[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002096340A - Method for manufacturing optical element - Google Patents

Method for manufacturing optical element

Info

Publication number
JP2002096340A
JP2002096340A JP2000288391A JP2000288391A JP2002096340A JP 2002096340 A JP2002096340 A JP 2002096340A JP 2000288391 A JP2000288391 A JP 2000288391A JP 2000288391 A JP2000288391 A JP 2000288391A JP 2002096340 A JP2002096340 A JP 2002096340A
Authority
JP
Japan
Prior art keywords
mold
optical element
resin
speed
approach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000288391A
Other languages
Japanese (ja)
Inventor
Satoshi Teramoto
諭 寺本
Hiroyuki Seki
博之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000288391A priority Critical patent/JP2002096340A/en
Publication of JP2002096340A publication Critical patent/JP2002096340A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with rotation of both of a mold and an optical element base material in a resin spreading process and to accurately form a desired resin layer even if the optical element base material, that is, an optical element has a rotary axis asymmetric shape. SOLUTION: An energy curable resin is supplied to the optical surface of a mold or the molding surface of an optical element base material, and the mold and the optical element base material are allowed to approach relatively to spread the resin under pressure to form the desired resin layer between the mold and the optical element base material. In this case, the relative approach operation of the mold and the optical element base material after the contact of the optical surface of the mold and the resin is performed by intermittent operation repeating approach and stop at a first speed or by two kinds of speed operations repeating the approach at the first speed and the approach at a second speed slower than the first speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基材上に樹
脂層を積層して形成される光学素子の製造方法に関す
る。
The present invention relates to a method for manufacturing an optical element formed by laminating a resin layer on a glass substrate.

【0002】[0002]

【従来の技術】従来、前記光学素子の製造方法としては
特開平3−197106号公報に記載されている。この
従来の光学素子の製造方法は、金型と基材とを相対的に
接近させることにより樹脂を押し広げて金型と基材との
間に所望の樹脂層を形成する工程において、金型または
基材の少なくとも一方を、光軸を中心として回転しなが
ら金型と基材を相対的に接近させることにより、基材外
形形状に対して真円度よく樹脂層を形成するものであ
る。
2. Description of the Related Art Conventionally, a method for manufacturing the optical element is described in Japanese Patent Application Laid-Open No. 3-197106. This conventional method for manufacturing an optical element includes a step of forming a desired resin layer between the mold and the substrate by spreading the resin by relatively bringing the mold and the substrate closer to each other. Alternatively, the resin layer is formed with good roundness to the outer shape of the base material by relatively moving the mold and the base material while rotating at least one of the base materials around the optical axis.

【0003】[0003]

【発明が解決しようとする課題】このような従来の光学
素子の製造方法では、金型の樹脂層を押圧する面(以
下、金型光学面という)の回転中心と金型光学面の中
心、または基材の樹脂を供給する面(以下、成形面とい
う)の回転中心と基材成形面の中心が厳密に一致してい
る場合、基材外形形状に対して真円度のよい樹脂層が形
成される。
In such a conventional method for manufacturing an optical element, the center of rotation of the surface pressing the resin layer of the mold (hereinafter referred to as the mold optical surface), the center of the mold optical surface, Alternatively, if the center of rotation of the substrate supplying surface (hereinafter referred to as a molding surface) and the center of the substrate molding surface strictly coincide with each other, a resin layer having good roundness with respect to the outer shape of the substrate is formed. It is formed.

【0004】しかし、金型光学面の回転中心と金型光学
面の中心がずれている場合、金型を回転すれば、金型光
学面の中心は、金型光学面の回転中心を軸として回転す
る。したがって、金型光学面の回転中心と金型光学面の
中心とのずれ量と同じだけ、金型外周部も、ずれを生じ
ながら回転することになり、結果として樹脂層の真円度
が悪くなるという不具合が発生する。この現象は、基材
成形面の回転中心と基材成形面の中心ずれがある場合も
同じである。
However, when the center of rotation of the optical surface of the mold is deviated from the center of the optical surface of the mold, if the mold is rotated, the center of the optical surface of the mold becomes centered on the rotation center of the optical surface of the mold. Rotate. Accordingly, the outer peripheral portion of the mold also rotates with a displacement by the same amount as the displacement between the center of rotation of the mold optical surface and the center of the mold optical surface, and as a result, the roundness of the resin layer is poor. Will occur. This phenomenon is the same even when the center of rotation of the substrate molding surface is deviated from the center of the substrate molding surface.

【0005】また、特開平3−197106号公報で
は、回転軸対称形状の光学素子の製造方法のみに言及し
ているが、非回転対称形状の光学素子の場合、特開平3
−197106号公報に記載の方法では、基材から樹脂
がはみ出す、あるいは部分的に充填されない等の不具合
が発生する。
In Japanese Patent Application Laid-Open No. 3-197106, only a method of manufacturing an optical element having a rotationally symmetrical shape is described.
In the method described in JP-A-197106, problems such as the resin protruding from the base material or not being partially filled occur.

【0006】本発明は、このような従来の問題点を考慮
してなされたものであり、樹脂を広げる工程において、
金型および光学素子基材の両方ともを回転する必要がな
く、かつ、光学素子基材すなわち光学素子が非回転軸対
称形状であっても、所望の樹脂層を精度よく形成するこ
とが可能な光学素子の製造方法を提供することを目的と
する。
[0006] The present invention has been made in view of such conventional problems, and in the step of spreading the resin,
It is not necessary to rotate both the mold and the optical element substrate, and even if the optical element substrate, that is, the optical element has a non-rotational axis symmetric shape, it is possible to accurately form a desired resin layer. An object of the present invention is to provide a method for manufacturing an optical element.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1に係る光学素子の製造方法は、金
型光学面または光学素子基材の成形面にエネルギー硬化
型の樹脂を供給し、金型と光学素子基材とを相対的に接
近させることにより樹脂を押し広げて金型と光学素子基
材との間に所望の樹脂層を形成し、該樹脂層にエネルギ
ーを照射して樹脂層を硬化させた後、硬化した樹脂層と
金型とを剥離する光学素子の製造方法において、前記金
型光学面と樹脂の接触後における前記金型と前記光学素
子基材の相対的な接近動作が、第一の速度での接近と停
止を繰り返す断続的な動作、若しくは前記第一の速度で
の接近と前記第一の速度より遅い第二の速度での接近と
を繰り返す二種速度動作を含むことを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing an optical element, comprising the steps of: forming an energy-curable resin on an optical surface of a mold or a molding surface of an optical element substrate; To form a desired resin layer between the mold and the optical element substrate by spreading the resin by relatively approaching the mold and the optical element substrate, and applying energy to the resin layer. After irradiating and curing the resin layer, in the method of manufacturing an optical element for separating the cured resin layer and the mold, the mold and the optical element substrate after contacting the mold optical surface and resin The relative approach operation is an intermittent operation in which approach and stop at a first speed are repeated, or an approach at the first speed and an approach at a second speed lower than the first speed are repeated. It is characterized by including two speed operations.

【0008】本発明を図1および図2の概念図を使用し
説明する。図1(b)は、円柱状の光学素子基材1とそ
の光学面(この光学面は樹脂の成形面となるので、以下
「成形面」という)1a上に供給されたエネルギー硬化
性樹脂(以下、「樹脂」という)5、光学基材1の上方
に配置され樹脂5を押し広げて成形する金型光学面2a
を先端に有する円柱状の金型2を表す。なお、同図で
は、樹脂5は、成形面1a上に供給されているが、金型
2と光学素子基材1の上下を逆にして、金型光学面2a
上に樹脂5を供給してもよい。
The present invention will be described with reference to the conceptual diagrams of FIGS. FIG. 1 (b) shows a columnar optical element substrate 1 and its optical surface (this optical surface is a molding surface of a resin, and is hereinafter referred to as a “molding surface”). Hereinafter, referred to as “resin”) 5, a mold optical surface 2 a that is disposed above the optical base material 1 and expands and molds the resin 5.
Represents a cylindrical mold 2 having at its tip. In the figure, the resin 5 is supplied on the molding surface 1a, but the mold 2 and the optical element substrate 1 are turned upside down so that the mold optical surface 2a
The resin 5 may be supplied thereon.

【0009】図1(a)は、図1(b)の平面図であ
り、円形の光学素子基材1と光学素子基材1より直径の
小さい円筒状の金型2を示す。図1(c)、(d)、
(e)、(f)、(g)、(h)は、図1(a)のA−
A断面の半裁断面図であり、光学素子基材1と金型2を
相対的に接近させ、金型光学面2aで樹脂5を押し広げ
て樹脂層3を形成する状態を模式的に示す。なお、光学
素子基材1の光学面1aの中心(光軸)と金型光学面2
aの中心は一致しているものとする。
FIG. 1A is a plan view of FIG. 1B and shows a circular optical element substrate 1 and a cylindrical mold 2 having a smaller diameter than the optical element substrate 1. 1 (c), (d),
(E), (f), (g), and (h) correspond to A- in FIG.
FIG. 3 is a half sectional view of a section A, schematically showing a state in which an optical element substrate 1 and a mold 2 are relatively approached to each other, and a resin layer 3 is formed by spreading a resin 5 on a mold optical surface 2a. The center (optical axis) of the optical surface 1a of the optical element substrate 1 and the mold optical surface 2
It is assumed that the centers of a coincide.

【0010】図2は、光学素子基材と金型の接近動作を
模式的に示す。縦軸は速度、横軸は時間を表示する。図
2(a)は金型2と光学素子基材1を相対的に接近させ
る断続的な動作を示す。金型2と光学素子基材1がA0
の速度で相対的に接近し、樹脂5が金型光学面2aに接
触し成形面1a上で押し広げられると、その段階で所定
の時間B1だけ接近動作を停止し、その後、第一の速度
A1で再び接近し、その後B2の時間停止し、再び第一
の速度A2で接近し、更にB3の時間停止し、再び第一
の速度A3で接近するというように、接近と停止を繰り
返す動作をし、この動作を断続的動作という。
FIG. 2 schematically shows the approaching operation of the optical element substrate and the mold. The vertical axis indicates speed, and the horizontal axis indicates time. FIG. 2A shows an intermittent operation for relatively bringing the mold 2 and the optical element substrate 1 closer to each other. Mold 2 and optical element substrate 1 are A0
When the resin 5 comes into contact with the mold optical surface 2a and is spread on the molding surface 1a, the approach operation is stopped for a predetermined time B1 at that stage, and then the first speed An approach that repeats approach and stop, such as approaching again at A1, stopping at the time of B2, approaching again at the first speed A2, stopping at the time of B3 again, approaching again at the first speed A3, and so on. This operation is called an intermittent operation.

【0011】図2(b)は金型2と光学素子基材1の接
近の二種速度動作を示す。金型2と光学素子基材1とが
A0の速度で相対的に接近し、樹脂5が金型光学面2a
に接触し、さらにそれにより光学素子基材1の成形面1
a上に押し広げられると、その段階で所定の時間C1だ
け前記第一の速度のどの速度よりも遅く、ほとんど停止
に近い遅い速度での接近に切換え、その後、第一の速度
A1で再び接近し、その後C2の時間を前記のように停
止に近い第二の速度で接近し、再び第一の速度A2で接
近し、更に時間C3を前記のように停止に近い第二の速
度で接近し、再び第一の速度A3で接近するというよう
に、第一の速度での接近と第一の速度のどの速度よりも
遅い第二の速度での接近を繰り返す動作を、速度が少な
くとも2種類あることから、二種速度動作という。な
お、以下において、時間C1、C2、C3と説明すると
ともに、その時間C1、C2、C3における第二の速度
もC1、C2、C3として便宜上説明する。
FIG. 2B shows two kinds of speed operations of approaching the mold 2 and the optical element substrate 1. The mold 2 and the optical element substrate 1 relatively approach each other at the speed of A0, and the resin 5 moves to the mold optical surface 2a.
, And thereby the molding surface 1 of the optical element substrate 1
When it is spread over a, at that stage, it switches to approaching at a slow speed that is slower than any of the first speeds for a predetermined time C1 and almost close to a stop, and then approaches again at the first speed A1. Then, approach the time C2 at the second speed close to the stop as described above, approach again at the first speed A2, and approach the time C3 at the second speed close to the stop as described above. There are at least two types of operations that repeat the approach at the first speed and the approach at the second speed that is slower than any of the first speeds, such as approaching again at the first speed A3. Therefore, it is called two-speed operation. In the following, the times C1, C2, and C3 are described, and the second speeds at the times C1, C2, and C3 are also described as C1, C2, and C3 for convenience.

【0012】上記光学素子基材1と金型2による断続的
動作又は二種速度動作より樹脂層が形成される状態を図
1(c)〜(h)までを参照して説明する。
The state in which the resin layer is formed by the intermittent operation or the two-speed operation by the optical element substrate 1 and the mold 2 will be described with reference to FIGS. 1 (c) to 1 (h).

【0013】図1(c)は、光学素子基材1と金型2が
A0の速度で接近し、樹脂5が金型光学面2aと光学素
子基材1の成形面1aで形成される空間に押し広げられ
た状態を示す。このとき、金型2の金型光学面2aと光
学素子基材1の成形面1aに接していない樹脂5の最外
周部は表面張力により外側に膨らんでいる。
FIG. 1C shows a space where the optical element substrate 1 and the mold 2 approach at a speed of A0, and the resin 5 is formed by the mold optical surface 2a and the molding surface 1a of the optical element substrate 1. Shows the state where it was pushed out. At this time, the outermost peripheral portion of the resin 5 that is not in contact with the mold optical surface 2a of the mold 2 and the molding surface 1a of the optical element substrate 1 bulges outward due to surface tension.

【0014】樹脂5の最外周部とは、樹脂5が押し広げ
られたとき、樹脂5は不定形の状態で外側に広がるが、
その広がった樹脂5の各部のうち、金型2の外周部の輪
郭に最も近い部分をいう。なお、この定義によれば、樹
脂5の最外周部は1点となるが、その1点だけでなく、
その1点を含みそれに連なる一定の面積を持つ部分を称
して、「最外周部」という。
The outermost portion of the resin 5 means that when the resin 5 is expanded, the resin 5 spreads out in an indefinite state.
Among the spread portions of the resin 5, the portion closest to the contour of the outer peripheral portion of the mold 2 is referred to. According to this definition, the outermost peripheral portion of the resin 5 is one point, but not only that one point,
A portion having a certain area including and including the one point is referred to as “outermost portion”.

【0015】また、樹脂5の外周部はすべて外側に膨ら
むが、図1(c)は、その最外周部の膨らみを示してい
る。図1(c)の場合、光学素子基材1の成形面1aと
金型2の金型光学面2aとが円形である場合としたが、
光学素子基材1の成形面1aは円形で、金型2が円形以
外の非回転軸対称形状の場合、若しくは金型2と光学素
子基材1の両方が円形以外の非回転軸対称形状の場合に
おいても、樹脂5の最外周部とは、押し広げられた樹脂
5の部分のうち、金型2の外周部の輪郭に最も近い部分
をいう。
Further, the entire outer peripheral portion of the resin 5 swells outward, and FIG. 1C shows the swelling of the outermost peripheral portion. 1C, the molding surface 1a of the optical element substrate 1 and the mold optical surface 2a of the mold 2 are circular.
The molding surface 1a of the optical element substrate 1 is circular, and the mold 2 has a non-rotational axis symmetric shape other than a circle, or both the mold 2 and the optical element substrate 1 have a non-rotational axis symmetric shape other than a circle. Also in this case, the outermost peripheral portion of the resin 5 refers to a portion of the expanded resin 5 closest to the contour of the outer peripheral portion of the mold 2.

【0016】さらに、図1(c)の場合、光学素子基材
1と金型2は断続的動作又は二種速度動作に入る前に押
し広げられた不定形の樹脂5の一部を最外周部と定義し
たが、断続的動作又は二種速度動作に入った段階でも、
樹脂5が押し広げられるごとに、その「最外周部」が存
在する。
Further, in the case of FIG. 1 (c), the optical element substrate 1 and the mold 2 are used to extend a part of the irregularly shaped resin 5 which has been spread out before the intermittent operation or the two-speed operation is started. Although it was defined as a part, even when it entered intermittent operation or dual speed operation,
Each time the resin 5 is spread, its “outermost portion” exists.

【0017】次に、この状態で、B1の時間だけ光学素
子基材1と金型2の接近を停止すると、図1(d)に示
すように外側に膨らんでいた樹脂5の最外周部は、表面
張力により孤を描いて内側に入り込む。なお、ここで
は、光学素子基材1と金型2は停止しているが、これら
の接近により樹脂5が外側に広がる力よりも、表面張力
により内側に入り込む力が大きければ、光学素子基材1
と金型2は必ずしも停止しなくても、それらの接近速度
が停止に近い接近速度である第二の速度C1、例えば、
0.03mm/sec以下であれば、上記停止の場合と
同様に、樹脂5の最外周部の膨らみは、表面張力の方が
優った場合、内側に入り込む。すなわち、図2(b)に
示すように、C1の時間は、B1の時間と同様で、樹脂
5の最外周部は内側に入り込む。
Next, in this state, when the approach between the optical element substrate 1 and the mold 2 is stopped for the time B1, the outermost peripheral portion of the resin 5 which has swelled outward as shown in FIG. Draws an arc by the surface tension and enters inside. Here, the optical element substrate 1 and the mold 2 are stopped. However, if the force of the resin 5 entering inside due to surface tension is greater than the force of the resin 5 spreading outward due to the approach, the optical element substrate 1
And the mold 2 do not necessarily have to stop, but their approach speed is an approach speed close to stop, a second speed C1, for example,
If it is 0.03 mm / sec or less, the bulge of the outermost peripheral portion of the resin 5 enters inside when the surface tension is superior, as in the case of the stop. That is, as shown in FIG. 2B, the time of C1 is the same as the time of B1, and the outermost peripheral portion of the resin 5 enters inside.

【0018】この状態から、第一の速度A1で再び光学
素子基材1と金型2の接近を開始すると、樹脂5は再び
押し広げられ、金型光学面2aと光学素子基材1の成形
面1aで形成される空間のうちまだ樹脂5が充填されて
いない部分に充填されていく。このように樹脂5が押し
広げられた結果、その一部が、最外周部となり、図1
(e)に示すように金型2の外周部まで到達し、表面張
力によりその外側に膨らむ。金型2の外周部に到達した
樹脂5の最外周部はそれ以上広がらず、樹脂5の他の部
分は、上述の如く、金型光学面2aと光学素子基材1の
成形面1aで形成される空間のうちで、まだ樹脂5が充
填されていない部分に充填されていく。
When the approach between the optical element substrate 1 and the mold 2 is started again at the first speed A1 from this state, the resin 5 is spread again, and the molding of the optical surface 2a of the mold and the optical element substrate 1 is performed. The portion of the space formed by the surface 1a that is not yet filled with the resin 5 is filled. As a result of the resin 5 being spread as described above, a part thereof becomes the outermost peripheral portion, and FIG.
As shown in (e), it reaches the outer periphery of the mold 2 and swells outward due to surface tension. The outermost peripheral portion of the resin 5 reaching the outer peripheral portion of the mold 2 does not spread any more, and the other portion of the resin 5 is formed by the mold optical surface 2a and the molding surface 1a of the optical element substrate 1 as described above. The space which is not yet filled with the resin 5 in the space to be filled is filled.

【0019】そして、樹脂5の全部の最外周部が金型2
の外周部に到達する時点またはそれ以前の時点で、B2
の時間だけ光学素子基材1と金型2の接近を停止する第
2回目の停止をすると、図1(f)に示すように、金型
2の外周部に到達していた樹脂5は、前記の如く、その
表面張力により内側に孤を描いて入り込む。図2(b)
に示す如く、光学素子基材1と金型2の接近をC2の時
間第二の速度C2に切換えても、前記のごとく樹脂5は
内側に入り込む。
The entire outermost portion of the resin 5 is
At or before reaching the outer circumference of B2
When the second stop for stopping the approach between the optical element substrate 1 and the mold 2 for the time shown in FIG. 1A, as shown in FIG. As described above, an arc is drawn inside by the surface tension. FIG. 2 (b)
As shown in (2), even if the approach between the optical element substrate 1 and the mold 2 is switched to the second speed C2 for the time C2, the resin 5 enters inside as described above.

【0020】続いて、第一の速度A2で再び光学素子基
材1と金型2を接近させると、樹脂5の全部の最外周部
が金型2の外周部に到達していなかった場合、停止B2
または第二の速度C2の段階で金型2の外周部に到達し
ていなかった樹脂5のすべての外周部が金型2の外周部
に到達する。
Subsequently, when the optical element substrate 1 and the mold 2 are approached again at the first speed A2, when the entire outermost portion of the resin 5 has not reached the outer periphery of the mold 2, Stop B2
Alternatively, all the outer peripheral portions of the resin 5 that have not reached the outer peripheral portion of the mold 2 at the stage of the second speed C2 reach the outer peripheral portion of the mold 2.

【0021】この段階で、光学素子基材1と金型2の相
対的接近動作を終了すれば、金型2の金型光学面2aと
同じ面積の樹脂層3を形成することができる。すなわ
ち、この段階で、樹脂層3の成形が終了する。
At this stage, if the relative approach operation between the optical element substrate 1 and the mold 2 is completed, the resin layer 3 having the same area as the mold optical surface 2a of the mold 2 can be formed. That is, at this stage, the molding of the resin layer 3 is completed.

【0022】この場合、後述するように、金型2の外周
部から樹脂5をはみ出させて樹脂層3を形成させる場合
と比較し、樹脂5の供給量を少なくする必要がある。
In this case, as will be described later, it is necessary to reduce the supply amount of the resin 5 as compared with the case where the resin 5 is protruded from the outer peripheral portion of the mold 2 to form the resin layer 3.

【0023】なぜならば、光学素子の特性を所定の規格
値に合わせようとする場合、樹脂層3の中心、すなわち
光軸における樹脂層3の厚さに自ら限界があり、樹脂5
が金型2の外周部からはみ出る分だけ、樹脂5の供給量
を少なくして、樹脂層3が厚くなるのを防止するためで
ある。
This is because when the characteristics of the optical element are to be adjusted to a predetermined standard value, the thickness of the resin layer 3 at the center of the resin layer 3, that is, at the optical axis, has its own limit.
This is for preventing the resin layer 3 from being thickened by reducing the supply amount of the resin 5 by an amount protruding from the outer peripheral portion of the mold 2.

【0024】一般には、金型2の外周部より樹脂5を均
一にはみ出させ、樹脂層3を形成する。したがって、光
学素子基材1と金型2の相対的接近動作を更に継続させ
る。
Generally, the resin layer 3 is formed by uniformly projecting the resin 5 from the outer periphery of the mold 2. Therefore, the relative approach operation between the optical element substrate 1 and the mold 2 is further continued.

【0025】さらに接近が継続すると、図1(g)に示
すように、樹脂5は金型2の外周から距離αだけ一様に
はみ出し、樹脂層3となる。この場合、図1(c)、
(e)に示す場合のように、樹脂5が充填されていない
部分がないので、樹脂5を広げる力が金型2の外周部で
一様になり、樹脂5が樹脂層3となったとき、樹脂層3
の外周と金型2の外周部との距離αはすべての方向でほ
ぼ一様になり、したがって、金型2が真円であれば、樹
脂層3もほぼ真円になる。また、光学素子基材1の成形
面1aの中心と金型2の中心は一致されているので、光
学素子基材1上に形成される樹脂層3の真円度の精度も
高めることができる。このようにして、金型2と光学素
子基材1の相対的接近動作による樹脂層3の成形が終了
する。
When the approach is further continued, as shown in FIG. 1 (g), the resin 5 uniformly protrudes from the outer periphery of the mold 2 by a distance α to form the resin layer 3. In this case, FIG.
As shown in (e), since there is no portion that is not filled with the resin 5, the force for spreading the resin 5 becomes uniform around the outer periphery of the mold 2, and the resin 5 becomes the resin layer 3. , Resin layer 3
Is substantially uniform in all directions, and therefore, if the mold 2 is a perfect circle, the resin layer 3 also becomes a substantially perfect circle. Further, since the center of the molding surface 1a of the optical element substrate 1 and the center of the mold 2 coincide with each other, the accuracy of the roundness of the resin layer 3 formed on the optical element substrate 1 can be improved. . Thus, the molding of the resin layer 3 by the relative approach operation between the mold 2 and the optical element substrate 1 is completed.

【0026】一般に、光学素子基材1と金型2の光学面
2aの中心を一致させるのは、比較的容易であるが、光
学素子基材1又は金型2の金型光学面2aの中心と、駆
動中心となるそれぞれの回転中心を一致させることは相
当困難である。したがって、本発明によれば、光学素子
基材1又は金型2を回転させる必要がないので、真円度
のよい光学素子を容易に得ることができる。
In general, it is relatively easy to match the centers of the optical element substrate 1 and the optical surface 2a of the mold 2, but the center of the optical surface 2a of the optical element substrate 1 or the mold 2 is relatively easy. It is very difficult to make the respective rotation centers that are the driving centers coincide with each other. Therefore, according to the present invention, there is no need to rotate the optical element substrate 1 or the mold 2, and an optical element having good roundness can be easily obtained.

【0027】また、第一の速度A2での接近動作で、す
べての方向で距離αを等しくできない場合は、第3番目
の停止である時間B3若しくは第二の速度C3での接近
を経過後、短時間、第一の速度A3で再び光学素子基材
1と金型2を接近させれば、すべての方向において、距
離αをほぼ等しくすることができる。
If the distance α cannot be equalized in all directions in the approaching operation at the first speed A2, after approaching at the third stop time B3 or at the second speed C3, By bringing the optical element substrate 1 and the mold 2 closer again at a first speed A3 for a short time, the distance α can be made substantially equal in all directions.

【0028】上記説明は、それを簡略にするために、光
学素子基材1の成形面1aも金型2の金型光学面2aも
円形でかつ平面の場合について行ったが、光学素子基材
1の成形面1aが球面で、金型2の金型光学面2aが非
球面等の曲面であっても、全く同様の作用により、真円
度のよい光学素子を得ることができる。
In the above description, for simplicity, the molding surface 1a of the optical element substrate 1 and the mold optical surface 2a of the mold 2 are both circular and flat. Even if the molding surface 1a is a spherical surface and the mold optical surface 2a of the mold 2 is a curved surface such as an aspheric surface, an optical element with good roundness can be obtained by exactly the same operation.

【0029】本発明は、金型光学面2a若しくは金型光
学面2aと光学素子基材1の成形面1aの両方が円形以
外、すなわち、非回転軸対称形状の場合にも応用でき
る。
The present invention can also be applied to a case where the mold optical surface 2a or both the mold optical surface 2a and the molding surface 1a of the optical element substrate 1 have a shape other than a circle, that is, a non-rotationally symmetric shape.

【0030】前記の如く、金型2の金型光学面2aを樹
脂5に接触させ、樹脂5を光学素子基材1の成形面1a
上で押し広げた後、所定の時間、金型2と光学素子基材
1の接近を停止し、または、停止に近い第二の速度で接
近させ、続いて、第一の速度で金型2と光学素子基材1
を接近させた場合、停止または第二の速度の前に押し広
げた樹脂の部分で、金型2の外周部に一番近い部分、す
なわち、樹脂5の最外周部はそれ以上広がらず、金型光
学面2aと光学素子基材1の成形面1aで形成される空
間のうちで、まだ樹脂5が充填されていない部分に充填
されて行くことになる。これは、樹脂5の表面張力によ
り、樹脂5を押し広げようとする力が樹脂5にかかっ
て、樹脂5の最外周面は外側に膨らみ、その力がかから
ない停止または停止に近い第二の速度の状態では、樹脂
5は同じく表面張力により内側に入り込み、内側に入り
込んだ段階を経て、再び第一の速度での接近する場合
は、樹脂5は広がろうとする力に対向する力が弱いまだ
充填されていない部分に広がるからである。
As described above, the mold optical surface 2a of the mold 2 is brought into contact with the resin 5, and the resin 5 is brought into contact with the molding surface 1a of the optical element substrate 1.
After spreading the above, the approach between the mold 2 and the optical element substrate 1 is stopped for a predetermined time, or the approach is performed at a second speed close to the stop, and then the mold 2 is approached at the first speed. And optical element substrate 1
Is closer to the outer peripheral portion of the mold 2, that is, the outermost peripheral portion of the resin 5 in the portion of the resin that is stopped or pushed out before the second speed, does not spread any more, In the space formed by the mold optical surface 2a and the molding surface 1a of the optical element substrate 1, a portion not yet filled with the resin 5 is filled. This is because, due to the surface tension of the resin 5, a force for pushing and spreading the resin 5 is applied to the resin 5, the outermost peripheral surface of the resin 5 swells outward, and a stop or a second speed close to the stop where the force is not applied. In the state of the above, the resin 5 similarly enters the inside due to surface tension, and after approaching the inside again, when approaching again at the first speed, the resin 5 has a weak force opposing the force for spreading. This is because it spreads to unfilled portions.

【0031】金型2の金型光学面2aの形状が非回転軸
対称形状の場合においても、金型2の外周面に到達した
樹脂5の部分はそれ以上広がらず、金型光学面2aと光
学素子基材1の成形面1aで形成される空間のうちまだ
樹脂が充填されていない部分に充填され、前記空間がす
べて充填された後は、金型光学面2aが円形の場合と同
様に、第一の速度での接近動作により、すべての方向に
おいて、金型2の外周から等しい距離だけはみ出し樹脂
層3が形成される。
Even when the shape of the mold optical surface 2a of the mold 2 is non-rotationally symmetric, the portion of the resin 5 that has reached the outer peripheral surface of the mold 2 does not spread any more, and the mold optical surface 2a The space formed by the molding surface 1a of the optical element substrate 1 is filled in a portion not yet filled with the resin, and after the space is completely filled, in the same manner as in the case where the mold optical surface 2a is circular. By the approach operation at the first speed, the resin layer 3 protrudes from the outer periphery of the mold 2 by an equal distance in all directions.

【0032】光学素子基材1と金型2の両方が非回転軸
対称形状である場合においては、本発明の特徴が特に顕
著に現れるので、符号を変更し、図3を使用して樹脂層
が形成される工程を模式的に示す。図3は光学素子基材
と金型を金型の上面から見た平面図である。
In the case where both the optical element substrate 1 and the mold 2 are non-rotationally symmetric, the features of the present invention appear particularly conspicuously. Are schematically shown. FIG. 3 is a plan view of the optical element substrate and the mold as viewed from above the mold.

【0033】図3(a)において、長方形ABCDは光
学素子基材11の外形形状を示し、長方形EFGHは金
型12の外形形状を示す。図示されていないが、光学素
子基材11の成形面および金型12の金型光学面は平面
でも所定の曲面でもよい。図3(b)〜(f)は、金型
12を取り除いて見た樹脂15の広がる様子を示す。な
お、金型12の外周部輪郭は点線で示す。
In FIG. 3A, a rectangle ABCD indicates an outer shape of the optical element substrate 11, and a rectangle EFGH indicates an outer shape of the mold 12. Although not shown, the molding surface of the optical element substrate 11 and the mold optical surface of the mold 12 may be flat or have a predetermined curved surface. 3B to 3F show how the resin 15 spreads when the mold 12 is removed. The contour of the outer peripheral portion of the mold 12 is indicated by a dotted line.

【0034】図3(b)に示すように、光学素子基材1
1と金型12の相対的接近により、樹脂15は図3
(a)の状態から広げられ、その一部が金型12の外周
の長辺EHに達するが、長辺EHより外側には広がらな
い。続いて、金型12と光学素子基材11の1回若しく
は複数回の断続的な動作若しくは二種速度動作による接
近より、図3(c)に示すように樹脂15の外周部は長
辺EHと長辺FGの両方と接触するが、長辺EHと長辺
FGより外側には広がらず、基板11と金型12のそれ
ぞれ図示せぬ成形面および金型光学面で形成され、未だ
樹脂15が充填されていない短辺EF、HG付近の空間
の方に広がっていく。
As shown in FIG. 3B, the optical element substrate 1
Due to the relative approach between the mold 1 and the mold 12, the resin 15
It is expanded from the state of (a) and a part thereof reaches the long side EH of the outer periphery of the mold 12, but does not spread outside the long side EH. Subsequently, due to one or more intermittent operations or two speed operations of the mold 12 and the optical element substrate 11, the outer periphery of the resin 15 has a long side EH as shown in FIG. And the long side FG, but does not spread outside the long side EH and the long side FG, and is formed by the molding surface and the mold optical surface (not shown) of the substrate 11 and the mold 12, respectively. Spread toward the space near the short sides EF and HG where no is filled.

【0035】同様の接近動作が継続すると、図3(d)
に示すように樹脂15の外周部は長辺EH、FGに加え
短辺EF,HGにも到達するが、なお、これらの辺E
H,FG,EF,HGの外側にはみ出さない。それは、
金型の外周部の4つの角E、F、G、H付近に樹脂15
が充填される空間が残されているからである。
When the similar approaching operation continues, FIG.
As shown in FIG. 5, the outer peripheral portion of the resin 15 reaches the short sides EF and HG in addition to the long sides EH and FG.
Does not protrude outside of H, FG, EF and HG. that is,
Resin 15 is placed around the four corners E, F, G, and H on the outer periphery of the mold.
Is left behind.

【0036】このようにして、光学素子基材11と金型
12で形成する空間のすべてが樹脂15で充填された状
態を図3(e)に示す。図3(e)の状態から、更に、
第一の速度で、光学素子基材11と金型12の接近が行
われると、金型12の外周部に到達していた樹脂15は
各辺の輪郭からその辺と直角方向に等しい力を受け、等
しい距離βだけはみ出した樹脂層13を形成する。
FIG. 3E shows a state where the space formed by the optical element substrate 11 and the mold 12 is completely filled with the resin 15 in this manner. From the state of FIG.
When the optical element substrate 11 and the mold 12 approach each other at the first speed, the resin 15 that has reached the outer peripheral portion of the mold 12 exerts an equal force in a direction perpendicular to the side from the contour of each side. Then, the resin layer 13 protruding by an equal distance β is formed.

【0037】このように樹脂層13が広げられるのは、
光学素子基材11と金型12の断続的接近動作又は二種
速度接近動作においては、表面張力により、光学素子基
材11の成形面と金型12の金型光学面が形成する空間
の内側に力が働き、金型12の外周部からはみ出すこと
なく、前記力の働かない前記空間の樹脂15の未充填部
分に樹脂15が充填され、前記空間のすべてが樹脂15
で充填されると、更なる接近動作により、金型12の外
周部輪郭の外側に等しい力で樹脂15が押し出され広が
るからである。このような樹脂層13の形成は、光学素
子基材11と金型12が他の非回転軸対称形状の場合も
同様である。
The reason why the resin layer 13 is expanded as described above is as follows.
In the intermittent approach operation or the two-speed approach operation between the optical element substrate 11 and the mold 12, the inside of the space formed by the molding surface of the optical element substrate 11 and the mold optical surface of the mold 12 due to surface tension. The unfilled portion of the resin 15 in the space where the force does not work is filled with the resin 15 without protruding from the outer periphery of the mold 12, and the entire space is filled with the resin 15.
When the resin 15 is filled, the resin 15 is extruded with an equal force to the outside of the contour of the outer peripheral portion of the mold 12 by a further approaching operation and spreads. The formation of the resin layer 13 is the same when the optical element substrate 11 and the mold 12 have other non-rotationally symmetric shapes.

【0038】よって、本発明によれば、金型2の金型光
学面2a又は金型2の金型光学面2aと光学素子基材1
の成形面1aの両方が非回転軸対称形状の場合にも、所
望の樹脂層を有する光学素子を得ることができる。
Thus, according to the present invention, the mold optical surface 2a of the mold 2 or the mold optical surface 2a of the mold 2 and the optical element substrate 1
When both of the molding surfaces 1a are non-rotationally symmetric, an optical element having a desired resin layer can be obtained.

【0039】なお、本発明の説明において、説明の便宜
のため、第一の速度について、A1、A2、A3の3種
類の場合について説明したが、本発明における第一の速
度は3種類に限定されることなく、1回の接近距離を少
なくして、A4、A5等4種類以上としてもよい。ま
た、第一の速度A1による接近動作は1回であるとして
説明したが、本発明では、1回に限定されるものではな
い。したがって、停止も、B1、B2、B3の3回に限
定されないし、第二の速度も、C1、C2、C3の3回
に限定されない。また、停止B1、第二の速度C1等
は、1回に限定されることなく複数回あってもよい。
In the description of the present invention, three types of first speeds A1, A2, and A3 have been described for convenience of description, but the first speed in the present invention is limited to three types. Instead, one approach distance may be reduced to four or more types such as A4 and A5. Also, the approach operation at the first speed A1 has been described as being one time, but the present invention is not limited to one time. Therefore, the stop is not limited to three times of B1, B2, and B3, and the second speed is not limited to three times of C1, C2, and C3. Further, the stop B1, the second speed C1, and the like are not limited to one time, and may be plural times.

【0040】一般的には、A1、B1、C1等の動作
は、小刻みに複数回行われる方が望ましい。その理由は
以下の通りである。
In general, it is desirable that the operations such as A1, B1, and C1 be performed a plurality of times in small increments. The reason is as follows.

【0041】前記の如く、第一の速度を含む接近動作の
時間は樹脂は表面張力により、金型2の金型光学面2a
の外側に膨らみ、停止時間又は第二の速度での接近動作
時間は、樹脂5は表面張力により金型光学面2aの内側
に入り込む。すなわち、表面張力は光学光学面2aの内
側の方向に働く。したがって、再び第一の速度における
接近動作が始まると、樹脂は再び押し広げられ、金型光
学面2aと光学素子基材1の成形面1aで形成される空
間のうちまだ樹脂5が充填されていない部分に充填され
ていく。言い換えれば、樹脂5は、表面張力の作用によ
り、金型外周部の輪郭に対して等しい距離になるように
広がる。このように樹脂5が広がれば、樹脂5は成形面
1aに対し、均一に広がることになり、所望の光学素子
を得ることができるが、A1、B1、C1等の動作が1
回のみでは、前記表面張力の作用が樹脂5を押し広げる
力に対して十分作用せず、樹脂5が不均一に広がった
り、その一部が、所定の面の外側にまではみ出すことも
ある。
As described above, the time of the approach operation including the first speed is caused by the surface tension of the resin due to the surface tension of the resin.
During the stop time or the approach operation time at the second speed, the resin 5 enters the inside of the mold optical surface 2a by the surface tension. That is, the surface tension acts in the direction inside the optical optical surface 2a. Therefore, when the approach operation at the first speed starts again, the resin is pushed out again, and the resin 5 is still filled in the space formed by the mold optical surface 2a and the molding surface 1a of the optical element substrate 1. The parts that are not filled are filled. In other words, the resin 5 spreads by the action of surface tension so as to be at the same distance from the contour of the outer periphery of the mold. If the resin 5 spreads in this manner, the resin 5 spreads uniformly on the molding surface 1a, and a desired optical element can be obtained.
If only the rotation is performed, the action of the surface tension does not sufficiently act on the force for spreading the resin 5, and the resin 5 may spread unevenly, or a part of the resin 5 may extend outside the predetermined surface.

【0042】したがって、前記断続的動作又は二種速度
動作をなるべく多数回行うため、A1、B1、C1等の
動作は複数回小刻みに行われることが望ましい。
Therefore, in order to perform the intermittent operation or the two-speed operation as many times as possible, it is desirable that the operations such as A1, B1, and C1 be performed a plurality of times in small increments.

【0043】本発明の請求項2に係る光学素子の製造方
法は、請求項1の光学素子の製造方法であって、前記第
一の速度は、前記第二の速度より速い範囲で少なくとも
二以上の複数の速度を含み、その各速度と停止からなる
断続的な動作又はその各速度と第二の速度からなる二種
速度動作を、前記第一の速度の少なくとも一の速度につ
いて複数回行うことを特徴とする。
A method of manufacturing an optical element according to claim 2 of the present invention is the method of manufacturing an optical element of claim 1, wherein the first speed is at least two or more within a range higher than the second speed. Including a plurality of speeds, performing an intermittent operation consisting of each speed and a stop or a dual speed operation consisting of each speed and a second speed a plurality of times for at least one of the first speeds It is characterized by.

【0044】請求項1の発明の説明において、図2
(a)、(b)に基づき、第一の速度は、少なくもA
1、A2という複数の速度と必要に応じA3という速度
もある旨説明した。また、上記第一の速度A1、A2、
A3に対応して、停止時間B1、B2、B3若しくは第
二の速度C1、C2、C3があることを説明した。
In the description of the first embodiment, FIG.
Based on (a) and (b), the first speed is at least A
It has been explained that there are a plurality of speeds A1 and A2 and a speed A3 if necessary. Further, the first speeds A1, A2,
It has been described that there is the stop time B1, B2, B3 or the second speed C1, C2, C3 corresponding to A3.

【0045】したがって、一番極端な場合、第一の速度
A1、A2と停止時間B1、B2若しくは第二の速度C
1、C2の2回の断続的動作又は二種速度動作のみで所
望の光学素子を得られる場合があり得ることになるが、
これは、樹脂の広がりが理想的に行われた場合であっ
て、極めて例外的場合に限定される。
Therefore, in the most extreme case, the first speed A1, A2 and the stop time B1, B2 or the second speed C
1, there is a possibility that a desired optical element can be obtained only by two intermittent operations of C2 or only two speed operations.
This is the case where the spreading of the resin is ideally performed and is limited to extremely exceptional cases.

【0046】発明者の実験によれば、1回の接近距離を
減じて、例えば第一の速度A1と1回目の停止B1の組
合せ又は第一の速度A1と第二の速度C1での接近動作
の組合せを複数回行えば、断続的動作若しくは二種速度
動作における樹脂全体の広がりが小刻みにかつ、金型の
外周面の輪郭への距離が均一になるように行われること
を見出した。この理由については、請求項1の発明につ
いて説明しているので、重複する説明は省略する。
According to the experiment of the inventor, one approach distance is reduced, for example, a combination of the first speed A1 and the first stop B1 or the approach operation at the first speed A1 and the second speed C1. It has been found that, when the combination of is performed a plurality of times, the whole resin is spread in intermittent operation or two-speed operation in small increments and the distance to the contour of the outer peripheral surface of the mold is made uniform. The reason for this is described in the first aspect of the present invention, and a duplicate description will be omitted.

【0047】同様に第一の速度A2と停止時間B2また
は第一の速度A2と第二の速度C2の組合せについて
も、これらの動作を複数回行った方は上記作用が助長さ
れることも判明した。このように、小刻みな断続的動作
又は二種速度動作を行えば、樹脂の外周部の一部が、樹
脂の他の外周部のすべてが金型の外周部に到達する前に
金型の外周部からはみ出したり、または、金型の外周部
から樹脂層をはみ出させる際に、はみ出した樹脂層の外
周全体が金型外周部からの距離に対して一様でなくなる
といった不具合は、通常の生産条件においてほとんどな
くなる。したがって、本発明によれば、通常の生産条件
で所望の光学素子を生産することができる。
Similarly, with respect to the combination of the first speed A2 and the stop time B2 or the combination of the first speed A2 and the second speed C2, it is also found that the above operation is promoted by performing these operations a plurality of times. did. As described above, if the small intermittent operation or the two-speed operation is performed, a part of the outer peripheral portion of the resin is moved before the other outer peripheral portion of the resin reaches the outer peripheral portion of the mold. The problem that when the resin layer protrudes from the part or the resin layer protrudes from the outer periphery of the mold, the entire outer periphery of the protruding resin layer becomes non-uniform with respect to the distance from the outer periphery of the mold is a problem in normal production. Almost gone in conditions. Therefore, according to the present invention, a desired optical element can be produced under normal production conditions.

【0048】本発明の請求項3に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記断続的な動作は、前記第一の速度での接近と停止を
互いに3回以上繰り返すことを特徴とする。
The method for manufacturing an optical element according to claim 3 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The intermittent operation is characterized by repeating the approach and the stop at the first speed at least three times each other.

【0049】樹脂外周部が金型外周部に到達する際、厳
密には、樹脂外周部の輪郭と金型外周部の輪郭が完全に
一致するわけではない。微視的に見れば、樹脂の一部は
金型の外周部からはみ出しており、他の一部は金型の外
周に到達していない。その結果、はみ出した樹脂層の金
型外周部からの距離は、すべての方向で完全に等しくな
るわけではない。だだし、それが許容条件の範囲内であ
れば、光学素子の所望の特性を満たすことになる。例え
ば、真円度の精度が規格値以上である等である。
Strictly speaking, when the outer peripheral portion of the resin reaches the outer peripheral portion of the mold, the outline of the outer peripheral portion of the resin does not completely coincide with the outline of the outer peripheral portion of the mold. Microscopically, part of the resin protrudes from the outer periphery of the mold, and the other part does not reach the outer periphery of the mold. As a result, the distance of the protruding resin layer from the outer periphery of the mold is not completely equal in all directions. However, if it is within the range of the allowable condition, the desired characteristics of the optical element will be satisfied. For example, the accuracy of the roundness is equal to or higher than a standard value.

【0050】そこで、発明者は、前記断続的動作につい
て詳細にその条件を検討した結果、第一の速度での接近
と停止の繰り返し回数が多ければ多いほど、金型外周部
からのはみ出し量をすべての方向においてより正確に等
しくできるが、少なくとも接近と停止の繰り返し回数が
3回以上であれば、本発明の効果が認められ、光学素子
の特性が規格値を満たすことを見出した。これは、停止
の際の樹脂の表面張力による内側への入り込みが3回以
上起きると、樹脂の広がりがすべての方向に対し均一化
するためである。
Then, the inventor examined the conditions of the intermittent operation in detail, and as a result, as the number of repetitions of approach and stop at the first speed increases, the amount of protrusion from the outer periphery of the mold increases. It can be more precisely equalized in all directions, but it has been found that the effect of the present invention is recognized and the characteristics of the optical element satisfy the standard value if the number of repetitions of approach and stop is at least three or more. This is because if the resin enters the inside three times or more due to the surface tension of the resin at the time of stopping, the spread of the resin becomes uniform in all directions.

【0051】本発明の請求項4に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記二種速度動作は、前記第一の速度での接近と前記第
二の速度での接近を互いに3回以上繰り返すことを特徴
とする。
The method for manufacturing an optical element according to claim 4 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The two-speed operation is characterized in that the approach at the first speed and the approach at the second speed are repeated at least three times each other.

【0052】本発明は、前記第二の速度での接近がほぼ
停止に近い作用であることから、請求項3について記載
した作用とほぼ同一の作用をする。
According to the present invention, since the approach at the second speed is almost a stop operation, the operation is substantially the same as the operation described in the third aspect.

【0053】本発明の請求項5に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記第一の速度での前記金型と光学素子基材の相対的な
接近距離は、金型と光学素子基材の距離が小さくなるに
つれて、段階的に小さくなることを特徴とする。
The method for manufacturing an optical element according to claim 5 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The relative approach distance between the mold and the optical element base material at the first speed gradually decreases as the distance between the mold and the optical element base material decreases.

【0054】請求項1の発明について説明したように、
所定の時間、金型と光学素子基材の接近を停止し、また
は、停止に近い第二の速度で接近させ、続いて、第一の
速度で金型と光学素子基材を接近させた場合、停止また
は第二の速度の前に押し広げた樹脂の部分で、金型の外
周に一番近い部分、すなわち、樹脂の最外周部はそれ以
上広がらず、金型光学面と光学素子基材の成形面で形成
される空間のうちで、まだ樹脂が充填されていない部分
に充填されていくことになる。また、樹脂が金型の光学
面の外周部からはみ出す距離はすべての方向でほぼ等し
くなる。
As described in the first aspect of the present invention,
When the approach between the mold and the optical element base material is stopped for a predetermined time, or the approach is made at a second speed close to the stop, and then the mold and the optical element base material are approached at the first speed. In the portion of the resin that is stopped or spread before the second speed, the portion closest to the outer periphery of the mold, that is, the outermost portion of the resin does not spread any more, the mold optical surface and the optical element substrate In the space formed by the molding surface of the above, the portion not yet filled with the resin is filled. Further, the distance that the resin protrudes from the outer peripheral portion of the optical surface of the mold is substantially equal in all directions.

【0055】このような作用が起きるのは、金型光学面
と光学素子基材の成形面の接近動作により、樹脂が押し
広げられる際と、その接近動作が停止、又は停止にほぼ
等しい第二の速度の切り換えた際、ともに樹脂の表面張
力が働くからである。
Such an action occurs when the resin is pushed out by the approaching operation of the mold optical surface and the molding surface of the optical element base material, and when the approaching operation is stopped or almost equal to the stop. This is because the surface tension of the resin works when the speed is switched.

【0056】しかし、金型と光学素子基材の距離が小さ
くなるにつれて、樹脂が薄くなる結果、その表面張力も
弱くなる。したがって、表面張力が弱くなった分、1回
の接近距離を段階的に少なくして、金型の外周部の輪郭
に対する距離が均一になるように樹脂の広がりをコント
ロールする必要がある。接近距離が小さければ、相対的
に表面張力の影響を大きくできるからである。
However, as the distance between the mold and the optical element substrate becomes smaller, the resin becomes thinner, and the surface tension of the resin becomes weaker. Therefore, it is necessary to control the spread of the resin so that the distance to the contour of the outer peripheral portion of the mold becomes uniform by gradually reducing the approach distance at one time because the surface tension is weakened. This is because if the approach distance is small, the influence of surface tension can be relatively increased.

【0057】本発明の請求項6に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記第一の速度での前記金型と光学素子基材の相対的な
接近速度は、金型と光学素子基材の距離が小さくなるに
つれて、段階的に遅くなることを特徴とする。
The method for manufacturing an optical element according to claim 6 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The relative approach speed of the mold and the optical element base material at the first speed gradually decreases as the distance between the mold and the optical element base material decreases.

【0058】本発明の作用も請求項5について説明した
作用とほぼ同じであり、図2に示したように、A1から
A3へと第一の速度の接近速度を遅くすることにより、
樹脂の表面張力の影響を相対的に大きくして、樹脂層が
薄くなることによる表面張力の減少分を補い、樹脂の広
がりのコントロールを維持する。
The operation of the present invention is almost the same as the operation described in claim 5, and as shown in FIG. 2, by decreasing the approach speed of the first speed from A1 to A3,
The influence of the surface tension of the resin is relatively increased to compensate for the decrease in the surface tension due to the thinning of the resin layer, and the control of the spread of the resin is maintained.

【0059】本発明の請求項7に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記金型と光学素子基材の相対的な接近を停止する時間
は、金型と光学素子基材の距離が小さくなるにつれて、
段階的に長くなることを特徴とする。
The method for manufacturing an optical element according to claim 7 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The time to stop the relative approach of the mold and the optical element substrate, as the distance between the mold and the optical element substrate decreases,
It is characterized in that it becomes longer stepwise.

【0060】本発明の作用も請求項5又は請求項6につ
いて説明した作用とほぼ同じであり、図2に示したよう
に、B1からB3へと停止時間を長くすることにより、
樹脂の表面張力の影響を相対的に大きくして、表面張力
の減少分を補い、樹脂の広がりのコントロールを維持す
る。停止時間においては、樹脂が金型の光学面の内側に
入り込もうとする表面張力の作用が、上記の如く樹脂の
広がりをコントロールするのに重要な働きをし、特に、
金型と光学素子基材の距離が小さくなった段階で、停止
時間を長くすることにより、樹脂が金型の光学面の外周
部から不規則にはみ出すことを防止する働きがあり、そ
の結果、樹脂は金型外周部から均一に広がる。
The operation of the present invention is almost the same as the operation described in claim 5 or 6, and as shown in FIG. 2, by increasing the stop time from B1 to B3,
The influence of the surface tension of the resin is relatively increased to compensate for the decrease in the surface tension, and control of the spread of the resin is maintained. In the stop time, the action of the surface tension of the resin trying to enter the inside of the optical surface of the mold plays an important role in controlling the spread of the resin as described above, and in particular,
At the stage where the distance between the mold and the optical element base material is reduced, by increasing the stop time, there is a function of preventing the resin from irregularly protruding from the outer peripheral portion of the optical surface of the mold, and as a result, The resin spreads uniformly from the outer periphery of the mold.

【0061】本発明の請求項8に係る光学素子の製造方
法は、請求項1又は2の光学素子の製造方法であって、
前記第二の速度での接近動作時間は、金型と光学素子基
材の距離が小さくなるにつれて、段階的に長くなること
を特徴とする。
The method for manufacturing an optical element according to claim 8 of the present invention is the method for manufacturing an optical element according to claim 1 or 2,
The approach operation time at the second speed gradually increases as the distance between the mold and the optical element base material decreases.

【0062】この発明の作用は、第二の速度における接
近動作が、その速度が遅いため、樹脂の表面張力の作用
に関しては、金型と光学素子基材が停止する場合とほぼ
同じ作用をすることから、請求項7の停止時間の作用と
ほぼ同じ作用をし、樹脂の広がりをコントロールし、樹
脂が金型の光学面の外周部から不規則にはみ出すことを
防止する。
According to the operation of the present invention, the approach operation at the second speed is slow, so that the effect of the surface tension of the resin is almost the same as the case where the mold and the optical element substrate are stopped. Accordingly, the operation is substantially the same as the operation of the stop time according to the seventh aspect, controls the spread of the resin, and prevents the resin from irregularly protruding from the outer peripheral portion of the optical surface of the mold.

【0063】本発明の請求項9に係る光学素子の製造方
法は、金型光学面または光学素子基材の成形面にエネル
ギー硬化型の樹脂を供給し、金型と光学素子基材とを相
対的に接近させることにより樹脂を押し広げて金型と光
学素子基材との間に所望の樹脂層を形成し、該樹脂層に
エネルギーを照射して樹脂層を硬化させた後、硬化した
樹脂層と金型とを剥離する光学素子の製造方法におい
て、前記金型光学面の外周形状が回転軸対称形状であ
り、前記金型光学面と樹脂の接触後における前記金型と
前記光学素子基材の相対的な接近動作が、連続した接近
動作と、その後における停止と第一の速度での接近を繰
り返す断続的動作、又は前記第一の速度より遅い第二の
速度での接近と前記第一の速度での接近とを繰り返す二
種速度動作であることを特徴とする。
According to a ninth aspect of the present invention, in the method of manufacturing an optical element, an energy-curable resin is supplied to an optical surface of a mold or a molding surface of an optical element base material, and the mold and the optical element base material are moved relative to each other. Forming a desired resin layer between the mold and the optical element substrate by spreading the resin by close proximity to each other, irradiating the resin layer with energy to cure the resin layer, and then setting the cured resin In the method of manufacturing an optical element for separating a layer and a mold, an outer peripheral shape of the optical surface of the mold is a rotational axis symmetrical shape, and the mold and the optical element base after contacting the optical surface of the mold with a resin. The relative approach operation of the material is a continuous approach operation, followed by an intermittent operation in which the stop and the approach at the first speed are repeated, or an approach at the second speed lower than the first speed and the second approach. It is a two-speed operation that repeats approaching at one speed And it features.

【0064】この発明において、樹脂層を形成して光学
素子となる光学素子基材の形状が円形のレンズのように
回転軸対称形状であることから、金型光学面の形状を光
学素子基材の形状に合わせて回転軸対称形状としてい
る。また、この発明において、光学素子基材と金型の相
対的接近動作であって、金型の光学面が樹脂を押し広げ
る前の段階は当然として、樹脂を押し広げる段階の一部
まで連続して金型と光学素子基材とを相対的に接近せし
めて、光学素子の製造のタクトタイムを短縮し、光学素
子のコストの低下を図っている。この連続的接近動作の
速度は、その後に行われる断続的接近動作や二種速度動
作における第一の速度より高速であることが望ましい。
連続的接近動作の後に行われる断続的動作又は二種速度
動作は、請求項1の発明について説明した内容と重複す
るので、説明を省略する。
In the present invention, since the shape of the optical element base material which forms the optical element by forming the resin layer is symmetric with respect to the rotational axis like a circular lens, the shape of the mold optical surface is changed to the optical element base material. To the shape of the rotation axis. Further, in the present invention, the relative approach operation between the optical element base material and the mold, and the stage before the optical surface of the mold spreads the resin, as a matter of course, continues to a part of the step of spreading the resin. In this way, the mold and the optical element base material are brought closer to each other to shorten the tact time for manufacturing the optical element, thereby reducing the cost of the optical element. It is desirable that the speed of the continuous approach operation is higher than the first speed in the intermittent approach operation or the two-speed operation performed thereafter.
The intermittent operation or the two-speed operation performed after the continuous approach operation is the same as that described in the first aspect of the present invention, and thus the description thereof is omitted.

【0065】本発明の請求項10に係る光学素子の製造
方法は、請求項9の光学素子の製造方法であって、前記
連続した接近動作は、金型光学面と中心が同じで、直径
が金型光学面の8割の円の内側から、少なくとも樹脂の
一部がはみ出すまでの金型と光学素子基材の接近動作で
あることを特徴とする。
The method for manufacturing an optical element according to claim 10 of the present invention is the method for manufacturing an optical element according to claim 9, wherein the continuous approaching operation has the same center and the same diameter as the optical surface of the mold. It is characterized in that it is an approach operation of the mold and the optical element base material until at least part of the resin protrudes from the inside of the 80% circle of the mold optical surface.

【0066】この発明において、樹脂の一部とは、前記
樹脂の最外周部を意味する。連続した接近動作における
樹脂の広がりは不定形であり、前記のごとく、樹脂の表
面張力を利用したコントロールがなされないので、樹脂
が押し広げられ始めた時点からあまり長く連続した接近
動作を行うと、樹脂の最外周部が光学素子基材の外周部
を超えてはみ出すような不具合を生ずる。
In the present invention, a part of the resin means an outermost peripheral portion of the resin. The spread of the resin in the continuous approaching operation is indefinite, and as described above, since control using the surface tension of the resin is not performed, if the continuous approaching operation is performed too long from the time when the resin starts to be spread out, There is a problem that the outermost peripheral portion of the resin protrudes beyond the outer peripheral portion of the optical element substrate.

【0067】したがって、樹脂の最外周部が、回転軸対
称形状とし円形である金型の光学面の直径の8割の大き
さの円周に到達した時点で、光学素子基材と金型の接近
動作を停止し、以降断続的動作を行うか、光学素子基材
と金型の接近動作を第二の速度の接近動作に切換え、以
降二種速度動作を行うと、請求項1の発明で説明したよ
うに、樹脂の最外周部がすべての方向で金型の外周部に
到達するまで、樹脂の一部が金型の外周からはみ出すこ
とはなく、金型光学面の全面に樹脂が押し広げられた後
では、第一の速度での接近動作により、金型の外周部か
ら一様に樹脂がはみ出し樹脂層を形成する。この場合、
樹脂のはみ出し量のコントロールもされるので、上記の
如く、連続した接近動作により樹脂が所定の部分以外に
はみ出すといった不具合は防止される。
Therefore, when the outermost peripheral portion of the resin reaches the circumference of 80% of the diameter of the optical surface of the mold, which is symmetrical with the rotation axis and circular, the optical element base material and the mold are separated. The invention according to claim 1, wherein the approaching operation is stopped, and then the intermittent operation is performed, or the approaching operation between the optical element substrate and the mold is switched to the second-speed approaching operation, and thereafter, two kinds of speed operations are performed. As described, part of the resin does not protrude from the outer periphery of the mold until the outermost periphery of the resin reaches the outer periphery of the mold in all directions. After being spread, the resin uniformly protrudes from the outer peripheral portion of the mold by the approach operation at the first speed to form a resin layer. in this case,
Since the amount of the resin protruding is also controlled, as described above, the problem that the resin protrudes beyond a predetermined portion due to the continuous approaching operation is prevented.

【0068】8割の円としたのは、金型光学面の直径の
8割を超えると、その後たとえ断続的動作等を行っても
上記不都合が発生するおそれがあるし、8割を大幅に下
回ると、断続的動作等の期間が長くなり、光学素子製造
のタクトタイムが長くなるからである。
The circle of 80% is set so that if the diameter exceeds 80% of the diameter of the optical surface of the mold, the above-mentioned inconvenience may occur even if intermittent operation is performed thereafter. If the value is lower than this, the period of the intermittent operation or the like becomes longer, and the tact time of manufacturing the optical element becomes longer.

【0069】また、8割の円に到達する時刻を割り出す
のは、光学素子の設計がされた後、実験を繰り返すこと
により行う。
The time to reach the 80% circle is determined by repeating experiments after designing the optical element.

【0070】本発明の請求項11に係る光学素子の製造
方法は、請求項9又は請求項10の光学素子の製造方法
であって、前記金型光学面の直径が、所望の樹脂層直径
より小さいことを特徴とする。
The method for manufacturing an optical element according to claim 11 of the present invention is the method for manufacturing an optical element according to claim 9 or claim 10, wherein the diameter of the optical surface of the mold is smaller than a desired resin layer diameter. It is characterized by being small.

【0071】請求項9又は10記載の発明において、樹
脂層は金型の外周部から均一にはみ出し形成される場合
があり、この場合、当然、金型光学面の直径は、所望の
樹脂層の直径より小さくなくてはならないからである。
In the ninth or tenth aspect of the present invention, the resin layer may be formed so as to protrude uniformly from the outer periphery of the mold. In this case, the diameter of the optical surface of the mold naturally depends on the desired resin layer. It must be smaller than the diameter.

【0072】本発明の請求項12に係る光学素子の製造
方法は、金型光学面または光学素子基材の成形面にエネ
ルギー硬化型の樹脂を供給し、金型と光学素子基材とを
相対的に接近させることにより樹脂を押し広げて金型と
光学素子基材との間に所望の樹脂層を形成し、該樹脂層
にエネルギーを照射して樹脂層を硬化させた後、硬化し
た樹脂層と金型とを剥離する光学素子の製造方法におい
て、前記金型光学面の外周形状が非回転軸対称形状であ
り、前記金型光学面と樹脂の接触後における前記金型と
前記光学素子基材の相対的な接近動作が、連続した接近
動作と、その後における停止と第一の速度での接近を繰
り返す断続的動作、又は前記第一の速度より遅い第二の
速度での接近と前記第一の速度での接近とを繰り返す二
種速度動作であることを特徴とする。
According to a twelfth aspect of the present invention, in the method of manufacturing an optical element, an energy-curable resin is supplied to an optical surface of a mold or a molding surface of a substrate of an optical element, and the mold and the optical element substrate are moved relative to each other. Forming a desired resin layer between the mold and the optical element substrate by spreading the resin by close proximity to each other, irradiating the resin layer with energy to cure the resin layer, and then setting the cured resin In the method for manufacturing an optical element for separating a layer and a mold, an outer peripheral shape of the mold optical surface is a non-rotationally symmetric shape, and the mold and the optical element after the mold optical surface and a resin are brought into contact with each other. The relative approach operation of the base material is a continuous approach operation, followed by an intermittent operation in which the stop and the approach at the first speed are repeated, or an approach at a second speed lower than the first speed. It is a two-speed operation that repeats the approach at the first speed And wherein the door.

【0073】光学素子基材の形状を円形とするととも
に、形成する樹脂層は長方形等の非回転軸対称形状と
し、樹脂層が形成されない光学素子基材の部分を所定の
目的、例えば、光学素子を他の部材で保持する部分とし
て使用する場合等では、金型光学面の外周形状を非回転
軸対称形状とし、非回転軸対称形状の樹脂層を有する光
学素子を、本発明により、その目的に合わせて製造する
ことができる。
The shape of the optical element substrate is circular, the resin layer to be formed is a non-rotational axis symmetrical shape such as a rectangle, and the portion of the optical element substrate on which the resin layer is not formed has a predetermined purpose, for example, an optical element. In the case where the optical element is used as a part to be held by another member, the outer peripheral shape of the optical surface of the mold is made to be a non-rotationally symmetrical shape, and an optical element having a non-rotationally symmetrically shaped resin layer is provided by the present invention. It can be manufactured according to.

【0074】さらに、金型光学面の外周形状が非回転軸
対称形状の場合であって、それにより形成される樹脂層
に合わせて、光学素子基材の外周形状も非回転軸対称形
状とすることができる。例えば、長方形の光学素子基材
の成形面に同じく長方形の樹脂層を形成して光学素子を
製造する場合、光学素子基材が円形の場合と比較し、光
学素子をよりコンパクトにすることができる。
Further, in the case where the outer peripheral shape of the optical surface of the mold is non-rotationally symmetric, the outer peripheral shape of the optical element substrate is also non-rotationally symmetrical in accordance with the resin layer formed thereby. be able to. For example, when an optical element is manufactured by forming a rectangular resin layer on the molding surface of a rectangular optical element substrate, the optical element can be made more compact than when the optical element substrate is circular. .

【0075】また、金型光学面が樹脂層に接触し、樹脂
が押し広げられる工程の一部まで、光学素子基材と金型
の連続的接近動作を行うのは、請求項9記載の発明と同
じく、光学素子製造のタクトタイムを短縮するためであ
る。
Further, it is preferable that the optical element substrate and the mold are continuously approached to each other until a part of the step in which the mold optical surface comes into contact with the resin layer and the resin is spread. As in the case of the above, it is for shortening the tact time of manufacturing the optical element.

【0076】連続的接近動作後の断続的動作又は二種速
度動作については、請求項1の発明についての説明の中
で既に説明されているので、重複する説明は省略する。
The intermittent operation or the two-speed operation after the continuous approach operation has already been described in the description of the first aspect of the present invention, and a duplicate description will be omitted.

【0077】また、非回転軸対称形状の樹脂層を光学素
子基材の成形面上に形成する方法についても、請求項1
の発明についての説明で、図3を参照し詳細に説明して
いるので、重複する説明を省略する。
Further, a method of forming a non-rotationally symmetric resin layer on a molding surface of an optical element substrate is also described.
Since the present invention has been described in detail with reference to FIG. 3, a duplicate description will be omitted.

【0078】なお、図3では、光学素子基材の外周形状
も金型の外周形状も共に非回転軸対称形状である長方形
の場合について説明されているが、光学素子基材の外周
形状が回転対称形状である円形の場合であっても同様に
光学素子の製造ができる。なぜならば、形成される樹脂
層の形状は、金型の外周形状により決まり、図3で、光
学素子基材の外周形状を円形に代えても特に不都合は発
生しないからである。
Although FIG. 3 illustrates a case where both the outer peripheral shape of the optical element substrate and the outer peripheral shape of the mold are rectangular shapes that are non-rotationally symmetric, the outer peripheral shape of the optical element substrate is rotated. Even in the case of a symmetrical circular shape, an optical element can be manufactured similarly. This is because the shape of the resin layer to be formed is determined by the outer shape of the mold, and no particular inconvenience occurs even if the outer shape of the optical element substrate is changed to a circle in FIG.

【0079】本発明の請求項13に係る光学素子の製造
方法は、請求項12の光学素子の製造方法であって、光
学素子基材の樹脂層を形成する成形面の曲率中心と、成
形面に対向する裏側の非成形面の曲率中心を結ぶ直線を
回転対称軸とした場合、前記連続した接近動作は、樹脂
層表面と前記回転対称軸の交点と接触する金型光学面上
の点を中心とした金型光学面の外周形状に対する内接円
と中心が同じで、直径が前記内接円の8割の円の内側か
ら、少なくとも樹脂の一部がはみ出すまでの金型と光学
素子基材の接近動作であることを特徴とする。
The method for manufacturing an optical element according to claim 13 of the present invention is the method for manufacturing an optical element according to claim 12, wherein the center of curvature of the molding surface on which the resin layer of the optical element substrate is formed, and the molding surface When a straight line connecting the centers of curvature of the non-molding surfaces on the back side opposite to each other is set as the rotationally symmetric axis, the continuous approaching operation is performed by setting a point on the mold optical surface that is in contact with the intersection of the resin layer surface and the rotationally symmetric axis. The mold and the optical element base have the same center as the inscribed circle with respect to the outer peripheral shape of the mold optical surface and have a diameter from the inside of 80% of the inscribed circle until at least a portion of the resin protrudes. It is characterized by a material approaching movement.

【0080】この発明も、請求項10記載の発明と同
様、樹脂の最外周部が光学素子基材の外周部を超えては
み出すような不具合を生ずるのを避けるため、連続的接
近動作により押し広げられた樹脂の最外周部が、金型光
学面の外周形状に対する内接円の直径の8割に相当する
直径の円の円周到達した時点で、金型と光学素子基材の
接近動作を断続的動作又は二種速度動作とし、樹脂の広
がりをコントロールする作用を有する。前記断続的動作
又は二種速度動作が、樹脂の一部が所定の円の直径の8
割の大きさの直径の円の内側からはみ出すまでになされ
る理由等は請求項10の発明について記載された内容と
重複するので、その説明は省略する。
In the present invention as well, in order to avoid a problem that the outermost peripheral portion of the resin protrudes beyond the outer peripheral portion of the optical element substrate as in the tenth aspect, the resin is pushed out by a continuous approaching operation. When the outermost peripheral portion of the resin reaches the circumference of a circle having a diameter equivalent to 80% of the diameter of the inscribed circle with respect to the outer peripheral shape of the mold optical surface, the approach operation of the mold and the optical element base material is performed. An intermittent operation or a two-speed operation has the effect of controlling the spread of the resin. The intermittent operation or the two-speed operation is performed when a part of the resin has the diameter of 8
The reason and the like that are made until the protrusion protrudes from the inside of the circle having the diameter of the split size are the same as those described for the invention of claim 10, and therefore, the description thereof is omitted.

【0081】金型光学面の外周形状に対する内接円を基
準としたのは、前記内接円の半径が、その円の中心から
非回転軸対称形状の外周までの最短距離になるからであ
り、この内接円の円周を超えて樹脂がはみ出さなけれ
ば、光学素子基材の外周を超えて樹脂がはみ出すことは
ないからである。
The reason why the radius of the inscribed circle is the shortest distance from the center of the circle to the outer periphery of the non-rotationally symmetrical shape is based on the inscribed circle with respect to the outer peripheral shape of the mold optical surface. If the resin does not protrude beyond the circumference of the inscribed circle, the resin does not protrude beyond the outer periphery of the optical element base material.

【0082】本発明の請求項14に係る光学素子の製造
方法は、請求項12又は13の光学素子の製造方法であ
って、前記光学素子基材の外周形状が非回転軸対称形状
であることを特徴とする。
A method for manufacturing an optical element according to claim 14 of the present invention is the method for manufacturing an optical element according to claim 12 or 13, wherein the outer peripheral shape of the optical element substrate is non-rotationally symmetric. It is characterized by.

【0083】光学素子として最も多く用いられる素子は
レンズであり一般に円形である。しかし、レンズがカメ
ラ等に応用される場合、フィルムが長方形であることか
ら、レンズは必ずしも円形である必要はない。例えば、
光学素子基材の外周形状が円形である場合、その円の中
心から等距離の平行な2本の直線に沿って円周の一部を
切り落とし、2つの弦を形成し、その弦を2つの円弧で
結んだいわゆる小判形形状にしても、その光学特性は損
なわれない。このような光学素子基材に本発明の方法に
より非球面形状からなる樹脂層を形成してレンズとし、
カメラ等に応用すれば、円周の一部を切り落としたコン
パクトな非回転軸対称形状であるので、カメラ等をより
小型化できる。
The most frequently used optical element is a lens, which is generally circular. However, when the lens is applied to a camera or the like, the lens does not need to be circular because the film is rectangular. For example,
When the outer peripheral shape of the optical element substrate is circular, a part of the circumference is cut off along two parallel straight lines equidistant from the center of the circle to form two chords, and the two chords are formed. Even if it is a so-called oval shape connected by an arc, its optical characteristics are not impaired. By forming a resin layer having an aspherical shape on such an optical element substrate by the method of the present invention to form a lens,
If the present invention is applied to a camera or the like, the camera or the like can be further reduced in size because it has a compact non-rotationally symmetric shape with a part of the circumference cut off.

【0084】本発明における非回転軸対称形状とは、前
記小判形の他、円形の外周の一部又は複数箇所を削除し
た形状、多角形、楕円形等、それぞれのニーズに応じて
形状を選択し、発明の適用範囲を拡大することができ
る。
The non-rotationally symmetrical shape in the present invention can be selected from the above-mentioned oval shape, a shape obtained by deleting a part or a plurality of portions of a circular outer periphery, a polygon, an ellipse, and the like according to the needs of each. Thus, the scope of the invention can be expanded.

【0085】本発明の請求項15に係る光学素子の製造
方法は、請求項1,9又は12のいずれかの光学素子の
製造方法であって、前記エネルギー硬化型の樹脂の粘度
が20000cps以下であることを特徴とする。
A method for manufacturing an optical element according to claim 15 of the present invention is the method for manufacturing an optical element according to any one of claims 1, 9 and 12, wherein the energy-curable resin has a viscosity of 20,000 cps or less. There is a feature.

【0086】請求項1,9,12には、前記金型と光学
素子基材の断続的動作又は二種速度動作により、樹脂を
押し広げる範囲をコントロールし、課題を解決する手段
が記載されているが、これらの動作により課題を解決す
るために、樹脂の表面張力の作用を応用している。前記
動作により所望の形状の樹脂層を成形するためには、樹
脂の持つ適性な表面張力の作用が不可欠であるが、エネ
ルギー硬化型の樹脂にあっては、前記動作を効果的にす
るためにその粘度が限定されることを発明者は実験等に
より見出している。
Claims 1, 9 and 12 disclose means for controlling the range in which the resin is spread by intermittent operation or two-speed operation of the mold and the optical element base material to solve the problem. However, in order to solve the problem by these operations, the action of the surface tension of the resin is applied. In order to form a resin layer having a desired shape by the above-described operation, the action of an appropriate surface tension of the resin is indispensable. However, in the case of an energy-curable resin, in order to make the above-mentioned operation effective, The inventors have found through experiments and the like that the viscosity is limited.

【0087】これらのタイプの樹脂にあっては、樹脂の
粘度が20000cpsを超えると前記動作をさせても
表面張力が十分でなく、したがって所望の樹脂層は得ら
れない。すなわち、樹脂の粘度が高すぎると樹脂を押し
広げる際、表面張力が十分作用せず、したがって、樹脂
が所定の範囲を超えてはみ出す等の不具合を生ずる。よ
って、本発明においては、樹脂の粘度の範囲を上記のよ
うに限定することとしている。
In the case of these types of resins, if the viscosity of the resin exceeds 20,000 cps, the surface tension is not sufficient even if the above operation is performed, so that a desired resin layer cannot be obtained. That is, if the viscosity of the resin is too high, the surface tension does not act sufficiently when the resin is spread, and therefore, a problem such as the resin protruding beyond a predetermined range occurs. Therefore, in the present invention, the range of the viscosity of the resin is limited as described above.

【0088】[0088]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を具体的に説明する。なお、各実施の形態に
おいて、同一の要素は同一の符号を付して対応させてあ
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. In each of the embodiments, the same elements are denoted by the same reference numerals and correspond to each other.

【0089】(実施の形態1)本発明の実施の形態1を
図4〜9を参照して説明する。図4は光学素子基材の成
形面に樹脂を供給した状態を示す図、図5は金型と光学
素子基材に接近させて樹脂を押し広げている状態を示す
図、図6は金型の全外周まで樹脂を押し広げた状態を示
す図、図7は樹脂層を形成した状態を示す図、図8,9
は樹脂層と金型との剥離状態を示す図である。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 4 is a view showing a state in which the resin is supplied to the molding surface of the optical element base material, FIG. 5 is a view showing a state in which the resin is brought close to the optical element base material and the resin is spread, and FIG. 6 is a mold. 7 shows a state in which the resin is pushed out to the entire outer periphery of FIG. 7, FIG. 7 shows a state in which the resin layer is formed, and FIGS.
FIG. 3 is a diagram showing a peeled state between a resin layer and a mold.

【0090】本実施の形態では、回転対称軸を有する回
転軸対称形状である光学素子基材としてのガラス基材
に、金型光学面が回転軸対称形状である金型により円形
の樹脂層を形成した。ガラス基材22は、図4に示すよ
うに、樹脂層を載置する面(以下、成形面)22aは曲
率半径が100mmの凹面、樹脂層を載置しない面(成
形面22aに対向する裏側の非成形面)22bは曲率半
径が50mmの凹面、直径は成形面22aと非成形面2
2bの曲率中心を結ぶ直線(以下、回転対称軸)Aを中
心として22mm、回転対称軸A上における成形面22
aと非成形面22bの距離が2mmとなっている。ま
た、ガラス基材22の成形面22a上には予め設定した
量の樹脂25が供給されている。樹脂25の粘度は10
000cpsである。
In this embodiment, a circular resin layer is formed on a glass substrate as an optical element substrate having a rotationally symmetrical shape having a rotationally symmetric axis by using a metal mold having a mold optical surface having a rotationally symmetrical shape. Formed. As shown in FIG. 4, the glass substrate 22 has a concave surface having a radius of curvature of 100 mm on the surface on which the resin layer is mounted (hereinafter, molding surface) 22a, and a surface on which the resin layer is not mounted (the back surface facing the molding surface 22a). 22b is a concave surface having a radius of curvature of 50 mm, and the diameters are the molding surface 22a and the non-molding surface 2b.
22 mm about a straight line (hereinafter, rotationally symmetric axis) A connecting the centers of curvature of 2b and the molding surface 22 on the rotationally symmetric axis A
The distance between a and the non-molded surface 22b is 2 mm. Further, a predetermined amount of resin 25 is supplied onto the molding surface 22a of the glass base material 22. Resin 25 has a viscosity of 10
000 cps.

【0091】本実施の形態におけるガラス基材22とし
ては、商品名「PBL28」((株)オハラ製)の光学
ガラスを採用しており、樹脂25としては商品名「MP
−201」(三菱レイヨン(株)製)の紫外線硬化型樹
脂を採用している。
As the glass substrate 22 in the present embodiment, an optical glass having a trade name of “PBL28” (manufactured by OHARA Co., Ltd.) is used.
-201 "(manufactured by Mitsubishi Rayon Co., Ltd.).

【0092】金型21はガラス基材22の上方に配置さ
れ、その中心軸が前記回転対称軸Aと同じで直径が20
mmと直径が24mmの位置で互いに上下動自在に保持
された内型21aと外型21bに分割されており、内型
21aよりも外型21bのほうが、ガラス基材22より
0.2mm遠くなるように段差がある状態で嵌合してい
る。内型21aには金型光学面としての樹脂押圧面21
cを有しており、樹脂押圧面21cとガラス基材22の
成形面22aとは対向した状態となっている。
The mold 21 is disposed above the glass substrate 22 and has a center axis the same as the rotational symmetry axis A and a diameter of 20 mm.
is divided into an inner mold 21a and an outer mold 21b which are vertically movable at a position of 24 mm and a diameter of 24 mm. The outer mold 21b is 0.2 mm farther than the glass base 22 than the inner mold 21a. Are fitted in such a manner that there is a step. The inner die 21a has a resin pressing surface 21 as a mold optical surface.
c, and the resin pressing surface 21 c and the molding surface 22 a of the glass substrate 22 are in a state of being opposed to each other.

【0093】この状態から、金型21をガラス基材22
に対して0.5mm/secの速度で近づけることによ
り、内型21aの樹脂押圧面21cとガラス基材22の
成形面22aにより形成される空間内で、成形面22a
上に供給されている樹脂25を徐々に広げていく。そし
て、図5に示すように、樹脂25の最外周部が内型21
aの樹脂押圧面21cの直径に対して8割の位置(図5
の破線部)に到達するまで、この動作を継続する。な
お、このとき、回転対称軸A上では、金型21とガラス
基材22の間隔は0.28mmとなっている。
From this state, the mold 21 is moved to the glass substrate 22.
At a speed of 0.5 mm / sec to the molding surface 22a in the space formed by the resin pressing surface 21c of the inner mold 21a and the molding surface 22a of the glass base material 22.
The resin 25 supplied above is gradually spread. Then, as shown in FIG.
80% of the diameter of the resin pressing surface 21c of FIG.
This operation is continued until the operation reaches the portion indicated by the broken line in FIG. At this time, on the rotational symmetry axis A, the distance between the mold 21 and the glass substrate 22 is 0.28 mm.

【0094】次に、金型21をガラス基材22に対して
断続的に近づける。この断続的な接近は0.1mm/s
ecの速度による3μmの接近と0.5secの停止を
20回繰り返す。この一連の動作の途中で、樹脂25の
最外周部の一部は内型21aの最外周部に到達するが、
この位置よりも外側へはみ出すことはなく、金型21を
ガラス基材22に近づけても、樹脂25が内型21aの
最外周部に到達していない部分へ充填されていく。ま
た、この一連の動作が終了した時点で、回転対称軸A上
の金型21とガラス基材22の間隔は0.22mmとな
っている。
Next, the mold 21 is intermittently brought close to the glass substrate 22. This intermittent approach is 0.1 mm / s
The approach of 3 μm at the speed of ec and the stop of 0.5 sec are repeated 20 times. During this series of operations, a part of the outermost peripheral portion of the resin 25 reaches the outermost peripheral portion of the inner mold 21a.
The resin 25 does not protrude outward from this position, and even when the mold 21 is brought close to the glass base material 22, the resin 25 is filled into the portion that has not reached the outermost peripheral portion of the inner mold 21a. At the end of this series of operations, the distance between the mold 21 and the glass substrate 22 on the rotational symmetry axis A is 0.22 mm.

【0095】この状態から、さらに、金型21をガラス
基材22に対して断続的に近づける。この断続的な接近
は0.05mm/secの速度による2μmの接近と1
secの停止を10回繰り返す。この一連の動作の途中
で、図6に示すように、樹脂25が内型21aの樹脂押
圧面21cの全面に充填される瞬間が存在する。そし
て、その後の接近動作により、内型21aの全周から均
一に樹脂25がはみ出し、図7に示すような所望の樹脂
層23が形成される。
In this state, the mold 21 is further intermittently brought closer to the glass substrate 22. This intermittent approach is 2 μm approach at a speed of 0.05 mm / sec and 1
The stop of sec is repeated 10 times. During this series of operations, there is a moment when the resin 25 fills the entire surface of the resin pressing surface 21c of the inner mold 21a as shown in FIG. Then, by the subsequent approaching operation, the resin 25 uniformly protrudes from the entire circumference of the inner mold 21a, and a desired resin layer 23 as shown in FIG. 7 is formed.

【0096】次に、ガラス基材22の下方から不図示の
手段により紫外線を樹脂層23の全面に照射し、樹脂層
23を硬化する。その結果、金型21、樹脂層23、お
よびガラス基材22が一体となった密着体が形成され
る。
Next, the entire surface of the resin layer 23 is irradiated with ultraviolet rays from below the glass substrate 22 by means (not shown) to cure the resin layer 23. As a result, an adhered body in which the mold 21, the resin layer 23, and the glass substrate 22 are integrated is formed.

【0097】次に、外型21bを上昇し、図8に示すよ
うに、外型21bを樹脂層23から剥離する。この際、
外型21bと樹脂層23の接触面積は、内型21aと樹
脂層23の接触面積と比較して小さいので、容易に剥離
することができる。その後、図9に示すように、外型2
1bをガラス基材22へ近づける方向へ移動することに
より、内型21aの樹脂押圧面21cから光学素子26
(ガラス基材22と樹脂層23が一体となった密着体)
を剥離する。
Next, the outer mold 21b is raised, and the outer mold 21b is peeled off from the resin layer 23 as shown in FIG. On this occasion,
Since the contact area between the outer mold 21b and the resin layer 23 is smaller than the contact area between the inner mold 21a and the resin layer 23, it can be easily peeled off. Thereafter, as shown in FIG.
1b is moved in a direction to approach the glass substrate 22, so that the optical element 26 is pressed from the resin pressing surface 21c of the inner mold 21a.
(Adhesive body in which glass substrate 22 and resin layer 23 are integrated)
Is peeled off.

【0098】本発明の実施の形態によると、ガラス基材
22の外径形状に対して、樹脂層23の外径形状の同軸
度がよい光学素子を得ることができる。また、樹脂の外
形形状の真円度がよい光学素子を得ることができる。
According to the embodiment of the present invention, it is possible to obtain an optical element having a good coaxiality of the outer diameter of the resin layer 23 with respect to the outer diameter of the glass substrate 22. Further, an optical element having good roundness of the outer shape of the resin can be obtained.

【0099】すなわち、本実施の形態では、回転対称軸
A上で、金型21とガラス基材22の距離、すなわち樹
脂25の厚さが0.28mmになるまでは、連続的接近
により樹脂25を広げ、続いて、第一の速度として、2
つの速度、0.1mm/secと0.05mm/sec
で樹脂25を広げ、これにそれぞれ0.5secと1s
ecの停止を組み合わせた金型21とガラス基材22の
断続的接近動作により所望の樹脂層23を得ているが、
第一の速度と停止の組合せをより多くして、より小刻み
で精密な樹脂厚のコントロールをすることができる。
That is, in the present embodiment, the distance between the mold 21 and the glass substrate 22 on the axis of rotational symmetry A, that is, until the thickness of the resin 25 becomes 0.28 mm, the resin 25 is continuously approached. And then, as the first speed, 2
Speed, 0.1mm / sec and 0.05mm / sec
Spread the resin 25 with 0.5sec and 1s respectively
The desired resin layer 23 is obtained by the intermittent approaching operation of the mold 21 and the glass base material 22 combined with stopping of ec,
By increasing the combination of the first speed and the stop, the resin thickness can be controlled more minutely and precisely.

【0100】例えば、樹脂25の厚さが0.3mmにな
るまでは、金型21とガラス基材22の連続的接近動作
により樹脂25を押し広げ、続いて1番目に、0.15
mm/secの速度による4μmの接近と0.3sec
の停止を10回繰り返し、2番目に、0.1mm/se
cの速度による3μmの接近と0.5secの停止を1
0回繰り返し、3番目に、0.08mm/secの速度
による2μmの接近と0.8secの停止を10回繰り
返し、最後に0.05mm/secの速度による1μm
の接近と1.2secの停止を10回繰り返す金型21
とガラス基材22の断続的接近動作を行えば、4つの異
なった第一の速度による近接およびそれと組み合わせる
停止により、タクトタイムは多少長くなるが、樹脂25
がより厚い0.3mmの段階から、より小刻みな樹脂2
5の厚さの制御ができるので、更に外形形状の同軸度お
よび真円度のよい高精度な光学素子を得ることができ
る。
For example, until the thickness of the resin 25 becomes 0.3 mm, the resin 25 is spread by a continuous approaching operation of the mold 21 and the glass base material 22.
4μm approach and 0.3sec at a speed of mm / sec
Is repeated 10 times, and secondly, 0.1 mm / sec
3 μm approach and 0.5 sec stop by the speed of c
Repeat 0 times, thirdly, approach 2 μm at 0.08 mm / sec speed and stop 0.8 sec 10 times, and finally 1 μm at 0.05 mm / sec speed
Mold 21 that repeats approaching and stopping for 1.2 sec 10 times
When the intermittent approaching operation of the glass substrate 22 and the glass substrate 22 is performed, the takt time is slightly longer due to the approach at the four different first speeds and the stop combined therewith.
From the thicker 0.3 mm stage,
Since the thickness 5 can be controlled, it is possible to obtain a highly accurate optical element having good coaxiality and roundness of the outer shape.

【0101】(実施の形態2)本発明の実施の形態は、
前記発明の実施の形態1において、金型21とガラス基
材22の間隔が0.28mmになるまでの動作は、発明
の実施の形態1と同じなので、それ以降の動作について
図6,7を参照して説明する。
(Embodiment 2) The embodiment of the present invention
In the first embodiment of the present invention, the operation until the distance between the mold 21 and the glass substrate 22 becomes 0.28 mm is the same as that in the first embodiment of the present invention. It will be described with reference to FIG.

【0102】まず、金型21とガラス基材22の間隔が
0.28mmの状態(図5参照)から、金型21をガラ
ス基材22に対して二種速度動作により近づける。この
接近動作は、0.1mm/secの速度による2.5μ
mの接近と0.025mm/secの速度による0.5
μmの接近を交互に20回繰り返す。この一連の動作の
途中で、樹脂25の最外周部の一部は内型21aの最外
周部に到達するが、この位置よりも外側へはみ出すこと
はなく、金型21をガラス基材22に近づけても、樹脂
25が内型21aの最外周部に到達していない部分へ充
填されていく。その理由は、0.1mm/secの速度
による接近で、金型21からはみ出しそうになった樹脂
25が、0.025mm/secの速度による接近のと
きに、再び金型21の内側に向かって戻ろうとするため
である。なお、この一連の動作が終了した時点で、回転
対称軸A上の金型21とガラス基材22の間隔は0.2
2mmとなっている。
First, when the distance between the mold 21 and the glass base 22 is 0.28 mm (see FIG. 5), the mold 21 is brought closer to the glass base 22 by two-speed operation. This approach operation is performed at a speed of 2.5 μm at a speed of 0.1 mm / sec.
0.5 due to the approach of m and the speed of 0.025 mm / sec
The approach of μm is alternately repeated 20 times. In the middle of this series of operations, a part of the outermost peripheral portion of the resin 25 reaches the outermost peripheral portion of the inner mold 21a, but does not protrude outside this position. Even when approached, the resin 25 is filled into the portion that has not reached the outermost peripheral portion of the inner mold 21a. The reason for this is that the resin 25, which is about to protrude from the mold 21 when approaching at a speed of 0.1 mm / sec, approaches the inside of the mold 21 again when approaching at a speed of 0.025 mm / sec. To try to return. At the end of this series of operations, the distance between the mold 21 and the glass substrate 22 on the axis of rotational symmetry A is 0.2
It is 2 mm.

【0103】この状態から、さらに、金型21をガラス
基材22に対して二種速度動作により近づける。この接
近動作は0.05mm/secの速度による1μmの接
近と0.025mm/secの速度による1μmの接近
を交互に10回繰り返す。この一連の動作の途中で、図
6に示すように、樹脂25が内型21aの樹脂押圧面2
1cの全面に充填される瞬間が存在する。そして、その
後の接近動作により、内型21aの樹脂押圧面21c全
面から均一に樹脂25がはみ出し、図7に示すような所
望の樹脂層23が形成される。
From this state, the mold 21 is moved closer to the glass substrate 22 by the two-speed operation. This approach operation alternately repeats 10 times of approach of 1 μm at a speed of 0.05 mm / sec and approach of 1 μm at a speed of 0.025 mm / sec. During this series of operations, as shown in FIG. 6, the resin 25 is pressed against the resin pressing surface 2 of the inner mold 21a.
There is a moment when the entire surface of 1c is filled. Then, by the subsequent approaching operation, the resin 25 protrudes uniformly from the entire surface of the resin pressing surface 21c of the inner mold 21a, and a desired resin layer 23 as shown in FIG. 7 is formed.

【0104】なお、以後の動作は、図8,9に示すよう
に、発明の実施の形態1と同じである。
The subsequent operation is the same as in the first embodiment of the present invention, as shown in FIGS.

【0105】本発明の実施の形態の効果は、発明の実施
の形態1の効果と同じである。
The effects of the embodiment of the present invention are the same as those of the first embodiment of the present invention.

【0106】すなわち、本実施の形態では、回転対称軸
A上で、金型21とガラス基材22の距離、すなわち樹
脂25の厚さが0.28mmになるまでは、連続的接近
により樹脂25を広げ、続いて、第一の速度として、2
つの速度、0.1mm/secと0.05mm/sec
で樹脂25を広げ、これに第一の速度より十分遅い0.
025mm/secの第二の速度による接近とを組み合
わせた金型21とガラス基材22の二種速度動作により
所望の樹脂層23を得ているが、第一の速度と停止に近
い第二の速度の組合せをより多くして、より小刻みで精
密な樹脂厚3のコントロールをすることができる。
That is, in the present embodiment, the distance between the mold 21 and the glass substrate 22 on the axis of rotational symmetry A, that is, until the thickness of the resin 25 becomes 0.28 mm, the resin 25 is continuously approached. And then, as the first speed, 2
Speed, 0.1mm / sec and 0.05mm / sec
To spread the resin 25, which is sufficiently slower than the first speed.
The desired resin layer 23 is obtained by the two-speed operation of the mold 21 and the glass substrate 22 in combination with the approach at the second speed of 025 mm / sec, but the first speed and the second speed close to the stop are obtained. By increasing the combination of speeds, the resin thickness 3 can be controlled more minutely and precisely.

【0107】例えば、樹脂25の厚さが0.3mmにな
るまでは、金型21とガラス基材22の連続的接近動作
により樹脂25を押し広げ、続いて1番目に、0.12
mm/secの速度による4μmの接近と0.025m
m/secの第二の速度での1μmの接近の組合せを1
0回繰り返し、2番目に、0.08mm/secの速度
による2μmの接近と0.025mm/secの第二の
速度での1μm接近の組合せを10回繰り返し、最後
に、0.05mm/secの速度による0.5μmの接
近と0.025mm/secの第二の速度での0.5μ
mの接近の組合せを20回繰り返して、金型21とガラ
ス基材22の二種速度動作による接近動作を行えば、3
つの異なった第一の速度による接近およびそれと組み合
わせる第二の速度による停止に近い接近により、タクト
タイムは多少長くなるが、樹脂25がより厚い0.3m
mの段階から、より小刻みな樹脂25の厚さの制御がで
きるので、更に外形形状の同軸度および真円度のよい高
精度な光学素子を得ることができる。
For example, until the thickness of the resin 25 becomes 0.3 mm, the resin 25 is pushed out by a continuous approaching operation of the mold 21 and the glass base material 22.
4 μm approach and 0.025 m at a speed of mm / sec
1 μm approach combination at a second speed of m / sec
0 times, secondly, a combination of 2 μm approach at a speed of 0.08 mm / sec and 1 μm approach at a second speed of 0.025 mm / sec was repeated 10 times, and finally a combination of 0.05 mm / sec. 0.5 μm approach by speed and 0.5 μm at second speed of 0.025 mm / sec
m, the approaching operation by the two kinds of speed operations of the mold 21 and the glass base material 22 is performed three times.
A close approach to a stop with two different first speeds and a combined second speed with it will slightly increase the takt time, but the resin 25 will be 0.3 m thicker.
Since the thickness of the resin 25 can be controlled more minutely from the stage of m, it is possible to obtain a highly accurate optical element having better coaxiality and roundness of the outer shape.

【0108】(実施の形態3)本発明の実施の形態3を
図10〜18を参照して説明する。本実施の形態では、
非回転軸対称形状である光学素子基材としてのガラス基
材に、金型光学面が非回転軸対称形状である金型により
非回転対称形状の樹脂層を形成した。
(Embodiment 3) Embodiment 3 of the present invention will be described with reference to FIGS. In the present embodiment,
A non-rotationally symmetrical resin layer was formed on a glass substrate as an optical element substrate having a non-rotationally symmetrical shape using a mold whose mold optical surface had a non-rotationally symmetrical shape.

【0109】図10はガラス基材32を側方から見た図
であり、図に示すように、ガラス基材32は、樹脂層を
載置する面(以下、成形面)32aは曲率半径が100
mm、樹脂層を載置しない面(成形面32aに対向する
裏側の非成形面)32bは曲率半径が50mmであり、
成形面32aと非成形面32bの曲率中心を結ぶ直線
(以下、回転対称軸)B上における成形面32aと非成
形面32bの距離が2mmで、両面が凹面となってい
る。
FIG. 10 is a side view of the glass substrate 32. As shown in the figure, the glass substrate 32 has a surface (hereinafter referred to as a molding surface) 32a on which the resin layer is mounted, having a radius of curvature. 100
mm, the surface on which the resin layer is not placed (the non-molding surface on the back side facing the molding surface 32a) 32b has a radius of curvature of 50 mm,
The distance between the molding surface 32a and the non-molding surface 32b on a straight line (hereinafter, rotationally symmetric axis) B connecting the centers of curvature of the molding surface 32a and the non-molding surface 32b is 2 mm, and both surfaces are concave.

【0110】図11は回転対称軸Bとガラス基材32の
成形面32aの交点を通り、回転対称軸Bに垂直なxy
平面を設けた後、成形面32aの外周部を回転対称軸B
に平行にxy平面に投影した形状を示す。ガラス基材3
2はx軸のプラス側、マイナス側ともにx軸に対して上
下45度の範囲以外は、直径25mmの2つの円弧32
c形状となっており、x軸に対してプラス側、マイナス
側ともに上下45度の範囲は、円弧32cの端点を結ぶ
x座標の絶対値が約8.84mmでy軸に平行な一定の
弦32d形状となっている。
FIG. 11 shows an xy perpendicular to the rotational symmetry axis B passing through the intersection of the rotational symmetry axis B and the molding surface 32a of the glass substrate 32.
After the flat surface is provided, the outer peripheral portion of the molding surface 32a is
2 shows a shape projected on an xy plane in parallel with FIG. Glass substrate 3
Reference numeral 2 denotes two arcs 32 each having a diameter of 25 mm except for a range of 45 degrees above and below the x axis on both the positive side and the negative side of the x axis.
It has a c-shape, and a range of 45 degrees vertically on both the positive side and the negative side with respect to the x-axis is a constant chord parallel to the y-axis with an absolute value of the x-coordinate connecting the end points of the arc 32c of about 8.84 mm. It has a 32d shape.

【0111】このガラス基材32は回転軸対称形状の円
形の外形を製作した後、その外形の一部を切断すること
により弦32dに該当する部分を形成したものである。
The glass substrate 32 is obtained by forming a circular outer shape symmetrical with respect to the rotation axis and then cutting a part of the outer shape to form a portion corresponding to the string 32d.

【0112】また、図11に示すように、ガラス基材3
2の成形面32a上には、樹脂35が概略回転対称形状
に供給されている。回転対称に供給された樹脂35の回
転中心は、前記回転対称軸Bと概略一致しており、樹脂
35の供給量は、予め検討により求められているものと
する。
Further, as shown in FIG.
On the second molding surface 32a, a resin 35 is supplied in a substantially rotationally symmetric shape. The rotation center of the resin 35 supplied rotationally symmetrically substantially coincides with the rotational symmetry axis B, and the supply amount of the resin 35 is assumed to be obtained in advance by examination.

【0113】図12に示すように、金型31は所望の樹
脂層表面形状を形成するための光学面としての樹脂押圧
面31aを有している。この金型31は、樹脂押圧面3
1aをガラス基材32の成形面32aに向けて配置さ
れ、樹脂押圧面31aの曲率中心が回転対称軸B上にあ
り、回転対称軸Bと平行な方向へ自由に移動可能となっ
ている。金型31の樹脂押圧面31aの外周部を回転対
称軸Bに平行にxy平面上に投影した形状は、図13に
示すように、x軸のプラス側およびマイナス側ともに、
x軸に対して上下45度の範囲以外は直径22mmの2
つの円弧31c形状であり、x軸のプラス側およびマイ
ナス側ともに、x軸に対して上下45度の範囲は、円弧
31cの端点を結ぶx座標の絶対値が約7.78mmで
y軸に平行な一定の弦(直線)31d形状となってい
る。すなわち、金型31はガラス基材32の外周形状と
概略相似形状をしている。
As shown in FIG. 12, the mold 31 has a resin pressing surface 31a as an optical surface for forming a desired resin layer surface shape. This mold 31 is used for the resin pressing surface 3.
The resin pressing surface 31a is located on the rotational symmetry axis B, and can be freely moved in a direction parallel to the rotational symmetry axis B. As shown in FIG. 13, the shape of the outer peripheral portion of the resin pressing surface 31 a of the mold 31 projected on the xy plane in parallel to the rotational symmetry axis B is:
Except for the range of 45 degrees above and below the x-axis, 2
In the range of 45 degrees above and below the x-axis on both the positive and negative sides of the x-axis, the absolute value of the x-coordinate connecting the end points of the arc 31c is about 7.78 mm and is parallel to the y-axis. It has a constant chord (straight line) 31d shape. That is, the mold 31 has a shape substantially similar to the outer peripheral shape of the glass substrate 32.

【0114】次に、金型31の樹脂押圧面31aとガラ
ス基材32の成形面32aで形成される空間内に所望形
状の樹脂層33を形成する工程を図14〜18を参照し
て説明する。
Next, a process of forming a resin layer 33 having a desired shape in a space formed by the resin pressing surface 31a of the mold 31 and the molding surface 32a of the glass substrate 32 will be described with reference to FIGS. I do.

【0115】図14に示すように、ガラス基材32と金
型31との各弦32dと31dの位置を合わせた後、金
型31をガラス基材32に対して0.5mm/secの
速度で接近し、金型31の樹脂押圧面31aとガラス基
材32の成形面32aにより形成される空間内におい
て、樹脂35を徐々に広げていく。
As shown in FIG. 14, after the positions of the strings 32d and 31d of the glass substrate 32 and the mold 31 are aligned, the mold 31 is moved at a speed of 0.5 mm / sec with respect to the glass substrate 32. To gradually spread the resin 35 in the space defined by the resin pressing surface 31a of the mold 31 and the molding surface 32a of the glass substrate 32.

【0116】そして、図15に示すように、樹脂35の
最外周部が、金型31の樹脂押圧面31aの外形中心を
中心としその直径が金型31の樹脂押圧面31aに内接
する円の0.8倍の円(図15の破線部)に到達するま
で、この動作を継続する。なお、このとき、回転対称軸
B上では、金型31の樹脂押圧面31aとガラス基材3
2の成形面32aの距離が0.28mmとなっている。
Then, as shown in FIG. 15, the outermost peripheral portion of the resin 35 is a circle whose center is centered on the outer shape of the resin pressing surface 31a of the mold 31 and whose diameter is inscribed in the resin pressing surface 31a of the mold 31. This operation is continued until a circle of 0.8 times (a broken line portion in FIG. 15) is reached. At this time, on the rotational symmetry axis B, the resin pressing surface 31a of the mold 31 and the glass substrate 3
The distance between the second molding surfaces 32a is 0.28 mm.

【0117】次に、金型31をガラス基材32に対して
断続的に近づける。この断続的な接近は0.1mm/s
ecの速度による3μmの接近と0.5secの停止を
交互に20回繰り返す。この一連の動作の途中で、樹脂
35の最外周部の一部は金型31の樹脂押圧面31aの
最外周部に到達するが、この位置よりも外側へはみ出す
ことはなく、金型31をガラス基材32に近づけても、
樹脂35が金型31の樹脂押圧面31aのうち、樹脂が
充填されていない部分へ充填される。そして、この一連
の動作が終了した時点では、回転対称軸B上における金
型31の樹脂押圧面31aとガラス基材32の成形面3
2aの間隔は0.22mmとなっている。
Next, the mold 31 is intermittently brought close to the glass substrate 32. This intermittent approach is 0.1 mm / s
The approach of 3 μm at the speed of ec and the stop of 0.5 sec are alternately repeated 20 times. During this series of operations, a part of the outermost peripheral portion of the resin 35 reaches the outermost peripheral portion of the resin pressing surface 31a of the mold 31, but does not protrude outside this position. Even when approaching the glass substrate 32,
The resin 35 is filled into a portion of the resin pressing surface 31a of the mold 31 that is not filled with the resin. When this series of operations is completed, the resin pressing surface 31a of the mold 31 and the molding surface 3
The interval between 2a is 0.22 mm.

【0118】この状態から、さらに、金型31をガラス
基材32に対して断続的に近づける。この断続的な接近
は0.05mm/secの速度による2μmの接近と1
secの停止を10回繰り返す。この一連の動作の途中
で、樹脂35が金型31の樹脂押圧面31aの全面に充
填される瞬間が存在する。そして、その後の接近動作に
より、金型31の樹脂押圧面31aの全周から均一に樹
脂35がはみ出し、図16に示すような所望の樹脂層3
3が形成される。
In this state, the mold 31 is further intermittently brought closer to the glass substrate 32. This intermittent approach is 2 μm approach at a speed of 0.05 mm / sec and 1
The stop of sec is repeated 10 times. During this series of operations, there is a moment when the resin 35 is filled over the entire surface of the resin pressing surface 31a of the mold 31. Then, by the subsequent approaching operation, the resin 35 uniformly protrudes from the entire circumference of the resin pressing surface 31a of the mold 31, and the desired resin layer 3 as shown in FIG.
3 is formed.

【0119】次に、ガラス基材32の下方から不図示の
手段により紫外線を樹脂層33の全面に照射し、樹脂層
33を硬化する。その結果、金型1、樹脂層33、およ
びガラス基材32が一体となった密着体が形成される。
Next, the entire surface of the resin layer 33 is irradiated with ultraviolet rays from below the glass substrate 32 by means (not shown) to cure the resin layer 33. As a result, an adhered body in which the mold 1, the resin layer 33, and the glass substrate 32 are integrated is formed.

【0120】次に、図17に示すように、部材34によ
り、ガラス基材32の上方から下方に向かってガラス基
材32の外周部の一箇所に荷重をかける。すると、図1
8に示すように、金型31の樹脂押圧面31aから、光
学素子36(ガラス基材32と樹脂層33が一体となっ
た密着体)が剥離される。
Next, as shown in FIG. 17, a load is applied to one portion of the outer peripheral portion of the glass base 32 from above to below by the member 34. Then, Figure 1
As shown in FIG. 8, the optical element 36 (adherent body in which the glass substrate 32 and the resin layer 33 are integrated) is peeled off from the resin pressing surface 31 a of the mold 31.

【0121】本発明の実施の形態によると、ガラス基材
32の外形形状が非回転軸対称形状であっても、樹脂3
5がガラス基材32の成形面32aからはみ出すことの
ない樹脂層33を有する光学素子を得ることができる。
According to the embodiment of the present invention, even if the outer shape of the glass substrate 32 is non-rotationally symmetric, the resin 3
It is possible to obtain an optical element having the resin layer 33 in which 5 does not protrude from the molding surface 32a of the glass substrate 32.

【0122】本実施の形態では、樹脂35の厚さが回転
対称軸B上で0.28mmまで押し広げられた後、金型
31とガラス基材32の断続的な接近動作により、樹脂
層33を形成しているが、断続的な動作に代えて二種速
度動作によっても所望の樹脂層33を形成することがで
きる。
In the present embodiment, after the thickness of the resin 35 is expanded to 0.28 mm on the axis of rotational symmetry B, the resin layer 33 is intermittently moved by the mold 31 and the glass substrate 32. However, the desired resin layer 33 can be formed by two-speed operation instead of the intermittent operation.

【0123】すなわち、樹脂の厚みが0.28mmとな
った後、金型31をガラス基材32に対して二種速度動
作により近づける。この接近動作は、0.1mm/se
cの速度による2.5μmの接近と0.025mm/s
ecの速度による0.5μmの接近を交互に20回繰り
返す。この一連の動作の途中で、樹脂35の最外周部の
一部15aは樹脂35の最外周部に到達するが、この位
置よりも外側へはみ出すことはなく、金型31をガラス
基材32に近づけても、樹脂35が金型31の樹脂押圧
面31aの最外周部に到達していない部分へ充填されて
いく。
That is, after the thickness of the resin becomes 0.28 mm, the mold 31 is brought closer to the glass substrate 32 by the two-speed operation. This approach operation is performed at 0.1 mm / sec.
2.5 μm approach and 0.025 mm / s with speed c
The approach of 0.5 μm at the speed of ec is alternately repeated 20 times. During this series of operations, a portion 15a of the outermost peripheral portion of the resin 35 reaches the outermost peripheral portion of the resin 35, but does not protrude outside this position. Even when approached, the resin 35 fills the portion of the mold 31 that has not reached the outermost periphery of the resin pressing surface 31a.

【0124】この状態から、さらに、金型31をガラス
基材32に対して二種速度動作により近づける。この接
近動作は0.05mm/secの速度による1μmの接
近と0.025mm/secの速度による1μmの接近
を交互に10回繰り返す。この一連の動作の途中で、樹
脂35が金型31の樹脂押圧面31aの全面に充填され
る瞬間が存在する。そして、その後の接近動作により、
金型31の樹脂押圧面31aの全周から均一に樹脂35
がはみ出し、図16に示すような所望の樹脂層33が形
成される。したがって、ガラス基材32の外形形状が非
回転軸対称形状であっても、樹脂35がガラス基材32
の成形面32aからはみ出すことのない光学素子を得る
ことができる。
From this state, the mold 31 is moved closer to the glass substrate 32 by the two-speed operation. This approach operation alternately repeats 10 times of approach of 1 μm at a speed of 0.05 mm / sec and approach of 1 μm at a speed of 0.025 mm / sec. During this series of operations, there is a moment when the resin 35 is filled over the entire surface of the resin pressing surface 31a of the mold 31. And by the subsequent approach operation,
The resin 35 is uniformly formed from the entire circumference of the resin pressing surface 31a of the mold 31.
Then, a desired resin layer 33 as shown in FIG. 16 is formed. Therefore, even if the outer shape of the glass substrate 32 is non-rotationally symmetric, the resin 35 is
An optical element that does not protrude from the molding surface 32a can be obtained.

【0125】また、本実施の形態では、ガラス基材32
の金型31の双方が非回転軸対称形状である場合におけ
る光学素子の製造方法について説明したが、ガラス基材
が円形である回転軸対称形状で、このガラス基材に非回
転軸対称形状の金型31により非回転軸対称形状の樹脂
層33を形成した光学素子を製造することができる。
In this embodiment, the glass substrate 32
The method of manufacturing an optical element in the case where both of the molds 31 are non-rotationally symmetrical shapes has been described. However, the glass substrate has a circular rotationally symmetrical shape, and the glass substrate has a non-rotationally symmetrical shape. An optical element having a non-rotationally symmetrical resin layer 33 formed by the mold 31 can be manufactured.

【0126】[0126]

【発明の効果】以上説明したように、本発明の請求項1
に係る光学素子の製造方法によれば、光学素子基材の外
形形状に対して、樹脂の外形形状の同軸度がよい光学素
子を得ることができる。また、樹脂の外形形状の真円度
がよい光学素子を得ることができる。さらに、光学素子
基材の外形形状が非回転軸対称形状であっても、樹脂が
光学素子基材の成形面からはみ出すことのない光学素子
を得ることができる。
As described above, according to the first aspect of the present invention,
According to the method for manufacturing an optical element according to the above, it is possible to obtain an optical element having good coaxiality of the outer shape of the resin with respect to the outer shape of the optical element substrate. Further, an optical element having good roundness of the outer shape of the resin can be obtained. Further, even if the outer shape of the optical element substrate is non-rotationally symmetric, an optical element in which the resin does not protrude from the molding surface of the optical element substrate can be obtained.

【0127】本発明の請求項2に係る光学素子の製造方
法によれば、樹脂全体の広がりを小刻みにし、所望の広
がりを有する光学素子を通常の生産条件で得ることがで
きる。
According to the method of manufacturing an optical element according to the second aspect of the present invention, the spread of the entire resin can be made small, and an optical element having a desired spread can be obtained under ordinary production conditions.

【0128】本発明の請求項3,4に係る光学素子の製
造方法によれば、金型光学面の外周より均一な距離をは
み出させて樹脂層を形成することができる。
According to the method for manufacturing an optical element according to the third and fourth aspects of the present invention, the resin layer can be formed so as to protrude a uniform distance from the outer periphery of the optical surface of the mold.

【0129】本発明の請求項5〜8に係る光学素子の製
造方法によれば、樹脂の押し広げを行う際に、樹脂の広
がりをコントロールすることができる。
According to the method of manufacturing an optical element according to claims 5 to 8 of the present invention, the spread of the resin can be controlled when the resin is spread.

【0130】本発明の請求項9に係る光学素子の製造方
法によれば、光学素子基材の外形形状に対して、樹脂の
外形形状の同軸度がよい光学素子を得ることができる。
また、樹脂の外形形状の真円度がよい光学素子を得るこ
とができる。
According to the method of manufacturing an optical element according to the ninth aspect of the present invention, it is possible to obtain an optical element having a good coaxiality of the outer shape of the resin with respect to the outer shape of the optical element substrate.
Further, an optical element having good roundness of the outer shape of the resin can be obtained.

【0131】本発明の請求項10,11に係る光学素子
の製造方法によれば、金型の外周部から樹脂をはみ出さ
せることなく、金型光学面の全面で樹脂層を形成するこ
とができる。さらに、金型光学面の全面で樹脂を押し広
げた後、金型の外周部から樹脂を一様にはみ出させて樹
脂層を形成できるととともに、樹脂のはみ出し量のコン
トロールを行うことができる。
According to the optical element manufacturing method of the tenth and eleventh aspects of the present invention, the resin layer can be formed on the entire optical surface of the mold without protruding the resin from the outer peripheral portion of the mold. . Further, after the resin is spread over the entire optical surface of the mold, the resin can be uniformly formed from the outer peripheral portion of the mold to form a resin layer, and the amount of the resin protruding can be controlled.

【0132】本発明の請求項12に係る光学素子の製造
方法によれば、回転軸対称形状の光学素子基材に対し
て、非回転軸対称形状の樹脂層を形成した光学素子を得
ることができる。
According to the optical element manufacturing method of the twelfth aspect of the present invention, it is possible to obtain an optical element having a non-rotationally symmetric resin layer formed on a rotation axis symmetric optical element substrate. it can.

【0133】本発明の請求項13に係る光学素子の製造
方法によれば、非回転軸対称形状の金型光学面を有する
金型の外周部から樹脂をはみ出させることなく、金型光
学面の全面で樹脂層を形成することができる。さらに、
金型光学面の全面で樹脂を押し広げた後、金型の外周部
から樹脂を一様にはみ出させて樹脂層を形成できる。
According to the method of manufacturing an optical element according to the thirteenth aspect of the present invention, the resin does not protrude from the outer peripheral portion of the mold having the mold optical surface having a non-rotational axis symmetrical shape. A resin layer can be formed over the entire surface. further,
After the resin is spread over the entire surface of the mold optical surface, the resin layer can be formed by uniformly protruding the resin from the outer periphery of the mold.

【0134】本発明の請求項14に係る光学素子の製造
方法によれば、非回転軸対称形状の光学素子基材に対し
て、非回転軸対称形状の樹脂層を形成した光学素子を得
ることができ、必要に応じた所望形状の光学素子を製造
することができる。
According to the method of manufacturing an optical element according to the fourteenth aspect of the present invention, it is possible to obtain an optical element having a non-rotationally symmetric resin layer formed on a non-rotationally symmetric optical element substrate. Thus, an optical element having a desired shape as required can be manufactured.

【0135】本発明の請求項15に係る光学素子の製造
方法によれば、樹脂を押し広げる際に、樹脂の外周に適
度な表面張力を持たせて樹脂層を形成することができ
る。
According to the method of manufacturing an optical element according to the fifteenth aspect of the present invention, when spreading the resin, the resin layer can be formed by giving an appropriate surface tension to the outer periphery of the resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学素子の製造方法を示す概念図であ
る。
FIG. 1 is a conceptual diagram illustrating a method for manufacturing an optical element of the present invention.

【図2】本発明の断続的な動作および二種速度動作を模
式的に示す図である。
FIG. 2 is a diagram schematically showing an intermittent operation and a two-speed operation of the present invention.

【図3】本発明の光学素子の製造方法を模式的に示す図
である。
FIG. 3 is a view schematically showing a method for manufacturing an optical element of the present invention.

【図4】本発明の実施の形態1を示し、ガラス基材に樹
脂を供給した状態である。
FIG. 4 shows Embodiment 1 of the present invention, in a state where a resin is supplied to a glass base material.

【図5】本発明の実施の形態1を示し、樹脂を押し広げ
ている状態である。
FIG. 5 shows the first embodiment of the present invention, in a state where the resin is being spread.

【図6】本発明の実施の形態1を示し、金型外周部まで
樹脂を押し広げた状態である。
FIG. 6 shows the first embodiment of the present invention, in a state where the resin is pushed out to the outer periphery of the mold.

【図7】本発明の実施の形態1を示し、樹脂層を形成し
た状態である。
FIG. 7 shows the first embodiment of the present invention, in a state where a resin layer is formed.

【図8】本発明の実施の形態1を示し、樹脂層と金型を
剥離する状態である。
FIG. 8 shows the first embodiment of the present invention, in which the resin layer and the mold are separated.

【図9】本発明の実施の形態1を示し、樹脂層と金型を
剥離した状態である。
FIG. 9 shows Embodiment 1 of the present invention, and shows a state in which the resin layer and the mold are separated.

【図10】本発明の実施の形態2を示し、ガラス基材を
側方から見た図である。
FIG. 10 shows the second embodiment of the present invention, and is a diagram of a glass substrate viewed from the side.

【図11】図10の上方からガラス基材を見た図であ
る。
FIG. 11 is a view of the glass substrate as viewed from above in FIG. 10;

【図12】本発明の実施の形態2を示し、金型を側方か
ら見た図である。
FIG. 12 shows the second embodiment of the present invention and is a view of a mold as viewed from the side.

【図13】図12の下方から見た図である。FIG. 13 is a view as viewed from below in FIG. 12;

【図14】本発明の実施の形態2を示し、樹脂を押し広
げている状態である。
FIG. 14 shows the second embodiment of the present invention, in a state where the resin is pushed and spread.

【図15】本発明の実施の形態2を示し、樹脂を押し広
げている状態である。
FIG. 15 shows the second embodiment of the present invention, and shows a state where the resin is spread.

【図16】本発明の実施の形態2を示し、樹脂層を形成
した状態である。
FIG. 16 shows the second embodiment of the present invention, in which a resin layer is formed.

【図17】本発明の実施の形態2を示し、樹脂層と金型
を剥離する状態である。
FIG. 17 shows the second embodiment of the present invention, in which the resin layer and the mold are separated.

【図18】本発明の実施の形態2を示し、樹脂層と金型
を剥離した状態である。
FIG. 18 shows the second embodiment of the present invention, in which the resin layer and the mold are separated.

【符号の説明】[Explanation of symbols]

1,11 基材 1a,11a 成形面 2,12 金型 2a,12a 金型光学面 3,13 樹脂層 5,15 樹脂 21,31 金型 21a 内型 21b 外型 21c,31a 樹脂押圧面 22,32 ガラス基材 22a,32a 成形面 23,33 樹脂層 25,35 樹脂 26,36 光学素子 Reference Signs List 1,11 Base material 1a, 11a Molding surface 2,12 Mold 2a, 12a Mold optical surface 3,13 Resin layer 5,15 Resin 21,31 Mold 21a Inner mold 21b Outer mold 21c, 31a Resin pressing surface 22, 32 Glass substrate 22a, 32a Molding surface 23, 33 Resin layer 25, 35 Resin 26, 36 Optical element

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 金型光学面または光学素子基材の成形面
にエネルギー硬化型の樹脂を供給し、金型と光学素子基
材とを相対的に接近させることにより樹脂を押し広げて
金型と光学素子基材との間に所望の樹脂層を形成し、該
樹脂層にエネルギーを照射して樹脂層を硬化させた後、
硬化した樹脂層と金型とを剥離する光学素子の製造方法
において、 前記金型光学面と樹脂の接触後における前記金型と前記
光学素子基材の相対的な接近動作が、第一の速度での接
近と停止を繰り返す断続的な動作、若しくは前記第一の
速度での接近と前記第一の速度より遅い第二の速度での
接近とを繰り返す二種速度動作を含むことを特徴とする
光学素子の製造方法。
An energy-curable resin is supplied to an optical surface of a mold or a molding surface of an optical element base material, and the resin is spread out by relatively approaching the mold and the optical element base material. After forming a desired resin layer between the and the optical element substrate, and curing the resin layer by irradiating energy to the resin layer,
In a method of manufacturing an optical element for separating a cured resin layer and a mold, a relative approaching operation between the mold and the optical element substrate after the optical surface of the mold and the resin are brought into contact with each other is performed at a first speed. Intermittent operation that repeats approach and stop at a distance, or two speed operation that repeats approach at the first speed and approach at a second speed lower than the first speed. Manufacturing method of optical element.
【請求項2】 前記第一の速度は、前記第二の速度より
速い範囲で少なくとも二以上の複数の速度を含み、その
各速度と停止からなる断続的な動作又はその各速度と第
二の速度からなる二種速度動作を、前記第一の速度の少
なくとも一の速度について複数回行うことを特徴とする
請求項1記載の光学素子の製造方法。
2. The method according to claim 1, wherein the first speed includes at least two or more speeds in a range faster than the second speed, and each speed and an intermittent operation including a stop or each speed and a second speed. 2. The method for manufacturing an optical element according to claim 1, wherein a two-speed operation including a speed is performed a plurality of times for at least one of the first speeds.
【請求項3】 前記断続的な動作は、前記第一の速度で
の接近と停止を互いに3回以上繰り返すことを特徴とす
る請求項1又は2記載の光学素子の製造方法。
3. The method of manufacturing an optical element according to claim 1, wherein said intermittent operation repeats approaching and stopping at said first speed three times or more.
【請求項4】 前記二種速度動作は、前記第一の速度で
の接近と前記第二の速度での接近を互いに3回以上繰り
返すことを特徴とする請求項1又は2記載の光学素子の
製造方法。
4. The optical element according to claim 1, wherein the two-speed operation repeats the approach at the first speed and the approach at the second speed three times or more. Production method.
【請求項5】 前記第一の速度での前記金型と光学素子
基材の相対的な接近距離は、金型と光学素子基材の距離
が小さくなるにつれて、段階的に小さくなることを特徴
とする請求項1又は2記載の光学素子の製造方法。
5. The relative approach distance between the mold and the optical element substrate at the first speed gradually decreases as the distance between the mold and the optical element substrate decreases. The method for producing an optical element according to claim 1 or 2, wherein
【請求項6】 前記第一の速度での前記金型と光学素子
基材の相対的な接近速度は、金型と光学素子基材の距離
が小さくなるにつれて、段階的に遅くなることを特徴と
する請求項1又は2記載の光学素子の製造方法。
6. The relative approach speed of the mold and the optical element substrate at the first speed gradually decreases as the distance between the mold and the optical element substrate decreases. The method for producing an optical element according to claim 1 or 2, wherein
【請求項7】 前記金型と光学素子基材の相対的な接近
を停止する時間は、金型と光学素子基材の距離が小さく
なるにつれて、段階的に長くなることを特徴とする請求
項1又は2記載の光学素子の製造方法。
7. The time for stopping the relative approach between the mold and the optical element base material gradually increases as the distance between the mold and the optical element base material decreases. 3. The method for manufacturing an optical element according to 1 or 2.
【請求項8】 前記第二の速度での接近動作時間は、金
型と光学素子基材の距離が小さくなるにつれて、段階的
に長くなることを特徴とする請求項1又は2記載の光学
素子の製造方法。
8. The optical element according to claim 1, wherein the approach operation time at the second speed gradually increases as the distance between the mold and the optical element base material decreases. Manufacturing method.
【請求項9】 金型光学面または光学素子基材の成形面
にエネルギー硬化型の樹脂を供給し、金型と光学素子基
材とを相対的に接近させることにより樹脂を押し広げて
金型と光学素子基材との間に所望の樹脂層を形成し、該
樹脂層にエネルギーを照射して樹脂層を硬化させた後、
硬化した樹脂層と金型とを剥離する光学素子の製造方法
において、 前記金型光学面の外周形状が回転軸対称形状であり、前
記金型光学面と樹脂の接触後における前記金型と前記光
学素子基材の相対的な接近動作が、連続した接近動作
と、その後における停止と第一の速度での接近を繰り返
す断続的動作、又は前記第一の速度より遅い第二の速度
での接近と前記第一の速度での接近とを繰り返す二種速
度動作であることを特徴とする光学素子の製造方法。
9. An energy-curable resin is supplied to an optical surface of a mold or a molding surface of an optical element base material, and the resin is pushed and spread by relatively bringing the mold and the optical element base material close to each other. After forming a desired resin layer between the and the optical element substrate, and curing the resin layer by irradiating energy to the resin layer,
In a method for manufacturing an optical element for separating a cured resin layer and a mold, an outer peripheral shape of the mold optical surface is a rotational axis symmetric shape, and the mold optical surface and the mold after contact with a resin are The relative approach operation of the optical element substrate is a continuous approach operation, followed by an intermittent operation of repeating stop and approach at a first speed, or an approach at a second speed lower than the first speed. And an approach at the first speed.
【請求項10】 前記連続した接近動作は、金型光学面
と中心が同じで、直径が金型光学面の8割の円の内側か
ら、少なくとも樹脂の一部がはみ出すまでの金型と光学
素子基材の接近動作であることを特徴とする請求項9記
載の光学素子の製造方法。
10. The continuous approaching operation is performed in such a manner that the center is the same as the optical surface of the mold and the diameter of the mold and the optical part are at least partly protruded from the inside of an 80% circle of the optical surface of the mold. The method for manufacturing an optical element according to claim 9, wherein the operation is an approaching operation of the element substrate.
【請求項11】 前記金型光学面の直径が、所望の樹脂
層直径より小さいことを特徴とする請求項9又は10記
載の光学素子の製造方法。
11. The method according to claim 9, wherein a diameter of the optical surface of the mold is smaller than a desired diameter of the resin layer.
【請求項12】 金型光学面または光学素子基材の成形
面にエネルギー硬化型の樹脂を供給し、金型と光学素子
基材とを相対的に接近させることにより樹脂を押し広げ
て金型と光学素子基材との間に所望の樹脂層を形成し、
該樹脂層にエネルギーを照射して樹脂層を硬化させた
後、硬化した樹脂層と金型とを剥離する光学素子の製造
方法において、 前記金型光学面の外周形状が非回転軸対称形状であり、
前記金型光学面と樹脂の接触後における前記金型と前記
光学素子基材の相対的な接近動作が、連続した接近動作
と、その後における停止と第一の速度での接近を繰り返
す断続的動作、又は前記第一の速度より遅い第二の速度
での接近と前記第一の速度での接近とを繰り返す二種速
度動作であることを特徴とする光学素子の製造方法。
12. An energy-curable resin is supplied to an optical surface of a mold or a molding surface of an optical element substrate, and the resin is spread out by relatively approaching the mold and the optical element substrate. And forming a desired resin layer between the optical element substrate,
After the resin layer is cured by irradiating energy to the resin layer, the cured resin layer and the mold are separated from each other in an optical element manufacturing method, wherein the outer peripheral shape of the mold optical surface is a non-rotationally symmetric shape. Yes,
The relative approaching operation of the mold and the optical element substrate after the mold optical surface and the resin come into contact with each other is an intermittent operation in which a continuous approaching operation and a subsequent stop and approach at a first speed are repeated. Or a two-speed operation in which approach at a second speed lower than the first speed and approach at the first speed are repeated.
【請求項13】 光学素子基材の樹脂層を形成する成形
面の曲率中心と、成形面に対向する裏側の非成形面の曲
率中心を結ぶ直線を回転対称軸とした場合、前記連続し
た接近動作は、樹脂層表面と前記回転対称軸の交点と接
触する金型光学面上の点を中心とした金型光学面の外周
形状に対する内接円と中心が同じで、直径が前記内接円
の8割の円の内側から、少なくとも樹脂の一部がはみ出
すまでの金型と光学素子基材の接近動作であることを特
徴とする請求項12記載の光学素子の製造方法。
13. When the straight line connecting the center of curvature of the molding surface on which the resin layer of the optical element substrate is formed and the center of curvature of the non-molding surface on the back side facing the molding surface is defined as the rotationally symmetric axis, the continuous approach The operation is the same as the inscribed circle with respect to the outer peripheral shape of the mold optical surface centered on a point on the mold optical surface that comes into contact with the intersection of the resin layer surface and the rotational symmetry axis, and the diameter is the inscribed circle. 13. The method for manufacturing an optical element according to claim 12, wherein the approach operation is performed between the mold and the optical element base until at least a portion of the resin protrudes from the inside of the 80% circle.
【請求項14】 前記光学素子基材の外周形状が非回転
軸対称形状であることを特徴とする請求項12又は13
記載の光学素子の製造方法。
14. The optical element substrate according to claim 12, wherein an outer peripheral shape of the optical element substrate is a non-rotationally symmetrical shape.
A manufacturing method of the optical element described in the above.
【請求項15】 前記エネルギー硬化型の樹脂の粘度が
20000cps以下であることを特徴とする請求項
1,9又は12のいずれかに記載の光学素子の製造方
法。
15. The method for manufacturing an optical element according to claim 1, wherein the viscosity of the energy-curable resin is 20,000 cps or less.
JP2000288391A 2000-09-22 2000-09-22 Method for manufacturing optical element Withdrawn JP2002096340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000288391A JP2002096340A (en) 2000-09-22 2000-09-22 Method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000288391A JP2002096340A (en) 2000-09-22 2000-09-22 Method for manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2002096340A true JP2002096340A (en) 2002-04-02

Family

ID=18771985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288391A Withdrawn JP2002096340A (en) 2000-09-22 2000-09-22 Method for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2002096340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107879A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2013022770A (en) * 2011-07-15 2013-02-04 Sharp Corp Production process of cured material, production apparatus of cured material, and program
JP2016528057A (en) * 2013-04-30 2016-09-15 ヴェバスト ソシエタス エウロペアWebasto Societas Europaea Method and mold for manufacturing a panel assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107879A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2013022770A (en) * 2011-07-15 2013-02-04 Sharp Corp Production process of cured material, production apparatus of cured material, and program
JP2016528057A (en) * 2013-04-30 2016-09-15 ヴェバスト ソシエタス エウロペアWebasto Societas Europaea Method and mold for manufacturing a panel assembly
US9925698B2 (en) 2013-04-30 2018-03-27 Webasto SE Method and mould for producing a panel assembly

Similar Documents

Publication Publication Date Title
TW200815176A (en) Optical element and production device for producing same
JPH05113529A (en) Lens holding device
CN108367515A (en) The method for manufacturing optical lens components array
WO2009069940A1 (en) Device and method for fabricating lens
JP2002096340A (en) Method for manufacturing optical element
US20040191353A1 (en) Forming mold for contact lens, and method of manufacturing contact lens by using the forming mold
WO2007145115A1 (en) Composite optical element and method for manufacturing same
JP2002263553A (en) Substrate to be coated, coating apparatus containing the same, coating method, and element production method
JP4839031B2 (en) Optical element molding method and optical element
JPH0866972A (en) Manufacture of composite type optic
KR20190024702A (en) Molding apparatus for molding composition on substrate using mold and method of manufacturing article
JPH11105145A (en) Manufacture of composite type optical element
JP2008036817A (en) Manufacturing method of composite optical element
JP2003222708A (en) Optical element and its manufacturing method
JP6465021B2 (en) Optical element manufacturing method
JP4091475B2 (en) Medium bonding method and apparatus
JPWO2014175059A1 (en) Optical element manufacturing method and optical element manufacturing apparatus
JPH04261501A (en) Manufacture of minute optical element
JPH0857976A (en) Production of composite optical element
JP3753372B2 (en) Manufacturing method of compound aspherical lens
JPH0872161A (en) Production of composite type optical element
JP2024048005A (en) Optical unit and manufacturing method thereof
JP2011112977A (en) Method for manufacturing optical semiconductor device
JP3228613B2 (en) Method for manufacturing composite optical element
JPH08244128A (en) Manufacture of resin bonded type aspherical lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204