[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002001069A - Method for producing pure water - Google Patents

Method for producing pure water

Info

Publication number
JP2002001069A
JP2002001069A JP2000186516A JP2000186516A JP2002001069A JP 2002001069 A JP2002001069 A JP 2002001069A JP 2000186516 A JP2000186516 A JP 2000186516A JP 2000186516 A JP2000186516 A JP 2000186516A JP 2002001069 A JP2002001069 A JP 2002001069A
Authority
JP
Japan
Prior art keywords
water
membrane
concentration
stage
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000186516A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000186516A priority Critical patent/JP2002001069A/en
Publication of JP2002001069A publication Critical patent/JP2002001069A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce pure water which is high in purity and stable in quality by improving the efficiency of CO2 elimination in a membrane deaerator, in a method for producing pure water by the use of R0 apparatuses and the membrane deaerator. SOLUTION: In the method for producing pure water, raw water, after being conditioned to have pH 4-7.5 and CO2 concentration of 10 mg/L or below, is passed through the R0 apparatuses 2 and 3 to be subjected to multi-stage R0 desalination treatment and passed through the membrane deaerator 4 to be deaerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は純水製造方法に係
り、特に、逆浸透膜脱塩装置(以下「RO装置」と称
す。)による脱塩処理と膜脱気装置による脱気処理とを
採用した純水製造方法において、膜脱気装置における脱
CO効率を高めて高純度で安定した水質の純水を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water, and more particularly to a method for desalination using a reverse osmosis membrane desalination apparatus (hereinafter referred to as "RO apparatus") and deaeration processing using a membrane deaeration apparatus. The present invention relates to a method for producing pure water having high purity and stable water quality by increasing the CO 2 removal efficiency in a membrane deaerator in an adopted pure water production method.

【0002】[0002]

【従来の技術】半導体製造工程等で使用される純水を、
逆浸透膜脱塩処理(以下「RO処理」と称す。)により
製造する方法として、従来、次のような方法が提案され
ている。 市水等の原水に酸を添加して脱炭酸処理した後、ア
ルカリを添加して2段に直列配置したRO装置に順次通
水して2段RO処理する方法 原水に酸を添加して膜脱気装置で脱気処理した後、
アルカリを添加して2段に直列配置したRO装置に順次
通水して2段RO処理する方法 即ち、超純水の比抵抗に最終的に影響するのは主に炭酸
(CO)成分(炭酸、炭酸イオン、重炭酸イオン)の
除去度合いであり、炭酸成分を効果的に除去できること
が超純水製造において重要であることから、上記,
の方法では、RO処理に先立ち、原水に酸を添加して原
水中の炭酸成分をCO化し、脱炭酸塔や膜脱気装置で
脱炭酸処理を行う。また、いずれの方法でも、アルカリ
を添加して水中の炭酸成分をHCO 化し、RO装置
で除去している。
2. Description of the Related Art Pure water used in a semiconductor manufacturing process or the like is
The following method has been conventionally proposed as a method for producing by reverse osmosis membrane desalination treatment (hereinafter referred to as “RO treatment”). A method in which acid is added to raw water such as city water to perform decarboxylation treatment, then alkali is added, and water is sequentially passed through RO devices arranged in two stages in series to perform two-stage RO treatment. After deaeration with a deaerator,
A method in which an alkali is added and water is sequentially passed through RO devices arranged in series in two stages to perform a two-stage RO treatment. That is, the final influence on the specific resistance of ultrapure water is mainly a carbonic acid (CO 2 ) component ( (Carbonic acid, carbonate ion, bicarbonate ion), since it is important in the production of ultrapure water to effectively remove the carbonic acid component.
In the method (1), prior to the RO treatment, an acid is added to the raw water to convert the carbonic acid component in the raw water into CO 2 , and the decarbonation is performed using a decarbonation tower or a membrane deaerator. Further, in any way, HCO 3 the carbonate component in water and adding alkali - turned into, are removed by RO device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の純水製造方法では、通常の塩類は十分に除去される
が、炭酸成分の除去という観点では、必ずしも十分であ
るとは言えなかった。即ち、の方法では、脱炭酸塔に
より炭酸を除去するが、脱炭酸塔でのCO除去は不十
分な場合があり、また、の方法では脱COのための
膜脱気装置をRO装置の前段に配置するため、脱気膜が
汚染されて性能低下を引き起こす場合があり、いずれも
CO除去が安定しない。
However, in the above-described conventional method for producing pure water, ordinary salts are sufficiently removed, but it is not always sufficient from the viewpoint of removing carbonic acid components. That is, in the method (2), carbon dioxide is removed by a decarbonation tower, but CO 2 removal in the decarbonation tower may be insufficient. In the method ( 2) , a membrane deaerator for CO 2 removal is provided by an RO apparatus. In some cases, the deaeration film may be contaminated to cause performance degradation, and in any case, CO 2 removal is not stable.

【0004】本発明は上記従来の問題点を解決し、RO
装置と膜脱気装置とを用いて純水を製造する方法におい
て、膜脱気装置における脱CO効率を高め、高純度で
安定した水質の純水を製造する方法を提供することを目
的とする。
[0004] The present invention solves the above-mentioned conventional problems and provides an RO
In a method for producing pure water using an apparatus and a membrane deaerator, it is an object to provide a method for increasing pure CO 2 efficiency in a membrane deaerator and producing pure water with high purity and stable water quality. I do.

【0005】[0005]

【課題を解決するための手段】本発明の純水製造方法
は、被処理水をpH4〜7.5、CO濃度10mg/
L以下に調整した後、2段以上の多段に直列配置された
逆浸透膜脱塩装置に順次通水して脱塩処理し、次いで膜
脱気装置に通水して脱気処理することを特徴とする。
According to the method for producing pure water of the present invention, the water to be treated has a pH of 4 to 7.5 and a CO 2 concentration of 10 mg / water.
After adjusting to L or less, water is sequentially passed through a reverse osmosis membrane desalination device arranged in series in two or more stages to perform desalination treatment, and then water is passed through a membrane deaeration device to perform deaeration treatment. Features.

【0006】本発明では、被処理水のCO濃度が10
mg/L以下となるように予めCO を除去するため、
後段の膜脱気装置におけるCO負荷を軽減して効率的
なCO除去を行える。即ち、膜脱気装置におけるCO
除去は、pH条件によるHCO ⇔CO+H
の解離平衡に左右されるが、この平衡のズレは、CO
が低濃度である程大きいため、CO濃度が10mg/
L以下となるように予めCOを低減しておくことで、
膜脱気装置において、効率的なCO除去を行える。
[0006] In the present invention, the CO2Concentration 10
mg / L or less 2To remove
CO in the downstream membrane deaerator2Efficient with reduced load
Na CO2Can be removed. That is, CO in the membrane deaerator is
2Removal is performed by HCO depending on pH conditions.3 ⇔CO2+ H2O
Depends on the dissociation equilibrium of 2
The lower the concentration, the greater the CO2The concentration is 10mg /
L2By reducing
Efficient CO in membrane deaerator2Can be removed.

【0007】本発明において、膜脱気装置の前段の多段
RO処理のうち、第1段目のRO装置(以下「第1RO
装置」と称す場合がある。)では、このようにCO
低減された比較的低pHの水から塩類、TOC成分を除
去すると共に、イオン化されたCOの一部を除去す
る。また、第2段目のRO装置(以下「第2RO装置」
と称す場合がある。)或いはそれ以降のRO装置では、
なお残留する微量の塩類を除去して純度を上げる。
In the present invention, a first-stage RO device (hereinafter referred to as a “first RO device”) in a multi-stage RO process preceding a membrane deaerator.
Device ". In the method (2), salts and TOC components are removed from the relatively low-pH water in which CO 2 is thus reduced, and a part of ionized CO 2 is removed. In addition, the second-stage RO device (hereinafter, “second RO device”)
It may be called. ) Or later RO devices,
In addition, the remaining trace amount of salts is removed to increase the purity.

【0008】このように、予めCO濃度を低減し、更
に、2段以上の多段RO処理で塩類の殆どを除去した水
を膜脱気装置で処理することにより、安定かつ効率的な
CO 除去が可能となり、COをほぼ完全に除去する
ことができる。即ち、この膜脱気装置における処理に当
り、被処理水のCO濃度が10mg/L以下に低減さ
れている上に、膜脱気装置に流入する水のpHは概ね膜
脱気に好適なpHとなっているため、COを確実に除
去することができる。しかも、この膜脱気装置では溶存
酸素も除去できるため、著しく高純度で比抵抗の大きい
安定した水質の純水を得ることができる。
As described above, the CO2Reduce the concentration
Water from which most of the salts have been removed by multi-stage RO treatment of two or more stages
Is treated with a membrane deaerator to ensure stable and efficient
CO 2Removal is possible, and CO2Removes almost completely
be able to. In other words, the process in this membrane deaerator
Of the water to be treated2Concentration reduced to 10mg / L or less
In addition, the pH of the water flowing into the membrane deaerator
Since the pH is suitable for degassing, CO 22Surely remove
You can leave. In addition, this membrane deaerator is dissolved
Extremely high purity and high specific resistance because oxygen can also be removed
Pure water with stable water quality can be obtained.

【0009】この膜脱気装置には、多段RO処理で純度
が高められた水が流入するため、多段RO処理に先立ち
膜脱気処理する場合のように、膜汚染による脱気膜の性
能低下の問題はない。また、多段ROの透過水のみを処
理するため、系外へ排出されるRO濃縮水量分の処理水
量が少なく、被処理水の全体を膜脱気処理する場合に比
べて膜脱気装置の負荷が低減し、処理性能を安定して維
持することができるようになり、脱気膜の本数の削減、
膜脱気装置の小型化を図ることもできる。
[0009] Since water whose purity has been increased by the multi-stage RO treatment flows into the membrane deaerator, the performance of the deaeration membrane is deteriorated due to membrane contamination as in the case of the membrane deaeration treatment prior to the multi-stage RO treatment. No problem. Also, since only the permeated water of the multi-stage RO is treated, the amount of treated water corresponding to the amount of RO concentrated water discharged to the outside is small, and the load on the membrane deaerator is smaller than when the entire treated water is subjected to the membrane deaeration treatment. And the processing performance can be stably maintained, reducing the number of degassing membranes,
The size of the membrane deaerator can be reduced.

【0010】本発明の方法によれば、原水の水質によっ
ても異なるが、例えば、市水を原水として処理すること
により、概ねCO濃度60mg/Lの原水をCO調
整工程で10mg/L以下、第1RO装置透過水で3m
g/L、膜脱気後のCO濃度50μg/L以下とし
て、比抵抗約3〜5MΩ・cmの高純度水を得ることが
できる。
According to the method of the present invention, although it depends on the quality of raw water, for example, by treating city water as raw water, raw water having a CO 2 concentration of approximately 60 mg / L can be reduced to 10 mg / L or less in the CO 2 adjusting step. 3m with permeated water of the first RO device
High purity water having a specific resistance of about 3 to 5 MΩ · cm can be obtained at a g / L and a CO 2 concentration of 50 μg / L or less after membrane degassing.

【0011】[0011]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】図1は本発明の純水製造方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the pure water production method of the present invention.

【0013】この実施の形態では、まず、pH、CO
濃度調整手段1にて、原水をpH4〜7.5に調整する
と共に、CO濃度を10mg/L以下に低減する。
In this embodiment, first, pH, CO 2
The concentration adjusting means 1 adjusts the raw water to pH 4 to 7.5 and reduces the CO 2 concentration to 10 mg / L or less.

【0014】本発明で処理対象とする水は、市水、工
水、井水、各種プロセス排水或いはこれらの混合水であ
り、これらの水は、必要に応じてUF(限外濾過)膜分
離装置等で除濁処理される。
The water to be treated in the present invention is municipal water, industrial water, well water, various process wastewaters, or a mixture thereof. These waters may be separated by a UF (ultrafiltration) membrane if necessary. The turbidity treatment is performed by a device or the like.

【0015】原水のpH、CO濃度調整手段1として
は、特に制限はないが、次のような手段が挙げられる。 必要によりpH調整し、脱炭酸塔で空気と向流接触
してCOを除去する。 必要によりpH調整し、Na除去率80%以上のR
O(低脱塩膜でもよい)膜でCOを除去する。 必要によりpH調整し、低CO含有水を混合して
CO濃度を希釈する。ここで、低CO含有水(CO
を殆ど含まない水)としては、半導体製造工程の回収
水などを用いることができる。即ち、半導体製造工程に
使用された超純水は若干の洗浄薬液を含むが、殆ど純水
の水質に近いため、簡易な処理をして回収水として、超
純水製造の任意の工程に返送される。この回収水はCO
を殆ど含まないため、この回収水を原水に混合するこ
とによりCO濃度を低減することができる。
There are no particular restrictions on the means 1 for adjusting the pH and CO 2 concentration of the raw water, but the following means can be mentioned. If necessary, the pH is adjusted, and CO 2 is removed by countercurrent contact with air in a decarbonation tower. If necessary, adjust the pH and remove R
CO 2 is removed with an O (may be a low desalting membrane) membrane. Adjust the pH as needed and dilute the CO 2 concentration by mixing with low CO 2 containing water. Here, low CO 2 content water (CO
As water containing almost no 2 ), recovered water from a semiconductor manufacturing process can be used. In other words, the ultrapure water used in the semiconductor manufacturing process contains a small amount of cleaning chemicals, but is almost similar to the quality of pure water. Is done. This recovered water is CO
Since almost no 2 is contained, the concentration of CO 2 can be reduced by mixing the recovered water with the raw water.

【0016】なお、pH調整手段としては、酸添加又は
H型カチオン交換樹脂充填塔への通水などが挙げられ
る。pH値は、第1RO装置2に供給される水のpHが
4〜7.5となるように調整される。また、CO濃度
は10mg/L以下となるように行う。
The pH adjusting means may be, for example, acid addition or water passing through an H-type cation exchange resin packed column. The pH value is adjusted so that the pH of the water supplied to the first RO device 2 becomes 4 to 7.5. Moreover, CO 2 concentration is carried out to be equal to or less than 10 mg / L.

【0017】本発明では、後段の膜脱気装置4にてCO
を高度に除去するため、このpH、CO濃度調整工
程においては、CO濃度10mg/L以下、例えば、
6〜10mg/L程度にCOを除去できれば良く、極
低濃度にまで除去する必要はない。
In the present invention, CO 2 is supplied to the membrane deaerator 4 in the subsequent stage.
In this pH and CO 2 concentration adjusting step, the CO 2 concentration is 10 mg / L or less, for example,
It is sufficient that CO 2 can be removed to about 6 to 10 mg / L, and it is not necessary to remove CO 2 to an extremely low concentration.

【0018】そのため、pHも、炭酸イオン、重炭酸イ
オンが全て炭酸に変化するほど低pHにする必要はな
く、第1RO装置2の流入水のpHが4〜7.5となる
程度でよい。好ましくはこのpHは6〜7程度の弱酸性
とする。
Therefore, the pH does not need to be so low that all of the carbonate ions and bicarbonate ions are changed to carbonic acid, and may be such that the pH of the inflow water of the first RO device 2 becomes 4 to 7.5. Preferably, the pH is weakly acidic, about 6 to 7.

【0019】なお、COが10mg/Lを超える程残
留すると、後段の膜脱気装置4での負荷が大きくなり、
CO除去が不十分になる恐れがあるため、CO濃度
は10mg/L以下に調整する。
If CO 2 remains more than 10 mg / L, the load on the subsequent membrane deaerator 4 increases,
Since CO 2 removal may be insufficient, CO 2 concentration is adjusted to below 10 mg / L.

【0020】pH、CO濃度調整手段1でpH4〜
7.5、CO濃度10mg/L以下に調整された水
は、次いで第1RO装置2、第2RO装置3に順次通水
して2段RO処理する。
The pH and CO 2 concentration adjusting means 1 adjust the pH
The water adjusted to 7.5 and a CO 2 concentration of 10 mg / L or less is then sequentially passed through the first RO device 2 and the second RO device 3 for two-stage RO treatment.

【0021】このうち、第1RO装置2では、主として
塩類を除去し、同時にTOC成分を除去する。また、p
H弱酸性にてイオン化したCOの一部を除去する。こ
の第1RO装置2のRO膜としては、材質、処理能力等
に特に制限はなく、ポリアミド系、酢酸セルロース系等
のRO膜を用いることができる。
Of these, the first RO device 2 mainly removes salts and at the same time removes TOC components. Also, p
A part of the CO 2 ionized by H-acid is removed. The RO film of the first RO device 2 is not particularly limited in material, processing capacity, and the like, and an RO film of a polyamide system, a cellulose acetate system, or the like can be used.

【0022】第2RO装置3では、第1RO装置2の透
過水中になお残留する微量の塩類を除去して純度を高め
る。この第2RO装置3では、塩類、特に漏洩し易いN
を確実に除去するために、RO膜としては膜表面ゼ
ータ電位が0以上のプラスの荷電膜を用いるのが好まし
く、これにより、Na等のカチオンの透過を確実に阻
止して高純度の処理水を得ることができる。このような
RO膜としては日東電工(株)製「ES10C」、東レ
(株)製「SU−900」等を用いることができる。
The second RO device 3 removes trace amounts of salts still remaining in the permeated water of the first RO device 2 to increase the purity. In the second RO device 3, salts, particularly N, which is easy to leak
To ensure removal of a +, it is preferred membrane surface zeta potential uses zero or more positive charged membrane as RO membrane, thereby, a high purity can be reliably prevented permeation of cations such as Na + Of treated water can be obtained. As such an RO film, "ES10C" manufactured by Nitto Denko Corporation, "SU-900" manufactured by Toray Industries, Inc., or the like can be used.

【0023】図1の方法では、第1RO装置2及び第2
RO装置3により、2段RO処理を行っているが、この
RO処理は2段以上であれば良く、3段以上の多段RO
処理でも良い。一般的には、装置コストや装置規模を考
慮して2段又は3段RO処理が行なわれる。3段RO処
理を行う場合には、最終段のRO膜を上記プラス荷電膜
とするのが好ましい。
In the method shown in FIG. 1, the first RO device 2 and the second RO device
Although the RO device 3 performs a two-stage RO process, the RO process only needs to be performed in two or more stages.
Processing may be used. Generally, two-stage or three-stage RO processing is performed in consideration of the apparatus cost and the apparatus scale. When performing a three-stage RO process, it is preferable that the RO film in the final stage be the above-mentioned positively charged film.

【0024】なお、RO装置は、一般に水回収率を上げ
るために、RO膜エレメントを内蔵した複数の膜モジュ
ールを連結して構成される。例えば、後述の実施例で用
いたRO装置14のように、3機の膜モジュール14A
〜14Cを用いて第1RO装置を構成し、膜モジュール
14A,14Bを並列配置してこれらの濃縮水を膜モジ
ュール14Cで処理し、各膜モジュール14A〜14C
の透過水を処理水として取り出すと共に、膜モジュール
14Cの濃縮水を系外へ排出するようにしても良く、ま
た、RO装置15のように、2機の膜モジュール15
A,15Bを設けて第2RO装置を構成し、膜モジュー
ル15Aの濃縮水を膜モジュール15Bで処理し、各膜
モジュール15A,15Bの透過水を処理水として取り
出すと共に、膜モジュール15Bの濃縮水を系外へ排出
するようにしても良い。もちろん各段のRO装置は1機
の膜モジュールのみから構成されるものであっても良
い。
Incidentally, the RO apparatus is generally constructed by connecting a plurality of membrane modules each having a built-in RO membrane element in order to increase the water recovery rate. For example, as in an RO device 14 used in an example described later, three membrane modules 14A
To 14C, the membrane modules 14A and 14B are arranged in parallel, and the concentrated water is processed by the membrane module 14C.
May be taken out as treated water, and the concentrated water of the membrane module 14C may be discharged to the outside of the system.
A and 15B are provided to constitute a second RO device, and the concentrated water of the membrane module 15A is treated by the membrane module 15B, and the permeated water of each of the membrane modules 15A and 15B is taken out as treated water, and the concentrated water of the membrane module 15B is removed. You may make it discharge | emit out of a system. Of course, the RO device in each stage may be constituted by only one membrane module.

【0025】このようにして2段RO処理された水は、
次いで膜脱気装置4で脱気処理する。この膜脱気装置4
としては、脱気膜面で気液分離を行い、気相側を真空に
して脱気する手段を備えるものであれば良く、特に制限
はない。
The water subjected to the two-stage RO treatment in this manner is:
Next, deaeration is performed by the membrane deaerator 4. This membrane deaerator 4
There is no particular limitation as long as it has a means for performing gas-liquid separation on the surface of the degassing membrane and degassing the gas phase by applying a vacuum to the gas phase.

【0026】この膜脱気装置4においては、pH、CO
濃度調整手段1及び第1、第2RO装置2,3による
2段RO処理で塩類が殆ど除去されていると共に、CO
濃度が低く、適度なpH値の水を処理して、CO
ほぼ完全に除去することができる。
In this membrane deaerator 4, pH, CO
The salt is almost removed by the two-stage RO treatment using the two- concentration adjusting means 1 and the first and second RO devices 2 and 3, and the CO
2 Water with a low concentration and moderate pH can be treated to remove CO 2 almost completely.

【0027】この膜脱気装置4におけるCO除去をよ
り一層確実に行うために、膜脱気装置4の出口水の比抵
抗を測定し、この値に基づいて第2RO装置1の入口
(第1RO装置2の入口でも良い。また、3段以上にR
O装置を設ける場合は、最終段のRO装置より前段であ
れば良い。)でpH調整剤を添加してpH調整を行うの
が好ましい。即ち、膜脱気装置4に注入する水のpH
は、5〜6が好ましく、このpH値が6を超えるとCO
除去率が低下する。ここで、pH調整剤としては、特
に制限はなく、HCl,HSO等の鉱酸や、NaO
H,KOH等のアルカリを用いることができる。添加し
たpH調整剤は最終段のRO装置までの間に除去される
ため、このpH調整剤の添加による比抵抗の低下の問題
はない。
In order to more surely remove CO 2 in the membrane deaerator 4, the specific resistance of the outlet water of the membrane deaerator 4 is measured, and based on this value, the inlet of the second RO unit 1 (the The inlet of the 1RO device 2 may be used.
When the O device is provided, the O device may be provided at a stage preceding the RO device at the last stage. It is preferable to adjust the pH by adding a pH adjusting agent in the step ()). That is, the pH of the water injected into the membrane deaerator 4
Is preferably 5 to 6, and when the pH value exceeds 6, CO
2 The removal rate decreases. Here, the pH adjuster is not particularly limited, and mineral acids such as HCl and H 2 SO 4 and NaO
An alkali such as H or KOH can be used. Since the added pH adjuster is removed before the RO device at the final stage, there is no problem of lowering the specific resistance due to the addition of the pH adjuster.

【0028】また、膜脱気装置4におけるCO除去効
率の向上のために、膜脱気装置4に流入する水に不活性
ガスを混入させても良い。用いる不活性ガスとしてはA
rやNが挙げられるが、特にコストの面からNが好
ましい。また、不活性ガスの吹込み量は少量過ぎると不
活性ガス吹き込みによるCO除去率の向上効果が少な
く、多すぎるとコストアップを招くため、被処理水に対
する流量比で1〜10%、特に3〜6%とするのが好ま
しい。
In order to improve the efficiency of removing CO 2 in the membrane deaerator 4, an inert gas may be mixed into the water flowing into the membrane deaerator 4. The inert gas used is A
include r and N 2 but, N 2 is particularly preferable in terms of cost. If the amount of the inert gas blown is too small, the effect of improving the CO 2 removal rate by blowing the inert gas is small, and if the amount is too large, the cost is increased. It is preferably set to 3 to 6%.

【0029】このようにして脱気処理された水は、次い
で非再生型又は再生型混床式イオン交換樹脂塔5で処理
され、更に純度が高められた後、サブシステムや使用場
所などの系外へ送水される。このイオン交換樹脂塔5は
必ずしも必要とされず、膜脱気装置4の処理水をそのま
ま最終処理水としても良い。
The water thus degassed is then treated in a non-regenerative or regenerative mixed-bed ion exchange resin tower 5 to further increase its purity, and then to a system such as a subsystem or a place of use. Water is sent outside. The ion exchange resin tower 5 is not necessarily required, and the treated water of the membrane deaerator 4 may be used as it is as the final treated water.

【0030】また、本発明では、水質向上のために、前
段或いは各装置間又は膜脱気装置の後段に、殺菌装置、
酸化装置、イオン交換装置、電気脱塩装置、膜濾過装置
などの任意の処理装置を設けることができる。また、特
に、本発明の方法を、超純水製造工程の一次純水製造に
適用する場合は、その後に通常のサブシステムと称され
る超純水製造システム(一般的にはUV照射、イオン交
換、膜分離処理をこの順、或いは任意の順で設けたも
の。)を設けることができる。
Further, in the present invention, in order to improve water quality, a sterilizing device,
An optional treatment device such as an oxidation device, an ion exchange device, an electric desalination device, and a membrane filtration device can be provided. In particular, when the method of the present invention is applied to the primary pure water production of the ultrapure water production process, an ultrapure water production system (generally, UV irradiation, The exchange and membrane separation treatments are provided in this order or in any order.).

【0031】[0031]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0032】実施例1,2、比較例1 市水(pH:7.4、CO:38mg/L、電気伝導
率:160μS/cm)を図2に示す装置で処理した。
まず、中空糸UF(日東電工(株)製「NTU305
0」、分画分子量:20,000)膜分離装置11で除
濁処理した後、HClを添加して表1に示すpHに調整
し、脱炭酸塔12に通水LV:30m/hrで導入して
空気/水量:15(流量比)の条件で向流接触して脱炭
酸処理し、表1に示すCO濃度の水を得た。この水を
2段RO処理した後、膜脱気装置で処理した。
Examples 1 and 2, Comparative Example 1 City water (pH: 7.4, CO 2 : 38 mg / L, electric conductivity: 160 μS / cm) was treated with the apparatus shown in FIG.
First, the hollow fiber UF (NTU305 manufactured by Nitto Denko Corporation)
0 ", molecular weight cut off: 20,000) After turbidity treatment with the membrane separation device 11, HCl was added to adjust the pH as shown in Table 1, and introduced into the decarbonation tower 12 with a water flow LV: 30 m / hr. Then, decarbonation treatment was carried out by countercurrent contact under the condition of air / water amount: 15 (flow ratio) to obtain water having a CO 2 concentration shown in Table 1. This water was subjected to a two-stage RO treatment and then to a membrane deaerator.

【0033】なお、2段ROのRO装置は、第1RO装
置14、第2RO装置15共にRO膜エレメント日東電
工(株)製「ES−20」(4インチ)を内蔵した膜モ
ジュールを用い、第1RO装置は図2に示す如く、3本
のRO膜モジュール14A,14B,14Cを連結し
て、流入水量1000L/hr、透過水量700L/h
r、系外へ排出する濃縮水量300L/hrで処理し
た。また、第2RO装置15は2本のRO膜モジュール
15A,15Bを図2に示す如く連結し、流入水量(第
1RO装置14の透過水量)700L/hr、透過水量
400L/hr、濃縮水量300L/hrで処理し、第
2RO装置15の濃縮水は第1RO装置14の入口側の
給水タンク13に返送して第1RO装置14に循環し
た。
The RO device of the two-stage RO uses a membrane module having a built-in RO membrane element "ES-20" (4 inches) manufactured by Nitto Denko Corporation for both the first RO device 14 and the second RO device 15. As shown in FIG. 2, the one RO device connects three RO membrane modules 14A, 14B, and 14C, and has an inflow amount of 1000 L / hr and a permeate amount of 700 L / h.
r, treatment was performed with a concentrated water amount of 300 L / hr discharged to the outside of the system. Further, the second RO device 15 connects the two RO membrane modules 15A and 15B as shown in FIG. The concentrated water in the second RO device 15 was returned to the water supply tank 13 on the inlet side of the first RO device 14 and circulated to the first RO device 14.

【0034】膜脱気装置16としては、ヘキストジャパ
ン社製「Liqui−cell」(4インチ用)を各1
本3段に配置したものを用い、真空度30〜35Tor
r、スイープ用Nガス流量:30NL/hr(各脱気
膜毎)で処理を行った。得られた処理水(膜脱気装置出
口水)の比抵抗を調べ、結果を表1に示した。
As the membrane deaerator 16, “Liqui-cell” (for 4 inches) manufactured by Hoechst Japan Co., Ltd. was used for each one.
The three stages are used, and the degree of vacuum is 30 to 35 Torr.
r, Sweep N 2 gas flow rate: 30 NL / hr was treated with (the degassing membrane per). The specific resistance of the obtained treated water (outlet water of the membrane deaerator) was examined, and the results are shown in Table 1.

【0035】実施例3 実施例2において、第1RO装置の透過水にNaOHを
添加してpH6.5〜7に調整したこと以外は同様にし
て処理を行い、得られた処理水の比抵抗を調べ、結果を
表1に示した。
Example 3 A process was performed in the same manner as in Example 2 except that the pH of the permeated water of the first RO apparatus was adjusted to 6.5 to 7 by adding NaOH. Investigation and the results are shown in Table 1.

【0036】実施例4、比較例2 実施例1において、脱炭酸塔の流出水にNaOHを添加
して、pH7.3(実施例4)又はpH7.8(比較例
2)に調整したこと以外は同様にして処理を行い、得ら
れた処理水の比抵抗を調べ、結果を表1に示した。
Example 4, Comparative Example 2 In Example 1, except that NaOH was added to the effluent of the decarbonation tower to adjust the pH to 7.3 (Example 4) or 7.8 (Comparative Example 2). Was treated in the same manner, and the specific resistance of the obtained treated water was examined. The results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より、本発明によれば、比抵抗の大き
い高純度の純水を製造することができることがわかる。
Table 1 shows that according to the present invention, high-purity pure water having a large specific resistance can be produced.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の純水製造方
法によれば、被処理水を予めpH、CO濃度調整した
後、多段RO処理し、その後膜脱気処理することによ
り、膜脱気装置におけるCO除去を安定且つ効率的に
行って、高純度の純水を製造することができる。
As described above in detail, according to the method for producing pure water of the present invention, the water to be treated is preliminarily adjusted for pH and CO 2 concentration, then subjected to multi-stage RO treatment, and then to membrane deaeration treatment. CO 2 removal in the membrane deaerator can be performed stably and efficiently, and high-purity pure water can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水製造方法の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a pure water production method of the present invention.

【図2】実施例で用いた処理装置を示す系統図である。FIG. 2 is a system diagram showing a processing apparatus used in an embodiment.

【符号の説明】[Explanation of symbols]

1 pH、CO濃度調整手段 2 第1RO装置 3 第2RO装置 4 膜脱気装置 11 UF膜分離装置 12 脱炭酸塔 13 給水タンク 14 第1RO装置 15 第2RO装置 16 膜脱気装置1 pH, CO 2 concentration adjusting means 2 first 1RO device 3 first 2RO device 4 film degassing device 11 UF membrane separator 12 decarbonation tower 13 water tank 14 first 1RO device 15 first 2RO device 16 membrane degasifier

フロントページの続き Fターム(参考) 4D006 GA03 GA32 KA12 KA52 KA54 KA55 KA56 KA67 KB11 KD11 KE12R KE15R KE19P MA01 MC18 MC54 PA02 PB02 PB05 PB08 PB26 PB64 PC03 4D037 AA03 AB11 BA23 BB05 BB07 CA03 Continued on the front page F term (reference) 4D006 GA03 GA32 KA12 KA52 KA54 KA55 KA56 KA67 KB11 KD11 KE12R KE15R KE19P MA01 MC18 MC54 PA02 PB02 PB05 PB08 PB26 PB64 PC03 4D037 AA03 AB11 BA23 BB05 BB07 CA03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理水をpH4〜7.5、CO濃度
10mg/L以下に調整した後、2段以上の多段に直列
配置された逆浸透膜脱塩装置に順次通水して脱塩処理
し、次いで膜脱気装置に通水して脱気処理することを特
徴とする純水製造方法。
1. The water to be treated is adjusted to a pH of 4 to 7.5 and a CO 2 concentration of 10 mg / L or less, and then successively passed through a reverse osmosis membrane desalination apparatus arranged in series in two or more stages to remove water. A method for producing pure water, comprising performing a salt treatment and then passing water through a membrane deaerator to perform a deaeration treatment.
JP2000186516A 2000-06-21 2000-06-21 Method for producing pure water Pending JP2002001069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186516A JP2002001069A (en) 2000-06-21 2000-06-21 Method for producing pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186516A JP2002001069A (en) 2000-06-21 2000-06-21 Method for producing pure water

Publications (1)

Publication Number Publication Date
JP2002001069A true JP2002001069A (en) 2002-01-08

Family

ID=18686663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186516A Pending JP2002001069A (en) 2000-06-21 2000-06-21 Method for producing pure water

Country Status (1)

Country Link
JP (1) JP2002001069A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226582A (en) * 2013-05-20 2014-12-08 三浦工業株式会社 Pure water production apparatus
JP2014231053A (en) * 2013-05-30 2014-12-11 三浦工業株式会社 Pure water production apparatus
KR20150118951A (en) 2013-02-20 2015-10-23 쿠리타 고교 가부시키가이샤 Multi-stage reverse osmosis membrane device, and operation method therefor
WO2016006526A1 (en) * 2014-07-10 2016-01-14 オルガノ株式会社 Method and device for treating wastewater containing fluoride ions
KR101859135B1 (en) 2017-03-21 2018-05-17 정주환 Apparatus for manufacturing ultra pure water
WO2021250977A1 (en) * 2020-06-10 2021-12-16 栗田工業株式会社 Pure water production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189387A (en) * 1987-02-03 1988-08-04 旭化成株式会社 Reinforcing-material fixing jig turning gear
JPH01171689A (en) * 1987-12-28 1989-07-06 Japan Organo Co Ltd Two stage type reverse osmotic membrane device
JPH05309372A (en) * 1992-05-12 1993-11-22 Japan Organo Co Ltd Apparatus for producing water of high purity
JPH07962A (en) * 1993-06-18 1995-01-06 Hitachi Plant Eng & Constr Co Ltd Production of pure water
JPH07124594A (en) * 1993-09-13 1995-05-16 Nomura Micro Sci Co Ltd Apparatus for treating low-concentration organic wastewater
JPH09234349A (en) * 1996-03-01 1997-09-09 Kurita Water Ind Ltd Membrane separation apparatus
JPH09253638A (en) * 1996-03-26 1997-09-30 Nomura Micro Sci Co Ltd Ultrapure water making apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189387A (en) * 1987-02-03 1988-08-04 旭化成株式会社 Reinforcing-material fixing jig turning gear
JPH01171689A (en) * 1987-12-28 1989-07-06 Japan Organo Co Ltd Two stage type reverse osmotic membrane device
JPH05309372A (en) * 1992-05-12 1993-11-22 Japan Organo Co Ltd Apparatus for producing water of high purity
JPH07962A (en) * 1993-06-18 1995-01-06 Hitachi Plant Eng & Constr Co Ltd Production of pure water
JPH07124594A (en) * 1993-09-13 1995-05-16 Nomura Micro Sci Co Ltd Apparatus for treating low-concentration organic wastewater
JPH09234349A (en) * 1996-03-01 1997-09-09 Kurita Water Ind Ltd Membrane separation apparatus
JPH09253638A (en) * 1996-03-26 1997-09-30 Nomura Micro Sci Co Ltd Ultrapure water making apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118951A (en) 2013-02-20 2015-10-23 쿠리타 고교 가부시키가이샤 Multi-stage reverse osmosis membrane device, and operation method therefor
JP2014226582A (en) * 2013-05-20 2014-12-08 三浦工業株式会社 Pure water production apparatus
JP2014231053A (en) * 2013-05-30 2014-12-11 三浦工業株式会社 Pure water production apparatus
WO2016006526A1 (en) * 2014-07-10 2016-01-14 オルガノ株式会社 Method and device for treating wastewater containing fluoride ions
JP2016016385A (en) * 2014-07-10 2016-02-01 オルガノ株式会社 Method and device of treating fluoride ion-containing drain water
KR101859135B1 (en) 2017-03-21 2018-05-17 정주환 Apparatus for manufacturing ultra pure water
WO2021250977A1 (en) * 2020-06-10 2021-12-16 栗田工業株式会社 Pure water production method
CN115515906A (en) * 2020-06-10 2022-12-23 栗田工业株式会社 Method for producing pure water

Similar Documents

Publication Publication Date Title
KR101563169B1 (en) Pure water production apparatus and pure water production method
JP3575271B2 (en) Pure water production method
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
US8491795B2 (en) Conversion of seawater to drinking water at room temperature
JP5834492B2 (en) Ultrapure water production equipment
JP2004000919A (en) Apparatus for producing desalted water
WO2021131360A1 (en) Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system
JP2007307561A (en) High-purity water producing apparatus and method
JP2014000575A (en) Apparatus and method for producing purified water
JP2000015257A (en) Apparatus and method for making high purity water
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2000051665A (en) Desalination method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP2003266097A (en) Ultrapure water making apparatus
JP2002001069A (en) Method for producing pure water
JP2004167423A (en) Apparatus and method for pure water production
JP2008080255A (en) Pure water making apparatus
JP7200014B2 (en) Pure water production device and pure water production method
JP2002355683A (en) Ultrapure water making method and apparatus
JPH09253638A (en) Ultrapure water making apparatus
JPH10202296A (en) Ultrapure water producer
JPH10216749A (en) Ultrapure water making apparatus
JP2002307080A (en) Apparatus for producing ultrapure water
JP3543435B2 (en) Ultrapure water production method
JPH09294977A (en) Water purifying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524