[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002001810A - Method for relaxation heat treating biaxially oriented polyester film - Google Patents

Method for relaxation heat treating biaxially oriented polyester film

Info

Publication number
JP2002001810A
JP2002001810A JP2000186116A JP2000186116A JP2002001810A JP 2002001810 A JP2002001810 A JP 2002001810A JP 2000186116 A JP2000186116 A JP 2000186116A JP 2000186116 A JP2000186116 A JP 2000186116A JP 2002001810 A JP2002001810 A JP 2002001810A
Authority
JP
Japan
Prior art keywords
film
heat shrinkage
heat treatment
polyester film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000186116A
Other languages
Japanese (ja)
Inventor
Yasusuke Nakanishi
庸介 中西
Susumu Taguchi
進 田口
Akira Goto
陽 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000186116A priority Critical patent/JP2002001810A/en
Publication of JP2002001810A publication Critical patent/JP2002001810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for relaxation heat treating to efficiently obtain a biaxially oriented polyester film having excellent thermally dimensional stability and low thermal shrinkage capable of correcting a heat shrinkage factor of the film even when there is a small distribution in the factor. SOLUTION: In the method for relaxation heat treating of the biaxially oriented polyester film comprising the step of relaxation heat treating the biaxially oriented polyester film while running the film from a preheating roll toward a cooling roll in a state in which the film is suspended, a means for locally heating and/or cooling at least one position of the film in a width direction and/or a longitudinal direction of the film is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二軸延伸ポリエステ
ルフィルムの熱処理方法に関し、更に詳しくは二軸延伸
されたポリエステルフィルムの弛緩熱処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat-treating a biaxially stretched polyester film, and more particularly to a method for relaxing heat treatment of a biaxially stretched polyester film.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレートフィルムに
代表される二軸延伸ポリエステルフィルムは、写真感光
フィルムのベースフィルムとして従来より広く使用され
ている。特に熱現像方式の写真感光材料用途では、使用
段階において80〜150℃で熱現像されることが多
く、熱負荷を受けても寸法ずれがなく重ねあわせて現像
できるような低熱収縮のフィルムが要望されている。
2. Description of the Related Art A biaxially stretched polyester film represented by a polyethylene terephthalate film has been widely used as a base film of a photographic photosensitive film. In particular, in the case of heat-sensitive photographic materials, the film is often heat-developed at a temperature of 80 to 150 ° C. in a use stage, and a low heat-shrinkable film that can be superposed and developed without dimensional deviation even under a heat load is demanded. Have been.

【0003】この要請に対して、二軸延伸ポリエステル
フィルムの製造工程中で熱固定温度を高く設定すること
で結晶化度を上げたり、フィルムの縦および横方向に弛
緩処理を施し低熱収縮化を図ることが行われている。し
かしフィルムの製膜工程中の処理だけでは所望の低熱収
縮フィルムを得られず、さらに二軸延伸ポリエステルフ
ィルムをオフラインで弛緩熱処理することが行われてき
た。
[0003] In response to this demand, the crystallinity is increased by setting the heat setting temperature high during the production process of the biaxially stretched polyester film, or the film is subjected to relaxation treatment in the longitudinal and transverse directions to reduce the heat shrinkage. A plan is being made. However, a desired low heat shrink film cannot be obtained only by the treatment during the film forming process, and a biaxially stretched polyester film has been subjected to relaxation heat treatment offline.

【0004】弛緩熱処理には種々の方法があり、例えば
懸垂状態で連続的に走行させたフィルムを特定の温度条
件下で弛緩することで熱収縮率を0.1%以下にする方
法が提案されている(特許1891172号公報)。し
かし、フィルムの製造工程では熱固定ゾーンに温度分布
があったり、フィルムの走行張力が不均一である理由か
ら、熱収縮率が幅方向に分布を持った状態で製膜化され
ており、このフィルムを従来技術にある弛緩熱処理方法
で処理するだけでは、製品の採り幅全体で所望の低熱収
縮化を実現できない問題があった。
There are various methods for relaxation heat treatment. For example, a method has been proposed in which a film continuously run in a suspended state is relaxed under a specific temperature condition to reduce the heat shrinkage to 0.1% or less. (Japanese Patent No. 1891172). However, in the film manufacturing process, there is a temperature distribution in the heat setting zone, or because the running tension of the film is not uniform, the film is formed with the heat shrinkage ratio having a distribution in the width direction. There is a problem in that the desired low heat shrinkage cannot be realized over the entire width of the product simply by treating the film with the relaxation heat treatment method of the related art.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
の問題を解消し、フィルムの熱収縮率に多少の分布があ
ってもこれを修正でき、熱寸法安定性に優れた低熱収縮
の二軸延伸ポリエステルフィルムを効率良く得るための
弛緩熱処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to correct even a small distribution of the heat shrinkage of a film, thereby achieving a low heat shrinkage with excellent thermal dimensional stability. An object of the present invention is to provide a relaxation heat treatment method for efficiently obtaining a biaxially stretched polyester film.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、二軸延
伸ポリエステルフィルムを懸垂した状態で予熱ロールか
ら冷却ロールに向かって走行させる間に弛緩熱処理する
方法において、該フィルムの幅方向および/または長手
方向の少なくとも一個所を局所的に加熱および/または
冷却する手段を設けることを特徴とする二軸延伸ポリエ
ステルフィルムの弛緩熱処理方法により解決できる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for performing a relaxation heat treatment while a biaxially stretched polyester film is suspended and run from a preheating roll toward a cooling roll. Alternatively, the problem can be solved by a method of heat treatment for relaxing a biaxially stretched polyester film, wherein a means for locally heating and / or cooling at least one portion in the longitudinal direction is provided.

【0007】[0007]

【発明の実施の形態】以下、図面を引用して本発明を説
明する。図1は、本発明の1つの実施態様を表わす弛緩
熱処理装置の1例を示す側面図である。図1で1は予熱
ロール、2は冷却ロール、3は二軸延伸ポリエステルフ
ィルム、4a〜4cは局所加熱用の赤外線ヒーター、5
はオーブン、6は赤外線ヒーター、aはフィルム3の走
行方向である。また、図2は局所加熱用ヒーター4a〜
4cを示す部分正面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a side view showing an example of a relaxation heat treatment apparatus representing one embodiment of the present invention. In FIG. 1, 1 is a preheating roll, 2 is a cooling roll, 3 is a biaxially stretched polyester film, 4a to 4c are infrared heaters for local heating, 5
Denotes an oven, 6 denotes an infrared heater, and a denotes a running direction of the film 3. FIG. 2 shows the local heaters 4a to 4c.
It is a partial front view showing 4c.

【0008】本発明で懸垂した状態でフィルムを走行さ
せるというのは、図1に示すように予熱ロール1から冷
却ロール2に向かってフィルム3を重力方向に走行させ
ることである。重力方向とフィルムの走行方向が一致し
ているため低張力下でも比較的安定してフィルムの平面
性を保ちつつ搬送し弛緩熱処理できる。懸垂状態にある
フィルムの張力は0.04〜0.5MPaが好ましく、
この下限値を下回るとフィルムが蛇行し、上限を超える
とフィルムの残留応力が緩和しきれず、十分な低熱収縮
フィルムを得ることが難しい。懸垂状態にあるフィルム
の張力は、更に好ましくは0.08〜0.40Mpaで
ある。
In the present invention, running the film in a suspended state means moving the film 3 in the direction of gravity from the preheating roll 1 to the cooling roll 2 as shown in FIG. Since the direction of gravity and the running direction of the film coincide, the film can be transported and heat-relaxed relatively stably even under low tension while maintaining the flatness of the film. The tension of the suspended film is preferably 0.04 to 0.5 MPa,
When the value is below the lower limit, the film meanders. When the value exceeds the upper limit, the residual stress of the film cannot be alleviated, and it is difficult to obtain a sufficiently low heat shrinkable film. The tension of the suspended film is more preferably 0.08 to 0.40 Mpa.

【0009】本発明の好ましい特徴は、弛緩熱処理時の
フィルムの最高到達温度をフィルムの幅方向の特定の位
置で調整でき、強いては弛緩熱処理後の熱収縮量を調整
できる様に加熱手段4a〜4c(局所加熱用の赤外線ヒ
ーター)を設けたことである。
A preferred feature of the present invention is that the maximum temperature of the film at the time of the relaxation heat treatment can be adjusted at a specific position in the width direction of the film and, at the very least, the amount of heat shrinkage after the relaxation heat treatment can be adjusted. 4c (infrared heater for local heating).

【0010】フィルムの最高到達温度は(Tg+50)
〜(Tg+150)℃(ここでTgはポリエステルのガ
ラス転移温度)の範囲が好ましく、オーブン5内に設け
た赤外線ヒーター6と予熱ロール1によりこの温度範囲
に調整する。この際、熱弛緩処理前のフィルムの熱収縮
率が幅方向に概略一定であれば、オーブン内を均等な温
度条件または張力条件にすることで、均一性を維持しつ
つ低熱収縮化を図れることになる。
The maximum temperature of the film is (Tg + 50)
To (Tg + 150) ° C. (where Tg is the glass transition temperature of the polyester). The temperature is adjusted to this temperature range by the infrared heater 6 and the preheating roll 1 provided in the oven 5. At this time, if the heat shrinkage ratio of the film before the heat relaxation treatment is substantially constant in the width direction, it is possible to reduce the heat shrinkage while maintaining uniformity by maintaining the uniform temperature or tension in the oven. become.

【0011】しかし、先にも述べた通りフィルムの熱収
縮率は分布を持っている場合が有り、この場合は積極的
に到達温度を変えて熱収縮率を制御することが必要とな
る。具体的には、部分的に熱収縮率が高い部分がある場
合は、弛緩熱処理後も該当部の熱収縮が高くなるので、
その部分に対応する局所加熱用の赤外線ヒーターを用い
て予め高温にフィルムを予熱し到達温度を高め、高温下
での保持時間を稼ぐことで部分的な低熱収縮化を図れ
る。
However, as described above, the thermal shrinkage of the film may have a distribution, and in this case, it is necessary to actively change the attainable temperature to control the thermal shrinkage. Specifically, if there is a portion having a high heat shrinkage rate in part, since the heat shrinkage of the corresponding portion becomes high even after the relaxation heat treatment,
The film is preheated to a high temperature in advance by using an infrared heater for local heating corresponding to the portion, the ultimate temperature is increased, and the holding time at a high temperature is increased, so that the heat shrinkage can be partially reduced.

【0012】局所加熱用の赤外線ヒーターは両端と中央
に合計3つ配置する場合を例示しているが、両端近傍に
のみ配置し左右の熱収縮量をコントロールしても良く、
逆にヒーターを多数並べて段階的に加熱量を調整しても
良い。また、フィルムの搬送速度が20m/分を超える
ような比較的速い速度の時は、フィルムの受熱量の不足
を補う目的で、あるいは予熱過程の応答性を上げる目的
で、フィルムの長手方向に局所加熱手段を並べることで
本発明の目的を達せられる。
The case where three infrared heaters for local heating are arranged at both ends and the center in total is illustrated. However, the infrared heaters may be arranged only near both ends to control the amount of heat shrinkage on the left and right.
Conversely, a large number of heaters may be arranged to adjust the heating amount stepwise. When the film is transported at a relatively high speed such as exceeding 20 m / min, the film is locally moved in the longitudinal direction of the film in order to compensate for the shortage of the heat received by the film or to increase the response of the preheating process. By arranging the heating means, the object of the present invention can be achieved.

【0013】局所加熱手段は、赤外線ヒーターの様に輻
射熱でフィルムを加熱する手段、あるいは個々に温調し
た狭幅のロールを幾つか並べてフィルムに押し当て、接
触熱伝達により加熱する手段、また面状ヒーターを並べ
て非接触に加熱する手段を例示できる。また、予熱ロー
ルの表面を部分的に加熱し、予熱温度を幅方向に制御し
ても良い。
The local heating means may be a means for heating the film by radiant heat, such as an infrared heater, or a means for arranging several individually controlled narrow width rolls against the film and heating the film by contact heat transfer. Means for arranging the heaters in a non-contact manner and arranging them in a non-contact manner can be exemplified. Further, the surface of the preheating roll may be partially heated to control the preheating temperature in the width direction.

【0014】応答性は劣るが局所加熱手段の代わりに冷
却手段を用いても本発明の目的を達成できる。この場合
は、弛緩熱処理前のフィルムで部分的に熱収縮率が低い
部分を予め冷却し、フィルムの到達温度を低くすれば良
い。この冷却手段は、冷却水を循環させた狭幅ロールを
フィルムに押し当て接触熱伝達により冷却する手段やス
リットノズルから冷風をフィルムに送風し、強制熱伝達
によりフィルムを冷却する手段を例示できる。
Although the response is inferior, the object of the present invention can be achieved by using a cooling means instead of the local heating means. In this case, a portion of the film before the relaxation heat treatment that has a low heat shrinkage may be cooled in advance to lower the temperature reached by the film. Examples of the cooling unit include a unit that presses a narrow roll having circulated cooling water against the film and cools the film by contact heat transfer, and a unit that sends cool air from a slit nozzle to the film and cools the film by forced heat transfer.

【0015】また、加熱手段と冷却手段を混在させても
より精密な熱収縮率の調整ができる。これらの局所加熱
および/または冷却手段は例示したもの以外に従来から
知られ、使用されている手段を用いることができる。こ
れらの手段はオーブン内にあっても本発明の目的を達せ
られるが、オーブン内ではフィルムのみならず空気も加
熱され部分的に上昇気流が生じ気流が乱れるためオーブ
ン内の温度が安定しないといった弊害があり、調整量を
制約される場合がある。
Further, even if the heating means and the cooling means are mixed, the heat shrinkage can be adjusted more precisely. As these local heating and / or cooling means, means conventionally known and used besides those exemplified above can be used. These means can achieve the object of the present invention even in an oven. However, in the oven, not only the film but also the air is heated, and a partial ascending air current is generated to disturb the air flow, so that the temperature in the oven is not stable. Therefore, the adjustment amount may be restricted.

【0016】本発明では弛緩熱処理する前の該フィルム
の熱収縮率を幅方向に少なくとも3点以上測定し、その
結果に基づき目標値を設定し加熱冷却手段の調整量を制
御することを特徴とする。目標値の設定は、弛緩熱処理
後に要求される熱収縮量の範囲内であれば良いが、次の
3例を例示できる。 測定した熱収縮率の最大値をSmax、最小値をSm
inとし、(Smax−Smin)/2を目標値として
該加熱冷却量を調整する。 測定した熱収縮率の最小値を目標値として該加熱量を
調整する。 測定した熱収縮率の最大値を目標値として該冷却量を
調整する。
In the present invention, the heat shrinkage of the film before the relaxation heat treatment is measured at least at three or more points in the width direction, a target value is set based on the result, and the adjustment amount of the heating / cooling means is controlled. I do. The setting of the target value may be within the range of the heat shrinkage required after the relaxation heat treatment, but the following three examples can be exemplified. The maximum value of the measured heat shrinkage is Smax, and the minimum value is Sm.
and the heating / cooling amount is adjusted with (Smax−Smin) / 2 as the target value. The heating amount is adjusted with the minimum value of the measured heat shrinkage as a target value. The cooling amount is adjusted using the maximum value of the measured heat shrinkage as a target value.

【0017】また、フィルムの製造工程や弛緩熱処理工
程ではフィルムに張力を付与し搬送しながらの処理とな
る。低熱収縮化は残留応力の緩和であり、熱収縮率は走
行張力の分布に敏感となる。従って、矯正すべき熱収縮
率の目標値はフィルムの長手方向の値となることが多
い。
In the film manufacturing process and the relaxation heat treatment process, the film is treated while applying tension to the film and transporting the film. Low heat shrinkage is relaxation of residual stress, and the heat shrinkage becomes sensitive to the distribution of running tension. Therefore, the target value of the heat shrinkage to be corrected is often a value in the longitudinal direction of the film.

【0018】オーブン出口(冷却ロールに至る直前)で
のフィルムの温度差は幅方向に12℃以下が好ましく、
これを超えるとオーブン内の弛緩熱処理条件や加熱空気
による上昇気流とフィルムの随伴流による下降気流の整
流化が適正でなく、均一な低熱収縮化といった本発明の
目的を達せられないことがある。
The temperature difference of the film at the outlet of the oven (immediately before reaching the cooling roll) is preferably 12 ° C. or less in the width direction.
If it exceeds this, the heat treatment conditions in the oven and the rectification of the rising airflow due to the heated air and the descending airflow due to the accompanying flow of the film are not appropriate, and the object of the present invention such as uniform low heat shrinkage may not be achieved.

【0019】本発明においてポリエステルフィルムを構
成するポリエステルは、芳香族二塩基酸またはそのエス
テル形成性誘導体とジオールまたはそのエステル形成性
誘導体とから合成される線状飽和ポリエステルである。
ポリエステルの具体例として、ポリエチレンテレフタレ
ート、ポリエチレンイソフタレート、ポリブチレンテレ
フタレート、ポリ(1,4−シクロヘキシレンジメチレ
ンテレフタレート)、ポリエチレン−2,6−ナフタレ
ンジカルボキシレート等が例示でき、これらの共重合体
またはこれらと小割合の他樹脂とのブレンド物等も含ま
れる。これらのポリエステルのうち、ポリエチレンテレ
フタレート或いはポリエチレン−2,6−ナフタレンジ
カルボキシレートが特に好ましい。
In the present invention, the polyester constituting the polyester film is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
Specific examples of the polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylene dimethylene terephthalate), and polyethylene-2,6-naphthalenedicarboxylate. Alternatively, a blend of these with a small proportion of another resin is also included. Of these polyesters, polyethylene terephthalate or polyethylene-2,6-naphthalenedicarboxylate is particularly preferred.

【0020】ポリエステルには、フィルムの滑り性、加
工性などの点から滑剤、例えば炭酸カルシウム、カオリ
ン、シリカ、酸化チタン、アルミナ、架橋ポリスチレン
粒子、シリコン樹脂粒子などの添加微粒子及び/または
触媒残渣の析出微粒子等を含有させることが好ましい。
また、他の添加剤、例えば顔料、安定剤、紫外線吸収剤
等を必要に応じて含有させることができる。
In the polyester, a lubricant such as calcium carbonate, kaolin, silica, titanium oxide, alumina, crosslinked polystyrene particles, silicon resin particles and the like, and / or a catalyst residue may be added to the polyester film in view of the slipperiness and processability of the film. It is preferable to include precipitated fine particles and the like.
Further, other additives such as a pigment, a stabilizer, an ultraviolet absorber and the like can be contained as required.

【0021】本発明で用いる二軸延伸・熱固定したポリ
エステルフィルムは、従来から知られている方法で製造
することがきる。例えば、上記ポリエステルを乾燥後ポ
リマー融点Tm〜(Tm+70)℃の温度で溶融し、ダ
イから冷却ドラムに押出し、急冷して固有粘度0.35
〜0.9dl/gの未延伸フィルムを得て、該未延伸フ
ィルムを縦方向に(Tg−10)〜(Tg+70)℃の
温度(但し、Tgはポリエステルのガラス転移温度であ
る)で2.5〜5.0倍の倍率で延伸し、次いでテンタ
で横方向にTg〜(Tg+70)℃の温度で2.5〜
5.0倍の倍率で延伸し、更に(Tg+70)〜Tm℃
の温度で熱固定することで製造することができる。ま
た、ポリエチレンテレフタレートフィルムについては1
90〜240℃で熱固定するのが好ましい。熱固定時間
は1〜60秒が好ましい。
The biaxially stretched and heat-set polyester film used in the present invention can be produced by a conventionally known method. For example, after drying the above polyester, it is melted at a polymer melting point of Tm to (Tm + 70) ° C., extruded from a die to a cooling drum, quenched, and cooled to an intrinsic viscosity of 0.35.
To 0.9 dl / g of an unstretched film, and the unstretched film is vertically stretched at a temperature of (Tg-10) to (Tg + 70) ° C (where Tg is the glass transition temperature of the polyester). The film is stretched at a magnification of 5 to 5.0 times, and then transversely stretched with a tenter at a temperature of Tg to (Tg + 70) ° C at a temperature of 2.5 to 2.5.
Stretched at a magnification of 5.0 times, and then (Tg + 70) to Tm ° C.
It can be manufactured by heat-setting at a temperature of For polyethylene terephthalate film, 1
It is preferable to heat set at 90 to 240 ° C. The heat setting time is preferably 1 to 60 seconds.

【0022】[0022]

【実施例】以下、実施例によって本発明をさらに説明す
る。尚、各特性または製品フィルムの評価は以下の方法
で測定し、または定義されるものを採用した。
The present invention will be further described with reference to the following examples. In addition, each characteristic or evaluation of the product film was measured by the following method, or a defined one was employed.

【0023】(1)120℃熱収縮率 弛緩熱処理後の支持体を、測定方向250mm×幅50
mmに裁断する。これに200mm間隔に孔を2点開
け、25℃60%RHで12時間以上湿調後、ピンゲー
ジを用いて孔間距離を測定する(この長さをL1(m
m)とする)。この後、120℃に加熱したステンレス
板に20秒間押付ける。この後、25℃60%RHで1
2時間以上湿調後、再びピンゲージを用いて孔間距離を
測定する(この長さをL2(mm)とする)。そして下
記式に基づき熱寸法変化率を求めた。
(1) Heat shrinkage at 120 ° C.
Cut to mm. Two holes are formed at intervals of 200 mm, the humidity is adjusted at 25 ° C. and 60% RH for 12 hours or more, and the distance between the holes is measured using a pin gauge (this length is defined as L 1 (m
m)). Then, it is pressed on a stainless steel plate heated to 120 ° C. for 20 seconds. Then, at 25 ° C and 60% RH,
After the humidity control for 2 hours or more, the distance between the holes is measured again using a pin gauge (this length is defined as L 2 (mm)). Then, the thermal dimensional change rate was determined based on the following equation.

【0024】[0024]

【数1】120℃熱収縮率(%)=100×(L1
2)/L1 熱収縮率はフィルムのMD方向(長手方向)とTD方向
(横方向)の値を、幅方向のセンター(C)と両端近傍
(F、B)で測定した。また、熱収縮率は正が縮みを、
負は伸びを表わす。
## EQU1 ## Heat shrinkage (%) at 120 ° C. = 100 × (L 1
L 2 ) / L 1 The heat shrinkage was determined by measuring the values of the film in the MD direction (longitudinal direction) and TD direction (lateral direction) at the center (C) in the width direction and near both ends (F, B). In addition, the heat shrinkage ratio is positive,
Negative values indicate elongation.

【0025】(2)150℃熱収縮率 測定方向350mm、幅50mmのサンプルを切り出
し、サンプルの長手方向の両端近傍300mm間隔に標
点を付け、150℃の温度に調整されたオーブンに一端
固定、他端フリーで30分間放置する。これを取り出し
室温で標点間距離を測定し(この長さをL3(mm)と
する)、下記式にて熱収縮率を求める。
(2) Heat shrinkage at 150 ° C. A sample having a length of 350 mm and a width of 50 mm in a measuring direction was cut out, and marked points were placed at intervals of 300 mm near both ends in the longitudinal direction of the sample, and one end was fixed to an oven adjusted to a temperature of 150 ° C. Leave the other end free for 30 minutes. This is taken out and the distance between the gauges is measured at room temperature (this length is defined as L 3 (mm)), and the heat shrinkage is calculated by the following equation.

【0026】[0026]

【数2】150℃熱収縮率(%)=100×(300−
3)/300 熱収縮率はフィルムのMD方向(長手方向)とTD方向
(横方向)の値を、幅方向のセンター(C)と両端近傍
(F、B)で測定した。また、熱収縮率は正が縮みを、
負は伸びを表わす。
## EQU2 ## Thermal shrinkage at 150 ° C. (%) = 100 × (300−
L 3 ) / 300 The heat shrinkage was measured in the MD (longitudinal) and TD (transverse) directions of the film at the center (C) in the width direction and near both ends (F, B). In addition, the heat shrinkage ratio is positive,
Negative values indicate elongation.

【0027】(3)出口のフィルム温度 オーブンを出てから100mmの位置のフィルム温度を
放射温度計で幅方向等間隔に10点測定し、その最大値
と最小値の差をフィルムの温度差とした。
(3) Film temperature at the outlet The film temperature at 100 mm after exiting the oven is measured at equal intervals in the width direction at 10 points using a radiation thermometer, and the difference between the maximum value and the minimum value is determined as the film temperature difference. did.

【0028】(4)ガラス転移温度(Tg) 試料10mgをパーキンエルマ社製のDSC装置(示差
走査熱量計)にセットし、試料を300℃の温度で5分
間溶融した後、液体窒素中で急冷し、この急冷試料を1
0℃/分で昇温してガラス転移温度(Tg)を測定し
た。
(4) Glass transition temperature (Tg) A sample (10 mg) was set in a DSC device (differential scanning calorimeter) manufactured by PerkinElmer, and the sample was melted at a temperature of 300 ° C. for 5 minutes and then quenched in liquid nitrogen. Then, this quenched sample is
The temperature was raised at 0 ° C./min, and the glass transition temperature (Tg) was measured.

【0029】(5)熱収縮率の均一性 弛緩熱処理後の熱収縮率の生産管理範囲として120℃
20秒の熱収縮率がMD方向に0.02〜0.08、T
D方向に−0.05〜−0.01とした。 ○:熱収縮率がすべて管理範囲内に納まっている。 △:熱収縮率はすべて管理範囲内であるが、その内一つ
以上が規格ボーダー値であり警告レベルである。 ×:熱収縮率の一つ以上が管理範囲外となる。
(5) Uniformity of heat shrinkage rate The production control range of the heat shrinkage rate after the relaxation heat treatment is 120 ° C.
The heat shrinkage for 20 seconds is 0.02-0.08 in the MD direction, T
-0.05 to -0.01 in the D direction. :: All the heat shrinkage rates were within the control range. Δ: The heat shrinkage ratios are all within the control range, but one or more of them are the standard border values and are at the warning level. X: One or more of the thermal shrinkage rates are out of the control range.

【0030】[実施例1]固有粘度(o−クロロフェノ
ール溶液、35℃)が0.65のポリエチレンテレフタ
レート(Tg:70℃)のペレットを180℃で5時間
乾燥した後に、270〜300℃に加熱された押出し機
に供給し、押出し成形ダイによりシート状に成形した。
さらにこのフィルムを表面温度25℃の冷却ドラム上に
静電気で密着固化させて、未延伸フィルムを得た。
Example 1 A pellet of polyethylene terephthalate (Tg: 70 ° C.) having an intrinsic viscosity (o-chlorophenol solution, 35 ° C.) of 0.65 was dried at 180 ° C. for 5 hours, and then dried at 270 to 300 ° C. The mixture was fed to a heated extruder and formed into a sheet by an extrusion die.
Further, this film was adhered and solidified by static electricity on a cooling drum having a surface temperature of 25 ° C. to obtain an unstretched film.

【0031】次いでこの未延伸フィルムを75℃に予熱
し、80〜100℃の加熱ロール群で加熱し縦方向に
3.1倍に縦延伸し、20〜50℃のロール群で冷却
し、続いてテンタへ導き、該フィルムの両端をクリップ
で把持しながら、120℃の熱雰囲気中で横方向に3.
9倍に延伸した。
Next, this unstretched film is preheated to 75 ° C., heated by a group of heating rolls at 80 to 100 ° C., stretched 3.1 times in the machine direction, cooled by a group of rolls at 20 to 50 ° C. 2. While holding the film at both ends with clips, the film is moved laterally in a hot atmosphere at 120 ° C.
Stretched 9 times.

【0032】こうして二軸延伸されたフィルムをそのま
まテンタ内で引き続き235℃の温度で5秒間熱固定
し、この間に1.5%幅弛緩し、熱処理後一旦180℃
まで冷却後、熱風を吹き出さないゾーンにてフィルムの
エッジ部を切り放した後、引取り速度を1.5%減じて
弛緩し、180℃から110℃まで徐冷しテンタから取
り出し、室温で90℃まで冷えたフィルムを75℃の引
取りロールで引取り、室温〜50℃の領域にまで冷えた
フィルムを巻き取った。
The film thus biaxially stretched is heat-set in a tenter as it is at 235 ° C. for 5 seconds, during which the width is relaxed by 1.5%.
After cooling the film, the edge of the film was cut off in a zone where hot air was not blown out, the film was relaxed by reducing the take-off speed by 1.5%, gradually cooled from 180 ° C to 110 ° C, taken out of the tenter, and cooled at room temperature to 90 ° C. The film cooled to 0 ° C. was taken up by a take-up roll at 75 ° C., and the film cooled to a region of room temperature to 50 ° C. was wound.

【0033】さらに得られた厚さ100μmの二軸延伸
フィルムのロールを1500mm幅のロール2本(Aと
B)にスリットして巻き取った。フィルムロールAの1
50℃の熱収縮率を表1に示す。
Further, the obtained roll of the biaxially stretched film having a thickness of 100 μm was slit into two rolls (A and B) having a width of 1500 mm and wound up. 1 of film roll A
Table 1 shows the heat shrinkage at 50 ° C.

【0034】得られたフィルムロールAを図1、図2に
示した本発明の方法によって懸垂式の弛緩熱処理を行っ
た。オーブン5の長さが4m、フィルム3の搬送速度が
12m/min、オーブン内でのフィルムの到達温度が
およそ150℃になるように予熱ロール1および赤外線
ヒーター6の温度を調整した。
The obtained film roll A was subjected to a suspension-type relaxation heat treatment according to the method of the present invention shown in FIGS. The temperature of the preheating roll 1 and the temperature of the infrared heater 6 were adjusted such that the length of the oven 5 was 4 m, the transport speed of the film 3 was 12 m / min, and the ultimate temperature of the film in the oven was about 150 ° C.

【0035】さらに、事前に測定した150℃のMD方
向の熱収縮率がフィルムの両端で大きくなる分布であっ
たため、局所加熱用赤外線ヒーターの内、両端の4aと
4cを共にヒーターの表面温度が200℃になるまで加
熱し、弛緩熱処理を行った。その結果を表1に示す。
Furthermore, since the heat shrinkage in the MD direction at 150 ° C. measured in advance was such that the distribution became large at both ends of the film, the surface temperature of both ends 4a and 4c of the infrared heater for local heating was reduced. Heating was performed until the temperature reached 200 ° C., and relaxation heat treatment was performed. Table 1 shows the results.

【0036】[実施例2]実施例1で得られた二軸延伸
フィルムロールBの150℃の熱収縮率を表1に示す。
MD方向の熱収縮率がフィルムの一端から他端に向けて
大きくなる分布であったので、局所加熱用赤外線ヒータ
ーの内、中央の4bと端部の4cをそれぞれヒーターの
表面温度が200℃、300℃になるまで加熱し、これ
以外の条件は実施例1と同様の弛緩熱処理条件で処理を
行った。これらの結果を表1に示す。
Example 2 Table 1 shows the heat shrinkage at 150 ° C. of the biaxially stretched film roll B obtained in Example 1.
Since the heat shrinkage in the MD direction was distributed from one end to the other end of the film, the surface temperature of the center 4b and the end 4c of the infrared heater for local heating was 200 ° C., respectively. Heating was performed to 300 ° C., and the treatment was performed under the same relaxation heat treatment conditions as in Example 1 except for these conditions. Table 1 shows the results.

【0037】[比較例1および2]局所加熱用赤外線ヒ
ーター4a〜4Cを発熱させない以外は、実施例1およ
び実施例2と同様の製膜条件、弛緩熱処理条件にて処理
を行い、それぞれ比較例1および2とした。これらの結
果を表1に示す。
[Comparative Examples 1 and 2] Except that the local heating infrared heaters 4a to 4C were not heated, processing was carried out under the same film forming conditions and relaxation heat treatment conditions as in Examples 1 and 2, respectively. 1 and 2. Table 1 shows the results.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から、本発明によれば熱収縮率が均一
で低熱収縮の二軸延伸ポリエステルフィルムを生産でき
ることが明らかである。
It is apparent from Table 1 that the present invention can produce a biaxially oriented polyester film having a uniform heat shrinkage and a low heat shrinkage.

【0040】[0040]

【発明の効果】本発明の弛緩熱処理方法によれば、熱収
縮率の均一性に優れ低熱収縮の二軸延伸ポリエステルフ
ィルムを効率良く得ることができる。
According to the relaxation heat treatment method of the present invention, a biaxially oriented polyester film having excellent heat shrinkage uniformity and low heat shrinkage can be efficiently obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施形態を示す弛緩熱処理装置
の側面図。
FIG. 1 is a side view of a relaxation heat treatment apparatus showing one embodiment of the present invention.

【図2】局所加熱用ヒーター4a〜4cを示す部分正面
図。
FIG. 2 is a partial front view showing heaters for local heating 4a to 4c.

【符号の説明】[Explanation of symbols]

1 予熱ロール 2 冷却ロール 3 二軸延伸ポリエステルフィルム 4a〜4c 局所加熱用の赤外線ヒーター 5 オーブン 6 赤外線ヒーター a フィルム3の走行方向 DESCRIPTION OF SYMBOLS 1 Preheating roll 2 Cooling roll 3 Biaxially stretched polyester film 4a-4c Infrared heater for local heating 5 Oven 6 Infrared heater a Running direction of film 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 陽 神奈川県相模原市小山3丁目37番19号 帝 人株式会社相模原研究センター内 Fターム(参考) 4F210 AA24 AE01 AG01 AK01 AK04 QA02 QA03 QC06 QG01 QG18 QW09 QW12 RG43  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yo Goto 3-37-19 Koyama, Sagamihara-shi, Kanagawa F-term in Sagamihara Research Center, Teijin Limited 4F210 AA24 AE01 AG01 AK01 AK04 QA02 QA03 QC06 QG01 QG18 QW09 QW12 RG43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二軸延伸ポリエステルフィルムを懸垂し
た状態で予熱ロールから冷却ロールに向かって走行させ
る間に弛緩熱処理する方法において、弛緩熱処理する前
のフィルムの幅方向および/または長手方向の少なくと
も一個所を局所的に加熱および/または冷却する手段を
設けることを特徴とする二軸延伸ポリエステルフィルム
の弛緩熱処理方法。
1. A method of performing a relaxation heat treatment while running a biaxially stretched polyester film in a suspended state from a preheating roll to a cooling roll, wherein at least one of the film in the width direction and / or the longitudinal direction before the relaxation heat treatment is applied. A method for relaxing heat treatment of a biaxially stretched polyester film, comprising providing means for locally heating and / or cooling a place.
【請求項2】 冷却ロールに至る直前のフィルムの幅方
向の温度差が12℃以下である請求項1に記載の二軸延
伸ポリエステルフィルムの弛緩熱処理方法。
2. The method according to claim 1, wherein the temperature difference in the width direction of the film immediately before reaching the cooling roll is 12 ° C. or less.
【請求項3】 弛緩熱処理する前のフィルムの幅方向に
少なくとも3ヶ所以上で熱収縮率を測定し、その結果に
基づき加熱量および/または冷却量を調整する請求項1
または2に記載の二軸延伸ポリエステルフィルムの弛緩
熱処理方法。
3. The heat shrinkage is measured at least at three or more locations in the width direction of the film before the relaxation heat treatment, and the heating amount and / or the cooling amount are adjusted based on the result.
Or the method of relaxing heat treatment of the biaxially stretched polyester film according to 2.
【請求項4】 弛緩熱処理する前に測定するフィルムの
熱収縮率がフィルムの長手方向の熱収縮率である請求項
1〜3のいずれか1項に記載の二軸延伸ポリエステルフ
ィルムの弛緩熱処理方法。
4. The method according to claim 1, wherein the heat shrinkage of the film measured before the relaxation heat treatment is a heat shrinkage in the longitudinal direction of the film. .
JP2000186116A 2000-06-21 2000-06-21 Method for relaxation heat treating biaxially oriented polyester film Pending JP2002001810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186116A JP2002001810A (en) 2000-06-21 2000-06-21 Method for relaxation heat treating biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186116A JP2002001810A (en) 2000-06-21 2000-06-21 Method for relaxation heat treating biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JP2002001810A true JP2002001810A (en) 2002-01-08

Family

ID=18686336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186116A Pending JP2002001810A (en) 2000-06-21 2000-06-21 Method for relaxation heat treating biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP2002001810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
US20110160425A1 (en) * 2008-09-05 2011-06-30 Kolon Industries, Inc. Polyester film and manufacturing method thereof
KR20160087947A (en) * 2015-01-14 2016-07-25 주식회사 석원 Low shrinkage film producting apparatus and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110160425A1 (en) * 2008-09-05 2011-06-30 Kolon Industries, Inc. Polyester film and manufacturing method thereof
US9453114B2 (en) * 2008-09-05 2016-09-27 Kolon Industries, Inc. Polyester film and manufacturing method thereof
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
KR20160087947A (en) * 2015-01-14 2016-07-25 주식회사 석원 Low shrinkage film producting apparatus and method of manufacturing the same
KR101709968B1 (en) * 2015-01-14 2017-02-27 주식회사 석원 Low shrinkage film producting apparatus and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5885501A (en) Process for preparing dimensionally stabilized biaxially stretched thermoplastic film
EP0748273B1 (en) Method of making biaxially oriented thermoplastic films
EP1038653B1 (en) Method of producing biaxially stretched polyester film
EP0944468B1 (en) Film bead heating for simultaneous stretching
JP3765681B2 (en) Production method of polyester film
US5076977A (en) Process for controlling curl in polyester film
JP2999379B2 (en) Relaxation heat treatment method for stretched film
JP2002001810A (en) Method for relaxation heat treating biaxially oriented polyester film
JP2018047593A (en) Method for producing film
JPH01275031A (en) Method of heat treating biaxially oriented polyester film
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JPS62183328A (en) Manufacture of biaxially oriented film and device used for this method
JP3676156B2 (en) Heat treatment method for biaxially stretched polyester film
JP2002144421A (en) Method for heat treating biaxially stretched polyester film
JP2001322166A (en) Method for heat-treating biaxially stretched polyester film
JPH03284934A (en) Manufacture of biaxially oriented polyester film
JP3367129B2 (en) Method for producing polyester film
JP2002301762A (en) Manufacturing method for biaxially oriented polyester film
JPH08174661A (en) Production of biaxially oriented polyester film
JP2002192609A (en) Manufacturing method of biaxially oriented polyester film
JPH04292937A (en) Manufacture of thermoplastic resin film
JP2003211534A (en) Film manufacturing method
JP4810747B2 (en) Method for producing biaxially stretched polyester film
KR970002306B1 (en) Forming method for polyester film
JPH10119124A (en) Method and apparatus for producing plastic film