JP2002080847A - Rare earth silicate phosphor and luminescent screen using the same - Google Patents
Rare earth silicate phosphor and luminescent screen using the sameInfo
- Publication number
- JP2002080847A JP2002080847A JP2000311253A JP2000311253A JP2002080847A JP 2002080847 A JP2002080847 A JP 2002080847A JP 2000311253 A JP2000311253 A JP 2000311253A JP 2000311253 A JP2000311253 A JP 2000311253A JP 2002080847 A JP2002080847 A JP 2002080847A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- rare earth
- earth silicate
- silicate phosphor
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
- Measurement Of Radiation (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子線励起により
高輝度の発光を呈し、電流輝度特性(γ特性)が良好
で、特に、投射型テレビジョン用として優れた発光特性
を有する希土類珪酸塩蛍光体及び発光スクリーンに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare-earth silicate which emits light with high luminance when excited by an electron beam, has good current-luminance characteristics (.gamma. Characteristics), and particularly has excellent light-emitting characteristics for projection televisions. The present invention relates to a phosphor and a luminescent screen.
【0002】[0002]
【従来の技術】カラーテレビジョン(カラーTV)の大
型化に伴い、それぞれが発光色の異なる複数のブラウン
線管からの画像を1つのスクリーン上に投影して画像を
合成して観察する、投写形カラーTVが普及し始めてい
る。投写形カラーTVに用いられるブラウン管は、拡大
投写するため、一般のブラウン管よりも高輝度であるこ
とを必要とし、また、一般TV用のブラウン管に比べて
高い電流密度で動作されている。2. Description of the Related Art With the enlargement of color televisions (color TVs), projection is performed by projecting images from a plurality of cathode ray tubes, each of which emits a different color of light, onto a single screen to synthesize and observe the images. Shaped color TVs are beginning to spread. A CRT used in a projection type color TV needs to have higher luminance than a general CRT in order to perform enlarged projection, and is operated at a higher current density than a CRT for a general TV.
【0003】従って、投写形カラーTV用ブラウン管に
使用される蛍光体は、一般に発光輝度が高いこと、照射
される電子線の電流密度−発光輝度との相関性が良いこ
と、即ち、電流輝度特性(γ特性)が良好であること、
長時間の励起に対して劣化しないこと、温度特性が良い
ことなどの諸特性が要求される。Accordingly, a phosphor used in a projection type color TV cathode-ray tube generally has a high emission luminance and a good correlation between the current density of the irradiated electron beam and the emission luminance, that is, the current luminance characteristic. (Γ characteristics) is good,
Various characteristics such as not deteriorating by long-time excitation and good temperature characteristics are required.
【0004】また、投写型TV用ブラウン管に限らず、
近年はブラウン管の高精細化が進み、従来より各色電子
ビームのスポットを絞る必要が生じてきているため、蛍
光体にとっては、照射される電子線の電流密度が増え、
負荷が大きくなるので、現在の蛍光体より電子線照射に
対して更に劣化の少ない蛍光体が望まれている。[0004] In addition to the CRT for a projection type TV,
In recent years, the cathode ray tube has become higher definition, and it has been necessary to narrow the spot of each color electron beam. Therefore, for the phosphor, the current density of the irradiated electron beam has increased.
Since the load increases, there is a demand for a phosphor that is less deteriorated by electron beam irradiation than the current phosphor.
【0005】現在、投写管用蛍光体としては、赤色発光
のY2O3:Eu蛍光体、緑色発光のY3(Al,G
a)5O12:Tb蛍光体、Y3Al5O12:Tb蛍
光体、Y2SiO5:Tb蛍光体、LaOCl:Tb蛍
光体、青色発光のZnS:Ag,Al等が用いられてい
るが、これらの蛍光体の中でも希土類珪酸塩を母体とす
る蛍光体、特に、緑色発光を呈するY2SiO5:Tb
蛍光体は、照射される電子線の電流密度がおよそ10μ
A/cm2以下の比較的低電流密度の領域においては、
電流密度にほぼ比例して発光輝度が増加し、電流輝度特
性(γ特性)が優れているとともに、蛍光体の温度変化
に対して輝度の変化が少ないという優れた温度特性を有
し、発光効率が高い蛍光体である。At present, as phosphors for projection tubes, red-light-emitting Y 2 O 3 : Eu phosphors and green-light-emitting Y 3 (Al, G
a) 5 O 12 : Tb phosphor, Y 3 Al 5 O 12 : Tb phosphor, Y 2 SiO 5 : Tb phosphor, LaOCl: Tb phosphor, blue light emitting ZnS: Ag, Al, etc. are used. However, among these phosphors, phosphors having a rare earth silicate as a host, particularly Y 2 SiO 5 : Tb exhibiting green light emission
The phosphor has a current density of about 10 μm for the irradiated electron beam.
In a relatively low current density region of A / cm 2 or less,
Luminescent luminance increases almost in proportion to the current density, the current luminance characteristics (γ characteristics) are excellent, and the temperature characteristics of the phosphor are small with respect to temperature changes. Is a high phosphor.
【0006】しかし、このY2SiO5:Tbをはじめ
とする希土類珪酸塩蛍光体は、発光輝度そのものが、実
用上必ずしも満足すべきものではなく、発光輝度の一層
の向上が望まれている。However, the rare earth silicate phosphors such as Y 2 SiO 5 : Tb do not always have satisfactory luminous luminance in practical use, and further improvement in luminous luminance is desired.
【0007】[0007]
【発明が解決しようとする課題】本発明は、発光輝度の
より向上した希土類珪酸塩蛍光体並びに発光スクリーン
を提供することを目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a rare earth silicate phosphor and a light emitting screen having improved emission luminance.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上記目的
達成のため、希土類珪酸塩蛍光体に種々の金属元素等を
含有させた場合の該蛍光体の発光輝度の変化を中心に詳
細に検討した結果、この蛍光体中に特定量の炭素(C)
を含有させることによって発光輝度が向上することが分
かった。In order to achieve the above-mentioned object, the present inventors have focused on details of a change in emission luminance of a rare-earth silicate phosphor when the phosphor contains various metal elements. As a result of the investigation, a specific amount of carbon (C) was contained in this phosphor.
It was found that the emission luminance was improved by containing.
【0009】即ち、本発明は以下の通りの構成を有す
る。 (1) 組成式が(Ln1−xLn’x)2O3・nS
iO2で表され、かつ、炭素(C)を含有することを特
徴とする希土類珪酸塩蛍光体。(但し、LnはY、L
a、Gd及びLuの中の少なくとも1種の希土類元素を
表し、Ln’はTb、Ce及びEuの中の少なくとも1
種の希土類元素を表し、また、n及びxはそれぞれ0.
95≦n≦2.5及び5×10−3≦x≦2×10−1
なる条件を満たす数である)。 (2) 前記炭素(C)の含有量が5〜500ppmで
あることを特徴とする前記(1)に記載の希土類珪酸塩
蛍光体。That is, the present invention has the following configuration. (1) The composition formula is (Ln 1-x Ln ′ x ) 2 O 3 .nS
A rare earth silicate phosphor represented by iO 2 and containing carbon (C). (However, Ln is Y, L
a, Gd and Lu represent at least one rare earth element, and Ln ′ represents at least one of Tb, Ce and Eu.
Represents a rare earth element, and n and x are each 0.1.
95 ≦ n ≦ 2.5 and 5 × 10 −3 ≦ x ≦ 2 × 10 −1
Is a number that satisfies the following condition). (2) The rare earth silicate phosphor according to (1), wherein the content of the carbon (C) is 5 to 500 ppm.
【0010】(3) 前記炭素(C)の含有量が10〜
350ppmであることを特徴とする前記(2)に記載
の希土類珪酸塩蛍光体。 (4) 前記Ln’がTbであることを特徴とする前記
(1)〜(3)のいずれかに記載の希土類珪酸塩蛍光
体。 (5) 前記n値が0.95≦n≦1.5なる条件を満
たす数であることを特徴とする前記(1)〜(4)のい
ずれかに記載の希土類珪酸塩蛍光体。 (6) 支持体と該支持体上に前記(1)〜(5)のい
ずれかに記載の希土類珪酸塩蛍光体からなる蛍光膜が形
成されていることを特徴とする発光スクリーン。(3) The content of the carbon (C) is 10 to
The rare earth silicate phosphor according to the above (2), wherein the content is 350 ppm. (4) The rare earth silicate phosphor according to any one of (1) to (3), wherein Ln ′ is Tb. (5) The rare-earth silicate phosphor according to any one of (1) to (4), wherein the n value is a number satisfying a condition of 0.95 ≦ n ≦ 1.5. (6) A luminescent screen, comprising a support and a phosphor film made of the rare earth silicate phosphor according to any one of (1) to (5) formed on the support.
【0011】[0011]
【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の蛍光体は、次のようにして製造される。蛍
光体原料としては、 Lnの酸化物、もしくはLnの硝酸塩、硫酸塩、炭酸
塩、蓚酸塩等、高温 で加熱することにより熱分解して
Lnの酸化物に変わり得るLnの化合物、 Ln’の酸化物、もしくはLn’の硝酸塩、硫酸塩、
炭酸塩、蓚酸塩等、高温で加熱することにより熱分解し
てLn’の酸化物に変わり得るLn’の化合物、 二酸化珪素等の珪素化合物、及びBEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The phosphor of the present invention is manufactured as follows. Examples of the phosphor material include oxides of Ln, compounds of Ln such as nitrates, sulfates, carbonates, and oxalates of Ln which can be thermally decomposed into Ln oxides by heating at a high temperature; Oxide or Ln ′ nitrate, sulfate,
A compound of Ln ′ which can be thermally decomposed by heating at a high temperature to be converted to an oxide of Ln ′, such as carbonate and oxalate, a silicon compound such as silicon dioxide, and
【0012】カーボン粉末、蔗糖、椰子殻活性炭等の
炭素含有化合物を用い、これらの蛍光体原料を化学両論
的に(Ln1−xLn’x)2O3・nSiO2(但
し、LnはY、La、Gd及びLuの中の少なくとも1
種の希土類元素を表し、Ln’はTb、Ce及びEuの
中の少なくとも1種の希土類元素を表し、また、n及び
xはそれぞれ0.95≦n≦2.5及び5×10−3≦
x≦2×10−1なる条件を満たす数である)なる組成
となる割合で混合し、更に、この混合物に、必要に応じ
てアルカリ金属及び/又はアルカリ土類金属のバロゲン
化物をフラックスとして配合し、湿式または乾式で充分
に混合する。また、母体構成原料は球状や粒径分布が狭
い物を使用することにより得られる蛍光体の粒子形状や
粒度分布を改良、制御することが可能である(特開平8
−59233など参照)。Using a carbon-containing compound such as carbon powder, sucrose, and coconut shell activated carbon, these phosphor raw materials are stoichiometrically (Ln 1-x Ln ′ x ) 2 O 3 .nSiO 2 (where Ln is Y , La, Gd and Lu
Ln ′ represents at least one rare earth element among Tb, Ce and Eu, and n and x are 0.95 ≦ n ≦ 2.5 and 5 × 10 −3 ≦
x ≦ 2 × 10 −1 ), and, if necessary, further blending a barogenide of an alkali metal and / or an alkaline earth metal with the mixture as a flux. And mix well by wet or dry method. Further, it is possible to improve and control the particle shape and the particle size distribution of the phosphor obtained by using a material constituting the base material having a spherical shape and a narrow particle size distribution.
-59233).
【0013】次いで、この原料混合物をアルミナ坩堝等
の耐熱容器に充填し、中性雰囲気中か還元雰囲気中にお
いて1000〜1700℃の温度で1〜12時間で1回
以上焼成する。なお、一度焼成した焼成物を一旦室温に
冷却後、再度焼成する、複数回の焼成工程を経て製造す
る場合には、2回目以降の焼成は1100℃〜1700
で行えば良い。このようにして得られた焼成物を粉砕
し、希塩酸などの希鉱酸洗、し、水洗してから乾燥し、
篩分を行って粒子径をそろえて本発明の蛍光体を得る。
また、上述のようにして得られた蛍光体は、更に400
〜900℃の比較的低温度でアニールを加えることによ
り更に発光輝度が向上する場合がある。Next, this raw material mixture is filled in a heat-resistant container such as an alumina crucible and fired at least once in a neutral atmosphere or a reducing atmosphere at a temperature of 1000 to 1700 ° C. for 1 to 12 hours. In the case where the fired product once fired is once cooled to room temperature and then fired again, and is manufactured through a plurality of firing processes, the second and subsequent firings are performed at 1100 ° C. to 1700 ° C.
You can do it in The fired product obtained in this manner is pulverized, washed with a dilute mineral acid such as dilute hydrochloric acid, washed with water, and then dried.
The phosphor of the present invention is obtained by sieving to make the particle diameter uniform.
In addition, the phosphor obtained as described above has a further 400
By performing annealing at a relatively low temperature of about 900 ° C., the emission luminance may be further improved.
【0014】図1は、組成式、(Y0.93Tb
0.07)2SiO5で表される希土類珪酸塩蛍光体中
の炭素(C)の含有量と、その蛍光体の電子線励起下に
おける発光輝度との相関を例示するグラフである。図1
において、横軸の炭素(C)の含有量は蛍光体の重量に
対するその蛍光体中に含有する炭素(C)の割合(pp
m)であり、各蛍光体を高周波加熱炉内で融解抽出し、
酸素雰囲気中で発生したガスをキャリアガスにより検出
器に導き、赤外線検出器で検出(ガスフュージョン分析
法)することによって定量した。また、縦軸の発光輝度
はその蛍光体に加速電圧20kV、電流密度1μA/c
m2の電子線を照射して測定した。FIG. 1 shows a composition formula, (Y 0.93 Tb)
10 is a graph illustrating the correlation between the content of carbon (C) in a rare earth silicate phosphor represented by 0.07 ) 2 SiO 5 and the emission luminance of the phosphor under electron beam excitation. FIG.
In the graph, the content of carbon (C) on the horizontal axis represents the ratio of carbon (C) contained in the phosphor to the weight of the phosphor (pp
m), each phosphor is melted and extracted in a high-frequency heating furnace,
The gas generated in an oxygen atmosphere was guided to a detector by a carrier gas, and the gas was quantified by detecting with an infrared detector (gas fusion analysis). The emission luminance on the vertical axis indicates that the phosphor has an acceleration voltage of 20 kV and a current density of 1 μA / c.
It was measured by irradiating an electron beam of m 2.
【0015】図1から明らかなように、本発明のTb付
活珪酸イットリウム蛍光体の電子線照射したときの発光
輝度は、Cの含有量がおよそ5〜500ppmであると
き、Cを含有しない従来のTb付活珪酸イットリウム蛍
光体に比べて発光輝度が高く、特にCの含有量が10〜
350ppmの範囲にあるとき特に発光輝度が高いこと
が分かる。なお、例示していないが希土類元素LnがG
d、La及びLuである場合にも、また、Ln’がEu
又はCeである場合にも、蛍光体中のCの含有量と電子
線励起下での発光輝度との関係は図1と類似の相関関係
にあることが確認された。但し、図1に例示した蛍光体
は緑色発光を呈するのに対し、Ln’がEuである場合
には赤色発光を呈し、また、Ln’がCeである場合に
は青色発光を呈した。As is apparent from FIG. 1, the emission luminance of the Tb-activated yttrium silicate phosphor of the present invention when irradiated with an electron beam is as follows: when the C content is about 5 to 500 ppm, the conventional C-free yttrium silicate phosphor does not contain C. Emission luminance is higher than that of the Tb-activated yttrium silicate phosphor, and particularly the content of C is 10 to 10.
It can be seen that the emission luminance is particularly high when it is in the range of 350 ppm. Although not illustrated, the rare earth element Ln is G
d, La, and Lu, Ln 'is also Eu.
Also in the case of Ce, it was confirmed that the relationship between the content of C in the phosphor and the emission luminance under the electron beam excitation was similar to that of FIG. However, the phosphor illustrated in FIG. 1 emitted green light, whereas when Ln ′ was Eu, it emitted red light, and when Ln ′ was Ce, it emitted blue light.
【0016】また、本発明の希土類珪酸塩蛍光体におい
て、(Ln1−xLn’x)2O3に対するSiO2の
比(n値)は、Ln及びLn’の種類にかかわらず、
0.95≦n≦2.5の範囲にあるとき、実用的に十分
な発光輝度を示し、0.95≦n≦1.5の範囲にある
とき、特に高輝度の発光を呈する。Further, in the rare earth silicate phosphor of the present invention, the ratio (n value) of SiO 2 to (Ln 1-x Ln ′ x ) 2 O 3 is irrespective of the type of Ln and Ln ′.
When it is in the range of 0.95 ≦ n ≦ 2.5, practically sufficient light emission luminance is shown, and when it is in the range of 0.95 ≦ n ≦ 1.5, light emission of particularly high luminance is exhibited.
【0017】なお、本発明の希土類珪酸塩蛍光体は、上
述のように電子線励起下で、高輝度の発光を示す外、紫
外線やX線による励起下でも、高輝度の発光を示し、蛍
光ランプの蛍光膜や増感紙などのX線用の用途にも好適
に用いることが出来る。It should be noted that the rare earth silicate phosphor of the present invention, as described above, emits high-luminance under excitation by an electron beam, and also emits high-luminance under excitation by ultraviolet rays or X-rays. It can be suitably used for X-ray applications such as a fluorescent film of a lamp and an intensifying screen.
【0018】本発明の発光スクリーンは、ホトリソグラ
フィー法、沈降塗布法、スラリー塗布法など、従来から
知られている塗布方法によってガラスなどの支持体上に
本発明の希土類珪酸塩蛍光体からなる蛍光膜を形成する
ことによって製造することが出来る。例えば、投写型カ
ラーTVのスクリーンとして用いる場合には、本発明の
希土類珪酸塩蛍光体を珪酸カリウムなどを含む水の中に
懸濁させた蛍光体のスラリーをブラウン管のフェースプ
レートの内全面に塗布してから静置し、排水後、乾燥さ
せてフェースプレート(支持体)の内面に蛍光膜を形成
する。The luminescent screen of the present invention is a fluorescent screen comprising a rare earth silicate phosphor of the present invention on a support such as glass by a conventionally known coating method such as a photolithography method, a sedimentation coating method or a slurry coating method. It can be manufactured by forming a film. For example, when used as a projection type color TV screen, a phosphor slurry in which the rare earth silicate phosphor of the present invention is suspended in water containing potassium silicate or the like is applied to the entire inner surface of the face plate of a cathode ray tube. Then, it is allowed to stand, drained, and dried to form a fluorescent film on the inner surface of the face plate (support).
【0019】[0019]
酸化イットリウム(Y2O3) 21.0g 酸化テルビウム(Tb4O7) 2.6g 二酸化珪素(SiO2) 6.0g 炭素粉末 0.003g 上記の原料をボールミルで充分に混合し、アルミナルツ
ボに詰めて2%の水素ガスを含む窒素ガスを通気しなが
ら1600℃の温度に保たれた電気炉で2時間焼成し
た。得られた焼成物に粉砕、水洗、乾燥及び篩分の処理
を施して実施例1のTb付活珪酸イットリウム蛍光体を
得た。この蛍光体は化学分析の結果、(Y0.93Tb
0.07)2SiO5であり、ガスフュージョン分析法
で含有炭素(C)を分析したところ、蛍光体に対して5
0ppmの炭素(C)を含有していた。Yttrium oxide (Y 2 O 3 ) 21.0 g Terbium oxide (Tb 4 O 7 ) 2.6 g Silicon dioxide (SiO 2 ) 6.0 g Carbon powder 0.003 g The above raw materials are sufficiently mixed by a ball mill, and the mixture is put in an alumina crucible. The sintering was performed for 2 hours in an electric furnace maintained at a temperature of 1600 ° C. while passing nitrogen gas containing 2% hydrogen gas. The obtained fired product was subjected to pulverization, washing with water, drying and sieving to obtain a Tb-activated yttrium silicate phosphor of Example 1. As a result of chemical analysis, this phosphor was found to have (Y 0.93 Tb
0.07 ) 2 SiO 5. The content of carbon (C) was analyzed by gas fusion analysis.
It contained 0 ppm carbon (C).
【0020】この実施例1の蛍光体をテストピースに沈
降塗布して得た実施例1の発光スクリーンに、加速電圧
20KV,電流密度1μA/cm2の電子線を照射し、
蛍光膜面を発光させた時の発光輝度は、これと同一の条
件で測定した、炭素元素を含有しない下記比較例1の蛍
光体と比較して5%向上した。The phosphor of Example 1 was applied to the test piece by sedimentation, and the luminescent screen of Example 1 was irradiated with an electron beam having an acceleration voltage of 20 KV and a current density of 1 μA / cm 2 .
The emission luminance when emitting light from the phosphor film surface was improved by 5% as compared with the phosphor of Comparative Example 1 containing no carbon element, which was measured under the same conditions.
【0021】〔比較例1〕蛍光体原料として、0.00
3gの粉末炭素用いなかった以外は実施例1の蛍光体と
同様にして比較例1の希土類珪酸塩蛍光体を得た後、実
施例1と同様にして比較例1の蛍光体からなる発光スク
リーンの発光輝度を測定し、その結果を表1に示した。[Comparative Example 1] As a phosphor material, 0.00
After obtaining a rare earth silicate phosphor of Comparative Example 1 in the same manner as in the phosphor of Example 1 except that 3 g of powdered carbon was not used, a luminescent screen comprising the phosphor of Comparative Example 1 in the same manner as in Example 1 Was measured, and the results are shown in Table 1.
【0022】〔実施例2〜8〕それぞれ表1に示した組
成式となるように各化合物の蛍光体原料を用い、また、
実施例5の蛍光体の場合のみ、2%の水素ガスを含む窒
素ガスを通気せず、空気中で焼成した以外は実施例1と
同様にして、それぞれ各蛍光体に対して炭素(C)を表
1に示した量だけ含有する実施例2〜8の希土類珪酸塩
蛍光体を得た。これらの蛍光体からなる発光スクリーン
の発光輝度を実施例1と同様にして測定し、その結果
を、それぞれ各実施例の蛍光体とは炭素(C)を含有し
ない以外は組成が同じである下記比較例2〜8の蛍光体
の発光輝度に対する相対値で下記の表1に示した。[Examples 2 to 8] Phosphor raw materials of the respective compounds were used so as to have the composition formulas shown in Table 1, respectively.
Only in the case of the phosphor of Example 5, carbon (C) was applied to each phosphor in the same manner as in Example 1 except that the nitrogen gas containing 2% hydrogen gas was not ventilated and calcined in air. Was obtained in the amounts shown in Table 1 to obtain rare earth silicate phosphors of Examples 2 to 8. The luminous brightness of the luminescent screen composed of these phosphors was measured in the same manner as in Example 1, and the results were measured. The results were the same as those of the phosphors of each example except that they did not contain carbon (C). The relative values with respect to the emission luminances of the phosphors of Comparative Examples 2 to 8 are shown in Table 1 below.
【0023】〔比較例2〜8〕蛍光体原料として、粉末
炭素を用いなかった以外は実施例2〜8の蛍光体と同様
にして、表1に示した組成式の希土類珪酸塩蛍光体(比
較例2〜8)を得た後、実施例1と同様にして比較例2
〜8の蛍光体からなる発光スクリーンの発光輝度を測定
し、それぞれ炭素(C)を含有する以外は組成式が同じ
である上記実施例2〜8の蛍光体の発光輝度に対する相
対値で下記の表1に示した。Comparative Examples 2 to 8 Rare earth silicate phosphors of the composition formulas shown in Table 1 were prepared in the same manner as in the phosphors of Examples 2 to 8 except that powdered carbon was not used as the phosphor material. After obtaining Comparative Examples 2 to 8), Comparative Example 2 was performed in the same manner as in Example 1.
The luminous brightness of the luminescent screens composed of the phosphors of Nos. 1 to 8 was measured, and the following relative values were obtained with respect to the luminous brightness of the phosphors of Examples 2 to 8 having the same composition formula except that they contained carbon (C). The results are shown in Table 1.
【0024】[0024]
【表1】 [Table 1]
【0025】なお、上述のように、表1において実施例
1〜8の各蛍光体の発光輝度はそれぞれの実施例に対応
する各比較例1〜8の蛍光体の発光輝度に対する相対値
で示されており、各実施例、比較例の蛍光体間での発光
輝度の相対比較は出来ない。As described above, in Table 1, the emission luminance of each of the phosphors of Examples 1 to 8 is shown as a relative value to the emission luminance of each of the phosphors of Comparative Examples 1 to 8 corresponding to each of the examples. Therefore, it is not possible to make a relative comparison of the emission luminances between the phosphors of the examples and the comparative examples.
【0026】表1からわかるように、実施例1〜8の蛍
光体は、その組成がいずれも炭素(C)を含有しない外
はそれと同一である比較例1〜8の蛍光体よりも発光輝
度が高いことがわかる。As can be seen from Table 1, the luminance of the phosphors of Examples 1 to 8 is higher than that of Comparative Examples 1 to 8, which have the same composition except that they do not contain carbon (C). Is high.
【0027】[0027]
【発明の効果】本発明は上記構成を採用することによ
り、従来の希度類珪酸塩蛍光体に比べて高輝度であり、
この蛍光体からなる本発明の発光スクリーンは投射型T
V用など高輝度の陰極線管用に適用できる。According to the present invention, by adopting the above structure, the brightness is higher than that of a conventional rare-type silicate phosphor,
The luminescent screen of the present invention composed of this phosphor is a projection type T
It can be applied to high-brightness cathode ray tubes such as V.
【0028】[0028]
【図1】希土類珪酸塩蛍光体における、炭素(C)含有
量と電子線励起下における発光輝度との相関関係を例示
するグラフである。FIG. 1 is a graph illustrating the correlation between the carbon (C) content and the emission luminance under electron beam excitation in a rare-earth silicate phosphor.
Claims (6)
・nSiO2で表され、かつ、炭素(C)を含有するこ
とを特徴とする希土類珪酸塩蛍光体。(但し、Lnは
Y、La、Gd及びLuの中の少なくとも1種の希土類
元素を表し、Ln’はTb、Ce及びEuの中の少なく
とも1種の希土類元素を表し、また、n及びxはそれぞ
れ0.95≦n≦2.5及び5×10−3≦x≦2×1
0−1なる条件を満たす数である)。1. The composition formula is (Ln 1-x Ln ′ x ) 2 O 3
· NSiO represented by 2, and a rare earth silicate phosphor which is characterized by containing carbon (C). (Where Ln represents at least one rare earth element among Y, La, Gd and Lu, Ln ′ represents at least one rare earth element among Tb, Ce and Eu, and n and x represent 0.95 ≦ n ≦ 2.5 and 5 × 10 −3 ≦ x ≦ 2 × 1 respectively
0 -1 a satisfying number made).
pmであることを特徴とする請求項1に記載の希土類珪
酸塩蛍光体。2. The carbon (C) content is 5 to 500 p.
2. The rare earth silicate phosphor according to claim 1, wherein the phosphor is pm.
ppmであることを特徴とする請求項2に記載の希土類
珪酸塩蛍光体。3. The carbon (C) content is 10 to 350.
The rare earth silicate phosphor according to claim 2, wherein the content is ppm.
る請求項1〜3のいずれか1項に記載の希土類珪酸塩蛍
光体。4. The rare earth silicate phosphor according to claim 1, wherein said Ln ′ is Tb.
件を満たす数であることを特徴とする請求項1〜4のい
ずれか1項に記載の希土類珪酸塩蛍光体。5. The rare earth silicate phosphor according to claim 1, wherein the n value is a number satisfying a condition of 0.95 ≦ n ≦ 1.5.
ずれか1項に記載の希土類珪酸塩蛍光体からなる蛍光膜
が形成されていることを特徴とする発光スクリーン。6. A light-emitting screen comprising a support and a phosphor film comprising the rare-earth silicate phosphor according to claim 1 formed on the support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311253A JP2002080847A (en) | 2000-09-05 | 2000-09-05 | Rare earth silicate phosphor and luminescent screen using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311253A JP2002080847A (en) | 2000-09-05 | 2000-09-05 | Rare earth silicate phosphor and luminescent screen using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002080847A true JP2002080847A (en) | 2002-03-22 |
Family
ID=18791052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000311253A Pending JP2002080847A (en) | 2000-09-05 | 2000-09-05 | Rare earth silicate phosphor and luminescent screen using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002080847A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003083010A1 (en) * | 2002-03-28 | 2003-10-09 | Hitachi Chemical Co.,Ltd. | Phosphor and phosphor composition containing the same |
US7161287B2 (en) | 2003-11-12 | 2007-01-09 | Nichia Corporation | Green emitting yttrium silicate phosphor and cathode-ray tube using the same |
JP2007070496A (en) * | 2005-09-07 | 2007-03-22 | Japan Atomic Energy Agency | NEUTRON-DETECTING SCINTILLATOR AND PARTICLE RADIATION-DETECTING SCINTILLATOR BY USING ZnS PHOSPHOR |
CN100352887C (en) * | 2006-01-25 | 2007-12-05 | 山东大学 | Method for preparing highly effective green light rare earth compound film |
US7329370B2 (en) | 2003-10-22 | 2008-02-12 | Korea Advanced Institute Of Science And Technology | Transparent polycrystalline ceramic scintillators and methods of preparing the same |
US7679064B2 (en) | 2004-04-15 | 2010-03-16 | Japan Atomic Energy Research Institute | Particle detector and neutron detector that use zinc sulfide phosphors |
US20130105733A1 (en) * | 2010-07-12 | 2013-05-02 | Mingjie Zhou | Oxide luminescent materials and preparation methods thereof |
-
2000
- 2000-09-05 JP JP2000311253A patent/JP2002080847A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003083010A1 (en) * | 2002-03-28 | 2003-10-09 | Hitachi Chemical Co.,Ltd. | Phosphor and phosphor composition containing the same |
US7122129B2 (en) | 2002-03-28 | 2006-10-17 | Hitachi Chemical Co., Ltd. | Fluorescent substance and fluorescent composition containing the same |
US7329370B2 (en) | 2003-10-22 | 2008-02-12 | Korea Advanced Institute Of Science And Technology | Transparent polycrystalline ceramic scintillators and methods of preparing the same |
US7161287B2 (en) | 2003-11-12 | 2007-01-09 | Nichia Corporation | Green emitting yttrium silicate phosphor and cathode-ray tube using the same |
US7679064B2 (en) | 2004-04-15 | 2010-03-16 | Japan Atomic Energy Research Institute | Particle detector and neutron detector that use zinc sulfide phosphors |
JP2007070496A (en) * | 2005-09-07 | 2007-03-22 | Japan Atomic Energy Agency | NEUTRON-DETECTING SCINTILLATOR AND PARTICLE RADIATION-DETECTING SCINTILLATOR BY USING ZnS PHOSPHOR |
CN100352887C (en) * | 2006-01-25 | 2007-12-05 | 山东大学 | Method for preparing highly effective green light rare earth compound film |
US20130105733A1 (en) * | 2010-07-12 | 2013-05-02 | Mingjie Zhou | Oxide luminescent materials and preparation methods thereof |
US9080106B2 (en) * | 2010-07-12 | 2015-07-14 | Ocean's King Lighting Science & Technology Co., Ltd. | Oxide luminescent materials and preparation methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3425465B2 (en) | Green light emitting phosphor and cathode ray tube using the same | |
KR100947192B1 (en) | Method for producing silicate phosphor | |
JP2002080847A (en) | Rare earth silicate phosphor and luminescent screen using the same | |
US6830706B2 (en) | Stable blue phosphor for plasma display panel applications | |
US6843938B2 (en) | Methods for preparing rare-earth oxysulfide phosphors, and resulting materials | |
JP2005146052A (en) | Green-light-emitting yttrium silicate phosphor and cathode-ray tube using the same | |
JP3263991B2 (en) | Blue light emitting phosphor | |
JP3915504B2 (en) | Method for producing silicate phosphor | |
JPH1088127A (en) | Production of rare earth element aluminate fluorescent substance | |
JP3399245B2 (en) | Manufacturing method of rare earth oxide phosphor | |
JP3399231B2 (en) | Method for producing yttrium silicate phosphor | |
JP2007526390A (en) | Luminescent material that emits green light and plasma display panel using the same | |
JP2003231881A (en) | Phosphor, method for producing phosphor and cathode- ray tube | |
JP3475565B2 (en) | Phosphor | |
JP4023222B2 (en) | Method for producing silicate phosphor | |
JPH0629421B2 (en) | Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same | |
JP2004051931A (en) | Rare earth silicate phosphor | |
JPH0522750B2 (en) | ||
JP2006265377A (en) | Fluorophor for electron beam excitation light emitting devices | |
JPH0967569A (en) | Green-emitting phosphor and cathode ray tube produced using the same | |
JP2008115275A (en) | Rare earth oxide phosphor and light-emitting device using the same | |
JP2001181622A (en) | Europium activated compound oxide fluorescent substance | |
JP2005008704A (en) | Spherical phosphor of yttrium silicate and cathode-ray tube | |
JP2004197043A (en) | Aluminate salt fluorescent material, method for producing the same and ultraviolet light-excited light-emitting element | |
JPH10140149A (en) | Short-afterglow phosphor |