する。例え
ば、HFC−125中に不純物として含まれるCFC−
115やクロロテトラフルオロエタン(以下「HCFC
−124」という。)はフッ化水素でフッ素化すると下
記の式(1)や式(2)で示される反応が起こる。 CF3CClF2+HF → CF3CF3+HCl (1) CF3CHClF+HF → CF3CHF2+HCl (2) 生成物は塩素原子を含まないHFCやPFCであり、副
生物として塩化水素が生成する。The present invention firstly fluorinates a compound containing a chlorine atom in a molecule contained as an impurity in HFC-125 with hydrogen fluoride at an elevated temperature in the presence of a fluorination catalyst. Fluorocarbon (HFC)
Or perfluorocarbon (PFC). For example, CFC- contained as an impurity in HFC-125
115 and chlorotetrafluoroethane (hereinafter referred to as “HCFC
-124 ". ) When fluorinated with hydrogen fluoride, the reaction represented by the following formula (1) or (2) occurs. CF 3 CCIF 2 + HF → CF 3 CF 3 + HCl (1) CF 3 CHClF + HF → CF 3 CHF 2 + HCl (2) The product is HFC or PFC containing no chlorine atom, and hydrogen chloride is generated as a by-product.
【0017】このフッ素化反応でHFCやPFCに転化
する化合物は、前記のクロロメタン、クロロジフルオロ
メタン、クロロトリフルオロメタン、クロロペンタフル
オロエタン、ジクロロテトラフルオロエタン、クロロテ
トラフルオロエタン、クロロトリフルオロエタン等であ
り、これらの化合物はHFC−125中に通常総量で数
千ppm以上含まれている。これらの化合物を含むHF
C−125をフッ素ガスと反応させると、メタン系の化
合物は主としてCFC−13に転化し、エタン系の化合
物はCFC−115に転化するので、反応後に得られる
FC−116中には主としてCFC−13とCFC−1
15が不純物として含まれる。The compounds which are converted into HFC or PFC by the fluorination reaction include the above-mentioned chloromethane, chlorodifluoromethane, chlorotrifluoromethane, chloropentafluoroethane, dichlorotetrafluoroethane, chlorotetrafluoroethane, chlorotrifluoroethane and the like. These compounds are usually contained in HFC-125 in a total amount of several thousand ppm or more. HF containing these compounds
When C-125 is reacted with fluorine gas, a methane-based compound is mainly converted to CFC-13, and an ethane-based compound is converted to CFC-115. Therefore, CFC- is mainly contained in FC-116 obtained after the reaction. 13 and CFC-1
15 is included as an impurity.
【0018】CFC−115は、低温ではフッ素ガスと
ほとんど反応しない。しかし、本発明者らの検討結果に
よれば、例えば反応温度が400℃では、HFC−12
5中に含まれるCFC−115の濃度が約800ppm
以下の場合には、CFC−115が分解して生成するC
FC−13の量は1ppm以下であるが、CFC−11
5の濃度が約2000ppmを超える場合には、CFC
−13が2ppm程度生成する。CFC−13はFC−
116と共沸混合物を形成するため、低濃度であっても
蒸留や吸着精製操作等では除去することが困難な化合物
である。従って、フッ素ガスとの反応によってCFC−
13を生成する化合物を原料のHFC−125中から除
去しておくだけでなく、CFC−115の含有量もでき
るだけ低濃度にすることが好ましい。CFC-115 hardly reacts with fluorine gas at low temperatures. However, according to the study results of the present inventors, for example, when the reaction temperature is 400 ° C., HFC-12
5 has a concentration of about 800 ppm of CFC-115.
In the following cases, C formed by decomposition of CFC-115
Although the amount of FC-13 is 1 ppm or less, CFC-11
5 exceeds about 2000 ppm, the CFC
-13 is generated at about 2 ppm. CFC-13 is FC-
Since it forms an azeotrope with 116, it is a compound that is difficult to remove by distillation, adsorption purification operation or the like even at a low concentration. Therefore, by reaction with fluorine gas, CFC-
It is preferable that not only the compound producing 13 be removed from the raw material HFC-125, but also that the content of CFC-115 be as low as possible.
【0019】本発明で用いられるHFC−125に含ま
れる、分子中に塩素原子を含有する化合物の総量は1v
ol%以下が好ましく、より好ましくは0.5vol%
以下であり、さらに好ましくは0.3vol%以下であ
る。分子中に塩素原子を含有する化合物の濃度が1vo
l%を越えると、高温での反応が必要となり、フッ素化
触媒の寿命が短くなるので好ましくない。また、同時に
副反応が進行し、生産性が低下する。The total amount of the compound containing a chlorine atom in the molecule contained in HFC-125 used in the present invention is 1 v
ol% or less, more preferably 0.5 vol%
Or less, more preferably 0.3 vol% or less. The concentration of a compound containing a chlorine atom in the molecule is 1 vo
If the amount exceeds 1%, a reaction at a high temperature is required, and the life of the fluorination catalyst is shortened. At the same time, a side reaction proceeds, and the productivity decreases.
【0020】フッ素化触媒としては、例えば、クロム、
ニッケル、亜鉛等を主成分とする担持型触媒や塊状触媒
のような公知の触媒を使用してもよいが、本発明に用い
る触媒としては、クロムの酸化物にインジウムを少量添
加した塊状触媒が好ましい。分子中に塩素原子を含有す
る化合物をフッ素化する工程における反応温度は150
〜480℃の範囲がよく、480℃以上では触媒の劣化
や副反応の進行等の悪影響を受けるので好ましくない。
反応温度は、HFC−125中に含まれる化合物の濃度
にも影響されるが、その種類によって好ましい温度を選
択することができる。例えば、前記の式(1)で示され
るCFC−115の反応の場合は、400℃以上が好ま
しく、式(2)で示されるHCFC−124の反応の場
合は300℃以上が好ましい。Examples of the fluorination catalyst include chromium,
Known catalysts such as a supported catalyst or a bulk catalyst containing nickel, zinc or the like as a main component may be used, but the catalyst used in the present invention is a bulk catalyst obtained by adding a small amount of indium to chromium oxide. preferable. The reaction temperature in the step of fluorinating a compound containing a chlorine atom in the molecule is 150.
The temperature range is preferably from 480 ° C to 480 ° C.
The reaction temperature is also affected by the concentration of the compound contained in HFC-125, but a preferable temperature can be selected depending on the type. For example, in the case of the reaction of CFC-115 represented by the above formula (1), the temperature is preferably 400 ° C. or more, and in the case of the reaction of HCFC-124 represented by the formula (2), the temperature is preferably 300 ° C. or more.
【0021】また、クロロジフルオロメタン(以下「H
CFC−22」という。)とフッ化水素の反応の場合、
下記の式(3)で示される反応がおこる。 CHClF2+HF → CHF3+HCl (3) この反応の場合、反応温度は150℃以上が好ましく、
400℃以上では逆反応が進行するので好ましくない。Further, chlorodifluoromethane (hereinafter referred to as "H
CFC-22 ". ) And hydrogen fluoride,
The reaction represented by the following formula (3) occurs. CHClF 2 + HF → CHF 3 + HCl (3) In this reaction, the reaction temperature is preferably 150 ° C. or higher,
A temperature of 400 ° C. or higher is not preferable because the reverse reaction proceeds.
【0022】分子中に塩素原子を含有する化合物をフッ
素化する工程においては、前述のように化合物の種類に
より反応温度が異なる場合がある。従って、通常は反応
器1基でよいが、複数の化合物を含み、それぞれ最適反
応温度領域が異なる場合や化合物の濃度が高い場合に
は、反応器を2基以上用いることが好ましい。In the step of fluorinating a compound containing a chlorine atom in the molecule, the reaction temperature may vary depending on the type of the compound as described above. Therefore, usually one reactor is sufficient, but it is preferable to use two or more reactors when a plurality of compounds are contained and the respective optimum reaction temperature ranges are different or when the concentration of the compounds is high.
【0023】HFの使用量はHFC−125を含む有機
物(原料ガス)とのモル比(HF/有機物)として、
0.5〜5の範囲がよく、好ましくは0.5〜2の範囲
がよい。0.5以下では反応が進行しにくく、5以上で
は反応器が大きくなる等の理由から経済的でない。ま
た、分子中に塩素原子を含有する化合物をフッ素化する
工程における反応圧力は、大気圧〜1.5MPaの範囲
が好ましく、1.5MPaを超えると装置の耐圧性が必
要となる等の問題が起こり好ましくない。The amount of HF used is expressed as a molar ratio (HF / organic material) to an organic material (raw material gas) containing HFC-125.
The range is preferably from 0.5 to 5, and more preferably from 0.5 to 2. If it is less than 0.5, the reaction hardly proceeds, and if it is more than 5, it is not economical because the reactor becomes large. Further, the reaction pressure in the step of fluorinating a compound containing a chlorine atom in a molecule is preferably in the range of atmospheric pressure to 1.5 MPa, and if it exceeds 1.5 MPa, there is a problem that the pressure resistance of the device is required. It is unfavorable.
【0024】本発明は、前述のような反応条件を用い、
フッ素化触媒の存在下、フッ化水素との反応を行うが、
反応生成物には、HFC−125と、塩素原子を含まな
いHFCやPFCを主とする不純物と、副生物の塩化水
素が含まれる。ここで、HFC−125の場合には、反
応温度が高くなる程、下記の式(4)で示される、塩化
水素との副反応が進行し、 CF3CHF2+HCl → CF3CHClF+HF (4) また、1,1,1,2−テトラフルオロエタン(以下
「HFC−134a」という。)が含まれている場合
は、下記の式(5)で示される塩化水素との副反応が進
行する。 CF3CH2F+HCl → CF3CH2Cl+HF (5) このため、(1)のフッ素化工程を行った後、生成した
塩化水素を含む酸分を除去することが好ましい。The present invention uses the reaction conditions as described above,
The reaction with hydrogen fluoride is performed in the presence of a fluorination catalyst,
The reaction product contains HFC-125, impurities mainly containing HFC and PFC containing no chlorine atom, and hydrogen chloride as a by-product. Here, in the case of HFC-125, as the reaction temperature increases, a side reaction with hydrogen chloride represented by the following formula (4) progresses, and CF 3 CHF 2 + HCl → CF 3 CHClF + HF (4) When 1,1,1,2-tetrafluoroethane (hereinafter, referred to as “HFC-134a”) is included, a side reaction with hydrogen chloride represented by the following formula (5) proceeds. CF 3 CH 2 F + HCl → CF 3 CH 2 Cl + HF (5) For this reason, after performing the fluorination step (1), it is preferable to remove generated acid components including hydrogen chloride.
【0025】酸分除去は未反応のフッ化水素(過剰分の
フッ化水素)と副生物である塩化水素を除去することを
目的とする。フッ化水素は直接フッ素化反応工程で影響
はないが、塩化水素は前記の式(4)あるいは(5)に
示されるように、塩素を含む化合物の生成やフッ化塩素
の生成等、悪影響を及ぼす場合があるので除去すること
が好ましい。酸分除去工程は、次の直接フッ素化反応工
程の前に行われ、酸分を除去する方法としては、例え
ば、(1)未反応フッ化水素が多い場合は、酸分を含む
流出物を蒸留塔に導き、塔頂より塩化水素を抜き出し、
ボトムより有機物とフッ化水素を抜き出す方法、(2)
生成した塩化水素及び未反応フッ化水素を精製剤と接触
させる方法、(3)水やアルカリ水で洗浄し、除去する
方法、等が挙げられる。本発明で用いられる酸分除去方
法は、特に制限はされないが、例えば(3)の方法を用
いることができ、アルカリとしては、例えば水酸化ナト
リウム水溶液や水酸化カリウム水溶液等を用いることが
できる。吸収したフッ化水素は回収して再利用してもよ
く、洗浄液を通過したガスは、例えばゼオライト等の脱
水剤を用いて脱水を行う。The purpose of the acid removal is to remove unreacted hydrogen fluoride (excess hydrogen fluoride) and by-product hydrogen chloride. Hydrogen fluoride has no effect in the direct fluorination reaction step, but hydrogen chloride has an adverse effect such as formation of chlorine-containing compounds and chlorine fluoride as shown in the above formula (4) or (5). It is preferable to remove them because they may affect them. The acid removing step is performed before the next direct fluorination reaction step. As a method for removing the acid, for example, (1) When there is a large amount of unreacted hydrogen fluoride, the effluent containing the acid is removed. Lead to the distillation column, extract hydrogen chloride from the top,
Method of extracting organic matter and hydrogen fluoride from the bottom, (2)
A method in which the generated hydrogen chloride and unreacted hydrogen fluoride are brought into contact with a purifying agent, (3) a method of washing and removing with water or alkaline water, and the like. The acid removal method used in the present invention is not particularly limited. For example, the method (3) can be used. As the alkali, for example, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used. The absorbed hydrogen fluoride may be collected and reused, and the gas that has passed through the cleaning liquid is dehydrated using a dehydrating agent such as zeolite.
【0026】また、酸分除去工程を経たHFC−125
を主成分とするガスは、不純物として、フッ化水素との
反応で完全にフッ素化されなかったHCFCやCFCを
含む場合があり、直接フッ素化反応工程の前に蒸留し、
HCFCやCFCを除去することが好ましい。Further, HFC-125 having undergone an acid removing step
The gas containing as a main component may contain, as impurities, HCFC or CFC that has not been completely fluorinated by the reaction with hydrogen fluoride, and is directly distilled before the fluorination reaction step.
It is preferable to remove HCFC and CFC.
【0027】ここで、HFC−125と、HFC−12
5中に含まれる可能性がある主な化合物を沸点と共に表
1に示す。Here, HFC-125 and HFC-12
The main compounds that may be included in 5 are shown in Table 1 together with the boiling points.
【表1】 [Table 1]
【0028】HFC−125を主成分とするガスは蒸留
塔に導かれ、低沸分であるCF4、CHF3、FC−11
6、HFC−125、CFC−115が蒸留塔の塔頂よ
り抜き出され、ボトム部より高沸分であるHCFC−1
24とCF3CH2Clが抜き出される。ボトム部より抜
き出された高沸分は、(1)の工程であるフッ化水素と
の反応に循環される。ここで、塔頂より抜き出されたH
FC−125を主成分とする留出物中に含まれる、分子
内に塩素原子を含有する化合物の総量は、0.02vo
l%以下が好ましく、HFC−125を主成分とする留
出物はフッ素ガスとの直接フッ素化反応の原料として使
用される。The gas containing HFC-125 as a main component is led to a distillation column, where CF 4 , CHF 3 , and FC-11 having low boiling points are used.
6. HFC-125 and CFC-115 are withdrawn from the top of the distillation column and HCFC-1 having a higher boiling point than the bottom portion
24 and CF 3 CH 2 Cl are extracted. The high-boiling components extracted from the bottom portion are circulated to the reaction with hydrogen fluoride in the step (1). Here, H extracted from the top of the tower
The total amount of the compound containing a chlorine atom in the molecule contained in the distillate containing FC-125 as a main component is 0.02 vol.
1% or less is preferable, and a distillate containing HFC-125 as a main component is used as a raw material for a direct fluorination reaction with fluorine gas.
【0029】次に、HFC−125を主成分とするガス
をフッ素ガスと反応させる(2)の工程について説明す
る。(2)の工程は、希釈ガスの存在下で行われ、HF
C−125を主成分とするガスは爆発範囲以下の濃度に
設定される。具体的にはHFC−125の反応器入口濃
度として、約6モルパーセント以下にすることが好まし
い。希釈ガスとしては、テトラフルオロメタン、ヘキサ
フルオロエタン、オクタフルオロプロパン及びフッ化水
素からなる群から選ばれる少なくとも1つを含むガスが
用いられ、好ましくはフッ化水素に富む希釈ガスが用い
られる。Next, the step (2) of reacting a gas containing HFC-125 as a main component with a fluorine gas will be described. The step (2) is performed in the presence of a diluting gas,
The gas containing C-125 as a main component is set to a concentration lower than the explosion range. Specifically, the concentration of HFC-125 at the inlet of the reactor is preferably about 6 mol% or less. As the diluent gas, a gas containing at least one selected from the group consisting of tetrafluoromethane, hexafluoroethane, octafluoropropane, and hydrogen fluoride is used, and a diluent gas rich in hydrogen fluoride is preferably used.
【0030】また、フッ素ガスの使用量は、HFC−1
25を主成分とするガスとのモル比(F2/HFC−1
25)として、0.5〜2の範囲がよく、好ましくは
0.9〜1.3の範囲がよい。反応温度は250〜50
0℃の範囲であり、好ましくは350〜450℃の範囲
がよい。500℃以上では目的物のFC−116が開裂
し、CF4が生成するので好ましくない。また、不純物
としてCFC−115が含まれる場合には、CFC−1
15の開裂によりCFC−13が生成するので好ましく
ない。また250℃以下では反応の進行が遅く、好まし
くない。The amount of fluorine gas used was HFC-1
Molar ratio to a gas containing 25 as a main component (F 2 / HFC-1
25) is preferably in the range of 0.5 to 2, and more preferably in the range of 0.9 to 1.3. Reaction temperature is 250-50
It is in the range of 0 ° C, preferably in the range of 350 to 450 ° C. If the temperature is higher than 500 ° C., the desired product FC-116 is cleaved to produce CF 4, which is not preferable. When CFC-115 is contained as an impurity, CFC-1
It is not preferable because CFC-13 is generated by cleavage of Fifteen. If the temperature is lower than 250 ° C., the reaction proceeds slowly, which is not preferable.
【0031】(2)の反応工程の後に留出してくるガス
を精製する方法は、特に制限はないが、先ず残存する未
反応フッ素ガスを、例えば、HFCであるトリフルオロ
メタンを添加して除去する。続いて蒸留を行い、例え
ば、はじめにフッ化水素と有機物を分離する。分離した
フッ化水素は(2)の工程である直接フッ素化反応の希
釈ガスとして再利用されるが、(1)のフッ素化反応の
原料とすることも可能である。ここで、分離した有機物
の組成は、反応に用いた希釈ガスによって大きく異な
り、希釈ガスとしてフッ化水素に富むガスあるいは目的
物と同じFC−116を用いた場合には、得られる有機
物はFC−116が主成分となる。また、希釈ガスにテ
トラフルオロメタンあるいはオクタフルオロプロパンを
用いた場合には、再度蒸留を行って精製するが、いずれ
の場合でも得られる有機物の組成比により蒸留を繰り返
し行うことで高純度のFC−116を得ることができ
る。The method of purifying the gas distilled after the reaction step (2) is not particularly limited. First, the remaining unreacted fluorine gas is removed by, for example, adding trifluoromethane as HFC. . Subsequently, distillation is performed, for example, first, hydrogen fluoride and organic substances are separated. The separated hydrogen fluoride is reused as a diluent gas for the direct fluorination reaction in the step (2), but can also be used as a raw material for the fluorination reaction in the step (1). Here, the composition of the separated organic substance greatly differs depending on the diluent gas used for the reaction. When a gas rich in hydrogen fluoride or the same FC-116 as the target substance is used as the diluent gas, the obtained organic substance is FC- 116 is the main component. When tetrafluoromethane or octafluoropropane is used as the diluent gas, distillation is performed again to purify. In any case, high-purity FC- 116 can be obtained.
【0032】有機物の蒸留精製はその組成比にもよる
が、例えば第1の蒸留塔の塔頂から、低沸分のイナート
ガスやCF4が抜き出され、ボトム部よりFC−116
を主成分とするガスが抜き出され、第2の蒸留塔に導入
される。次に第2の蒸留塔の塔頂から、低沸分のイナー
トガスとトリフルオロメタンが抜き出され、ボトム部よ
り抜き出されたFC−116を主成分とするガスは、次
の第3の蒸留塔へ導かれ、塔頂より高純度のFC−11
6を抜き出すことで精製が行われる。また、第3の蒸留
において、ボトム部より回収されたCFC−115を含
むガスは、(1)のフッ化水素との反応工程に循環して
もよい。The purification of the organic substance by distillation depends on its composition ratio. For example, a low-boiling inert gas or CF 4 is extracted from the top of the first distillation column, and FC-116 is removed from the bottom part.
Is extracted and introduced into the second distillation column. Next, an inert gas and trifluoromethane having a low boiling point are extracted from the top of the second distillation column, and a gas containing FC-116 as a main component extracted from the bottom portion is supplied to the next third distillation column. Led to high purity FC-11 from the top
Purification is performed by extracting 6. In the third distillation, the gas containing CFC-115 recovered from the bottom portion may be circulated to the step (1) of the reaction with hydrogen fluoride.
【0033】このようにして精製されたFC−116中
には、不純物はほとんど含まれず、高純度のFC−11
6を得ることができる。その純度は99.9997vo
l%以上であり、不純物として含まれる、分子内に塩素
原子を含有する化合物は1volppm以下であり、ペ
ンタフルオロエタンは1volppm以下である。純度
が99.9997vol%以上であるFC−116の分
析方法としては、ガスクロマトグラフィー(GC)のT
CD法、FID法(いずれもプレカット法を含む)、E
CD法あるいはガスクロマトグラフィ−質量分析計(G
C−MS)等の機器を用いることができる。The thus purified FC-116 contains almost no impurities and has high purity FC-11.
6 can be obtained. Its purity is 99.9997 vo
1% or more, a compound containing a chlorine atom in a molecule contained as an impurity is 1 volppm or less, and pentafluoroethane is 1 volppm or less. As a method for analyzing FC-116 having a purity of 99.9997 vol% or more, gas chromatography (GC) T
CD method, FID method (including precut method), E
CD method or gas chromatography-mass spectrometer (G
C-MS) or the like.
【0034】次に、本発明の製造方法を用いて得られる
FC−116の用途について説明する。高純度のFC−
116は、半導体デバイス製造工程の中のエッチング工
程におけるエッチングガスとして用いることができる。
また、半導体デバイス製造工程の中のクリーニング工程
におけるクリーニングガスとしても用いることができ
る。LSIやTFTなどの半導体デバイスの製造プロセスで
は、CVD法、スパッタリング法あるいは蒸着法などを用
いて薄膜や厚膜を形成し、回路パターンを形成するため
にエッチングを行う。また、薄膜や厚膜を形成する装置
においては、装置内壁、冶具等に堆積した不要な堆積物
を除去するためのクリーニングが行われる。これは不要
な堆積物が生成するとパーティクル発生の原因となるた
めであり、良質な膜を製造するために随時除去する必要
がある。Next, applications of FC-116 obtained by using the production method of the present invention will be described. High purity FC-
116 can be used as an etching gas in an etching step in a semiconductor device manufacturing process.
Further, it can be used as a cleaning gas in a cleaning step in a semiconductor device manufacturing process. In a process for manufacturing a semiconductor device such as an LSI or a TFT, a thin film or a thick film is formed using a CVD method, a sputtering method, an evaporation method, or the like, and etching is performed to form a circuit pattern. In an apparatus for forming a thin film or a thick film, cleaning is performed to remove unnecessary deposits deposited on an inner wall of the apparatus, a jig, and the like. This is because the generation of unnecessary deposits causes the generation of particles, and it is necessary to remove the deposits as needed in order to produce a high-quality film.
【0035】FC−116を用いるエッチング方法は、
プラズマエッチング、マイクロ波エッチング等の各種ド
ライエッチング条件で行うことができ、FC−116と
He、N2、Arなどの不活性ガスあるいはHCl、
O2、H2などのガスと適切な割合で混合して使用しても
よい。The etching method using FC-116 is as follows.
It can be performed under various dry etching conditions such as plasma etching and microwave etching. FC-116 and an inert gas such as He, N 2 , Ar or HCl,
It may be used by mixing with a gas such as O 2 and H 2 at an appropriate ratio.
【0036】[0036]
【実施例】以下、実施例及び比較例により本発明をより
詳細に説明するが、本発明はこれらの実施例に限定され
るものではない。 [原料例1]フッ素化触媒の存在下、テトラクロロエチ
レン(CCl2=CCl2)とHFを、反応圧力0.4M
Pa、反応温度300℃、HF/テトラクロロエチレン
のモル比4で反応(第一反応)し、さらに、反応圧力約
0.4MPa、反応温度330℃、HF/中間体(CF
3CHCl2+CF3CHClF)のモル比4として反応
(第二反応)を行った。反応後、公知の方法で酸分除
去、蒸留操作を行い、蒸留物をガスクロマトグラフィ−
で分析を行ったところ、表2に示す組成を有する粗HF
C−125(HFC−125原料1)を得た。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. [Raw material example 1] Tetrachloroethylene (CCl 2 = CCl 2 ) and HF were reacted at a reaction pressure of 0.4 M in the presence of a fluorination catalyst.
Pa, a reaction temperature of 300 ° C., and a HF / tetrachloroethylene molar ratio of 4 (first reaction). Further, a reaction pressure of about 0.4 MPa, a reaction temperature of 330 ° C., and an HF / intermediate (CF
The reaction (second reaction) was performed with a molar ratio of 3 CHCl 2 + CF 3 CHClF) of 4. After the reaction, acid components are removed and distillation is performed by a known method, and the distillate is subjected to gas chromatography.
As a result, the crude HF having the composition shown in Table 2 was obtained.
C-125 (HFC-125 raw material 1) was obtained.
【0037】[0037]
【表2】 [Table 2]
【0038】[原料例2]前記の方法で得られたHFC
−125原料1を、さらに公知の方法で蒸留を繰り返
し、蒸留物をガスクロマトグラフィーで分析したとこ
ろ、表3に示す組成を有する粗HFC−125(HFC
−125原料2)を得た。[Raw material example 2] HFC obtained by the above method
-125 Raw material 1 was further subjected to repeated distillation by a known method, and the distillate was analyzed by gas chromatography. As a result, crude HFC-125 (HFC-125) having a composition shown in Table 3 was obtained.
-125 raw material 2) was obtained.
【0039】[0039]
【表3】 [Table 3]
【0040】[触媒例1]純水0.6Lを入れた10L
の容器に、452gのCr(NO3)3・9H2Oを純水
1.2Lに溶かした溶液と、0.31Lの28%アンモ
ニア水とを、撹拌しながら、反応液のpHが7.5〜
8.5の範囲になるようにコントロールして約1時間か
けて滴下した。得られた水酸化物のスラリーを濾別し、
純水でよく洗浄した後、120℃で乾燥した。得られた
固体を粉砕後、黒鉛と混合し、打錠成型器によってペレ
ット化した。このペレットを窒素気流下、400℃で4
時間焼成し、触媒前駆体を得た。次に触媒前駆体をイン
コネル製反応器に充填し、常圧下350℃で、窒素希釈
したHF気流下で、次いで100%HF気流下で、さら
に450℃で、窒素希釈したHF気流下でフッ素化処理
(触媒の活性化)を行い、触媒の調製を行った。[Catalyst Example 1] 10 L containing 0.6 L of pure water
In a container ( 2 ), a solution obtained by dissolving 452 g of Cr (NO 3 ) 3 .9H 2 O in 1.2 L of pure water and 0.31 L of 28% aqueous ammonia were stirred while the pH of the reaction solution was 7. 5-
It dripped over about 1 hour, controlling so that it might be in the range of 8.5. The resulting slurry of hydroxide is filtered off,
After washing well with pure water, it was dried at 120 ° C. The obtained solid was pulverized, mixed with graphite, and pelletized by a tableting machine. The pellets are placed at 400 ° C. in a nitrogen stream for 4 hours.
After calcining for a time, a catalyst precursor was obtained. The catalyst precursor is then charged into an Inconel reactor and fluorinated at 350 ° C. under normal pressure under a nitrogen-diluted HF stream, then under a 100% HF stream, and further at 450 ° C. under a nitrogen-diluted HF stream. Treatment (activation of the catalyst) was performed to prepare the catalyst.
【0041】[触媒例2]純水0.6Lを入れた10L
の容器に、452gのCr(NO3)3・9H2Oと42
gのIn(NO3)3・nH2O(nは約5)を純水1.
2Lに溶かした溶液と、0.31Lの28%アンモニア
水とを撹拌しながら、反応液のpHが7.5〜8.5の
範囲内になるように、2種の水溶液の流量をコントロー
ルしながら約1時間かけて滴下した。得られた水酸化物
のスラリーを濾別し、純水でよく洗浄した後、120℃
で12時間乾燥した。得られた固体を粉砕後、黒鉛と混
合し、打錠成型器によってペレット化した。窒素気流
下、このペレットを400℃で4時間焼成し、触媒前駆
体を得た。触媒前駆体をインコネル製反応器に充填し、
触媒例1と同様にしてフッ素化処理(触媒の活性化)を
行い、触媒の調製を行った。[Catalyst Example 2] 10 L containing 0.6 L of pure water
The container, Cr (NO 3) of 452g 3 · 9H 2 O and 42
g of In (NO 3 ) 3 .nH 2 O (n is about 5) in pure water 1.
While stirring the solution dissolved in 2 L and 0.31 L of 28% aqueous ammonia, the flow rates of the two aqueous solutions were controlled so that the pH of the reaction solution was in the range of 7.5 to 8.5. The solution was dropped over about 1 hour. The obtained slurry of hydroxide was separated by filtration and washed well with pure water.
For 12 hours. The obtained solid was pulverized, mixed with graphite, and pelletized by a tableting machine. The pellet was fired at 400 ° C. for 4 hours under a nitrogen stream to obtain a catalyst precursor. Filling the catalyst precursor into an Inconel reactor,
A fluorination treatment (activation of the catalyst) was performed in the same manner as in Catalyst Example 1 to prepare a catalyst.
【0042】(実施例1)内径1インチ、長さ1mのイ
ンコネル600型反応器に[触媒例1]で調製した触媒
150mlを充填し、窒素を流しながら温度を440℃
とした。フッ化水素を3.5NL/hrで供給し、次い
で[原料例1]で得られたHFC−125原料1を3.
5NL/hrで供給した。窒素ガスの供給を停止し、反
応を開始した。2時間後、排出ガスを水酸化カリウム水
溶液で洗浄して酸分を除去した後、ガス組成をガスクロ
マトグラフィ−で分析したところ、表4に示す組成を有
するガスを得た。Example 1 150 ml of the catalyst prepared in [Catalyst Example 1] was charged into an Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m, and the temperature was increased to 440 ° C. while flowing nitrogen.
And Hydrogen fluoride was supplied at 3.5 NL / hr, and then HFC-125 raw material 1 obtained in [raw material example 1] was used.
It was supplied at 5 NL / hr. The supply of nitrogen gas was stopped, and the reaction was started. Two hours later, the exhaust gas was washed with an aqueous solution of potassium hydroxide to remove acid components, and the gas composition was analyzed by gas chromatography. As a result, a gas having the composition shown in Table 4 was obtained.
【0043】[0043]
【表4】 [Table 4]
【0044】(実施例2)触媒として[触媒例2]で調
製した触媒150mlを充填した以外、実施例1と同様
な条件及び操作で反応し、分析を行った。その分析結果
を表5に示す。(Example 2) A reaction was carried out under the same conditions and operations as in Example 1 except that 150 ml of the catalyst prepared in [Catalyst Example 2] was charged, and analysis was performed. Table 5 shows the analysis results.
【0045】[0045]
【表5】 表5に示す分析結果から明らかなように、クロムにイン
ジウムを添加してなるフッ素化触媒を用いると、CFC
−115のFC−116への転化率が向上することが分
かる。[Table 5] As is clear from the analysis results shown in Table 5, when a fluorination catalyst obtained by adding indium to chromium is used, CFC
It can be seen that the conversion of -115 to FC-116 is improved.
【0046】(比較例1)反応温度を300℃とした以
外は、実施例1と同様な条件及び操作で反応し、分析を
行った。その分析結果を表6に示す。(Comparative Example 1) A reaction was performed under the same conditions and operations as in Example 1 except that the reaction temperature was changed to 300 ° C, and analysis was performed. Table 6 shows the results of the analysis.
【0047】[0047]
【表6】 表6に示す分析結果から明らかなように、反応温度が低
いとCFC−115の転化率が悪いということが分か
る。[Table 6] As is clear from the analysis results shown in Table 6, it is found that the conversion rate of CFC-115 is poor when the reaction temperature is low.
【0048】(比較例2)反応温度を500℃とした以
外は、実施例1と同様な条件及び操作で反応し、分析を
行った。その分析結果を表7に示す。Comparative Example 2 A reaction was performed under the same conditions and operation as in Example 1 except that the reaction temperature was changed to 500 ° C., and analysis was performed. Table 7 shows the analysis results.
【0049】[0049]
【表7】 表7に示す分析結果から明らかなように、副生物の塩化
水素が影響していると考えられる、CFC−115以外
の塩素化合物が増加していることが分かる。また、高温
下の反応では触媒の劣化が激しいことが分かった。[Table 7] As is clear from the analysis results shown in Table 7, it can be seen that chlorine compounds other than CFC-115, which are considered to be affected by by-product hydrogen chloride, are increasing. In addition, it was found that the catalyst under the high temperature reaction was severely deteriorated.
【0050】(実施例3)内径1インチ、長さ2mのイ
ンコネル600型反応器に[触媒例2]で調製した触媒
150mlを充填し、窒素を流しながら温度を430℃
とし、フッ化水素を5.0NL/hrで供給し、次いで
[原料例2]で得られたHFC−125原料2を8.0
NL/hrで供給した。窒素ガスの供給を停止し、反応
開始2時間後に、排出ガスを水酸化カリウム水溶液で洗
浄して酸分を除去し、ガス組成をガスクロマトグラフィ
ーで分析したところ、表8に示す組成のガスを得た。Example 3 150 ml of the catalyst prepared in [Catalyst Example 2] was charged into an Inconel 600 type reactor having an inner diameter of 1 inch and a length of 2 m, and the temperature was raised to 430 ° C. while flowing nitrogen.
Then, hydrogen fluoride was supplied at 5.0 NL / hr, and then the HFC-125 raw material 2 obtained in [Raw material example 2] was 8.0.
Supplied at NL / hr. The supply of nitrogen gas was stopped, and two hours after the start of the reaction, the exhaust gas was washed with an aqueous potassium hydroxide solution to remove acid components. The gas composition was analyzed by gas chromatography. Obtained.
【0051】[0051]
【表8】 [Table 8]
【0052】(実施例4)表8に示す組成を有する、酸
分除去後のガスを冷却捕集し、公知の方法を用いて蒸留
精製を行った。精製後に得られたガスを分析した結果を
表9に示す。Example 4 A gas having the composition shown in Table 8 after removal of the acid component was collected by cooling and purified by distillation using a known method. Table 9 shows the result of analyzing the gas obtained after the purification.
【0053】[0053]
【表9】 表9に示す分析結果から明らかなように、蒸留を行うこ
とにより、クロロテトラフルオロエタンをほとんど除去
することができることが分かる。[Table 9] As is clear from the analysis results shown in Table 9, it can be seen that chlorotetrafluoroethane can be almost completely removed by distillation.
【0054】(実施例5)実施例4で得られた、蒸留精
製後のHFC−125を主成分とするガスを用いて、フ
ッ素ガスとの直接フッ素化反応を行った。内径20.6
mmΦ、長さ500mmのインコネル600型反応器
(電気ヒーター加熱:反応器はフッ素ガスで温度500
℃で不動態化処理を実施)を、窒素ガスを30NL/h
r供給しながら、温度を420℃とした。次にフッ化水
素を50NL/hr、さらに希釈ガスを分岐したガス流
に一方へ前記のHFC−125を主成分とするガスを
3.5NL/hr流した。その後、同様に希釈ガスを分
岐したガス流のもう一方へフッ素ガスを3.85NL/
hr供給し反応を行った。3時間後、反応生成ガスを水
酸化カリウム水溶液及びヨウ化カリウム水溶液を用いて
洗浄し、フッ化水素及び未反応フッ素ガスを除去した。
次いでガスクロマトグラフィ−によりガスの組成分析を
行った。分析結果を表10に示した。Example 5 A direct fluorination reaction with fluorine gas was carried out using the gas obtained in Example 4 and containing HFC-125 after distillation and purification as a main component. Inner diameter 20.6
mmΦ, 500 mm long Inconel 600 type reactor (electric heater heating: reactor is fluorine gas and temperature 500
C.), and nitrogen gas was supplied at 30 NL / h.
The temperature was set to 420 ° C. while supplying r. Next, 50 NL / hr of hydrogen fluoride and a gas containing HFC-125 as a main component were flowed to one side of the gas stream obtained by branching the diluent gas at 3.5 NL / hr. Thereafter, 3.85 NL / fluorine gas was similarly supplied to the other of the gas streams from which the dilution gas was branched.
hr and the reaction was carried out. After 3 hours, the reaction product gas was washed with an aqueous solution of potassium hydroxide and an aqueous solution of potassium iodide to remove hydrogen fluoride and unreacted fluorine gas.
Next, the composition of the gas was analyzed by gas chromatography. The results of the analysis are shown in Table 10.
【0055】[0055]
【表10】 [Table 10]
【0056】次にこの酸分除去後のガスを冷却捕集し、
蒸留により精製を行った。精製後のガスの分析は、ガス
クロマトグラフィ−のTCD法、FID法、ECD法及
びGC−MS法により行い、その分析結果を表11に示
す。Next, the gas after removing the acid content is collected by cooling.
Purification was performed by distillation. The analysis of the purified gas was performed by TCD method, FID method, ECD method and GC-MS method of gas chromatography, and the analysis results are shown in Table 11.
【0057】[0057]
【表11】 表11に示す分析結果から明らかなように、精製後のF
C−116中には他の不純物はほとんど含まれず、高純
度のFC−116が得られ、その純度は99.9997
vol%以上であることが分かる。[Table 11] As is clear from the analysis results shown in Table 11, the purified F
C-116 contained almost no other impurities, and high-purity FC-116 was obtained, the purity of which was 99.9997.
It turns out that it is more than vol%.
【0058】(比較例3)内径20.6mmΦ、長さ5
00mmのインコネル600型反応器(電気ヒーター加
熱:反応器はフッ素ガスで温度500℃で不動態化処理
を実施)を、窒素ガスを30NL/hr供給しながら、
温度420℃とした。次にフッ化水素を50NL/h
r、さらに希釈ガスを分岐したガス流の一方に[原料例
1]で得られたHFC−125原料1を3.5NL/h
r流した。その後、同様に希釈ガスを分岐したガス流の
もう一方へフッ素ガスを3.85NL/hr供給し反応
を行った。3時間後、反応生成ガスを水酸化カリウム水
溶液及びヨウ化カリウム水溶液を用いて洗浄し、フッ化
水素及び未反応フッ素ガスを除去した。次いでガスクロ
マトグラフィーによりガスの組成分析を行った。分析結
果を表12に示した。(Comparative Example 3) Inner diameter 20.6 mmΦ, length 5
A 00 mm Inconel 600 type reactor (electric heater heating: the reactor was subjected to a passivation treatment at a temperature of 500 ° C. with fluorine gas) while supplying nitrogen gas at 30 NL / hr,
The temperature was 420 ° C. Next, 50 NL / h of hydrogen fluoride
r, 3.5 NL / h of the HFC-125 raw material 1 obtained in [raw material example 1] was added to one of the gas streams from which the dilution gas was branched.
r flow. Thereafter, 3.85 NL / hr of a fluorine gas was supplied to the other of the gas streams from which the diluent gas was branched, to carry out a reaction. After 3 hours, the reaction product gas was washed with an aqueous solution of potassium hydroxide and an aqueous solution of potassium iodide to remove hydrogen fluoride and unreacted fluorine gas. Next, the composition of the gas was analyzed by gas chromatography. The results of the analysis are shown in Table 12.
【0059】[0059]
【表12】 表12に示す分析結果から明らかなように、分子内に塩
素原子を含有する化合物を不純物として含んだHFC−
125をフッ素ガスと反応させると、難分離物質である
CFC−13クロロトリフルオロメタンが生成すること
が分かる。[Table 12] As is clear from the analysis results shown in Table 12, HFC- containing a compound containing a chlorine atom in the molecule as an impurity was used.
It can be seen that when 125 reacts with fluorine gas, CFC-13 chlorotrifluoromethane, which is a hardly separable substance, is generated.
【0060】次に、表12に示す組成を有する、酸分除
去後のガスを冷却捕集し、蒸留精製を行った。精製後に
得られたガスを分析した結果を表13に示す。Next, the gas having the composition shown in Table 12 after the removal of the acid component was collected by cooling and purified by distillation. Table 13 shows the results of analyzing the gas obtained after the purification.
【0061】[0061]
【表13】 表13に示す分析結果から明らかなように、CFC−1
3は分離することが困難な化合物であることが分かる。[Table 13] As is clear from the analysis results shown in Table 13, CFC-1
It can be seen that 3 is a compound that is difficult to separate.
【0062】[0062]
【発明の効果】以上説明したように、分子内に塩素原子
を含有する化合物を含むHFC−125を用いて、高純
度のFC−116を製造することができ、本発明を用い
て製造された、高純度のFC−116は、半導体デバイ
スの製造工程でエッチングガスあるいはクリーニングガ
スとして用いることができる。As described above, high-purity FC-116 can be produced using HFC-125 containing a compound containing a chlorine atom in the molecule. The high-purity FC-116 can be used as an etching gas or a cleaning gas in a semiconductor device manufacturing process.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 敏夫 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社川崎・生産技術統括部内 Fターム(参考) 4H006 AC30 BA09 BA14 BA30 BB60 BC10 BC13 BC31 BD33 BD52 BD60 BE01 BE53 4H039 CA51 CD20 5F004 AA15 BB13 BB14 CA01 DA00 DA22 DA23 DA24 DA25 DA26 DA29 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshio Oi 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko K.K. BD52 BD60 BE01 BE53 4H039 CA51 CD20 5F004 AA15 BB13 BB14 CA01 DA00 DA22 DA23 DA24 DA25 DA26 DA29
Claims (19)
るヘキサフルオロエタンの製造方法。 (1)分子内に塩素原子を含有する化合物を含むペンタ
フルオロエタンを、フッ素化触媒の存在下、フッ化水素
と気相で反応させて、前記分子内に塩素原子を含有する
化合物をフッ素化する工程 (2)前記(1)の工程で得られる、フッ素化された化
合物を含むペンタフルオロエタンとフッ素ガスとを、気
相で希釈ガスの存在下にて反応させる工程1. A method for producing hexafluoroethane, comprising the following two steps. (1) Pentafluoroethane containing a compound containing a chlorine atom in the molecule is reacted with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to fluorinate the compound containing a chlorine atom in the molecule. (2) a step of reacting pentafluoroethane containing a fluorinated compound and a fluorine gas obtained in the step (1) in the gas phase in the presence of a diluting gas;
が、クロロメタンタン、クロロトリフルオロメタン、ク
ロロペンタフルオロエタン、ジクロロテトラフルオロエ
タン、クロロテトラフルオロエタン、クロロトリフルオ
ロエタン及びクロロトリフルオロエチレンからなる群よ
り選ばれる少なくとも1種の化合物である請求項1に記
載のヘキサフルオロエタンの製造方法。2. The compound containing a chlorine atom in the molecule is selected from chloromethanetan, chlorotrifluoromethane, chloropentafluoroethane, dichlorotetrafluoroethane, chlorotetrafluoroethane, chlorotrifluoroethane and chlorotrifluoroethylene. The method for producing hexafluoroethane according to claim 1, wherein the method is at least one compound selected from the group consisting of:
子内に塩素原子を含有する化合物の総量が1vol%以
下である請求項1または2に記載のヘキサフルオロエタ
ンの製造方法。3. The method for producing hexafluoroethane according to claim 1, wherein the total amount of the compound containing a chlorine atom in the molecule contained in pentafluoroethane is 1 vol% or less.
子内に塩素原子を含有する化合物の総量が0.5vol
%以下である請求項1または2に記載のヘキサフルオロ
エタンの製造方法。4. The total amount of a compound containing a chlorine atom in a molecule contained in pentafluoroethane is 0.5 vol.
% Or less, the method for producing hexafluoroethane according to claim 1 or 2.
媒が、クロムの酸化物にインジウムを添加してなる塊状
触媒である請求項1〜4のいずれかに記載のヘキサフル
オロエタンの製造方法。5. The method for producing hexafluoroethane according to claim 1, wherein in the step (1), the fluorination catalyst is a bulk catalyst obtained by adding indium to chromium oxide. .
媒の存在下、フッ化水素と反応させる反応温度が150
〜480℃の範囲である請求項1〜5のいずれかに記載
のヘキサフルオロエタンの製造方法。6. In the step (1), the reaction temperature for reacting with hydrogen fluoride in the presence of a fluorination catalyst is 150.
The method for producing hexafluoroethane according to any one of claims 1 to 5, wherein the temperature is in the range of from 480C to 480C.
/有機物のモル比が0.5〜5の範囲である請求項1〜
6のいずれかに記載のヘキサフルオロエタンの製造方
法。7. The method according to claim 1, wherein in the step (1), a molar ratio of hydrogen fluoride / organic substance is in a range of 0.5 to 5.
7. The method for producing hexafluoroethane according to any one of 6.
水素を含む酸分を除去する工程を含む請求項1〜7のい
ずれかに記載のヘキサフルオロエタンの製造方法。8. The method for producing hexafluoroethane according to claim 1, further comprising, before the step (2), a step of removing an acid component containing generated hydrogen chloride.
フルオロエタン及び/またはクロロトリフルオロエタン
を分離し、分離されたクロロテトラフルオロエタン及び
/またはクロロトリフルオロエタンを(1)の工程に戻
す工程を含む請求項1〜8のいずれかに記載のヘキサフ
ルオロエタンの製造方法。9. Prior to the step (2), chlorotetrafluoroethane and / or chlorotrifluoroethane is separated, and the separated chlorotetrafluoroethane and / or chlorotrifluoroethane is subjected to the step (1). The method for producing hexafluoroethane according to any one of claims 1 to 8, further comprising a step of returning to the above.
ルオロエタン中に含まれる、分子内に塩素原子を含有す
る化合物の総量が0.02vol%以下である請求項1
〜9のいずれかに記載のヘキサフルオロエタンの製造方
法。10. The method according to claim 1, wherein in the step (2), the total amount of the compound containing a chlorine atom in the molecule contained in pentafluoroethane is 0.02 vol% or less.
10. The method for producing hexafluoroethane according to any one of claims 9 to 9.
ルオロエタン中に含まれるフッ素化された化合物が、ヘ
キサフルオロエタンを主成分とするものである請求項1
〜10のいずれかに記載のヘキサフルオロエタンの製造
方法。11. The method according to claim 1, wherein in the step (2), the fluorinated compound contained in pentafluoroethane contains hexafluoroethane as a main component.
11. The method for producing hexafluoroethane according to any one of items 10 to 10.
が、テトラフルオロメタン、ヘキサフルオロエタン、オ
クタフルオロプロパン及びフッ化水素からなる群から選
ばれる少なくとも1つを含むガスである請求項1〜11
のいずれかに記載のヘキサフルオロエタンの製造方法。12. The method according to claim 1, wherein in the step (2), the diluent gas is a gas containing at least one selected from the group consisting of tetrafluoromethane, hexafluoroethane, octafluoropropane, and hydrogen fluoride. 11
The method for producing hexafluoroethane according to any one of the above.
が、フッ化水素に富むガスである請求項1〜12のいず
れかに記載のヘキサフルオロエタンの製造方法。13. The method for producing hexafluoroethane according to claim 1, wherein in the step (2), the diluting gas is a gas rich in hydrogen fluoride.
された化合物を含むペンタフルオロエタンとフッ素ガス
との反応温度が、250〜500℃の範囲である請求項
1〜13のいずれかに記載のヘキサフルオロエタンの製
造方法。14. The method according to claim 1, wherein in the step (2), the reaction temperature between pentafluoroethane containing a fluorinated compound and fluorine gas is in the range of 250 to 500 ° C. For producing hexafluoroethane.
された化合物を含むペンタフルオロエタンとフッ素ガス
との反応温度が、350〜450℃の範囲である請求項
1〜14のいずれかに記載のヘキサフルオロエタンの製
造方法。15. The method according to claim 1, wherein in the step (2), a reaction temperature between pentafluoroethane containing a fluorinated compound and fluorine gas is in a range of 350 to 450 ° C. For producing hexafluoroethane.
あるヘキサフルオロエタンを含むことを特徴とするヘキ
サフルオロエタン製品。16. A hexafluoroethane product comprising hexafluoroethane having a purity of 99.9997 vol% or more.
1volppm以下であり、ペンタフルオロエタンが1
volppm以下である請求項16に記載のヘキサフル
オロエタン製品。17. The compound containing a chlorine atom in the molecule is 1 volppm or less, and pentafluoroethane is 1 volppm or less.
The hexafluoroethane product according to claim 16, which is not more than volppm.
フルオロエタン製品を含有することを特徴とするエッチ
ングガス。18. An etching gas comprising the hexafluoroethane product according to claim 16 or 17.
フルオロエタン製品を含有することを特徴とするクリー
ニングガス。19. A cleaning gas containing the hexafluoroethane product according to claim 16 or 17.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185654A JP4463385B2 (en) | 2000-06-21 | 2000-06-21 | Method for producing hexafluoroethane and use thereof |
KR10-2002-7001234A KR100516573B1 (en) | 2000-06-21 | 2001-06-20 | Process for producing hexafluoroethane and use thereof |
US10/030,823 US6489523B1 (en) | 2000-06-21 | 2001-06-20 | Process for producing hexafluoroethane and use thereof |
PCT/JP2001/005256 WO2001098240A2 (en) | 2000-06-21 | 2001-06-20 | Process for producing hexafluoroethane and use thereof |
AU74561/01A AU7456101A (en) | 2000-06-21 | 2001-06-20 | Process for producing hexafluoroethane and use thereof |
CNB018017193A CN1276903C (en) | 2000-06-21 | 2001-06-20 | Method for producing hexafluoroethane and its use |
TW90115125A TW593219B (en) | 2000-06-21 | 2001-06-21 | Process for producing hexafluoroethane and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185654A JP4463385B2 (en) | 2000-06-21 | 2000-06-21 | Method for producing hexafluoroethane and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002003415A true JP2002003415A (en) | 2002-01-09 |
JP4463385B2 JP4463385B2 (en) | 2010-05-19 |
Family
ID=18685938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000185654A Expired - Lifetime JP4463385B2 (en) | 2000-06-21 | 2000-06-21 | Method for producing hexafluoroethane and use thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4463385B2 (en) |
TW (1) | TW593219B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055278A (en) * | 2001-08-06 | 2003-02-26 | Showa Denko Kk | Method for producing hexafluoroethane and use thereof |
JP2005314376A (en) * | 2004-03-29 | 2005-11-10 | Showa Denko Kk | Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof |
CN115518632A (en) * | 2022-11-28 | 2022-12-27 | 山东东岳化工有限公司 | Process for preparing hexafluoroethane from pentafluoro-chloroethane and catalyst used in process |
-
2000
- 2000-06-21 JP JP2000185654A patent/JP4463385B2/en not_active Expired - Lifetime
-
2001
- 2001-06-21 TW TW90115125A patent/TW593219B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055278A (en) * | 2001-08-06 | 2003-02-26 | Showa Denko Kk | Method for producing hexafluoroethane and use thereof |
JP2005314376A (en) * | 2004-03-29 | 2005-11-10 | Showa Denko Kk | Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof |
CN115518632A (en) * | 2022-11-28 | 2022-12-27 | 山东东岳化工有限公司 | Process for preparing hexafluoroethane from pentafluoro-chloroethane and catalyst used in process |
Also Published As
Publication number | Publication date |
---|---|
JP4463385B2 (en) | 2010-05-19 |
TW593219B (en) | 2004-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7208644B2 (en) | Production and use of hexafluoroethane | |
US6720464B2 (en) | Production and use of octafluoropropane | |
JP4539793B2 (en) | Octafluoropropane production method and use thereof | |
KR100516573B1 (en) | Process for producing hexafluoroethane and use thereof | |
JP4484572B2 (en) | Method for producing hexafluoroethane and use thereof | |
KR100543253B1 (en) | Method and use of the preparation of hexafluoroethane | |
JP4463385B2 (en) | Method for producing hexafluoroethane and use thereof | |
US6489523B1 (en) | Process for producing hexafluoroethane and use thereof | |
JP4225736B2 (en) | Method for producing fluoroethane and use thereof | |
US7074974B2 (en) | Process for the production of fluoroethane and use of the same | |
JP4738035B2 (en) | Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof | |
JP5025052B2 (en) | Method for producing hexafluoroethane and use thereof | |
US20040242943A1 (en) | Process for the production of fluoroethane and use of the produced fluoroethane | |
JP4458784B2 (en) | Method for producing pentafluoroethane and use thereof | |
JP2003055277A (en) | Method for producing hexafluoroethane and use thereof | |
JPH0672912A (en) | Method for purifying 1,1,1,2-tetrafluoroethane | |
JP2005206584A (en) | Method for purifying 1,1-difluoroethane and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100107 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4463385 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160226 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |