[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002075407A - Electrode structure for fuel cell and its manufacturing method - Google Patents

Electrode structure for fuel cell and its manufacturing method

Info

Publication number
JP2002075407A
JP2002075407A JP2000265408A JP2000265408A JP2002075407A JP 2002075407 A JP2002075407 A JP 2002075407A JP 2000265408 A JP2000265408 A JP 2000265408A JP 2000265408 A JP2000265408 A JP 2000265408A JP 2002075407 A JP2002075407 A JP 2002075407A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
electrolyte membrane
catalyst layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265408A
Other languages
Japanese (ja)
Other versions
JP3579886B2 (en
Inventor
Kaoru Fukuda
薫 福田
Yoichi Asano
洋一 浅野
Nobuyuki Kaneoka
長之 金岡
Nobuhiro Saito
信広 齋藤
Masaaki Nanaumi
昌昭 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000265408A priority Critical patent/JP3579886B2/en
Priority to CA002356008A priority patent/CA2356008C/en
Priority to US09/942,123 priority patent/US6720106B2/en
Publication of JP2002075407A publication Critical patent/JP2002075407A/en
Application granted granted Critical
Publication of JP3579886B2 publication Critical patent/JP3579886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure for a fuel cell which has high durabil ity even in a temperature cycle from below zero degrees up to more than 85 deg.C with prevention of peel off of an interface between an electrolyte membrane M and an electrolyte catalyst layer 1. SOLUTION: The electrode structure composed of a pair of electrode catalyst layers and an electrolyte membrane pinched by them, catalyst of at least one side face of which former infiltrates into the latter to integrate the electrode catalyst layers and the electrolyte membrane, catalyst-dispersed organic solvent slurries in which the catalyst is dispersed in an organic solvent dissolving the electrolyte membrane are directly applied at least on one face of the electrolyte membrane, and then, the catalyst is made to infiltrate into the electrolyte membrane by heating under pressure, to integrally form the electrode catalyst layers on the electrolyte membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に用いら
れる燃料電池用電極構造体およびその製造方法に関す
る。より詳しく述べると、電極触媒層と電解膜とが一体
成形された燃料電池用電極構造体およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode structure used for a fuel cell and a method of manufacturing the same. More specifically, the present invention relates to a fuel cell electrode structure in which an electrode catalyst layer and an electrolyte membrane are integrally formed, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】燃料電池システムは、水素を燃料ガスと
して燃料電池の水素極側に供給するとともに、酸素を含
有する酸化ガスを燃料電池の酸素極側に供給して発電を
行う燃料電池を中核としたシステムである。この燃料電
池システムの中核をなす燃料電池は、化学エネルギーを
直接電気エネルギーに変換するものであり、高い発電効
率を有することや有害物質の排出量が極めて少ないこと
等から最近注目されている。
2. Description of the Related Art A fuel cell system comprises a fuel cell which supplies hydrogen as a fuel gas to a hydrogen electrode side of the fuel cell and supplies an oxidizing gas containing oxygen to an oxygen electrode side of the fuel cell to generate electric power. It is a system that did. Fuel cells, which form the core of this fuel cell system, convert chemical energy directly into electrical energy, and have recently been receiving attention because of their high power generation efficiency and extremely low emission of harmful substances.

【0003】先ず、燃料電池を構成する燃料電池単セル
について図1を参照して説明を行う。図1に示すよう
に、燃料電池単セルCEは、電解膜Mの水素極側と酸素
極側の両側に設けられた電極触媒層1(1H、1O)から
構成された燃料電池用電極構造体MEAの両側に各々拡
散層2H、2O、セパレータ3H、3Oを積層され、構成さ
れている。なお、水素極側の部材には数字の後に添え字
Hを附し、酸素極側の部材には数字の後に添え字Oを附
し、水素極・酸素極の区別を行わない場合には数字の後
に添え字を附さないものとする。
First, a single fuel cell constituting a fuel cell will be described with reference to FIG. As shown in FIG. 1, the fuel cell unit cell CE has a fuel cell electrode composed of electrode catalyst layers 1 (1 H , 1 O ) provided on both sides of the electrolyte membrane M on the hydrogen electrode side and the oxygen electrode side. Diffusion layers 2 H , 2 O and separators 3 H , 3 O are laminated on both sides of the structure MEA, respectively. The member on the hydrogen electrode side has a suffix H after the number, and the member on the oxygen electrode side has a suffix O after the number. Is not followed by a subscript.

【0004】電解膜Mとしては固体高分子膜、例えばプ
ロトン(イオン)交換膜であるパーフロロカーボンスル
ホン酸膜が一般に使われている。この電解膜Mは、固体
高分子中にプロトン交換基を多数持ち、飽和含水するこ
とにより常温で20Ω/cmプロトン以下の低い比抵抗
を示し、プロトン導伝性電解質として機能する。このよ
うに燃料電池単セルCEに固体高分子膜を用いることか
ら、該単セルCEを席層して構成される燃料電池は、固
体高分子型燃料電池と呼ばれている。
As the electrolyte membrane M, a solid polymer membrane, for example, a perfluorocarbon sulfonic acid membrane which is a proton (ion) exchange membrane is generally used. The electrolyte membrane M has a large number of proton exchange groups in the solid polymer, exhibits a low specific resistance of 20 Ω / cm or less at room temperature by containing saturated water, and functions as a proton conductive electrolyte. As described above, since the solid polymer membrane is used for the single cell CE of the fuel cell, the fuel cell configured by layering the single cell CE is called a solid polymer fuel cell.

【005】電極触媒層1としては、各々白金等の酸化・
還元触媒機能を有する触媒金属をカーボン等の担体に担
持させた触媒粒子をイオン(プロトン)導電性樹脂に分
散させて構成されている。
The electrode catalyst layer 1 is formed by oxidizing platinum or the like.
It is configured by dispersing catalyst particles in which a catalyst metal having a reduction catalyst function is supported on a carrier such as carbon, in an ionic (proton) conductive resin.

【0006】また、拡散層2としては、セパレータ3の
表面の流路4と接触して設けられ、電子を電極触媒層1
とセパレータ2との間で伝達させる機能および各々燃料
ガス(水素ガス)および酸化ガス(空気)を拡散して電
極触媒層1に供給する機能を有しており、一般にカーボ
ンペーパー、カーボンクロス、カーボンフェルト等のカ
ーボン系の材料から形成されている。セパレータ3は、
気密性及び熱伝導率の優れた材料から構成され、燃料ガ
ス、酸化ガスおよび冷熱を分断する機能を有するととも
に、流路4を持ち、そして電子伝達機能を有している。
[0006] The diffusion layer 2 is provided in contact with the flow channel 4 on the surface of the separator 3, and allows electrons to pass through the electrode catalyst layer 1.
And a function of diffusing fuel gas (hydrogen gas) and oxidizing gas (air) and supplying them to the electrode catalyst layer 1. Generally, carbon paper, carbon cloth, carbon It is formed from a carbon-based material such as felt. The separator 3 is
It is made of a material having excellent airtightness and thermal conductivity, has a function of separating fuel gas, oxidizing gas and cold heat, has a flow path 4, and has an electron transfer function.

【0007】この燃料電池単セルCEは、セパレータ3
Oの酸素極側ガス流路4Oに供給空気が通流され、セパレ
ータ3Hの水素極側ガス流路4Hに供給水素H2が供給さ
れると、水素極側で水素が電極触媒層1Hにおける触媒
の触媒作用でイオン化してプロトンが生成し、生成した
プロトンは、電解膜M中を移動して酸素極側に到達す
る。そして、酸素極側に到達したプロトンは、電極触媒
層1O中の触媒の存在下、供給空気の酸素から生成した
酸素イオンと直ちに反応して水を生成する。生成した水
及び未使用の酸素を含む供給空気は、排出空気として燃
料電池FCの酸素極側の出口から排出される(排出空気
は多量の水分を含む)。また、水素極側では水素がイオ
ン化する際に電子e-が生成するが、この生成した電子
-は、モータなどの外部負荷を経由して酸素極側に達
する構成となっている(図1の矢印参照)。このような
燃料電池単セルCEは、数百枚積層して燃料電池とし
て、例えば車両等に搭載されて使用される。
[0007] The fuel cell unit cell CE is composed of a separator 3
When the supply air flows through the oxygen electrode side gas flow path 4 O of O and the supply hydrogen H 2 is supplied to the hydrogen electrode side gas flow path 4 H of the separator 3 H , hydrogen is supplied to the electrode catalyst layer on the hydrogen electrode side. Protons are generated by ionization due to the catalytic action of the catalyst at 1 H , and the generated protons move through the electrolytic membrane M and reach the oxygen electrode side. The protons that have reached the oxygen electrode side immediately react with oxygen ions generated from the oxygen of the supply air in the presence of the catalyst in the electrode catalyst layer 1 O to generate water. The supply air containing the generated water and unused oxygen is discharged from the outlet on the oxygen electrode side of the fuel cell FC as exhaust air (the exhaust air contains a large amount of moisture). On the hydrogen electrode side, electrons e are generated when hydrogen is ionized, and the generated electrons e reach the oxygen electrode side via an external load such as a motor (FIG. 1). Arrow)). Hundreds of such fuel cell single cells CE are stacked and used as a fuel cell, for example, mounted on a vehicle or the like.

【0008】[0008]

【発明が解決しようとする課題】従来、このような構成
の燃料電池単セルCEにおいて、電極触媒層1は、電解
膜Mに電極触媒層1を貼付した後に、ホットプレス等に
より熱圧着して構成していた。しかしながら、このよう
な方法で構成された電極触媒層1は、電極触媒層1と電
解膜Mとの界面において電極触媒層C1の凹凸により食
い込みは有するが、接着界面はほぼ平坦である。従っ
て、例えば車両等に搭載して燃料電池を使用する場合に
は、燃料電池は、外気温(冬季における氷点下の温度)
から車両走行時における約85℃以上の温度サイクルを
有しているが、高温下で運転する等の高温環境下におい
ては接着強度が十分に得られず、剥離現象を起こす場合
があり、また、このような温度サイクルにおいて電解膜
と電極触媒層の界面が疲労し、耐久性の点で改善する余
地があった。
Conventionally, in a fuel cell unit CE having such a structure, the electrode catalyst layer 1 is bonded by thermocompression using a hot press or the like after the electrode catalyst layer 1 is attached to the electrolytic film M. Was composed. However, the electrode catalyst layer 1 formed by such a method has a bite due to the unevenness of the electrode catalyst layer C1 at the interface between the electrode catalyst layer 1 and the electrolytic film M, but the bonding interface is almost flat. Therefore, for example, when a fuel cell is used by being mounted on a vehicle or the like, the fuel cell is operated at an outside air temperature (a temperature below freezing in winter).
Has a temperature cycle of about 85 ° C. or more when the vehicle is running, but in a high temperature environment such as driving at a high temperature, the adhesive strength may not be sufficiently obtained, and a peeling phenomenon may occur, In such a temperature cycle, the interface between the electrolyte membrane and the electrode catalyst layer is fatigued, and there is room for improvement in durability.

【0009】従って、本発明の課題は、電解膜Mと電極
触媒層1との界面の剥離を防止して、かつ氷点下から約
85℃以上の温度サイクルにおいても耐久性の高い燃料
電池用電極構造体を提供することである。本発明の別の
課題は、かかる耐久性の高い燃料電池用電極構造体を効
率よく製造する燃料電池用電極構造体の製造方法を提供
することである。
Accordingly, an object of the present invention is to provide an electrode structure for a fuel cell which prevents separation at the interface between the electrolytic membrane M and the electrode catalyst layer 1 and has high durability even at a temperature cycle of about 85 ° C. or more from below freezing. Is to provide the body. Another object of the present invention is to provide a method for manufacturing a fuel cell electrode structure for efficiently manufacturing such a highly durable fuel cell electrode structure.

【0010】[0010]

【課題を解決するための手段】本発明者等は、前記従来
技術の実状に鑑み鋭意検討を重ねた結果、一対の電極触
媒層とそれらの電極触媒層に挟まれる電解膜から構成さ
れ、少なくとも一方の面の前記電極触媒層の触媒が前記
電解膜に侵入して前記電極触媒層と電解膜とが一体形成
することによって前記課題を解決できることを見出し
て、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the state of the prior art, and as a result, have been formed of a pair of electrode catalyst layers and an electrolytic membrane sandwiched between the electrode catalyst layers, The present inventors have found that the problem can be solved by the catalyst of the electrode catalyst layer on one surface penetrating into the electrolytic film and integrally forming the electrode catalyst layer and the electrolytic film, thereby completing the present invention.

【0011】すなわち、本発明は、一対の電極触媒層と
それらの電極触媒層に挟まれる電解膜から構成さ、少な
くとも一方の面の前記電極触媒層の触媒が前記電解膜に
侵入して前記電極触媒層と前記電解膜とを一体形成した
燃料電池用電極構造体であって、前記触媒を前記電解膜
を可溶な有機溶媒に分散させた触媒分散有機溶媒スラリ
ーを前記電解膜の少なくとも一方の面に直接塗布した
後、加圧下に加熱を行って前記触媒を前記電解膜に侵入
させることでこの電解膜に前記電極触媒層を一体形成し
たことを特徴とするものである(請求項1)。このよう
に構成することにより、電極触媒層が形成される際に、
電極触媒層と電解膜とが両者の境界面で組成が連続的に
変化して一体形成され、電解膜と電極触媒層との界面に
おける剥離が発生せず、また所定の熱サイクルにおいて
も電極構造体の耐久性が増加することが可能となる。
That is, the present invention comprises a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, and the catalyst of the electrode catalyst layer on at least one surface penetrates into the electrolytic film to form the electrode catalyst. An electrode structure for a fuel cell in which a catalyst layer and the electrolyte membrane are integrally formed, and a catalyst-dispersed organic solvent slurry in which the catalyst is dispersed in a soluble organic solvent of the electrolyte membrane is at least one of the electrolyte membranes. After applying directly to the surface, the electrode catalyst layer is integrally formed on the electrolytic film by heating under pressure to cause the catalyst to penetrate into the electrolytic film (claim 1). . With this configuration, when the electrode catalyst layer is formed,
The composition of the electrode catalyst layer and the electrolyte membrane is continuously changed at the interface between the two to form an integral body. No separation occurs at the interface between the electrolyte membrane and the electrode catalyst layer. The durability of the body can be increased.

【0012】前記燃料電池用電極構造体において、前記
電解膜のイオン交換容量をAとし、前記形成した電極触
媒層のイオン交換容量をBとし、前記加圧下で加熱する
前における前記電解膜の厚みをC(μm)とし、前記加
圧下で加熱した後における前記電解膜の前記触媒が侵入
していない部分の厚みをD(μm)として下記式
(1): (A−B)/(C−D)・・・(1) で計算された前記電極触媒層と前記電解膜との界面にお
けるイオン交換密度傾斜係数が3.5×103meq/
g/cm以下であることが好ましい(請求項2)。この
ように電極触媒層と電解膜との一体部分を規定すること
によって、耐久性はより確実なものとなる。
[0012] In the fuel cell electrode structure, the ion exchange capacity of the electrolytic membrane is A, the ion exchange capacity of the formed electrode catalyst layer is B, and the thickness of the electrolytic membrane before heating under the pressure is described. Is defined as C (μm), and D (μm) is defined as the thickness of the portion of the electrolyte membrane where the catalyst has not penetrated after heating under the pressure, and the following formula (1): (AB) / (C− D) The ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolytic membrane calculated in (1) is 3.5 × 10 3 meq /
g / cm or less (claim 2). By thus defining the integral part of the electrode catalyst layer and the electrolytic membrane, the durability can be further ensured.

【0013】前記燃料電池用電極構造体において前記触
媒の前記電解膜への侵入深さが5μm〜20μmの範囲
内であることが好ましい(請求項3)。同様にして、電
極触媒層と電解膜との一体部分を規定することによっ
て、耐久性はより確実なものとなる。
[0013] In the fuel cell electrode structure, it is preferable that a penetration depth of the catalyst into the electrolyte membrane is in a range of 5 µm to 20 µm. Similarly, by defining an integral part of the electrode catalyst layer and the electrolytic membrane, the durability can be further ensured.

【0014】本発明の別の実施の形態の燃料電池用電極
構造体の製造方法は、一対の電極触媒層とそれらの電極
触媒層に挟まれる電解膜から構成され、少なくとも一方
の面の前記電極触媒層の触媒が前記電解膜に侵入して前
記電極触媒層と前記電解膜とを一体形成した燃料電池用
電極構造体の製造方法であって、前記電極触媒層を構成
する前記触媒を前記電解膜に可溶な有機溶媒に分散させ
粘度5,000〜25,000mPa・秒の触媒分散有
機溶媒スラリーを調製し、このようにして調製した触媒
分散有機溶媒スラリーを前記電解膜の少なくとも一方の
面に直接塗布し、加圧下で加熱して前記触媒を前記電解
膜へ侵入させて前記電極触媒層を前記電解膜と一体形成
することを特徴とするものである(請求項4)。このよ
うに構成することによって、耐久性の優れた電極構造体
を容易・かつ確実に製造することが可能となる。
A method of manufacturing an electrode structure for a fuel cell according to another embodiment of the present invention comprises a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, and the electrode on at least one surface thereof. A method for producing an electrode structure for a fuel cell, wherein a catalyst of a catalyst layer penetrates into the electrolyte membrane to integrally form the electrode catalyst layer and the electrolyte membrane, wherein the catalyst constituting the electrode catalyst layer is electrolyzed. A catalyst-dispersed organic solvent slurry having a viscosity of 5,000 to 25,000 mPa · s is prepared by dispersing in an organic solvent soluble in the membrane, and the catalyst-dispersed organic solvent slurry thus prepared is applied to at least one surface of the electrolytic membrane. The electrode catalyst layer is formed integrally with the electrolyte membrane by applying the catalyst directly to the electrolyte membrane by heating under pressure and causing the catalyst to penetrate into the electrolyte membrane (claim 4). With this configuration, it is possible to easily and reliably manufacture an electrode structure having excellent durability.

【0015】本発明の別の実施の形態の燃料電池用電極
構造体の製造方法において、前記電解質膜に直接塗布し
た前記触媒分散有機溶媒スラリー中の有機溶媒を20m
g/cm2〜100mg/cm2の量で残存した状態で加
圧下に加熱して前記触媒を前記電解膜へ侵入させること
が好ましい(請求項5)。このように構成することによ
って、さらに優れた耐久性を有する電極構造体を容易・
かつ確実に製造することが可能となる。
In another embodiment of the present invention, in the method for manufacturing an electrode structure for a fuel cell, the organic solvent in the catalyst-dispersed organic solvent slurry directly applied to the electrolyte membrane is adjusted to 20 m.
g / cm 2 ~100mg / cm 2 of that heated under pressure while remaining in an amount to penetrate the catalyst to the electrolyte membrane preferably (claim 5). With such a configuration, an electrode structure having more excellent durability can be easily formed.
And it becomes possible to manufacture reliably.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して詳細に説明するが、本発明はこれらの実
施の形態に限定されるものではない。図1は、本発明が
適用される燃料電池単セルの概略を示す概略図であり、
図2は、本発明の燃料電池用電極構造体(以下「電極構
造体」という)の断面図であり、図3は、触媒粒子の構
成を示す模式図であり、図4は、本発明の電極構造体の
製造の様子を示す模式図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to these embodiments. FIG. 1 is a schematic diagram showing an outline of a single fuel cell to which the present invention is applied;
FIG. 2 is a cross-sectional view of the electrode structure for a fuel cell of the present invention (hereinafter, referred to as “electrode structure”). FIG. 3 is a schematic diagram showing the structure of the catalyst particles. It is a mimetic diagram showing a situation of manufacture of an electrode structure.

【0017】[電極構造体(燃料電池単セル)の構成]図
1に示す通り、一実施形態の電極構造体MEAは、電解
膜Mと電解膜Mの両側に積層された電極触媒層1とから
主として構成され、このようにして構成された電極構造
体MEAの両側に拡散層2およびセパレータ3が積層さ
れて燃料電池単セルCEが構成されている。このような
燃料電池単セルCEが多数積層されて燃料電池が形成さ
れる。
[Structure of Electrode Structure (Single Cell of Fuel Cell)] As shown in FIG. 1, an electrode structure MEA according to one embodiment includes an electrolytic film M and an electrode catalyst layer 1 laminated on both sides of the electrolytic film M. The diffusion layer 2 and the separator 3 are laminated on both sides of the electrode structure MEA thus configured to form a fuel cell unit cell CE. A large number of such fuel cell single cells CE are stacked to form a fuel cell.

【0018】電極構造体MEAの電解膜Mとして、例え
ばプロトン(イオン)交換膜であるパーフロロカーボン
スルホン酸膜が一般に使われている。この電解膜Mは、
前述の通り固体高分子中にプロトン交換基を多数持ち、
飽和含水することにより常温で20Ω/cmプロトン以
下の低い比抵抗を示し、プロトン導伝性電解質として機
能するものである。なお、本発明において使用できる電
解膜Mは、燃料電池単セルCEにおいて使用されている
ものであればこれに限定されるものではない。
As the electrolyte membrane M of the electrode structure MEA, for example, a perfluorocarbon sulfonic acid membrane which is a proton (ion) exchange membrane is generally used. This electrolytic membrane M is
As described above, the solid polymer has many proton exchange groups,
It exhibits low specific resistance of 20 Ω / cm proton or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. The electrolytic membrane M that can be used in the present invention is not limited to this, as long as it is used in the fuel cell unit cell CE.

【0019】また、この一実施形態での電極構造体ME
Aにおける電極触媒層1は、イオン(プロトン)導電性
樹脂に触媒金属を担持した担体から構成される触媒粒子
(図3参照)を分散させて構成されている。この際に、
通常触媒金属として白金族金属、一般には白金が担体と
して、カーボンに担持されて形成されている。しかしな
がら、本発明においては、燃料電池の触媒として使用可
能であればこれらに限定されるものではない。また、撥
水効果および貯水効果を高めるため、あるいは電極触媒
層2が拡散層3に食い込むのを防止する目的で図示しな
い下地層を拡散層2とセパレータ3との間に設けてもよ
い。下地層は、カーボンブラック粉末とテフロン(登録
商標)粉末からあるいはカーボンブラック粉末と電解質
溶液から構成される。
Further, the electrode structure ME according to this embodiment is
The electrode catalyst layer 1 in A is configured by dispersing catalyst particles (see FIG. 3) composed of a carrier in which a catalyst metal is supported on an ionic (proton) conductive resin. At this time,
Usually, a platinum group metal, generally platinum, is used as a catalyst metal and supported on carbon as a carrier. However, the present invention is not limited to these as long as it can be used as a fuel cell catalyst. Further, a base layer (not shown) may be provided between the diffusion layer 2 and the separator 3 for the purpose of enhancing the water repellent effect and the water storage effect, or for preventing the electrode catalyst layer 2 from biting into the diffusion layer 3. The underlayer is composed of a carbon black powder and a Teflon (registered trademark) powder or a carbon black powder and an electrolyte solution.

【0020】電極構造体MEAでは、図2に示す通り、
電極触媒層1における触媒粒子の一部が所定の距離だけ
電解膜Mの両側に侵入した構成を有していることを特徴
とする。すなわち、従来の電極構造体のように電解膜と
電極触媒層との間に明確な界面を有するのではなく、触
媒(電極触媒層1を構成する材料)が電解膜Mの一部に
所定の度合いで侵入し、電解膜Mと電極触媒層1とが一
体形成されている。この際の、触媒(触媒粒子)の電解
膜Mへの侵入の度合いは、電解膜Mのイオン交換容量を
Aとし、電極触媒層1のイオン交換容量をBとし(該イ
オン交換容量は電解膜Mに触媒粒子が侵入していないと
した場合におけるもの)、加圧下で加熱する前の電解膜
の厚みをC(μm)とし、両側から侵透した触媒粒子間
の距離をDw(μm)として下記式(1): (A−B)/(C−Dw)/2・・・(1) で計算された電極触媒層1と電解膜Mとの界面における
イオン交換密度傾斜係数として表すことができる。な
お、距離Dwは、電解膜Mにおける触媒粒子が侵入して
いない部分の厚みである。
In the electrode structure MEA, as shown in FIG.
It is characterized in that a part of the catalyst particles in the electrode catalyst layer 1 penetrates both sides of the electrolytic membrane M by a predetermined distance. That is, instead of having a clear interface between the electrolyte membrane and the electrode catalyst layer as in the conventional electrode structure, a catalyst (a material constituting the electrode catalyst layer 1) is applied to a part of the electrolyte membrane M by a predetermined amount. The electrolyte membrane M and the electrode catalyst layer 1 are integrally formed. At this time, the degree of penetration of the catalyst (catalyst particles) into the electrolytic membrane M is represented by A as the ion exchange capacity of the electrolytic membrane M and B as the ion exchange capacity of the electrode catalyst layer 1 (the ion exchange capacity is the electrolytic membrane M). M when no catalyst particles have penetrated into M), the thickness of the electrolytic membrane before heating under pressure is C (μm), and the distance between the catalyst particles permeated from both sides is Dw (μm). It can be expressed as the ion exchange density gradient coefficient at the interface between the electrode catalyst layer 1 and the electrolytic membrane M calculated by the following equation (1): (AB) / (C-Dw) / 2 (1) it can. Note that the distance Dw is the thickness of a portion of the electrolyte membrane M where the catalyst particles have not penetrated.

【0021】すなわち、電極触媒層1が電解膜Mに長さ
(C−Dw)/2だけ侵入した際の、単位長さ当りのイ
オン交換容量の増分として示す。本発明において、この
ようなイオン交換密度傾斜係数が3.5×103meq
/g/cm以下であることが好ましいことが実験的に見
出された。すなわち、イオン交換密度傾斜係数が3.5
×103meq/g/cmを超えた場合には、電極触媒
層1と電解膜Mの一体形成が不充分であり(つまり両者
1,Mが渾然一体となって形成されている部分〔グラデ
ェーション部分〕が少なく)、電極触媒層1と電解膜M
の剥離防止という観点から好ましくない。
That is, when the electrode catalyst layer 1 penetrates into the electrolytic membrane M by the length (C−Dw) / 2, it is shown as an increase in ion exchange capacity per unit length. In the present invention, such an ion exchange density gradient coefficient is 3.5 × 10 3 meq.
/ G / cm or less was experimentally found to be preferable. That is, the ion exchange density gradient coefficient is 3.5.
If it exceeds 10 3 meq / g / cm, the integral formation of the electrode catalyst layer 1 and the electrolytic membrane M is insufficient (that is, the part where the two 1 and M are integrally formed [gradation] Part), the electrode catalyst layer 1 and the electrolytic membrane M
This is not preferable from the viewpoint of preventing peeling of the resin.

【0022】また、電極触媒層1が電解膜Mへの侵入の
度合いを決定する別の尺度として、触媒粒子の電解膜へ
の侵入深さ(すなわち、(C−Dw)/2そのもの)が
挙げられる。このような電解膜Mへの侵入深さは、5μ
m〜20μmの範囲内であることが好ましい。触媒粒子
の電解膜Mへの侵入が浅過ぎると、電極触媒層1と電解
膜Mの剥離防止という観点から好ましくない。一方、侵
入が深すぎると、電解膜Mの性能を低下する。
Another measure for determining the degree of penetration of the electrode catalyst layer 1 into the electrolyte membrane M is the depth of penetration of catalyst particles into the electrolyte membrane (ie, (C-Dw) / 2 itself). Can be The depth of penetration into the electrolytic membrane M is 5 μm.
Preferably, it is in the range of m to 20 μm. If the penetration of the catalyst particles into the electrolytic film M is too shallow, it is not preferable from the viewpoint of preventing the electrode catalyst layer 1 and the electrolytic film M from peeling off. On the other hand, when the penetration is too deep, the performance of the electrolytic film M is reduced.

【0023】本発明におにて、このような構造を達成す
るために、電極触媒層1を、触媒粒子を電解膜に可溶な
有機溶媒に分散させた触媒粒子分散有機溶媒スラリーを
電解膜Mに直接塗布した後、加圧下に加熱を行って前記
触媒粒子を前記電解膜Mに侵入させて電解膜Mと一体形
成を行っている。すなわち、本発明は、有機溶媒が電解
膜Mを溶かすことにより、触媒粒子を電解膜Mの表面か
ら内部に侵入させ、電解膜Mの一部に電極触媒層1を形
成して電極構造体MEAとなすものである。ちなみに、
電極触媒層1を形成する前の電解膜Mの厚みと、電極触
媒層1を形成した後の電解膜M(つまり電極構造体ME
A)の厚みは、ほぼ同じか電極触媒層1を形成した後の
電極項構造体MEAの方がやや厚みが増す。
In the present invention, in order to achieve such a structure, the electrode catalyst layer 1 is formed by dissolving a catalyst particle-dispersed organic solvent slurry in which catalyst particles are dispersed in an organic solvent soluble in the electrolytic film. After being directly applied to M, heating is performed under pressure to cause the catalyst particles to penetrate into the electrolyte membrane M, thereby forming an integral part with the electrolyte membrane M. That is, in the present invention, the organic solvent dissolves the electrolyte membrane M, thereby causing the catalyst particles to penetrate from the surface of the electrolyte membrane M to the inside, and forming the electrode catalyst layer 1 on a part of the electrolyte membrane M to form the electrode structure MEA. It is something to make. By the way,
The thickness of the electrolyte membrane M before the formation of the electrode catalyst layer 1 and the thickness of the electrolyte membrane M after the formation of the electrode catalyst layer 1 (that is, the electrode structure ME
The thickness of A) is almost the same, or the thickness of the electrode section structure MEA after the formation of the electrode catalyst layer 1 is slightly larger.

【0024】電極構造体MEAにおける触媒粒子の濃度
部分布について、図2を参照して補足説明する。図2に
示すように、電極構造体MEAの表面から有る一定の深
さまでは、触媒粒子の濃度が濃い部分が形成されてい
る。これが、電極触媒層1が形成された部分である。そ
の先、深さが増すと、触媒粒子の濃度が減少し始め、や
がて触媒が侵入しない部分になる。後述する製造方法を
実施するとこの図2のような電極構造体MEAが得られ
る。
The concentration distribution of the catalyst particles in the electrode structure MEA will be supplementarily described with reference to FIG. As shown in FIG. 2, at a certain depth from the surface of the electrode structure MEA, a portion where the concentration of the catalyst particles is high is formed. This is the portion where the electrode catalyst layer 1 is formed. After that, when the depth increases, the concentration of the catalyst particles starts to decrease, and eventually becomes a portion where the catalyst does not enter. By performing a manufacturing method described later, an electrode structure MEA as shown in FIG. 2 is obtained.

【0025】この際に使用する有機溶媒は、スラリー中
の触媒粒子を電解膜Mに侵入するために使用されるもの
であり、電解膜Mに可溶な極性溶媒が使用される。本発
明において使用できる有機溶媒は、電解膜と電極触媒層
とが一体成形可能であれば特に制限されないが、例えば
ジメチルアセトアミド(沸点:165.5℃)、ジメチ
ルホルムアミド(沸点:153℃)、ジメチルスルホキシ
ド(沸点:189℃)、トリエチルホスフェート(沸
点:115℃)、N−メチルピロリドン(沸点:202
℃)等が挙げられ、これらを単独であるいは二種類以上
の混合物として使用できる。
The organic solvent used at this time is used to allow the catalyst particles in the slurry to enter the electrolytic membrane M, and a polar solvent soluble in the electrolytic membrane M is used. The organic solvent that can be used in the present invention is not particularly limited as long as the electrolyte membrane and the electrode catalyst layer can be integrally formed. For example, dimethylacetamide (boiling point: 165.5 ° C.), dimethylformamide (boiling point: 153 ° C.), dimethyl Sulfoxide (boiling point: 189 ° C.), triethyl phosphate (boiling point: 115 ° C.), N-methylpyrrolidone (boiling point: 202
° C), and these can be used alone or as a mixture of two or more.

【0026】本発明において、触媒分散有機溶媒スラリ
ーを塗布する際に前記スラリーを片面に塗布して、加圧
下に加熱して(ホットプレス)して片面づつ一体的に積
層することも可能であるが、電極構造体MEAが熱歪等
により湾曲する可能性があるので、電解膜の両面にスラ
リーを塗布して電解膜と電極触媒層を一体成形すること
が好ましい。この際の加圧圧力、加熱温度、ホットプレ
ス時間は、使用する溶媒、スラリー粘度等により適宜選
択されるが、代表的には1.5〜2.5MPa(15〜
25kgf/cm2)の圧力、及び120〜180℃の
温度で30〜60秒間ホットプレスするのが好ましい。
この際に、前記溶媒は、20mg/cm2以上の量で残
存させると、前記条件と相俟ってホットプレス時のスラ
リー中の残存溶媒による電解膜Mの表面の溶解を可能な
らしめ、触媒の電解膜Mへの侵入を容易にし、該触媒を
ある程度の深さに押し込むことが可能となるので好まし
い。
In the present invention, when the catalyst-dispersed organic solvent slurry is applied, the slurry may be applied to one side and heated under pressure (hot press) to be laminated one by one. However, since there is a possibility that the electrode structure MEA may be bent due to thermal strain or the like, it is preferable to apply slurry to both surfaces of the electrolytic film to integrally form the electrolytic film and the electrode catalyst layer. The pressurizing pressure, heating temperature, and hot pressing time at this time are appropriately selected depending on the solvent used, the viscosity of the slurry, and the like. Typically, the pressure is 1.5 to 2.5 MPa (15 to 2.5 MPa).
Hot pressing is preferably performed at a pressure of 25 kgf / cm 2 ) and a temperature of 120 to 180 ° C. for 30 to 60 seconds.
At this time, if the solvent is allowed to remain in an amount of 20 mg / cm 2 or more, it becomes possible to dissolve the surface of the electrolytic film M with the solvent remaining in the slurry at the time of hot pressing in combination with the above conditions, This is preferable because it facilitates the penetration of the catalyst into the electrolyte membrane M and allows the catalyst to be pushed into a certain depth.

【0027】なお、この際のスラリーの粘度は、電解膜
に直接塗布する操作を行うことができ、本発明に規定す
る所定の電極触媒層を形成することができる範囲内であ
れば特に制限されないが、好ましくは5,000〜2
5,000mPa・秒の範囲内である。すなわち、スラ
リー粘度が5,000mPa・秒未満であるとホットプ
レスした際にスラリー漏れが起こる可能性があり、逆に
スラリー粘度が25,000mPa・秒を超えるとスラ
リーの取扱いが困難になる場合がある。
The viscosity of the slurry at this time is not particularly limited as long as it can be applied directly to the electrolytic membrane and can form a predetermined electrode catalyst layer defined in the present invention. But preferably 5,000 to 2
It is in the range of 5,000 mPa · s. That is, if the slurry viscosity is less than 5,000 mPa · s, there is a possibility that the slurry will leak when hot-pressed, and if the slurry viscosity exceeds 25,000 mPa · s, the handling of the slurry may be difficult. is there.

【0028】このようにして、本発明において電極構造
体MEAにおける電解層Mと一体成形することによって
電解膜Mと電極触媒層1の界面の圧着強度を高め、高温
時の熱応力により発生するこれらの界面の剥離や温度サ
イクルによる冷熱剥離を防止することが可能となる。
As described above, in the present invention, the pressure-bonding strength at the interface between the electrolytic film M and the electrode catalyst layer 1 is increased by integrally molding with the electrolytic layer M in the electrode structure MEA. It is possible to prevent peeling of the interface of the substrate and thermal peeling due to a temperature cycle.

【0029】(電極構造体の製造)以下、図4に基づい
て本発明の電解膜と電極触媒層が一体成形された電極構
造体の製造方法について述べる。本発明の電極構造体を
製造するに当たって、まず触媒粒子を、電解膜Mを可溶
な極性溶媒に溶解し、粘度が5,000〜25,000
mPa・秒となるように触媒分散有機溶媒スラリーを形
成する。次いで、このようにして調製された触媒分散有
機溶媒スラリーを図4(a)に示す通り、所定量、電解
膜Mに直接塗布を行う。なお、所望に応じてカーボンブ
ラック粉末とテフロン粉末からあるいはカーボンブラッ
ク粉末と電解質溶液(イオン導伝性高分子溶液)から構
成される下地層形成用スラリーを触媒分散有機溶媒スラ
リーの上に重ねて塗布して下地層を形成することも可能
である。
(Production of Electrode Structure) Hereinafter, a method for producing an electrode structure of the present invention in which the electrolytic membrane and the electrode catalyst layer are integrally formed will be described with reference to FIG. In producing the electrode structure of the present invention, first, the catalyst particles are dissolved in a polar solvent in which the electrolyte membrane M is soluble, and the viscosity is 5,000 to 25,000.
A catalyst-dispersed organic solvent slurry is formed so as to have a pressure of mPa · s. Next, a predetermined amount of the catalyst-dispersed organic solvent slurry prepared as described above is directly applied to the electrolytic membrane M as shown in FIG. If necessary, a slurry for forming an underlayer composed of carbon black powder and Teflon powder or a mixture of carbon black powder and electrolyte solution (ion conductive polymer solution) is applied on the catalyst-dispersed organic solvent slurry. It is also possible to form an underlayer by doing.

【0030】図4(b)〜図4(e)は、図4(a)の
一部を拡大した断面図であり、本発明により触媒層1が
電解膜Mと一体成形される様子を示すものである。図4
(b)に示す通り、まず塗布した電極触媒形成用のスラ
リー中の電解膜Mを可溶な極性溶媒が電解膜Mを溶かし
はじめる。次いで、図4(c)に示す通り、極性溶媒が
電解膜の一部を溶解する。次いで、図4(d)に示す通
り、電極触媒形成用スラリーの上からホットプレスを行
うと、電解膜を極性溶媒が溶解した部分に触媒粒子Ca
tが侵入する。この際に極性溶媒(有機溶媒)を20m
g/cm2以上の量で残存させた状態からホットプレス
を行うことが好ましい。このようにしてホットプレスを
行った後、温度・圧力を開放すると、図4(e)に示す
通りに、電解膜Mと電極触媒層1とを一体成形した電極
構造体MEAが形成される。このように、簡単な工程で
所望とする耐久性の高い電極構造体MEAを製造するこ
とが可能となる。なお、本発明では、本来の電解膜Mの
表面から所定深さに亘って電極触媒層1が形成される
が、両者(電解膜M,電極触媒層1)の境界部分は渾然
一体になっている。
4 (b) to 4 (e) are cross-sectional views in which a part of FIG. 4 (a) is enlarged, and show how the catalyst layer 1 is integrally formed with the electrolytic membrane M according to the present invention. Things. FIG.
As shown in (b), first, a polar solvent that is soluble in the electrolytic film M in the applied slurry for forming an electrode catalyst starts to dissolve the electrolytic film M. Next, as shown in FIG. 4C, the polar solvent dissolves a part of the electrolyte membrane. Next, as shown in FIG. 4D, when hot pressing is performed on the slurry for forming the electrode catalyst, the catalyst particles Ca are deposited on the portion where the polar solvent is dissolved in the electrolytic membrane.
t invades. At this time, the polar solvent (organic solvent) was
It is preferable to perform hot pressing from a state where the amount is left at g / cm 2 or more. When the temperature and the pressure are released after performing the hot pressing in this manner, as shown in FIG. 4E, an electrode structure MEA in which the electrolytic film M and the electrode catalyst layer 1 are integrally formed is formed. As described above, it is possible to manufacture the desired highly durable electrode structure MEA by a simple process. In the present invention, the electrode catalyst layer 1 is formed over a predetermined depth from the surface of the original electrolytic film M, but the boundary between the two (the electrolytic film M and the electrode catalyst layer 1) is completely integrated. I have.

【0031】[0031]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが本発明は以下の実施例に限定されるものではな
い。 [実施例1]極性溶媒(N−メチルピロリドン)に触媒
(Cat)を粘度が5,000mPa・秒となるように
添加して触媒分散有機溶媒スラリーを調製した。このよ
うにして調製された触媒分散有機溶媒スラリーを極性溶
媒の残量(残存溶媒量)が100mg/cm2となるま
で乾燥し、次いでホットプレスを行って、拡散層と接合
して本発明の電極構造体1と電解膜Mとを一体形成し
た。得られた電極構造体MEAの物性を表1、図5およ
び図6に示す。なお、表1において、触媒の侵入深さは
走査型電子顕微鏡(SEM)により実測して求め、そし
て傾斜密度は同様に両側から侵入した触媒(触媒粒子)
間の平均距離を求め、前記(1)式により算出したもの
である。また、冷熱剥離率は、−40℃で30分間、9
0℃で30分間の冷間環境と熱間環境を100サイクル
繰り返し行い、表面の剥離状態を画像処理した。数値
は、単位観察面積中の剥離面積を換算し求め、クロスリ
ーク量(ガス透過性cc/cm2・分)は燃料電池単セル
に試料を組み付けた後に、これを水没させ、試料ガスを
ガス供給口より供給し、膜試料を通して、ガス排出口か
ら排出してきた試料ガス量を測定し、求めた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments, but the present invention is not limited to the following embodiments. Example 1 A catalyst-dispersed organic solvent slurry was prepared by adding a catalyst (Cat) to a polar solvent (N-methylpyrrolidone) so that the viscosity became 5,000 mPa · s. The catalyst-dispersed organic solvent slurry thus prepared is dried until the residual amount of the polar solvent (remaining solvent amount) becomes 100 mg / cm 2, and then hot-pressed and joined to the diffusion layer to thereby obtain the present invention. The electrode structure 1 and the electrolytic film M were integrally formed. Table 1, FIG. 5 and FIG. 6 show the physical properties of the obtained electrode structure MEA. In Table 1, the penetration depth of the catalyst was determined by actually measuring with a scanning electron microscope (SEM), and the gradient density was similarly calculated for the catalyst (catalyst particles) penetrating from both sides.
The average distance between them is obtained and calculated by the above equation (1). The thermal peeling rate was 9 minutes at −40 ° C. for 9 minutes.
A cold environment and a hot environment at 0 ° C. for 30 minutes were repeated 100 cycles, and the peeled state of the surface was image-processed. Numerical values were obtained by converting the peeled area in the unit observation area. The cross leak amount (gas permeability cc / cm 2 · min) was determined by assembling the sample into a single cell of the fuel cell and then submerging the sample gas. The amount of sample gas supplied from the supply port and discharged from the gas discharge port through the membrane sample was measured and obtained.

【0032】[実施例2〜実施例9および比較例1]触媒
分散有機溶媒スラリーの粘度および残存溶媒量を表1に
示す通りに変更した以外は実施例1を繰り返した。結果
を表1、図5および図6に示す。
Examples 2 to 9 and Comparative Example 1 Example 1 was repeated except that the viscosity of the catalyst-dispersed organic solvent slurry and the amount of residual solvent were changed as shown in Table 1. The results are shown in Table 1, FIG. 5 and FIG.

【0033】[0033]

【表1】 [Table 1]

【0034】表1および図5に示す通り、電極触媒層1
と電解膜Mとを一体成形した電極構造体MEAは、良好
な冷熱剥離率およびクロスリーク量(ガス透過性cc/
cm 2・分)を示し、特に触媒粒子の侵入深さ5〜20μ
mの範囲のものが特に好ましいことが分かる。一方、電
極触媒層と電解膜が一体成形されていない比較例1では
冷熱剥離率が著しく劣っているのが分かる。ちなみに、
侵入深さが浅いと、密度傾斜係数が小さくなり、冷熱剥
離率が大きくなる傾向にあることが分かる。逆に侵入深
さが深いと冷熱剥離率が小さくなる傾向にあることが分
かる。また、触媒の侵入深さを深くするには、スラリー
の粘度が小さい方がよいことが分かる。同時に、触媒の
侵入深さを深くするには、残存溶媒が多い方がよいこと
が分かる。また、図6に示す通り、本発明の電極構造体
MEAは比較例1の電極構造体と比較して測定した全て
の電流密度範囲で端子電圧が高いことが分かる。従っ
て、本発明の電極構造体MEAは、従来の電極構造体と
比較して耐久性が優れているだけでなく、より高い電力
を供給することができる。
As shown in Table 1 and FIG. 5, the electrode catalyst layer 1
The electrode structure MEA in which the electrode structure MEA and the electrolytic film M are integrally formed is excellent.
High heat release rate and cross leak rate (gas permeability cc /
cm TwoMin), especially the penetration depth of the catalyst particles 5 to 20 μm
It is understood that a range of m is particularly preferable. On the other hand,
In Comparative Example 1 in which the electrode catalyst layer and the electrolyte membrane were not integrally formed,
It can be seen that the thermal delamination rate is significantly inferior. By the way,
If the penetration depth is shallow, the density gradient coefficient decreases,
It can be seen that the separation rate tends to increase. Conversely, penetration depth
It is clear that the thermal delamination rate tends to decrease when the
Call To increase the depth of catalyst penetration, use slurry
It can be seen that the smaller the viscosity of the sample, the better. At the same time,
It is better to have more residual solvent to increase the penetration depth
I understand. Also, as shown in FIG. 6, the electrode structure of the present invention
MEA was measured in comparison with the electrode structure of Comparative Example 1.
It can be seen that the terminal voltage is high in the current density range of FIG. Follow
Thus, the electrode structure MEA of the present invention is different from the conventional electrode structure.
Higher power as well as better durability
Can be supplied.

【0035】[0035]

【発明の効果】以上説明した通り、本発明の電極構造体
は、電極触媒層が形成される際に、電極触媒層と電解膜
とが両者の境界面で組成が連続的に変化して一体形成さ
れる。したがって、電解膜と電極触媒層との界面におけ
る剥離が発生せず、また所定の温度サイクルにおいても
電極構造体の耐久性が増加することが可能となる(請求
項1)。なお、本発明の電解膜と電極触媒層を一体成形
した電極構造体を含む燃料電池のセルは、燃料電池の電
極構造体において電解膜と電極触媒層の界面における剥
離が発生せず、燃料電池全体の耐久性を向上させること
が可能となる。しかも、この燃料電池は、従来技術のも
のと比較して高い出力を得ることができる。また、電極
触媒層と電解膜との界面におけるイオン交換密度傾斜係
数が3.5×103meq/g/cm以下とすると、よ
り高い耐久性が得られる(請求項2)。さらに、前記燃
料電池用電極構造体において触媒粒子の電解膜への侵入
深さが5μm〜20μmの範囲内とするとより高い耐久
性が得られる(請求項3)。このように優れた燃料電池
用電極構造体は、電極触媒層を構成する触媒粒子を極性
溶媒に溶解した粘度5,000〜25,000mPa・
秒の触媒分散有機溶媒スラリーを調製し、このようにし
て調製したスラリーを電解膜に直接塗布し、加圧下で加
熱して触媒を電解膜へ侵入させて電極触媒層を電解膜と
一体形成することにより容易に製造することができる
(請求項4)。また、電極拡散層に直接塗布した触媒粒
子分散イオン導伝性高分子の有機溶媒を20mg/cm
2〜100mg/cm2の量で残存した状態で加圧下に加
熱して触媒粒子を電解膜へ侵入させるとさらに優れた耐
久性を有する電極構造体を容易・かつ確実に製造するこ
とが可能となる(請求項5)。
As described above, in the electrode structure of the present invention, when the electrode catalyst layer is formed, the composition of the electrode catalyst layer and the electrolytic film is continuously changed at the boundary between them, and the electrode structure is integrated. It is formed. Therefore, no separation occurs at the interface between the electrolytic membrane and the electrode catalyst layer, and the durability of the electrode structure can be increased even in a predetermined temperature cycle (claim 1). The fuel cell including the electrode structure of the present invention in which the electrolyte membrane and the electrode catalyst layer are integrally formed does not cause separation at the interface between the electrolyte membrane and the electrode catalyst layer in the electrode structure of the fuel cell. It is possible to improve the overall durability. Moreover, this fuel cell can obtain a higher output than that of the prior art. Further, when the ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolytic membrane is 3.5 × 10 3 meq / g / cm or less, higher durability can be obtained (Claim 2). Further, in the fuel cell electrode structure, when the penetration depth of the catalyst particles into the electrolyte membrane is in the range of 5 μm to 20 μm, higher durability can be obtained (Claim 3). Such an excellent electrode structure for a fuel cell has a viscosity of 5,000 to 25,000 mPa · s obtained by dissolving catalyst particles constituting an electrode catalyst layer in a polar solvent.
Secondly, a slurry of the catalyst-dispersed organic solvent is prepared, and the slurry thus prepared is directly applied to the electrolyte membrane, and heated under pressure to cause the catalyst to penetrate the electrolyte membrane to form the electrode catalyst layer integrally with the electrolyte membrane. Thereby, it can be easily manufactured (claim 4). Further, the organic solvent of the catalyst particle-dispersed ion conductive polymer directly applied to the electrode diffusion layer was 20 mg / cm.
When the catalyst particles are infiltrated into the electrolytic membrane by heating under pressure while remaining in an amount of 2 to 100 mg / cm 2 , it is possible to easily and surely produce an electrode structure having more excellent durability. (Claim 5).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される燃料電池単セルの概略を示
す概略図である。
FIG. 1 is a schematic diagram showing an outline of a single fuel cell to which the present invention is applied.

【図2】本発明の電極構造体(燃料電池用電極構造体)
の断面図である
FIG. 2 is an electrode structure of the present invention (electrode structure for a fuel cell).
FIG.

【図3】触媒粒子の構成を示す模式図である。FIG. 3 is a schematic diagram showing a configuration of a catalyst particle.

【図4】本発明の電極構造体の製造の様子を示す模式図
である。
FIG. 4 is a schematic view showing a state of manufacturing the electrode structure of the present invention.

【図5】本発明および比較例における電極触媒層の侵入
深さとガス透過性および冷熱剥離率の関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the penetration depth of an electrode catalyst layer, gas permeability, and the thermal delamination rate in the present invention and a comparative example.

【図6】本発明および比較例における電流密度と端子電
圧の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between current density and terminal voltage in the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

FC 燃料電池 MEA 電極構造体(燃料電池用電極構造体) M 電解膜 1 電極触媒層 2 拡散層 3 セパレータ 4 流路 FC fuel cell MEA electrode structure (electrode structure for fuel cell) M electrolyte membrane 1 electrode catalyst layer 2 diffusion layer 3 separator 4 flow path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金岡 長之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 齋藤 信広 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 七海 昌昭 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H026 AA06 BB01 BB04 BB08 CC03 CX05 HH00 HH03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nagayuki Kanaoka 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor Nobuhiro Saito 1-4-1 Chuo, Wako-shi, Saitama No. Inside Honda R & D Co., Ltd. (72) Inventor Masaaki Nanami 1-4-1 Chuo, Wako-shi, Saitama F-term inside Honda R & D Co., Ltd. 5H026 AA06 BB01 BB04 BB08 CC03 CX05 HH00 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極触媒層とそれらの電極触媒層
に挟まれる電解膜から構成さ、少なくとも一方の面の前
記電極触媒層の触媒が前記電解膜に侵入して前記電極触
媒層と前記電解膜とを一体形成した燃料電池用電極構造
体であって、前記触媒を前記電解膜を可溶な有機溶媒に
分散させた触媒分散有機溶媒スラリーを前記電解膜の少
なくとも一方の面に直接塗布した後、加圧下に加熱を行
って前記触媒を前記電解膜に侵入させることでこの電解
膜に前記電極触媒層を一体形成したことを特徴とする燃
料電池用電極構造体。
1. An electrocatalyst comprising a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, wherein a catalyst of the electrode catalyst layer on at least one surface penetrates the electrolytic film to form the electrode catalyst layer and the electrode catalyst layer. An electrode structure for a fuel cell integrally formed with an electrolyte membrane, wherein a catalyst-dispersed organic solvent slurry in which the catalyst is dispersed in a soluble organic solvent for the electrolyte membrane is directly applied to at least one surface of the electrolyte membrane. After that, heating is performed under pressure to cause the catalyst to penetrate into the electrolyte membrane, thereby integrally forming the electrode catalyst layer with the electrolyte membrane.
【請求項2】 前記電解膜のイオン交換容量をAとし、
前記形成した電極触媒層のイオン交換容量をBとし、前
記加圧下で加熱する前における前記電解膜の厚みをC
(μm)とし、前記加圧下で加熱した後における前記電
解膜の前記触媒が侵入していない部分の厚みをD(μ
m)として下記式(1): (A−B)/(C−D)・・・(1) で計算された前記電極触媒層と前記電解膜との界面にお
けるイオン交換密度傾斜係数が3.5×103meq/
g/cm以下であることを特徴とする、請求項1に記載
の燃料電池用電極構造体。
2. The method according to claim 1, wherein the ion exchange capacity of the electrolytic membrane is A,
The ion exchange capacity of the formed electrode catalyst layer is B, and the thickness of the electrolytic membrane before heating under the pressure is C.
(Μm), and the thickness of the portion of the electrolyte membrane where the catalyst has not penetrated after heating under the pressure is D (μm).
m), the ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolytic membrane calculated by the following formula (1): (AB) / (CD) (3) 5 × 10 3 meq /
The fuel cell electrode structure according to claim 1, wherein the fuel cell electrode structure has a g / cm or less.
【請求項3】 前記触媒粒子の電解膜への侵入深さが5
μm〜20μmの範囲内であることを特徴とする、請求
項1または請求項2に記載の燃料電池の電極構造体。
3. The penetration depth of the catalyst particles into the electrolyte membrane is 5
The electrode structure for a fuel cell according to claim 1, wherein the electrode structure is in a range of μm to 20 μm.
【請求項4】 一対の電極触媒層とそれらの電極触媒層
に挟まれる電解膜から構成され、少なくとも一方の面の
前記電極触媒層の触媒が前記電解膜に侵入して前記電極
触媒層と前記電解膜とを一体形成した燃料電池用電極構
造体の製造方法であって、前記電極触媒層を構成する前
記触媒を前記電解膜に可溶な有機溶媒に分散させ粘度
5,000〜25,000mPa・秒の触媒分散有機溶
媒スラリーを調製し、このようにして調製した触媒分散
有機溶媒スラリーを前記電解膜の少なくとも一方の面に
直接塗布し、加圧下で加熱して前記触媒を前記電解膜へ
侵入させることでこの電解膜に前記電極触媒層を一体形
成することを特徴とする燃料電池用電極構造体の製造方
法。
4. An electrocatalyst comprising a pair of electrode catalyst layers and an electrolyte membrane sandwiched between the electrode catalyst layers, wherein a catalyst of the electrode catalyst layer on at least one surface penetrates the electrolyte membrane to form the electrode catalyst layer and the electrode catalyst layer. A method for producing a fuel cell electrode structure integrally formed with an electrolyte membrane, wherein the catalyst constituting the electrode catalyst layer is dispersed in an organic solvent soluble in the electrolyte membrane, and has a viscosity of 5,000 to 25,000 mPa. Prepare a catalyst-dispersed organic solvent slurry for 2 seconds, apply the catalyst-dispersed organic solvent slurry thus prepared directly to at least one surface of the electrolytic membrane, and heat under pressure to apply the catalyst to the electrolytic membrane. A method for manufacturing an electrode structure for a fuel cell, wherein the electrode catalyst layer is integrally formed with the electrolyte membrane by infiltrating the electrode membrane.
【請求項5】 電極拡散層に直接塗布した触媒粒子分散
イオン導伝性高分子の有機溶媒を20mg/cm2〜1
00mg/cm2の量で残存した状態で加圧下に加熱し
て触媒粒子を電解膜へ侵入させることを特徴とする請求
項4に記載の燃料電池用電極構造体の製造方法。
5. An organic solvent of a catalyst particle-dispersed ion-conductive polymer directly applied to an electrode diffusion layer, in an amount of 20 mg / cm 2 to 1 mg / cm 2.
Method for manufacturing a fuel cell electrode structure according to claim 4, characterized in that 200 mg / cm and heated under pressure in the remaining state in an amount of 2 to penetrate the catalyst particles into the electrolyte membrane.
JP2000265408A 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof Expired - Fee Related JP3579886B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000265408A JP3579886B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof
CA002356008A CA2356008C (en) 2000-09-01 2001-08-28 Membrane electrode assembly for fuel cell and method for producing the same
US09/942,123 US6720106B2 (en) 2000-09-01 2001-08-30 Membrane electrode assembly for fuel and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265408A JP3579886B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002075407A true JP2002075407A (en) 2002-03-15
JP3579886B2 JP3579886B2 (en) 2004-10-20

Family

ID=18752679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265408A Expired - Fee Related JP3579886B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3579886B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261124A (en) * 2005-03-17 2006-09-28 Solvay Solexis Spa Catalyst coated membrane composite material and its manufacturing method
JP2007234469A (en) * 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
KR100767531B1 (en) 2006-10-31 2007-10-17 현대자동차주식회사 A membrane-electrode assembly which is reduced an interface resistance between a catalystic electrode layer and an electrolyte membrane
US7396607B2 (en) 2003-02-20 2008-07-08 Jsr Corporation Manufacturing process for membrane-electrode assemblies
JP2009080974A (en) * 2007-09-25 2009-04-16 Toyota Motor Corp Fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166520A (en) * 1991-12-13 1993-07-02 Honda Motor Co Ltd Manufacture of cathode electrode catalyst layer of fuel cell
JPH05325983A (en) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp Manufacture of electrochemical device using solid high molecular electrolytic film
JPH06330367A (en) * 1993-05-18 1994-11-29 Permelec Electrode Ltd Production of gas electrode
JPH07134996A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JPH07147162A (en) * 1992-06-30 1995-06-06 Toyota Central Res & Dev Lab Inc Manufacture of jointed body of electrolytic film and electrode
JPH07296818A (en) * 1994-04-22 1995-11-10 Japan Gore Tex Inc Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JPH08148176A (en) * 1994-11-24 1996-06-07 Toyota Motor Corp Reaction layer forming method for fuel cell
JPH0963622A (en) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp Manufacture of solid polymer fuel cell and solid polymer fuel cell
JP2001118581A (en) * 1999-10-20 2001-04-27 Asahi Glass Co Ltd Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell
JP2001520444A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Membrane electrode assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166520A (en) * 1991-12-13 1993-07-02 Honda Motor Co Ltd Manufacture of cathode electrode catalyst layer of fuel cell
JPH05325983A (en) * 1992-05-20 1993-12-10 Mitsubishi Electric Corp Manufacture of electrochemical device using solid high molecular electrolytic film
JPH07147162A (en) * 1992-06-30 1995-06-06 Toyota Central Res & Dev Lab Inc Manufacture of jointed body of electrolytic film and electrode
JPH06330367A (en) * 1993-05-18 1994-11-29 Permelec Electrode Ltd Production of gas electrode
JPH07134996A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JPH07296818A (en) * 1994-04-22 1995-11-10 Japan Gore Tex Inc Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JPH08148176A (en) * 1994-11-24 1996-06-07 Toyota Motor Corp Reaction layer forming method for fuel cell
JPH0963622A (en) * 1995-08-29 1997-03-07 Mitsubishi Electric Corp Manufacture of solid polymer fuel cell and solid polymer fuel cell
JP2001520444A (en) * 1997-10-10 2001-10-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Membrane electrode assembly
JP2001118581A (en) * 1999-10-20 2001-04-27 Asahi Glass Co Ltd Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396607B2 (en) 2003-02-20 2008-07-08 Jsr Corporation Manufacturing process for membrane-electrode assemblies
JP2006261124A (en) * 2005-03-17 2006-09-28 Solvay Solexis Spa Catalyst coated membrane composite material and its manufacturing method
JP2007234469A (en) * 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2007258051A (en) * 2006-03-24 2007-10-04 Toppan Printing Co Ltd Anode, its manufacturing method, polymer electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2007265734A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst electrode for fuel cell, its manufacturing method, polymer electrolyte membrane/electrode assembly for fuel cell, and fuel cell
KR100767531B1 (en) 2006-10-31 2007-10-17 현대자동차주식회사 A membrane-electrode assembly which is reduced an interface resistance between a catalystic electrode layer and an electrolyte membrane
JP2009080974A (en) * 2007-09-25 2009-04-16 Toyota Motor Corp Fuel cell

Also Published As

Publication number Publication date
JP3579886B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US8168025B2 (en) Methods of making components for electrochemical cells
JP5151063B2 (en) Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
JP6717748B2 (en) Gas diffusion base material
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2008123866A (en) Layer built fuel cell and its manufacturing method
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
WO2007124011A2 (en) Methods of making components for electrochemical cells
US6720106B2 (en) Membrane electrode assembly for fuel and process for producing the same
JP3579886B2 (en) Electrode structure for fuel cell and manufacturing method thereof
WO2003088396A1 (en) Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2005032681A (en) Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2004220843A (en) Membrane electrode assembly
JP3571680B2 (en) Electrodes for polymer electrolyte fuel cells
JP3604078B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP2008300347A (en) Method of manufacturing five-layer mea with electrical conductivity improved
JP2008146928A (en) Gas diffusing electrode for fuel cell and its manufacturing method
JP3579885B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JP4561239B2 (en) Fuel cell separator and fuel cell using the same
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP2008300133A (en) Method for manufacturing fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

R150 Certificate of patent or registration of utility model

Ref document number: 3579886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees