[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002097009A - Hybrid single-walled carbon nanotube - Google Patents

Hybrid single-walled carbon nanotube

Info

Publication number
JP2002097009A
JP2002097009A JP2000286108A JP2000286108A JP2002097009A JP 2002097009 A JP2002097009 A JP 2002097009A JP 2000286108 A JP2000286108 A JP 2000286108A JP 2000286108 A JP2000286108 A JP 2000286108A JP 2002097009 A JP2002097009 A JP 2002097009A
Authority
JP
Japan
Prior art keywords
swnt
walled carbon
carbon nanotube
hybrid single
substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286108A
Other languages
Japanese (ja)
Inventor
Sumio Iijima
澄男 飯島
Toshiharu Bando
俊治 坂東
Kazutomo Suenaga
和知 末永
Yoshiori Hirahara
佳織 平原
Toshiya Okazaki
俊也 岡崎
Hisanori Shinohara
久典 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
NEC Corp
Original Assignee
Nagoya University NUC
NEC Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, NEC Corp, Japan Science and Technology Corp filed Critical Nagoya University NUC
Priority to JP2000286108A priority Critical patent/JP2002097009A/en
Priority to PCT/JP2001/008194 priority patent/WO2002024572A1/en
Publication of JP2002097009A publication Critical patent/JP2002097009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 円筒内空隙に様々な物質を内包することがで
き、情報通信ならびに化学工業等の広い分野で使用され
る可能性を秘めた新しいハイブリッド単層カーボンナノ
チューブを提供する。 【解決手段】 単層カーボンナノチューブの円筒内空隙
に金属、有機分子、有機金属化合物、磁性体、半導体、
錯体、気体、無機固体化合物等のうちいずれか1種また
は2種以上の異物質が内包されてなるハイブリッド単層
カーボンナノチューブとする。金属としては、鉛、錫、
銅等、有機物としてはナフタレン、アントラセン等、磁
性体としてはサマリウム、鉄等、気体として酸化炭素
等、があげられる。
(57) [Abstract] (Modified) [Problem] A new hybrid single-walled carbon that has the potential to be used in a wide range of fields such as information and communication and the chemical industry, because various substances can be included in the space inside the cylinder. Provide nanotubes. SOLUTION: A metal, an organic molecule, an organometallic compound, a magnetic material, a semiconductor,
A hybrid single-walled carbon nanotube in which one or more kinds of different substances among a complex, a gas, an inorganic solid compound and the like are included. Lead, tin,
Copper and the like, naphthalene and anthracene as organic substances, samarium and iron as magnetic substances, and carbon oxide and the like as gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、ハイブリ
ッド単層カーボンナノチューブに関するものである。さ
らに詳しくは、この出願の発明は、円筒内空隙に様々な
物質を内包することができ、情報通信ならびに化学工業
等の広い分野で使用される可能性を秘めた新しいハイブ
リッド単層カーボンナノチューブに関するものである。
The present invention relates to a hybrid single-walled carbon nanotube. More specifically, the invention of this application relates to a new hybrid single-walled carbon nanotube capable of encapsulating various substances in the space inside the cylinder and having potential for use in a wide range of fields such as information communication and the chemical industry. It is.

【0002】[0002]

【従来の技術とその課題】カーボンナノチューブは、エ
ネルギー分野を始め、情報通信、航空・宇宙、生体・医
療等の幅広い分野で、次世代の高機能材料として注目さ
れている物質である。このカーボンナノチューブには、
チューブを形成するグラファイトシートが一層である、
いわゆる単層カーボンナノチューブ(SWNT)と、グ
ラファイトシートの円筒が多数入れ子状に重なった多層
カーボンナノチューブ(MWNT)とがある。カーボン
ナノチューブの持つ電子放出機能、水素吸蔵機能、磁気
機能等を効率よく応用するための研究および開発におい
ては、カーボンナノチューブの構造の単純化とその特異
な性質から、主にSWNTが用いられている。そして近
年では、SWNTを様々に加工することで、化学的また
は物理的に修飾された新しいナノ複合材料を創製するこ
となどが議論されている。
2. Description of the Related Art Carbon nanotubes are attracting attention as next-generation high-performance materials in a wide range of fields such as the energy field, information communication, aviation / space, biological / medical fields, and the like. This carbon nanotube has
The graphite sheet forming the tube is a single layer,
There are so-called single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) in which many graphite sheet cylinders are nested. In research and development to efficiently apply the electron emission function, hydrogen storage function, magnetic function, etc. of carbon nanotubes, SWNTs are mainly used due to the simplification of the structure of carbon nanotubes and their unique properties. . In recent years, there has been a discussion of creating a new chemically or physically modified nanocomposite material by variously processing SWNT.

【0003】具体的には、SWNT自体の電気的、機械
的特徴を全く違ったものに改変できる可能性から、SW
NTの円筒内空隙に様々な原子や分子等を導入すること
が議論され、その研究が進められている。そして、SW
NTの円筒内空隙にC60分子が内包されたC60@SWN
T(記号@は一般に内包を意味する)が既に発見されて
いる。また、この出願の発明者らによって異物質を内包
した多層カーボンナノチューブとその製法については提
案(特願平4−341747)されている。
[0003] Specifically, the possibility that the electrical and mechanical characteristics of SWNT itself can be changed to something completely different,
The introduction of various atoms, molecules, and the like into the voids in the cylinder of NT has been discussed, and research has been advanced. And SW
C 60 @SWN in which C 60 molecules are encapsulated in the cavity in the cylinder of NT
T (the symbol @ generally means inclusion) has already been discovered. In addition, the inventors of the present application have proposed a multi-walled carbon nanotube containing a foreign substance and a method for producing the same (Japanese Patent Application No. 4-341747).

【0004】しかしながら、SWNTを基本とし、その
円筒内空隙に様々な物質を内包させた新材料およびその
製造技術については未だ知られていないのが現状であ
る。
[0004] However, at present, a new material based on SWNT, in which various substances are included in the cavity in the cylinder, and a manufacturing technique thereof have not yet been known.

【0005】そこで、この出願の発明は、以上の通りの
事情に鑑みてなされたものであり、円筒内空隙に様々な
物質を内包することができ、情報通信ならびに化学工業
等の広い分野で使用される可能性を秘めた新しいハイブ
リッド単層カーボンナノチューブを提供することを課題
としている。
Accordingly, the invention of this application has been made in view of the circumstances described above, and it is possible to include various substances in the space inside the cylinder and use it in a wide field such as information communication and chemical industry. It is an object of the present invention to provide a new hybrid single-walled carbon nanotube that has the potential to be used.

【0006】[0006]

【課題を解決するための手段】そこで、この出願の発明
は、上記の課題を解決するものとして、以下の通りの発
明を提供する。
Accordingly, the invention of this application provides the following invention to solve the above problems.

【0007】すなわち、まず第1には、この出願の発明
は、単層カーボンナノチューブの円筒内空隙に異物質が
内包されてなることを特徴とするハイブリッド単層カー
ボンナノチューブを提供する。
That is, first of all, the invention of the present application provides a hybrid single-walled carbon nanotube characterized in that a foreign substance is included in a cylindrical space of the single-walled carbon nanotube.

【0008】そして第2には、この出願の発明は、上記
第1の発明について、内包される異物質が、金属、有機
分子、有機金属化合物、磁性体、半導体、超伝導体、錯
体、気体、無機固体化合物のいずれか1種または2種以
上であることを特徴とするのハイブリッド単層カーボン
ナノチューブを、第3には、内包される異物質が、金属
内包フラーレンであることを特徴とするハイブリッド単
層カーボンナノチューブを、第4には、内包される異物
質が、有毒ガスであることを特徴とするハイブリッド単
層カーボンナノチューブなどもその態様として提供す
る。
Secondly, the invention of this application is based on the first invention, wherein the foreign substances included are metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, and gases. Third, the hybrid single-walled carbon nanotube is characterized by being one or more of inorganic solid compounds. Thirdly, the foreign substance included is a metal-encapsulated fullerene. Fourthly, the present invention also provides a hybrid single-walled carbon nanotube in which the foreign substance contained therein is a toxic gas.

【0009】[0009]

【発明の実施の形態】この出願の発明は、上記の通りの
特徴を持つものであるが、以下にその実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.

【0010】まず、この出願の発明が提供するハイブリ
ッド単層カーボンナノチューブは、SWNTの円筒内空
隙に異物質を内包させてなることを特徴としている。
[0010] First, the hybrid single-walled carbon nanotube provided by the invention of this application is characterized in that a foreign substance is included in the cavity in the cylinder of SWNT.

【0011】内包される物質としては、金属、有機分
子、有機金属化合物、磁性体、半導体、超伝導体、錯
体、気体、無機固体化合物等のうちのいずれか1種また
は2種以上を選択する事ができる。
As the substance to be included, any one or more of metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, gases, inorganic solid compounds and the like are selected. Can do things.

【0012】たとえば、金属としては、鉛,錫,銅,イ
ンジウム,水銀,アルカリ金属,遷移金属等の各種金属
およびその化合物を、有機分子としてはナフタレン,ア
ントラセン,フェナントレン,ピレン,ペリレン等の芳
香族化合物や有機分子半導体及びシアニン色素,ベ−タ
カロチン等の有機色素分子等を、また、フラーレン,ス
ーパーフラーレン等の炭素クラスターやそれらが金属原
子を内包した金属内包フラーレン、さらにはフェロセン
等に代表される有機金属化合物等を用いる事ができる。
また、磁性体としてはサマリウム,ガドリニウム,ラン
タン,鉄,コバルト,ニッケル等の元素及びその混合物
等を、半導体としてはシリコン,ゲルマニウム,砒化ガ
リウム,セレン化亜鉛,硫化亜鉛等を、超伝導体として
は鉛,錫,ガリウム等の元素を、そして、有機金属錯体
や無機金属錯体、水素,ホウ素,窒素,酸素等を用いる
ことができる。また気体としては酸化炭素,一酸化窒
素,不活性ガスあるいは有毒ガス等の気体や、シラン,
ジシラン,ゲルマン,ジクロルシラン,アルシン,フォ
スフィン,セレン化水素,硫化水素,トリエチルガリウ
ム,ジメチル亜鉛,ヘキサフルオロタングステンなど,
所望する元素の水素化物,塩化物,弗化物,アルコキシ
化合物,アルキル化合物並びにその組み合わせからなる
ガス状物質等も用いる事ができる。
For example, the metals include various metals such as lead, tin, copper, indium, mercury, alkali metals and transition metals and their compounds, and the organic molecules include aromatics such as naphthalene, anthracene, phenanthrene, pyrene and perylene. Compounds, organic molecular semiconductors, and organic dye molecules such as cyanine dyes and beta carotene; carbon clusters such as fullerene and superfullerene; metal-encapsulated fullerenes in which these include metal atoms; and ferrocene. An organometallic compound or the like can be used.
Elements such as samarium, gadolinium, lanthanum, iron, cobalt, nickel, and mixtures thereof are used as magnetic materials, silicon, germanium, gallium arsenide, zinc selenide, zinc sulfide, etc. as semiconductors, and superconductors. Elements such as lead, tin, and gallium, and organometallic and inorganic metal complexes, hydrogen, boron, nitrogen, and oxygen can be used. Gases such as carbon oxide, nitric oxide, inert gas or toxic gas, silane,
Disilane, germane, dichlorosilane, arsine, phosphine, hydrogen selenide, hydrogen sulfide, triethylgallium, dimethyl zinc, hexafluorotungsten, etc.
It is also possible to use hydrides, chlorides, fluorides, alkoxy compounds, alkyl compounds and gaseous substances comprising a combination thereof of the desired element.

【0013】以上の物質のうち、金属内包フラーレン
は、C60分子とは異なって狭いバンドギャップを有する
半導体であり、そのバンドギャップは内包する金属原子
の数によって様々な値をとることが知られている。この
ような金属内包フラーレンをSWNTに内包させること
ができれば、複合材料としてより興味深いものが提供さ
れることになる。
Among the above substances, the metal-encapsulated fullerene is a semiconductor having a narrow band gap different from the C 60 molecule, and it is known that the band gap takes various values depending on the number of metal atoms included therein. ing. If such a metal-encapsulated fullerene can be included in SWNT, a more interesting composite material will be provided.

【0014】この出願の発明のハイブリッド単層カーボ
ンナノチューブは、SWNTの円筒内空隙に、以上のよ
うな異物質がさやの中の豆のような状態で配置する構造
となっている。この異物質は、SWNT内に比較的安定
に配置していることから、従来空気中では不安定であっ
たものでも安定に保存あるいは利用できる可能性が高
く、有害なものを無害にして保存あるいは利用できる可
能性もある。
The hybrid single-walled carbon nanotube of the invention of this application has a structure in which the above-mentioned foreign substances are arranged in a cavity in the SWNT cylinder in a state like beans in a pod. Since this foreign substance is relatively stably disposed in the SWNT, there is a high possibility that even a substance which has been unstable in the air conventionally can be stably stored or used. May be available.

【0015】以下、添付した図面に沿って実施例を示
し、この発明の実施の形態についてさらに詳しく説明す
る。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

【0016】[0016]

【実施例】(実施例1)出発物質であるGd@C82とS
WNTをガラスアンプルに入れて密封し、500℃で2
4時間保持し、反応生成物としてこの出願の発明の(G
d@C82n@SWNTを得た。
EXAMPLES (Example 1) Starting materials Gd @ C 82 and S
WNT is sealed in a glass ampoule at 500 ° C for 2 hours.
4 hours, and the reaction product (G
d @ C 82 ) n @SWNT was obtained.

【0017】得られた(Gd@C82n@SWNTを試
料とし、電子エネルギー損失分光計を備えた高分解能透
過型電子顕微鏡(HRTEM)により観察を行った。試
料は、超音波にかけてヘキサン中に分散させ、その懸濁
液を電子顕微鏡のマイクログリッドに滴下して、120
kVの設定で像観察を、117kVの設定で分光測定を
行なった。 <A> 図1(a)(b)に、(Gd@C82n@SW
NTのHRTEM像を例示した。また、図1(c)に
は、(Gd@C82n@SWNTの構造モデルを例示し
た。
Using the obtained (Gd @ C 82 ) n @SWNT as a sample, observation was performed with a high-resolution transmission electron microscope (HRTEM) equipped with an electron energy loss spectrometer. The sample was dispersed in hexane by ultrasonication, and the suspension was dropped on a microgrid of an electron microscope to obtain a sample.
Image observation was performed at a setting of kV, and spectral measurement was performed at a setting of 117 kV. <A> FIGS. 1A and 1B show that (Gd @ C 82 ) n @SW
The HRTEM image of NT was illustrated. FIG. 1C illustrates a structural model of (Gd @ C 82 ) n @SWNT.

【0018】図1(a)より、SWANTs内にはGd
@C82が鎖状に一列に並んでいることがわかった。鎖状
に連なった金属内包フラーレンをさらに内包した状態の
SWNTの直径は、1.4〜1.5nmであった。
FIG. 1A shows that Gd is contained in SWANTs.
@C 82 was found to be aligned in a row in a chain. The diameter of SWNT in a state in which the metal-encapsulated fullerene connected in a chain was further included was 1.4 to 1.5 nm.

【0019】また、図1(a)に見られるように、ほと
んどのC82分子殻の内側に暗い部分が見られた。この暗
部は、フラーレンケージ内に何も内包していないC60
子の場合には観察されないことから、C82分子に内包さ
れたGd原子に相当するといえる。このことから、Gd
@C82分子が分解あるいは反応することなく、そのまま
SWNTに内包されていることがわかった。
As shown in FIG. 1 (a), a dark portion was found inside most of the C82 molecular shell. Since this dark part is not observed in the case of C60 molecules that do not include anything in the fullerene cage, it can be said that they correspond to Gd atoms included in C82 molecules. From this, Gd
Without @C 82 molecule decomposition or reaction, was found to be intact encapsulated in SWNT.

【0020】SWNTに内包されたフラーレンケージ内
のGd原子は、フラーレンケージであるC82分子の中心
からずれた場所に位置していた。そして、フラーレンケ
ージに内包される金属原子が一定位置に見えるというこ
とから、SWNTに内包されたフラーレンケージが室温
では回転していないということも確認された。
The Gd atom in the fullerene cage included in SWNT was located at a position shifted from the center of the fullerene cage C82 molecule. Then, since the metal atoms included in the fullerene cage appear at certain positions, it was also confirmed that the fullerene cage included in SWNT did not rotate at room temperature.

【0021】図1(b)に示したように、束状のSWN
Tも多く得られ、そのチューブ同士の中心間距離(図1
(c)中のdに相当)の平均は1.64nm以下であっ
た。 <B> 図2(a)に、数百のSWNTからなる束状の
(Gd@C82n@SWNTのHRTEM像を示した。
円筒内空隙が空のSWNTの束も存在したが、ほとんど
全ての束状のSWNTが円筒内空隙いっぱいにGd@C
82を内包していることが確認された。これらは、たとえ
ば図2(b)に例示した、束状のSWNTの電子回折パ
ターンによっても証明された。
As shown in FIG. 1B, a bundle of SWNs
T is also large, and the center-to-center distance between the tubes (Fig. 1
The average of (corresponding to d in (c)) was 1.64 nm or less. <B> FIG. 2A shows an HRTEM image of a bundle (Gd @ C 82 ) n @SWNT composed of several hundred SWNTs.
Although there was a bundle of SWNTs with empty cylinders, almost all bundles of SWNTs filled Gd @ C
It was confirmed that it contained 82 . These were also proved by the electron diffraction pattern of a bundle of SWNTs as exemplified in FIG. 2B, for example.

【0022】また、図2(b)の電子回折像からは、ナ
ノチューブ束の軸に対して垂直に縞模様をつくる鋭い線
が観察できるが、これは隣接するGd@C82分子同士の
分子間距離に一致し、Gd@C82分子同士の分子間距離
がそれぞれのSWNT束で均一であることが確認され
た。このことは、図2(c)に示したように、HRTE
M像をフーリエ変換して解析することによっても確認さ
れた。双方のパターンに見られるリングは、グラファイ
ト(100)面からの反射(〜0.214nm)に対応
している。束状SWNTの軸に対して垂直に並んだ点
は、六方最密充填しているSWNTの中心間距離(d)
に対応している。
Further, from the electron diffraction image of FIG. 2 (b), can be observed a sharp line to make stripes perpendicular to the axis of the nanotube bundles, which intermolecular Gd @ C 82 molecules adjacent to each other It was confirmed that the intermolecular distance between the Gd @ C 82 molecules was uniform in each SWNT bundle. This means that, as shown in FIG.
It was also confirmed by analyzing the M image by Fourier transform. The rings seen in both patterns correspond to reflections (〜0.214 nm) from the graphite (100) plane. The points arranged perpendicular to the axis of the bundle of SWNTs are the center-to-center distances of the hexagonal closest packed SWNTs (d).
It corresponds to.

【0023】SWNT内のGd@C82分子は一定の分子
間距離をおいて配置していることから、SWNTに内包
されている鎖状のGd@C82は一次元結晶とみなすこと
ができる。その原子間距離(a)を測定すると、1.1
0±0.03nmであった。シンクロトロンX線回折分
析の結果からC2V型分子対称性を持つとされる三次元分
子結晶の原子間距離(たとえば、Sc内包フラーレンS
c@C82のとき1.124nm)とほぼ一致するか、や
や小さいことが確認された。なお、同様に一次元結晶と
みなすことができるSWNT中のC60やC70について
は、それぞれ〜0.97nmと、〜1.02nmであっ
た。 <C> SWNT束の中心に位置するSWNTにも、周
辺に位置するSWNTと同様にGd@C82が導入されて
いることが確認された。このことは他の全ての内包物質
についても確認された。束の外側のSWNTから中心側
のSWNTへ内包物質が拡散していくことは考えにくい
ことから、内包物質の導入は、おそらくキャップのとれ
たSWNT端部で起こるものと考えられる。 <D> 数束の(Gd@C82n@SWNTを電子エネ
ルギー損失分光法により分析した結果を図3(a)に示
した。図3(a)には、GdのN(4d)吸収端(〜1
45eV)とカーボンのK(1s)吸収端(〜285e
V)が確認された。カーボンのK(1s)吸収端は、フ
ラーレンとSWNTの両方のカーボンに起因するため、
299eV付近にシャープなπ*結合のピークとσ*結合
のブロードなピークを示した。
Since the Gd @ C 82 molecules in the SWNT are arranged at a certain intermolecular distance, the chain Gd @ C 82 contained in the SWNT can be regarded as a one-dimensional crystal. When the interatomic distance (a) is measured, 1.1
0 ± 0.03 nm. Three-dimensional molecular interatomic distance of the crystal to be the results of synchrotron X-ray diffraction analysis to have a C 2V type molecular symmetry (e.g., Sc endohedral S
(c @ C 82 , 1.124 nm), or slightly smaller. Note that the C 60 and C 70 in the SWNT which can be regarded as similarly one-dimensional crystal, and ~0.97nm respectively, were ~1.02Nm. <C> It was confirmed that Gd @ C82 was introduced into the SWNT located at the center of the SWNT bundle, similarly to the SWNTs located at the periphery. This was confirmed for all other inclusions. Since it is unlikely that the encapsulated material will diffuse from the SWNTs outside the bundle to the central SWNTs, the inclusion of the encapsulated material is likely to occur at the capped SWNT end. <D> The results of analyzing several bundles of (Gd @ C 82 ) n @SWNT by electron energy loss spectroscopy are shown in FIG. FIG. 3A shows the N (4d) absorption edge of Gd (d1).
45 eV) and the K (1s) absorption edge of carbon (up to 285 e)
V) was confirmed. Since the K (1s) absorption edge of carbon is due to both fullerene and SWNT carbon,
A sharp peak of π * bond and a broad peak of σ * bond were shown around 299 eV.

【0024】このN(4d)とK(1s)の2つの吸収
端を適当な散乱断面図を用いて平均化したところ、Gd
とCの原子比(Gd/C)がおよそ0.0025(±
0.00047)であることがわかった。この値は、上
記の観察結果からわかったように、直径1.4nmのS
WNTに原子間距離1.1nmでGd@C82が配置して
いる(Gd@C82n@SWNTについて得た計算値で
ある0.0037ととても近い値である。そしてこのこ
とから、この観察で用いた(Gd@C82n@SWNT
束におけるGd@C82の充填率はほぼ68%であること
が推定された。
By averaging the two absorption edges of N (4d) and K (1s) using an appropriate scattering cross section, Gd
And the atomic ratio (Gd / C) of C and C is approximately 0.0025 (±
0.00047). This value is, as can be seen from the above observations, the value of S of 1.4 nm in diameter.
This is a value very close to the calculated value 0.0037 obtained for ( GdGC 82 ) n @SWNT in which Gd @ C 82 is arranged at an interatomic distance of 1.1 nm in WNT. Then, from this, the (Gd @ C 82 ) n @SWNT used in this observation was used.
The loading of Gd @ C 82 in the bundle was estimated to be approximately 68%.

【0025】図3(b)に、上記と同じ試料から得られ
たGdのM(3d)吸収端を示した。一般に、価電子状
態の同定にランタノイド系金属のM(3d)ピーク位置
を利用することができ、その結果から電荷の移動量を知
ることができる。図4(b)から、(Gd@C82n
SWNTのM5およびM4吸収端で最も高いピーク位置
は、それぞれ1184eVと1214eVであった。こ
れらのピーク位置は、参考スペクトルであるGd23
ピーク位置と完全に一致することから、(Gd@C82
n@SWNTに内包されたGd原子は3価の状態である
ことが証明された。一方で、Gd3+@C82 3-バルク結晶
に内包されたGd原子がGd23のGd原子と同じスピ
ン状態(87/2)であることは既に確認されている。こ
れらのことから、Gd@C82に内包されたGd原子の原
子価状態は、SWNTに内包される前後で変化せず、た
とえば(Gd3+@C82 3-n@SWNTの状態であるこ
とがわかる。 <E> 現在になっても(Gd@C82n@SWNT内
のC82フラーレンゲージの原子価状態は明らかにされて
はいないが、上記の結果からは、Gd原子からフラーレ
ンケージもしくはSWNTへの電荷移動の可能性が示唆
された。また、TEM観察において、たとえば(C60
n@SWNTや(C70n@SWNT等のように金属を内
包していないフラーレンを内包したSWNTよりも、
(Gd@C82n@SWNTの方が電子線照射により壊
れやすいことがわかった。これらは、金属内包フラーレ
ンを内包するナノチューブの化学的特性についての重要
な発見である。 (実施例2)内包される異物質として、Sm@C82,S
2@C84,La2@C80,Sc3N@C68等の金属内包
フラーレンや、C70,C76,C80,C82,C84等の中空
フラーレン、フェロセン等の各種の物質を用いた場合で
も、同様にこれらの異物質を内包したハイブリッドカー
ボンナノチューブが得られることが確認された。
FIG. 3B shows the M (3d) absorption edge of Gd obtained from the same sample as described above. In general, the M (3d) peak position of a lanthanoid metal can be used to identify the valence state, and the transfer amount can be known from the result. From FIG. 4B, (Gd { C 82 ) n}
The highest peak position in the M 5 and M 4 absorption edge of the SWNT were respectively 1184eV and 1214EV. Since these peak positions completely match the peak positions of Gd 2 O 3 which is a reference spectrum, (Gd @ C 82 )
It was proved that the Gd atom included in n @ SWNT was in a trivalent state. On the other hand, it has already been confirmed that the Gd atom contained in the Gd 3+ @C 82 3- bulk crystal has the same spin state ( 8 S 7/2 ) as the Gd atom of Gd 2 O 3 . From these facts, the valence state of the Gd atom included in Gd @ C 82 does not change before and after being included in SWNT, and is, for example, a state of (Gd 3+ @C 82 3- ) n @SWNT. You can see that. <E> Although the valence state of the C 82 fullerene gauge in (Gd @ C 82 ) n @SWNT has not been clarified even now, from the above results, the Gd atom is converted to the fullerene cage or SWNT. The possibility of charge transfer was suggested. In TEM observation, for example, (C 60 )
than n AttoSWNT and (C 70) SWNT containing therein the fullerenes have not containing a metal as such n @SWNT,
It was found that (Gd @ C 82 ) n @SWNT was more easily broken by electron beam irradiation. These are important findings about the chemical properties of nanotubes containing metal-encapsulated fullerenes. (Example 2) As foreign substances included, Sm @ C 82 , S
c 2 @C 84, La 2 @C 80, Sc 3 N @ or metal-encapsulated fullerene such as C 68, C 70, C 76 , C 80, C 82, hollow fullerene such as C 84, various materials such as ferrocene It was also confirmed that hybrid carbon nanotubes containing these foreign substances could be obtained in the case of using.

【0026】もちろん、この発明は以上の例に限定され
るものではなく、細部については様々な態様が可能であ
ることは言うまでもない。
Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects of the details are possible.

【0027】[0027]

【発明の効果】以上詳しく説明した通り、この発明によ
って、円筒内空隙に様々な物質を内包することができ、
情報通信ならびに化学工業等の広い分野で使用される可
能性を秘めた新しいハイブリッド単層カーボンナノチュ
ーブが提供される。
As described in detail above, according to the present invention, various substances can be included in the cavity inside the cylinder,
A new hybrid single-walled carbon nanotube with potential for use in a wide range of fields such as information and communication and the chemical industry is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は単離された(Gd@C82n@SWN
Tの、(b)は束状の(Gd@C82n@SWNTのH
RTEM像を例示した図である。(c)は、金属内包フ
ラーレンを内包したSWNTである(Gd@C82n
SWNTの構造式を例示した概略図である。
FIG. 1. (a) shows isolated (Gd @ C 82 ) n @SWN
(B) shows a bundle of (Gd @ C 82 ) n @SWNT H
It is the figure which illustrated the RTEM image. (C) is a SWNT containing a metal-encapsulated fullerene (Gd { C 82 ) n}
It is the schematic which illustrated the structural formula of SWNT.

【図2】(a)は、数百のSWNTからなる束状SWN
TのHRTEM像を例示した図である。(b)は、束状
のSWNTの電子回折パターンを例示した図である。
(c)は、HRTEM像(a)をフーリエ変換した図を
例示した。
FIG. 2 (a) shows a bundle SWN composed of several hundred SWNTs.
FIG. 3 is a diagram illustrating an HRTEM image of T. (B) is a diagram illustrating an electron diffraction pattern of a bundle of SWNTs.
(C) illustrates a diagram obtained by performing a Fourier transform on the HRTEM image (a).

【図3】(a)は、数束の(Gd@C82n@SWNT
を電子エネルギー損失分光法により得たスペクトルのG
dのN(4d)吸収端(〜145eV)とカーボンのK
(1s)吸収端(〜285eV)を例示した。(b)
は、(a)と同じ試料から得られたGdのM(3d)吸
収端を示した。
FIG. 3 (a) shows several bundles of (Gd @ C 82 ) n @SWNT
Of the spectrum obtained by electron energy loss spectroscopy
N (4d) absorption edge of d (up to 145 eV) and K of carbon
(1s) Absorption edge (up to 285 eV) is exemplified. (B)
Indicates the M (3d) absorption edge of Gd obtained from the same sample as (a).

フロントページの続き (72)発明者 坂東 俊治 愛知県日進市赤池5−1305 アクトピア赤 池II−201 (72)発明者 末永 和知 愛知県名古屋市天白区中平1−603 アム ール中平601 (72)発明者 平原 佳織 愛知県日進市梅森台1−45 コーポ梅五 203 (72)発明者 岡崎 俊也 愛知県名古屋市昭和区神村町1−31−1 ユーハウスドーム四ツ谷1004 (72)発明者 篠原 久典 愛知県名古屋市天白区植田本町3−917 Fターム(参考) 4G046 BC00 CB01 5G301 CD10 Continued on the front page (72) Inventor Shunji Bando 5-1305 Akaike Nisshin, Aichi Prefecture Actopia Akaike II-201 (72) Inventor Kazuchi Suenaga 601 Amur Nakadaira 1-603 Nakadaira, Tenpaku-ku Nagoya City Aichi Prefecture (72) Inventor Kaori Hirahara 1-45 Umemoridai, Nisshin City, Aichi Prefecture Corp. Umego 203 (72) Inventor Toshiya Okazaki 1-31-1, Kamimuracho, Showa-ku, Nagoya-shi, Aichi U-House Dome Yotsuya 1004 (72) Inventor Shinohara Hisanori 3-917 Uedahonmachi, Tenpaku-ku, Nagoya-shi, Aichi F term (reference) 4G046 BC00 CB01 5G301 CD10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単層カーボンナノチューブの円筒内空隙
に異物質が内包されてなることを特徴とするハイブリッ
ド単層カーボンナノチューブ。
1. A hybrid single-walled carbon nanotube comprising a single-walled carbon nanotube and a foreign substance encapsulated in a cavity in the cylinder.
【請求項2】 内包される異物質が、炭素クラスター、
金属、有機分子、有機金属化合物、磁性体、半導体、超
伝導体、錯体、気体、無機固体化合物のいずれか1種ま
たは2種以上であることを特徴とする請求項1記載のハ
イブリッド単層カーボンナノチューブ。
2. The method according to claim 1, wherein the foreign substances included are carbon clusters,
The hybrid single-layer carbon according to claim 1, wherein the carbon is one or more of a metal, an organic molecule, an organometallic compound, a magnetic substance, a semiconductor, a superconductor, a complex, a gas, and an inorganic solid compound. Nanotubes.
【請求項3】 内包される異物質が、金属内包フラーレ
ンであることを特徴とする請求項1または2記載のハイ
ブリッド単層カーボンナノチューブ。
3. The hybrid single-walled carbon nanotube according to claim 1, wherein the foreign substance included is a metal-encapsulated fullerene.
【請求項4】 内包される異物質が、有毒ガスであるこ
とを特徴とする請求項1または2記載のハイブリッド単
層カーボンナノチューブ。
4. The hybrid single-walled carbon nanotube according to claim 1, wherein the contained foreign substance is a toxic gas.
JP2000286108A 2000-09-20 2000-09-20 Hybrid single-walled carbon nanotube Pending JP2002097009A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000286108A JP2002097009A (en) 2000-09-20 2000-09-20 Hybrid single-walled carbon nanotube
PCT/JP2001/008194 WO2002024572A1 (en) 2000-09-20 2001-09-20 Hybrid single-wall carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286108A JP2002097009A (en) 2000-09-20 2000-09-20 Hybrid single-walled carbon nanotube

Publications (1)

Publication Number Publication Date
JP2002097009A true JP2002097009A (en) 2002-04-02

Family

ID=18770077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286108A Pending JP2002097009A (en) 2000-09-20 2000-09-20 Hybrid single-walled carbon nanotube

Country Status (2)

Country Link
JP (1) JP2002097009A (en)
WO (1) WO2002024572A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068332A1 (en) * 2001-02-27 2002-09-06 Japan Science And Technology Corporation Method for manufacturing hybrid carbon nanotube
JP2004241572A (en) * 2003-02-05 2004-08-26 Sony Corp Semiconductor device and method of manufacturing the same
JP2005041716A (en) * 2003-07-23 2005-02-17 Japan Science & Technology Agency Nano-extraction and nano-condensation methods for inward guest molecules into single-walled carbon nanotubes
JP2005332991A (en) * 2004-05-20 2005-12-02 Univ Nagoya Carbon nanotube light emitting device
JP2007084393A (en) * 2005-09-26 2007-04-05 National Institute Of Advanced Industrial & Technology Carotenoid inclusion structure
KR100726965B1 (en) 2005-09-26 2007-06-14 한국과학기술연구원 Hybrid filler, high dielectric polymer composite using same, and manufacturing method thereof
US7291318B2 (en) 2002-10-22 2007-11-06 Toyota Jidosha Kabushiki Kaisha Methods for manufacturing multi-wall carbon nanotubes
JP2008300271A (en) * 2007-06-01 2008-12-11 Nippon Oil Corp Lithium ion storage body and lithium ion storage method
JP2020528876A (en) * 2017-06-13 2020-10-01 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Small molecule self-supporting film and hybrid material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001008164A1 (en) 1999-07-26 2001-02-01 The Trustees Of The University Of Pennsylvania Single-walled nanotubes having filled lumens and methods for producing the same
JP2008535760A (en) 2005-04-06 2008-09-04 ドレクセル ユニバーシティー Functional nanoparticle-filled carbon nanotubes and methods for their production
CN1326770C (en) * 2005-07-14 2007-07-18 上海交通大学 Carbon nanometer tube with surface connected with magnetic nanometer particle and its preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227806A (en) * 1992-12-22 1994-08-16 Nec Corp Carbon nanotube enclosing foreign substance and its production
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube
JPH07172807A (en) * 1993-12-21 1995-07-11 Nec Corp Working method of carbon nanotube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641466A (en) * 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227806A (en) * 1992-12-22 1994-08-16 Nec Corp Carbon nanotube enclosing foreign substance and its production
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube
JPH07172807A (en) * 1993-12-21 1995-07-11 Nec Corp Working method of carbon nanotube

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068332A1 (en) * 2001-02-27 2002-09-06 Japan Science And Technology Corporation Method for manufacturing hybrid carbon nanotube
US7384520B2 (en) 2001-02-27 2008-06-10 Japan Science And Technology Corporation Method for manufacturing hybrid carbon nanotube
US7291318B2 (en) 2002-10-22 2007-11-06 Toyota Jidosha Kabushiki Kaisha Methods for manufacturing multi-wall carbon nanotubes
JP2004241572A (en) * 2003-02-05 2004-08-26 Sony Corp Semiconductor device and method of manufacturing the same
JP2005041716A (en) * 2003-07-23 2005-02-17 Japan Science & Technology Agency Nano-extraction and nano-condensation methods for inward guest molecules into single-walled carbon nanotubes
JP2005332991A (en) * 2004-05-20 2005-12-02 Univ Nagoya Carbon nanotube light emitting device
JP2007084393A (en) * 2005-09-26 2007-04-05 National Institute Of Advanced Industrial & Technology Carotenoid inclusion structure
KR100726965B1 (en) 2005-09-26 2007-06-14 한국과학기술연구원 Hybrid filler, high dielectric polymer composite using same, and manufacturing method thereof
JP2008300271A (en) * 2007-06-01 2008-12-11 Nippon Oil Corp Lithium ion storage body and lithium ion storage method
JP2020528876A (en) * 2017-06-13 2020-10-01 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Small molecule self-supporting film and hybrid material
US11897884B2 (en) 2017-06-13 2024-02-13 Yeda Research And Development Co. Ltd. Small molecules based free-standing films and hybrid materials

Also Published As

Publication number Publication date
WO2002024572A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
Poudel et al. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review
Gupta et al. Carbon nanotubes: Synthesis, properties and engineering applications
Cumings et al. Mass-production of boron nitride double-wall nanotubes and nanococoons
Knupfer Electronic properties of carbon nanostructures
Subramoney Novel nanocarbons—structure, properties, and potential applications
US7112315B2 (en) Molecular nanowires from single walled carbon nanotubes
Golberg et al. Boron nitride nanotubes and nanosheets
Eletskii Sorption properties of carbon nanostructures
Li et al. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes
Kharlamova Electronic properties of pristine and modified single-walled carbon nanotubes
Tenne Doped and heteroatom‐containing fullerene‐like structures and nanotubes
Kitaura et al. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes
JP2546114B2 (en) Foreign substance-encapsulated carbon nanotubes and method for producing the same
Monthioux Carbon meta-nanotubes: Synthesis, properties and applications
Tagmatarchis Advances in carbon nanomaterials: Science and applications
Costa et al. Encapsulation of Re x O y clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal
JP2002097009A (en) Hybrid single-walled carbon nanotube
Zubair et al. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes
Eliseev et al. Preparation and properties of single-walled nanotubes filled with inorganic compounds
Cui et al. A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes
Norman et al. Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes
Liu et al. Synthesis of carbon nanotubes and nanobelts through a medial-reduction method
Teng et al. Filled carbon-nanotube heterostructures: from synthesis to application
Simon et al. Synthesis and Electron Holography Studies of Single Crystalline Nanostructures of Clathrate-II Phases K x Ge136 and Na x Si136
Golberg et al. Synthesis, HRTEM and electron diffraction studies of B/N-doped C and BN nanotubes