JP2002075333A - Polymer secondary battery and method of manufacturing electrode for battery - Google Patents
Polymer secondary battery and method of manufacturing electrode for batteryInfo
- Publication number
- JP2002075333A JP2002075333A JP2000267388A JP2000267388A JP2002075333A JP 2002075333 A JP2002075333 A JP 2002075333A JP 2000267388 A JP2000267388 A JP 2000267388A JP 2000267388 A JP2000267388 A JP 2000267388A JP 2002075333 A JP2002075333 A JP 2002075333A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- polymer
- capacity
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリマー二次電
池、及び電池用電極の製造方法に関する。The present invention relates to a polymer secondary battery and a method for producing an electrode for a battery.
【0002】[0002]
【従来の技術】従来、携帯電話に代表される電子機器の
パルス負荷吸収、あるいは電気自動車や燃料電池車のエ
ネルギー回生用途を目的とした、負荷変動吸収電源デバ
イスとして電気二重層コンデンサーが用いられている。
しかしながら、電気二重層コンデンサーは、パワー密度
やサイクル寿命が優れているが、エネルギー密度が二次
電池の1/100程度と低い。また、近年の携帯器機な
どの発達に伴い、CPUの高性能化、無線LANなど通
信機器のコードレス化により、ますます負荷電流が大き
くなっており、従来の電気二重層コンデンサーでは負荷
変動を充分に吸収することが困難になりつつある。2. Description of the Related Art Conventionally, an electric double layer capacitor has been used as a load fluctuation absorbing power supply device for the purpose of absorbing a pulse load of an electronic device typified by a cellular phone or regenerating energy of an electric vehicle or a fuel cell vehicle. I have.
However, the electric double layer capacitor has excellent power density and cycle life, but has a low energy density of about 1/100 of that of the secondary battery. In addition, with the recent development of portable devices, etc., the load current has been increasing due to the higher performance of CPUs and the cordless use of communication devices such as wireless LANs. It is becoming difficult to absorb.
【0003】そこで、電気二重層コンデンサーの10倍
の容量を持つ様々な電気化学キャパシターが提案されて
いる。なかでも、電気化学的に活性な高分子を電極材料
に用いたデバイスの研究が盛んに行われている。Therefore, various electrochemical capacitors having a capacity ten times that of the electric double layer capacitor have been proposed. Above all, research on devices using electrochemically active polymers as electrode materials has been actively conducted.
【0004】導電性高分子を用いたデバイスとして、ブ
リジストンとセイコウ電子部品によって既に商品化され
たコイン型ポリアニリン・リチウム二次電池がある。こ
の電池は起電力が3Vと高く、自己放電が小さいという
特徴を持つ。しかし、放電電流が10μAと小さいため
にメモリーのバックアップ電源としてしか用いられなか
った。この原因として電池セルのインピーダンスが高い
ことが挙げられる。As a device using a conductive polymer, there is a coin-type polyaniline lithium secondary battery already commercialized by Bridgestone and Seiko Electronic Components. This battery is characterized by high electromotive force of 3 V and low self-discharge. However, since the discharge current was as small as 10 μA, it was used only as a backup power supply for the memory. This is because the impedance of the battery cell is high.
【0005】一般に、インピーダンスを下げる方法とし
ては、導電補助材を増やす、バインダーの添加量を
減らす、集電体と電極間にバッファー層を設ける、
集電体と電極間をプレスして圧着する等がある。の方
法では、電極中に含まれる活物質量が減少するために電
池容量が低下する欠点がある。の方法では、電極の形
状を保持できなくなるために電極が欠落しサイクル特性
が低下するという問題点がある。及びの方法では、
集電体と電極間の接触抵抗の低減には有効であるが、電
極自体の抵抗を低下させることはできない。In general, methods for lowering the impedance include increasing the amount of a conductive auxiliary material, reducing the amount of a binder, providing a buffer layer between a current collector and an electrode,
There is a method in which the current collector and the electrode are pressed and pressed. The method (1) has a drawback that the battery capacity is reduced because the amount of active material contained in the electrode is reduced. In the method (1), the shape of the electrode cannot be maintained, so that the electrode is missing and the cycle characteristics are deteriorated. In the methods and
Although effective for reducing the contact resistance between the current collector and the electrode, the resistance of the electrode itself cannot be reduced.
【0006】一方、特開平8−315825号公報に
は、炭素、水素、酸素からなる芳香族縮合ポリマーの熱
処理物であってポリアセン骨格構造を有する材料を電池
用電極に用いることが記されている。また、特開平6−
163033号公報には、有機高分子化合物を還元雰囲
気中で炭化終了温度より低い温度で熱処理するか、ある
いは著しい酸化が開始しするまでは大気中で、その後は
還元雰囲気中、中性雰囲気中、または酸化ガス雰囲気中
で炭化終了温度より低い温度で熱処理することを特徴と
する二次電池用電極材料の製造方法が記されている。し
かし、これらの公報に記載の電極材料は、電極を形成す
るときに結着材(バインダー)を用いなければならない
ため、電極材料間に結着材が付着して接触抵抗が増大
し、その結果、得られた電極自体の抵抗が高いといった
問題がある。On the other hand, JP-A-8-315825 describes that a material having a polyacene skeleton structure, which is a heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen, is used for a battery electrode. . In addition, Japanese Unexamined Patent Publication No.
No. 163033 discloses that an organic polymer compound is heat-treated in a reducing atmosphere at a temperature lower than the carbonization end temperature, or in the air until significant oxidation starts, and then in a reducing atmosphere, a neutral atmosphere, Alternatively, there is described a method for producing an electrode material for a secondary battery, which comprises performing a heat treatment at a temperature lower than a carbonization end temperature in an oxidizing gas atmosphere. However, in the electrode materials described in these publications, a binder (binder) must be used at the time of forming an electrode. Therefore, the binder adheres between the electrode materials to increase the contact resistance. There is a problem that the resistance of the obtained electrode itself is high.
【0007】[0007]
【発明が解決しようとする課題】そこで本発明の目的
は、上記の問題を解決することにあり、容量が大きく、
サイクル特性に優れ、且つ電池セルのインピーダンスが
低いポリマー二次電池を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a large capacity,
An object of the present invention is to provide a polymer secondary battery having excellent cycle characteristics and low battery cell impedance.
【0008】[0008]
【課題を解決するための手段】本発明は、導電補助材
と、活物質として電気化学的に活性なポリマーとを含有
する電極材料を成膜した後、該ポリマーの炭化温度より
低い温度で熱処理を行うことを特徴とする電池用電極の
製造方法に関する。According to the present invention, an electrode material containing a conductive auxiliary material and an electrochemically active polymer as an active material is formed and then heat-treated at a temperature lower than the carbonization temperature of the polymer. And a method for producing a battery electrode.
【0009】また本発明は、前記の電極材料に結着材を
含有させないことを特徴とする上記発明の電池用電極の
製造方法に関する。The present invention also relates to a method for producing an electrode for a battery according to the above invention, wherein the electrode material does not contain a binder.
【0010】また本発明は、電解液を含浸させたセパレ
ータ又は電解質を介して電極を対向配置して構成される
ポリマー二次電池において、上記発明の方法により製造
された電極を有することを特徴とするポリマー二次電池
に関する。According to the present invention, there is provided a polymer secondary battery in which electrodes are opposed to each other via a separator or an electrolyte impregnated with an electrolytic solution, characterized by having the electrodes manufactured by the method of the present invention. Polymer secondary battery.
【0011】また本発明は、前記の電極に結着材が含有
されていないことを特徴とする上記発明のポリマー二次
電池に関する。[0011] The present invention also relates to the polymer secondary battery of the above invention, wherein the above-mentioned electrode does not contain a binder.
【0012】[0012]
【発明の実施の形態】以下、本発明の好適な実施の形態
について説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.
【0013】本実施形態のポリマー二次電池は、図1に
示すように、ポリマー負極活物質と導電補助材で構成さ
れ集電体5上に形成された負極電極4と、ポリマー正極
活物質と導電補助材で構成され集電体1上に形成された
正極電極2が、電解液を含浸させたセパレータ又は電解
質3を介して対向配置された構成を持つ。As shown in FIG. 1, the polymer secondary battery according to the present embodiment comprises a negative electrode 4 formed of a polymer negative electrode active material and a conductive auxiliary material and formed on a current collector 5, and a polymer positive electrode active material. A positive electrode 2 made of a conductive auxiliary material and formed on a current collector 1 is opposed to each other with a separator impregnated with an electrolyte or an electrolyte 3 interposed therebetween.
【0014】ポリマー負極活物質と導電補助材で構成さ
れる上記負極電極に代えて、公知の導電性金属からなる
電極を用いてもよい。In place of the above-mentioned negative electrode composed of a polymer negative electrode active material and a conductive auxiliary material, an electrode made of a known conductive metal may be used.
【0015】活物質と導電補助材で構成される電極は、
電極活物質と導電補助材を含有する電極材料を成膜した
後、大気中、不活性(中性)雰囲気中、還元雰囲気中、
或いは真空雰囲気中で熱処理されたものである。The electrode composed of the active material and the conductive auxiliary material is
After forming the electrode material containing the electrode active material and the conductive auxiliary material, the film is formed in the air, in an inert (neutral) atmosphere, in a reducing atmosphere,
Alternatively, it has been heat-treated in a vacuum atmosphere.
【0016】活物質と導電補助材で構成される電極のド
ーピングは公知の方法で行うことができる。なお、上記
の電極あるいは電極材料には、電極自体の抵抗を大きく
低下させない範囲内で、電解液に腐食されないものであ
る限り公知の結着材を含有させていてもよい。The doping of the electrode composed of the active material and the conductive auxiliary material can be performed by a known method. The above-mentioned electrode or electrode material may contain a known binder as long as it does not corrode by the electrolytic solution within a range that does not greatly reduce the resistance of the electrode itself.
【0017】電極の調製時の熱処理は、大気中、不活性
(中性)雰囲気中、還元雰囲気中、或いは真空雰囲気中
で行うことができる。不活性(中性)雰囲気としては、
アルゴン、窒素、ヘリウム等の不活性ガス雰囲気が挙げ
られる。還元雰囲気としては、水素ガス、アンモニアガ
ス、アンモニア−水素混合ガス等の還元性ガス雰囲気が
挙げられる。真空雰囲気としては、10-6 Torr(1.
33322×10-4 Pa)〜10Torr(1.33322
×103 Pa)の減圧雰囲気が好ましく、10-5 Torr
(1.33322×10-3 Pa)〜10-2 Torr(1.3
3322 Pa)の減圧雰囲気がより好ましい。これらの
熱処理雰囲気においては、熱分解物が熱処理装置外へ排
出されるように装置内のガスを通気しながら熱処理をす
ることが好ましい。真空雰囲気についてはポンプによる
吸引操作を継続しながら熱処理することが好ましい。The heat treatment at the time of preparing the electrode can be performed in the air, in an inert (neutral) atmosphere, in a reducing atmosphere, or in a vacuum atmosphere. As an inert (neutral) atmosphere,
An inert gas atmosphere such as argon, nitrogen, and helium may be used. Examples of the reducing atmosphere include a reducing gas atmosphere such as a hydrogen gas, an ammonia gas, and an ammonia-hydrogen mixed gas. As a vacuum atmosphere, 10 −6 Torr (1.
33322 × 10 −4 Pa) to 10 Torr (1.33322)
Preferably a reduced pressure atmosphere of × 10 3 Pa), 10 -5 Torr
(1.33322 × 10 −3 Pa) to 10 −2 Torr (1.3
A reduced pressure atmosphere of 3322 Pa) is more preferable. In these heat treatment atmospheres, it is preferable to perform heat treatment while aerating the gas in the apparatus so that the thermal decomposition product is discharged out of the heat treatment apparatus. Regarding the vacuum atmosphere, it is preferable to perform the heat treatment while continuing the suction operation by the pump.
【0018】電極の調製時の熱処理温度は、用いたポリ
マー活物質に応じて適宜設定されるが、そのポリマー活
物質が融解あるいは軟化する程度以上の温度であって、
そのポリマー活物質の炭化温度より低い温度で熱処理を
行う必要がある。ここで炭化温度とは、活物質として用
いる電気化学的に活性なポリマーの分解温度以下あるい
は電極活物質としての活性が著しく低下しない温度であ
る。また、決着材を用いた場合は、非導電性である結着
材が除去できるように、用いた結着材の分解温度以上で
あることが好ましい。具体的な熱処理温度は、上記に従
い適宜設定されるが、200℃以上、あるいは400℃
以上に設定することができ、また、ポリマー活物質の炭
化温度より低い範囲内で600℃以下あるいは500℃
以下に設定することができる。The heat treatment temperature at the time of preparing the electrode is appropriately set according to the polymer active material used, and is a temperature higher than the melting or softening of the polymer active material.
It is necessary to perform heat treatment at a temperature lower than the carbonization temperature of the polymer active material. Here, the carbonization temperature is a temperature lower than the decomposition temperature of the electrochemically active polymer used as the active material or a temperature at which the activity as the electrode active material does not significantly decrease. When a binder is used, the temperature is preferably equal to or higher than the decomposition temperature of the binder used so that the non-conductive binder can be removed. The specific heat treatment temperature is appropriately set according to the above, but is 200 ° C. or more, or 400 ° C.
The above can be set, and within the range lower than the carbonization temperature of the polymer active material, 600 ° C. or less or 500 ° C.
You can set:
【0019】熱処理時間は、熱処理温度や用いたポリマ
ー活物質に応じて、所望の特性が得られ且つポリマー活
物質が炭化しない或いはその活性が著しく低下しない範
囲内で適宜設定されるが、好ましくは1時間以上であ
り、1時間以上12時間以下あるいは3時間以下の範囲
内に設定することができる。The heat treatment time is appropriately set according to the heat treatment temperature and the polymer active material used within a range in which desired characteristics are obtained and the polymer active material is not carbonized or its activity is not significantly reduced. One hour or more, and can be set within a range of one hour to 12 hours or 3 hours or less.
【0020】電極活物質に用いるポリマー材料(ポリマ
ー活物質)としては、導電性高分子等の電気化学的に活
性なポリマーを用い、例えば、ポリアニリン、ポリチオ
フェン、ポリアセチレン、ポリペリナフタレン、ポリフ
ラン、ポリフルラン、ポリチエニレン、ポリイソチアナ
フテン、ポリアミノアントラキノンとこれら誘導体、ポ
リピロール、ポリインドール等の含窒素複素環化合物の
重合体、ポリピリジンジイル、ポリキノキサリン、ポリ
ピリジン、ポリピリミジン等の含窒素芳香族化合物の重
合体、ポリパラフェニレン、ポリフェニレンビニレン等
の芳香族化合物の重合体が挙げられる。As the polymer material (polymer active material) used for the electrode active material, an electrochemically active polymer such as a conductive polymer is used. Polythienylene, polyisothianaphthene, polyaminoanthraquinone and their derivatives, polypyrrole, polymers of nitrogen-containing heterocyclic compounds such as polyindole, polypyridinediyl, polyquinoxaline, polypyridine, polymers of nitrogen-containing aromatic compounds such as polypyrimidine, Polymers of aromatic compounds such as polyparaphenylene and polyphenylenevinylene are exemplified.
【0021】ドーパント及び電解液としては、硫酸水溶
液等の酸水溶液、水酸化カリウム水溶液等のアルカリ水
溶液、有機溶媒に電解質を溶解した溶液等が挙げられ
る。Examples of the dopant and the electrolytic solution include an aqueous acid solution such as an aqueous sulfuric acid solution, an aqueous alkaline solution such as an aqueous potassium hydroxide solution, and a solution obtained by dissolving an electrolyte in an organic solvent.
【0022】電解液を含浸させたセパレータとしては、
ポリエチレンやテフロン(登録商標)等の多孔質フィル
ムなど公知のものを用いることができる。As a separator impregnated with an electrolytic solution,
Known materials such as a porous film such as polyethylene and Teflon (registered trademark) can be used.
【0023】電極間に介在させる電解質としては、固体
電解質やゲル電解質、溶融塩を用いることができる。こ
こで、固体電解質とは溶媒分子を全く含まない電解質を
指し、ゲル電解質とは固体電解質を電解液(溶媒)で可
塑化した溶媒を含む電解質のことをいう。また、電解液
とは電子伝導性がなく、イオン伝導性を有する電解質を
溶媒(水、有機溶媒)に溶かした溶液である。溶融塩と
は、常温で固体の塩や酸化物を加熱溶解して液体状体に
したイオン伝導物質である。As the electrolyte interposed between the electrodes, a solid electrolyte, a gel electrolyte, and a molten salt can be used. Here, the solid electrolyte refers to an electrolyte containing no solvent molecules, and the gel electrolyte refers to an electrolyte containing a solvent obtained by plasticizing the solid electrolyte with an electrolyte (solvent). In addition, the electrolytic solution is a solution in which an electrolyte having no electron conductivity and having ion conductivity is dissolved in a solvent (water, organic solvent). A molten salt is an ion-conductive substance that is formed by heating and dissolving a solid salt or oxide at room temperature to form a liquid.
【0024】ポリマー活物質と導電補助材と結着材で構
成される従来の電極には以下のような問題点がある。A conventional electrode composed of a polymer active material, a conductive auxiliary material and a binder has the following problems.
【0025】電極成形時に結着材を用いているため
に、ポリマー活物質と導電補助材間の接触抵抗が高く、
電極自体の導電率が低い。Since the binder is used at the time of forming the electrode, the contact resistance between the polymer active material and the conductive auxiliary material is high,
The conductivity of the electrode itself is low.
【0026】電極中に含まれる、不純物や活物質ポリ
マーの低分子量体の混入により容量が低下する。The capacity is reduced by the inclusion of impurities or low molecular weight polymers of active material polymers contained in the electrodes.
【0027】電極の空孔率が低いので電解液の含浸量
が少なく、容量が低下する。Since the porosity of the electrode is low, the impregnation amount of the electrolyte is small and the capacity is reduced.
【0028】結着材を多く添加すると電極自体の導電
率が低下するので、電極形状が保持できる最低限の量し
か結着材を使用していないために、電極の強度が弱く、
充放電時の活物質の膨張収縮によって電極が欠落しやす
くなり、その結果、サイクル性が低下する。When a large amount of the binder is added, the conductivity of the electrode itself is reduced. Therefore, since the minimum amount of the binder that can maintain the shape of the electrode is used, the strength of the electrode is weak.
The electrodes are easily dropped due to the expansion and contraction of the active material during charge and discharge, and as a result, the cyclability is reduced.
【0029】熱処理した電極を用いる上記本発明によれ
ば、上記の問題点〜を解決することができ、優れた
特性を持つポリマー二次電池を提供することができる。
これは、下記の理由によるものと考えられる。According to the present invention using the heat-treated electrode, the above problems 1 to 5 can be solved, and a polymer secondary battery having excellent characteristics can be provided.
This is considered to be due to the following reasons.
【0030】問題点は、ポリマー活物質と導電補助材
間の接触は熱処理をしないときは図3に示すように点接
触であるが、熱処理をすることでポリマー活物質が一部
融解あるいは軟化し、図2に示すように導電補助材と面
接触し、接触面積の増大により電極自体の導電率が上が
る。また、熱処理することで、結着材が炭化又は除去す
ることができるため、ポリマー活物質と導電補助材間の
接触抵抗が低減できる。The problem is that the contact between the polymer active material and the conductive auxiliary material is point contact as shown in FIG. 3 when no heat treatment is performed, but the heat treatment causes the polymer active material to partially melt or soften. As shown in FIG. 2, the conductive material is brought into surface contact with the conductive auxiliary material, and the conductivity of the electrode itself increases due to an increase in the contact area. In addition, since the binder can be carbonized or removed by the heat treatment, the contact resistance between the polymer active material and the conductive auxiliary material can be reduced.
【0031】問題点は、熱処理することで、不純物や
ポリマー活物質の低分子量体が炭化又は除去できるた
め、これら不純物による電荷のトラップ、又は充電状態
のポリマー活物質の失活を抑制できるので容量が向上す
る。The problem is that the heat treatment can carbonize or remove impurities and low molecular weight substances of the polymer active material, so that the trapping of charges by these impurities or the deactivation of the charged polymer active material can be suppressed. Is improved.
【0032】問題点は、不純物が熱処理により取り除
かれたり、ポリマー活物質が熱処理により収縮したこと
により形成されたスペース(空隙)により、電極の空孔
率が上がり、電解液の含浸量が増える。電解液の含浸量
が増加することで、ポリマー活物質と電解液の接触面積
(反応面積)も増大し、容量が増大する。The problem is that the porosity of the electrode is increased by the space (voids) formed by the impurities being removed by the heat treatment or by the shrinkage of the polymer active material by the heat treatment, and the impregnation amount of the electrolyte is increased. As the impregnation amount of the electrolytic solution increases, the contact area (reaction area) between the polymer active material and the electrolytic solution also increases, and the capacity increases.
【0033】問題点は、熱処理によってポリマー活物
質と導電補助材の接触が面接触になり、接触面積が増大
したことで、電極の強度が増大し、充放電時のポリマー
活物質の膨張収縮による電極の欠落が抑制できサイクル
性が向上する。The problem is that the heat treatment causes the contact between the polymer active material and the conductive auxiliary material to be in planar contact, and the contact area is increased, so that the strength of the electrode is increased, and the expansion and contraction of the polymer active material during charging and discharging is caused. The lack of the electrode can be suppressed, and the cyclability can be improved.
【0034】[0034]
【実施例】以下、実施例を挙げて本発明をより詳細に説
明する。The present invention will be described below in more detail with reference to examples.
【0035】(実施例1)正極電極は次のようにして調
製した。活物質として次式で示されるポリインドールを
用い、Example 1 A positive electrode was prepared as follows. Using polyindole represented by the following formula as an active material,
【0036】[0036]
【化1】 Embedded image
【0037】導電性補助材として気相成長カーボンを用
い、これらの混合物(活物質:導電性補助材=4:1
(質量比))に、バインダー樹脂(結着材)としてポリ
フッ化ビニリデン(平均分子量:1100)を8質量%
となるように加えた。このスラリー状混合物をホモジナ
イザーで十分に攪拌し、ドクターブレードを用いて集電
体シート上に成膜した。成膜後、100〜150℃で1
時間真空乾燥した。乾燥後、ロールプレス機でプレスす
ることで電極膜厚を100μmにした。その後、所定の
形状に切断し、正極電極とした。Gas-phase grown carbon is used as a conductive auxiliary material, and a mixture thereof (active material: conductive auxiliary material = 4: 1)
(Mass ratio)), 8% by mass of polyvinylidene fluoride (average molecular weight: 1100) as a binder resin (binder).
Was added. This slurry mixture was sufficiently stirred with a homogenizer, and a film was formed on a current collector sheet using a doctor blade. After film formation, 1 at 100-150 ° C
Vacuum dried for hours. After drying, the thickness of the electrode was reduced to 100 μm by pressing with a roll press. Then, it was cut into a predetermined shape to obtain a positive electrode.
【0038】負極電極4は次のようにして調製した。活
物質として次式で示されるポリフェニルキノキサリンを
用い、The negative electrode 4 was prepared as follows. Using polyphenylquinoxaline represented by the following formula as an active material,
【0039】[0039]
【化2】 Embedded image
【0040】導電性補助材として気相成長カーボンを用
い、これらの混合物(活物質:導電性補助材=3:1
(質量比))に、バインダー樹脂としてポリフッ化ビニ
リデン(平均分子量:1100)を8質量%となるよう
に加えた。このスラリー状混合物をホモジナイザーで十
分に攪拌し、ドクターブレードを用いてルミラーシート
上に成膜した。成膜後、100〜150℃で1時間真空
乾燥した。乾燥後、所定の形状に切断した電極をマッフ
ル炉に入れ、500℃まで1時間で昇温し、3時間保持
し、負極電極とした。Vapor-grown carbon is used as a conductive auxiliary material, and a mixture thereof (active material: conductive auxiliary material = 3: 1)
(Mass ratio)), polyvinylidene fluoride (average molecular weight: 1100) was added as a binder resin so as to be 8% by mass. This slurry-like mixture was sufficiently stirred with a homogenizer, and a film was formed on a Lumirror sheet using a doctor blade. After the film formation, it was vacuum-dried at 100 to 150 ° C. for 1 hour. After drying, the electrode cut into a predetermined shape was placed in a muffle furnace, heated to 500 ° C. for 1 hour, and held for 3 hours to obtain a negative electrode.
【0041】硫酸水溶液を用いて電気化学的あるいは化
学的にドーピングを行った正極電極および負極電極を、
電解液を含浸させたセパレータを介して対向配置し、図
1に示す構成を持つ二次電池を得た。The positive electrode and the negative electrode, which are electrochemically or chemically doped using a sulfuric acid aqueous solution,
A secondary battery having the configuration shown in FIG. 1 was obtained by opposing the battery with the separator impregnated with the electrolytic solution interposed therebetween.
【0042】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は264Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは10mΩと低く、得られた容量は放電レートに
依存せず負極活物質質量当たり185Wh/kgであ
り、容量出現率は70%と高い値が得られた。サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は50000回であった。また、容量保存特性
は、25℃で30日後の容量が80%であり、リチウム
イオン電池やニッケル水素電池並みの特性を示した。図
8に、放電曲線(充放電電流:1mA/cm2)を示
し、図10にサイクル特性を示す。また、表1に評価結
果を示す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 264 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 10 mΩ, the obtained capacity was 185 Wh / kg per mass of the negative electrode active material without depending on the discharge rate, and the capacity appearance rate was as high as 70%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 50,000 times. As for the capacity storage characteristics, the capacity after 30 days at 25 ° C. was 80%, which was similar to that of a lithium ion battery or a nickel hydride battery. FIG. 8 shows a discharge curve (charge / discharge current: 1 mA / cm 2 ), and FIG. 10 shows cycle characteristics. Table 1 shows the evaluation results.
【0043】(実施例2)本実施例の二次電池は、実施
例1において負極電極の調製時に結着材を加えず熱処理
して得た負電極を有するものである。電極に結着材を含
有させないことで、電極中の活物質量を多くし、電池容
量を増大させる効果と、熱処理後に残留する結着材によ
る電極導電率の低下を防止する効果を得ることができ
る。(Example 2) The secondary battery of this example has a negative electrode obtained by performing heat treatment without adding a binder when preparing the negative electrode in Example 1. By not including a binder in the electrode, the effect of increasing the amount of active material in the electrode and increasing the battery capacity and the effect of preventing a decrease in electrode conductivity due to the binder remaining after the heat treatment can be obtained. it can.
【0044】以下、本実施例の電池の製造方法について
説明する。Hereinafter, a method for manufacturing the battery of this embodiment will be described.
【0045】正電極は実施例1と同様にして作製した。
負極電極は、活物質として実施例1と同様なポリフェニ
ルキノキサリンを用い、導電補助材として気相成長カー
ボンを用い、これらを質量比(活物質:導電補助材)=
3:1で混合した。この混合物を高速ブレンダーで十分
に攪拌し、熱プレス機を用いて所定の形状に電極を形成
した。得られた電極を、マッフル炉に入れ、500℃ま
で1時間で昇温し、3時間保持し、冷却後、これを負極
電極とした。The positive electrode was manufactured in the same manner as in Example 1.
For the negative electrode, the same polyphenylquinoxaline as in Example 1 was used as the active material, and vapor-grown carbon was used as the conductive auxiliary material, and the mass ratio (active material: conductive auxiliary material) =
Mixed 3: 1. The mixture was sufficiently stirred with a high-speed blender, and an electrode was formed in a predetermined shape using a hot press. The obtained electrode was placed in a muffle furnace, heated to 500 ° C. for 1 hour, held for 3 hours, cooled, and used as a negative electrode.
【0046】作製した電極のSEM写真を図5に示し
た。熱処理を行わなかった電極(図4)に比べポリマー
活物質が融解し、導電補助材との接触が点接触から面接
触になり接触面積が増大していることが分かる。また、
電極表面が多孔質になっていることも分かる。FIG. 5 shows an SEM photograph of the produced electrode. It can be seen that the polymer active material melts compared to the electrode without heat treatment (FIG. 4), and the contact with the conductive auxiliary material changes from point contact to surface contact and the contact area increases. Also,
It can also be seen that the electrode surface is porous.
【0047】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は264Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは6mΩと低く、得られた容量は放電レートに依
存せず負極活物質質量当たり198Wh/kgであり、
容量出現率は75%と高い値が得られた。サイクル特性
においても、初期容量の80%になるまでのサイクル回
数は70000回であった。また、容量保存特性は、2
5℃で30日後の容量が80%であり、リチウムイオン
電池やニッケル水素電池並みの特性を示した。図8に、
放電曲線(充放電電流:1mA/cm2)を示し、図1
0にサイクル特性を示す。また、表1に評価結果を示
す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 264 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 6 mΩ, and the obtained capacity was 198 Wh / kg per mass of the negative electrode active material without depending on the discharge rate.
The capacity appearance ratio was as high as 75%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 70,000. In addition, the capacity storage characteristics are 2
After 30 days at 5 ° C., the capacity was 80%, showing characteristics similar to those of a lithium ion battery or a nickel hydrogen battery. In FIG.
FIG. 1 shows a discharge curve (charge / discharge current: 1 mA / cm 2 ).
0 indicates the cycle characteristics. Table 1 shows the evaluation results.
【0048】(実施例3)本実施例の二次電池は、実施
例2において負極電極の調製時の熱処理を不活性(中
性)雰囲気下で行って得た負電極を有するものである。
不活性(中性)雰囲気下で熱処理を行うことで、ポリマ
ー活物質の酸化劣化が抑制され、容量を向上させること
ができる。Embodiment 3 The secondary battery of this embodiment has a negative electrode obtained by performing the heat treatment for preparing the negative electrode in Example 2 in an inert (neutral) atmosphere.
By performing the heat treatment in an inert (neutral) atmosphere, the oxidative deterioration of the polymer active material is suppressed, and the capacity can be improved.
【0049】本実施例の二次電池の製造は、負極電極の
調製において、マッフル炉でアルゴンガス雰囲気中で熱
処理した以外は、実施例2と同様にして行った。The manufacture of the secondary battery of this example was performed in the same manner as in Example 2 except that the heat treatment was performed in an argon gas atmosphere in a muffle furnace in the preparation of the negative electrode.
【0050】作製した電極のSEM写真を図6に示し
た。大気中で熱処理を行った電極(実施例2、図5)に
比べ、ポリマー活物質の融解と電極表面の多孔質化が進
んでいることが分かる。FIG. 6 shows an SEM photograph of the produced electrode. It can be seen that the melting of the polymer active material and the porosity of the electrode surface are progressing as compared with the electrode that was heat-treated in the atmosphere (Example 2, FIG. 5).
【0051】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は264Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは4mΩと低く、得られた容量は放電レートに依
存せず負極活物質質量当たり210Wh/kgであり、
容量出現率は80%と高い値が得られた。サイクル特性
においても、初期容量の80%になるまでのサイクル回
数は100000回であった。また、容量保存特性は、
25℃で30日後の容量が80%であり、リチウムイオ
ン電池やニッケル水素電池並みの特性を示した。図8
に、放電曲線(充放電電流:1mA/cm2)を示し、
図10にサイクル特性を示す。また、表1に評価結果を
示す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 264 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 4 mΩ, and the obtained capacity was 210 Wh / kg per mass of the negative electrode active material without depending on the discharge rate.
The capacity appearance ratio was as high as 80%. In the cycle characteristics as well, the number of cycles required to reach 80% of the initial capacity was 100,000. In addition, the capacity storage characteristics
After 30 days at 25 ° C., the capacity was 80%, showing characteristics similar to those of lithium ion batteries and nickel hydrogen batteries. FIG.
Shows a discharge curve (charge / discharge current: 1 mA / cm 2 ),
FIG. 10 shows the cycle characteristics. Table 1 shows the evaluation results.
【0052】(実施例4)本実施例の二次電池は、実施
例2において負極電極の調製時の熱処理を真空雰囲気下
で行って得た負電極を有するものである。真空雰囲気下
で熱処理を行うことで、電極中の不純物を効率よく除去
でき、ポリマー活物質の失活が抑制され、容量を向上さ
せることができる。Example 4 The secondary battery of this example has a negative electrode obtained by performing the heat treatment in the preparation of the negative electrode in Example 2 in a vacuum atmosphere. By performing the heat treatment in a vacuum atmosphere, impurities in the electrode can be efficiently removed, the deactivation of the polymer active material can be suppressed, and the capacity can be improved.
【0053】本実施例の電池の製造は、負極電極の調製
において、真空炉で400℃まで1時間で昇温し、1時
間保持して熱処理を行った以外は、実施例2と同様にし
て行った。The production of the battery of this example was performed in the same manner as in Example 2 except that in the preparation of the negative electrode, the temperature was raised to 400 ° C. for 1 hour in a vacuum furnace, and the heat treatment was performed for 1 hour. went.
【0054】作製した電極のSEM写真を図7に示す。
大気中やアルゴン雰囲気で熱処理した電極(実施例2
(図5)、実施例3(図6))に比べ、ポリマー活物質
と導電補助材の接着性が更に向上していることが分か
る。FIG. 7 shows an SEM photograph of the produced electrode.
Electrode heat-treated in air or argon atmosphere (Example 2
It can be seen that the adhesion between the polymer active material and the conductive auxiliary material is further improved as compared with (FIG. 5) and Example 3 (FIG. 6).
【0055】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は264Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは1mΩと低く、得られた容量は放電レートに依
存せず負極活物質質量当たり237Wh/kgであり、
容量出現率は90%と高い値が得られた。サイクル特性
においても、初期容量の80%になるまでのサイクル回
数は500000回であった。また、容量保存特性は、
25℃で30日後の容量が80%であり、リチウムイオ
ン電池やニッケル水素電池並みの特性を示した。図8
に、放電曲線(充放電電流:1mA/cm2)を示し、
図10にサイクル特性を示す。また、表1に評価結果を
示す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 264 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 1 mΩ, and the obtained capacity was 237 Wh / kg per mass of the negative electrode active material regardless of the discharge rate.
The capacity appearance ratio was as high as 90%. Regarding the cycle characteristics, the number of cycles required to reach 80% of the initial capacity was 500,000. In addition, the capacity storage characteristics
After 30 days at 25 ° C., the capacity was 80%, showing characteristics similar to those of lithium ion batteries and nickel hydrogen batteries. FIG.
Shows a discharge curve (charge / discharge current: 1 mA / cm 2 ),
FIG. 10 shows the cycle characteristics. Table 1 shows the evaluation results.
【0056】(実施例5)本実施例の二次電池は、正極
電極として、上式で示されるポリフェニルキノキサリン
を活物質とし熱処理(大気中)を行ったもの(実施例2
の負極と同様な電極)を用い、負極電極としてリチウム
箔を用い、電解液に有機溶媒を用いた構造である。電解
液に有機溶媒を用いることで起電力を上げ、エネルギー
密度を上げることができる。(Example 5) The secondary battery of this example was obtained by performing a heat treatment (in air) using polyphenylquinoxaline represented by the above formula as an active material as a positive electrode (Example 2).
The electrode has the same structure as that of the negative electrode, a lithium foil is used as the negative electrode, and an organic solvent is used for the electrolytic solution. By using an organic solvent for the electrolyte, the electromotive force can be increased and the energy density can be increased.
【0057】以下、本実施例の製造方法について説明す
る。Hereinafter, the manufacturing method of this embodiment will be described.
【0058】正極は実施例2の負極電極と同様にして作
製した。負極はリチウム箔を用いた。The positive electrode was manufactured in the same manner as the negative electrode of Example 2. The negative electrode used a lithium foil.
【0059】電解液としてLiPF6のPC/EC(プ
ロピレンカーボネート/エチレンカーボネート)溶液を
用い、正極電極および負極電極を、電解液を含浸させた
セパレータを介して対向配置し、二次電池を得た。A PC / EC (propylene carbonate / ethylene carbonate) solution of LiPF 6 was used as an electrolyte, and a positive electrode and a negative electrode were opposed to each other via a separator impregnated with the electrolyte to obtain a secondary battery. .
【0060】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を3.0Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は660Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは20mΩと低く、得られた容量は放電レートに
依存せず負極活物質質量当たり462Wh/kgであ
り、容量出現率は70%と高い値が得られた。サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は30000回であった。また、容量保存特性
は、25℃で30日後の容量が80%であり、リチウム
イオン電池やニッケル水素電池並みの特性を示した。図
9に、放電曲線(充放電電流:1mA/cm2)を示
し、図11にサイクル特性を示す。また、表1に評価結
果を示す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 3.0 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 660 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 20 mΩ, the obtained capacity was 462 Wh / kg per mass of the negative electrode active material without depending on the discharge rate, and the capacity appearance rate was as high as 70%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 30,000 times. As for the capacity storage characteristics, the capacity after 30 days at 25 ° C. was 80%, which was similar to that of a lithium ion battery or a nickel hydride battery. FIG. 9 shows a discharge curve (charge / discharge current: 1 mA / cm 2 ), and FIG. 11 shows cycle characteristics. Table 1 shows the evaluation results.
【0061】(実施例6)本実施例の二次電池は、正極
電極として、上式で示されるポリフェニルキノキサリン
を活物質とし熱処理(アルゴン雰囲気)を行ったもの
(実施例3の負極と同様な電極)を用い、負極電極とし
てリチウム箔を用い、電解液に有機溶媒を用いた構造で
ある。電解液に有機溶媒を用いることで起電力を上げ、
エネルギー密度を上げることができる。(Example 6) The secondary battery of this example was obtained by performing a heat treatment (argon atmosphere) using polyphenylquinoxaline represented by the above formula as an active material as a positive electrode (similar to the negative electrode of Example 3). Electrode), a lithium foil as a negative electrode, and an organic solvent as an electrolytic solution. Increase the electromotive force by using an organic solvent for the electrolyte,
Energy density can be increased.
【0062】以下、本実施例の製造方法について説明す
る。Hereinafter, the manufacturing method of this embodiment will be described.
【0063】正極は実施例3の負極と同様にして作製し
た。負極はリチウム箔を用いた。The positive electrode was manufactured in the same manner as the negative electrode of Example 3. The negative electrode used a lithium foil.
【0064】電解液としてLiPF6のPC/EC溶液
を用いて、正極電極および負極電極を、電解液を含浸さ
せたセパレータを介して対向配置し、二次電池を得た。Using a PC / EC solution of LiPF 6 as an electrolytic solution, a positive electrode and a negative electrode were opposed to each other via a separator impregnated with the electrolytic solution to obtain a secondary battery.
【0065】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を3.0Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は660Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは15mΩと低く、得られた容量は放電レートに
依存せず負極活物質質量当たり495Wh/kgであ
り、容量出現率は75%と高い値が得られた。サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は40000回であった。また、容量保存特性
は、25℃で30日後の容量が80%であり、リチウム
イオン電池やニッケル水素電池並みの特性を示した。図
9に、放電曲線(充放電電流:1mA/cm2)を示
し、図11にサイクル特性を示す。また、表1に評価結
果を示す。For the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 3.0 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 660 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 15 mΩ, the obtained capacity was 495 Wh / kg per mass of the negative electrode active material without depending on the discharge rate, and the capacity appearance rate was as high as 75%. Regarding the cycle characteristics, the number of cycles required to reach 80% of the initial capacity was 40,000. As for the capacity storage characteristics, the capacity after 30 days at 25 ° C. was 80%, which was similar to that of a lithium ion battery or a nickel hydride battery. FIG. 9 shows a discharge curve (charge / discharge current: 1 mA / cm 2 ), and FIG. 11 shows cycle characteristics. Table 1 shows the evaluation results.
【0066】(実施例7)本実施例の二次電池は、正極
電極として、上式で示されるポリフェニルキノキサリン
を活物質とし熱処理(真空雰囲気)を行ったもの(実施
例4の負極と同様な電極)を用い、負極電極としてリチ
ウム箔を用い、電解液に有機溶媒を用いた構造である。
電解液に有機溶媒を用いることで起電力を上げ、エネル
ギー密度を上げることができる。(Example 7) The secondary battery of this example was obtained by performing a heat treatment (vacuum atmosphere) using polyphenylquinoxaline represented by the above formula as an active material as a positive electrode (similar to the negative electrode of Example 4). Electrode), a lithium foil as a negative electrode, and an organic solvent as an electrolytic solution.
By using an organic solvent for the electrolyte, the electromotive force can be increased and the energy density can be increased.
【0067】以下、本実施例の製造方法について説明す
る。Hereinafter, the manufacturing method of this embodiment will be described.
【0068】正極は実施例4の負極と同様にして作製し
た。負極はリチウム箔を用いた。The positive electrode was manufactured in the same manner as the negative electrode of Example 4. The negative electrode used a lithium foil.
【0069】LiPF6のPC/EC溶液を電解液に用
いて、正極電極および負極電極を、電解液を含浸させた
セパレータを介して対向配置し、二次電池を得た。Using a PC / EC solution of LiPF 6 as an electrolytic solution, a positive electrode and a negative electrode were opposed to each other via a separator impregnated with the electrolytic solution to obtain a secondary battery.
【0070】完成した二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を3.0Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は660Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは10mΩと低く、得られた容量は放電レートに
依存せず負極活物質質量当たり561Wh/kgであ
り、容量出現率は85%と高い値が得られた。サイクル
特性においても、初期容量の80%になるまでのサイク
ル回数は70000回であった。また、容量保存特性
は、25℃で30日後の容量が80%であり、リチウム
イオン電池やニッケル水素電池並みの特性を示した。図
9に、放電曲線(充放電電流:1mA/cm2)を示
し、図11にサイクル特性を示す。また、表1に評価結
果を示す。Regarding the completed secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 3.0 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 660 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was as low as 10 mΩ, the obtained capacity was 561 Wh / kg per mass of the negative electrode active material without depending on the discharge rate, and the capacity appearance rate was as high as 85%. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 70,000. As for the capacity storage characteristics, the capacity after 30 days at 25 ° C. was 80%, which was similar to that of a lithium ion battery or a nickel hydride battery. FIG. 9 shows a discharge curve (charge / discharge current: 1 mA / cm 2 ), and FIG. 11 shows cycle characteristics. Table 1 shows the evaluation results.
【0071】(比較例1)電極の調製時に熱処理を行わ
なかった以外は実施例1と同様にして二次電池を作製し
た。(Comparative Example 1) A secondary battery was fabricated in the same manner as in Example 1 except that no heat treatment was performed during the preparation of the electrode.
【0072】得られた二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は264Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは30mΩであった。1C放電で得られた容量は
負極活物質質量当たり170Wh/kgであり、容量出
現率は64%であった。また、放電レートが高くなるに
従って容量は減少した。サイクル特性においても、初期
容量の80%になるまでのサイクル回数は9000回で
あった。容量保存特性は、25℃で30日後の容量が8
0%であり、リチウムイオン電池やニッケル水素電池並
みの特性を示した。図8に、放電曲線(充放電電流:1
mA/cm2)を示し、図10にサイクル特性を示す。
また、表1に評価結果を示す。For the obtained secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 264 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was 30 mΩ. The capacity obtained by the 1C discharge was 170 Wh / kg per mass of the negative electrode active material, and the capacity appearance rate was 64%. Also, the capacity decreased as the discharge rate increased. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 9000 times. The capacity preservation characteristic is that the capacity after 30 days at 25 ° C is 8
It was 0%, showing characteristics similar to those of lithium ion batteries and nickel hydrogen batteries. FIG. 8 shows a discharge curve (charge / discharge current: 1).
mA / cm 2 ), and FIG. 10 shows the cycle characteristics.
Table 1 shows the evaluation results.
【0073】(比較例2)電極の調製時に熱処理を行わ
なかった以外は実施例5と同様にして二次電池を作製し
た。Comparative Example 2 A secondary battery was fabricated in the same manner as in Example 5, except that no heat treatment was performed during the preparation of the electrode.
【0074】得られた二次電池について、1〜10mA
/cm2の定電流充電(1〜10C)を1.2Vまで行
い、1〜10mA/cm2の定電流放電(1〜10C)
を行った。このときの理論容量は660Wh/kg(負
極活物質質量当たり)とした。その結果、セルインピー
ダンスは70mΩであった。1C放電で得られた容量は
負極活物質質量当たり400Wh/kgであり、容量出
現率は60%であった。また、放電レートが高くなるに
従って容量は減少した。サイクル特性においても、初期
容量の80%になるまでのサイクル回数は7000回で
あった。容量保存特性は、25℃で30日後の容量が8
0%であり、リチウムイオン電池やニッケル水素電池並
みの特性を示した。図9に、放電曲線(充放電電流:1
mA/cm2)を示し、図11にサイクル特性を示す。
また、表1に評価結果を示す。For the obtained secondary battery, 1 to 10 mA
/ Cm 2 constant current charging (1 to 10 C) up to 1.2 V and 1 to 10 mA / cm 2 constant current discharging (1 to 10 C)
Was done. The theoretical capacity at this time was 660 Wh / kg (per mass of the negative electrode active material). As a result, the cell impedance was 70 mΩ. The capacity obtained by the 1C discharge was 400 Wh / kg per mass of the negative electrode active material, and the capacity appearance rate was 60%. Also, the capacity decreased as the discharge rate increased. Regarding the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 7000 times. The capacity storage characteristics are as follows.
It was 0%, showing characteristics similar to those of lithium ion batteries and nickel hydrogen batteries. FIG. 9 shows a discharge curve (charge / discharge current: 1).
mA / cm 2 ), and FIG. 11 shows the cycle characteristics.
Table 1 shows the evaluation results.
【0075】[0075]
【表1】 [Table 1]
【0076】[0076]
【発明の効果】本発明によれば、電極の導電率を大幅に
向上することができ、電池セルのインピーダンスを低減
することができる。その理由は、電極調製時の熱処理に
よりポリマー活物質と導電補助材間の接触面積が増大す
るためである。また、ポリマー活物質と導電補助材間の
接触面積が増大することによって電極の強度が向上する
ため、非導電体である結着材を少ない量で或いは全く用
いないで電極形成が可能であり、結着剤を用いる場合で
あっても熱処理によって非導電体である結着材を除去で
きるためである。According to the present invention, the conductivity of the electrode can be greatly improved, and the impedance of the battery cell can be reduced. The reason is that the contact area between the polymer active material and the conductive auxiliary material increases due to the heat treatment during electrode preparation. In addition, since the strength of the electrode is improved by increasing the contact area between the polymer active material and the conductive auxiliary material, the electrode can be formed with a small amount or without using a non-conductive binder, This is because even when a binder is used, the binder, which is a non-conductive material, can be removed by heat treatment.
【0077】また本発明によれば、電池容量を増大させ
ることができる。その理由は、電極調製時の熱処理によ
って電極への電解液の含浸量が増加し、反応面積が増大
するためである。また、熱処理によって不純物が除去さ
れ、充電状態のポリマー活物質の失活を抑制できるため
である。According to the present invention, the battery capacity can be increased. The reason for this is that the heat treatment during electrode preparation increases the amount of impregnation of the electrode with the electrolyte and increases the reaction area. In addition, the impurities are removed by the heat treatment, and the deactivation of the charged polymer active material can be suppressed.
【0078】さらに本発明によれば、電池のサイクル性
を向上させることができる。その理由は、ポリマー活物
質と導電補助材の接触面積が増大したため、電極の強度
が向上し、充放電時の活物質の膨張・収縮による電極の
欠落が抑制できるためである。Further, according to the present invention, the cyclability of the battery can be improved. The reason for this is that the contact area between the polymer active material and the conductive auxiliary material is increased, so that the strength of the electrode is improved, and the loss of the electrode due to expansion and contraction of the active material during charging and discharging can be suppressed.
【図1】本発明の実施例の電池の概略断面図である。FIG. 1 is a schematic sectional view of a battery according to an embodiment of the present invention.
【図2】本発明の実施例の電極構造を説明するための模
式図である。FIG. 2 is a schematic diagram for explaining an electrode structure according to an example of the present invention.
【図3】比較例の電極構造を説明するための模式図であ
る。FIG. 3 is a schematic diagram for explaining an electrode structure of a comparative example.
【図4】比較例の電極のSEM写真(50000倍)で
ある。FIG. 4 is an SEM photograph (magnification: 50,000) of an electrode of a comparative example.
【図5】本発明の実施例の電極のSEM写真(5000
0倍)である。FIG. 5 is an SEM photograph (5000) of an electrode according to an example of the present invention.
0 times).
【図6】本発明の実施例の電極のSEM写真(5000
0倍)である。FIG. 6 is an SEM photograph (5000) of an electrode according to an example of the present invention.
0 times).
【図7】本発明の実施例の電極のSEM写真(5000
0倍)である。FIG. 7 is an SEM photograph (5000) of an electrode according to an example of the present invention.
0 times).
【図8】本発明の実施例と比較例の電池の放電曲線(充
放電電流:1mA/cm2)を示すグラフである。FIG. 8 is a graph showing discharge curves (charge / discharge current: 1 mA / cm 2 ) of the batteries of the examples of the present invention and the comparative example.
【図9】本発明の実施例と比較例の電池の放電曲線(充
放電電流:1mA/cm2)を示すグラフである。FIG. 9 is a graph showing the discharge curves (charge / discharge current: 1 mA / cm 2 ) of the batteries of the example of the present invention and the comparative example.
【図10】本発明の実施例と比較例の電池のサイクル特
性を示すグラフである。FIG. 10 is a graph showing the cycle characteristics of the batteries of the example of the present invention and the comparative example.
【図11】本発明の実施例と比較例の電池のサイクル特
性を示すグラフである。FIG. 11 is a graph showing the cycle characteristics of the batteries of the example of the present invention and the comparative example.
1、5 集電体 2 正極電極 3 電解液を含浸させたセパレータ又は電解質 4 負極電極 11 集電体 12 電解液 13 電極活物質 14 導電補助材 DESCRIPTION OF SYMBOLS 1, 5 Current collector 2 Positive electrode 3 Separator or electrolyte impregnated with electrolyte 4 Negative electrode 11 Current collector 12 Electrolyte 13 Electrode active material 14 Conductive auxiliary material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 紙透 浩幸 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 黒崎 雅人 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 中川 裕二 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 三谷 勝哉 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 吉田 真也 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 信田 知希 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK16 AL16 AM03 AM07 AM16 CJ02 5H050 AA07 AA08 AA12 BA17 BA18 CA20 CA22 CA25 CB20 CB22 CB25 DA10 DA13 DA19 FA02 GA02 HA14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Shima Toru 5-7-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Masato Kurosaki 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Yuji Nakagawa 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Katsuya Mitani 5-7-1 Shiba, Minato-ku, Tokyo NEC (72) Inventor Shinya Yoshida 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Tomoki Shinda 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation F-term in the formula company (reference) 5H029 AJ03 AJ05 AK16 AL16 AM03 AM07 AM16 CJ02 5H050 AA07 AA08 AA12 BA17 BA18 CA20 CA22 CA25 CB20 CB22 CB25 DA10 DA13 DA19 FA02 GA02 HA14
Claims (8)
に活性なポリマーとを含有する電極材料を成膜した後、
該ポリマーの炭化温度より低い温度で熱処理を行うこと
を特徴とする電池用電極の製造方法。After forming an electrode material containing a conductive auxiliary material and an electrochemically active polymer as an active material,
A method for producing a battery electrode, wherein the heat treatment is performed at a temperature lower than the carbonization temperature of the polymer.
項1記載の電池用電極の製造方法。2. The method according to claim 1, wherein the heat treatment is performed in an inert atmosphere.
1記載の電池用電極の製造方法。3. The method according to claim 1, wherein the heat treatment is performed in a vacuum atmosphere.
1記載の電池用電極の製造方法。4. The method according to claim 1, wherein the heat treatment is performed in a reducing atmosphere.
ことを特徴とする請求項1〜4のいずれか1項に記載の
電池用電極の製造方法。5. The method for producing a battery electrode according to claim 1, wherein a binder is not contained in the electrode material.
質を介して電極を対向配置して構成されるポリマー二次
電池に用いられる電極の請求項1〜5のいずれか1項に
記載の製造方法。6. The production method according to claim 1, wherein the electrode is used for a polymer secondary battery in which electrodes are arranged to face each other with a separator impregnated with an electrolyte or an electrolyte interposed therebetween. .
質を介して電極を対向配置して構成されるポリマー二次
電池において、請求項1記載の方法により製造された電
極を有することを特徴とするポリマー二次電池。7. A polymer secondary battery in which electrodes are arranged to face each other with a separator impregnated with an electrolyte or an electrolyte interposed therebetween, comprising an electrode manufactured by the method according to claim 1. Polymer secondary battery.
ことを特徴とする請求項7記載のポリマー二次電池。8. The polymer secondary battery according to claim 7, wherein the electrode contains no binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000267388A JP3581304B2 (en) | 2000-09-04 | 2000-09-04 | Polymer secondary battery and method for manufacturing battery electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000267388A JP3581304B2 (en) | 2000-09-04 | 2000-09-04 | Polymer secondary battery and method for manufacturing battery electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002075333A true JP2002075333A (en) | 2002-03-15 |
JP3581304B2 JP3581304B2 (en) | 2004-10-27 |
Family
ID=18754321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000267388A Expired - Lifetime JP3581304B2 (en) | 2000-09-04 | 2000-09-04 | Polymer secondary battery and method for manufacturing battery electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3581304B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090832A1 (en) * | 2007-01-25 | 2008-07-31 | Nec Corporation | Polyradical compound-conductive material composite body, method for producing the same, and battery using the same |
WO2011068217A1 (en) * | 2009-12-04 | 2011-06-09 | 学校法人 早稲田大学 | Air cell |
WO2014084182A1 (en) * | 2012-11-30 | 2014-06-05 | 日東電工株式会社 | Electricity storage device, electrode used therein, and porous sheet |
-
2000
- 2000-09-04 JP JP2000267388A patent/JP3581304B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090832A1 (en) * | 2007-01-25 | 2008-07-31 | Nec Corporation | Polyradical compound-conductive material composite body, method for producing the same, and battery using the same |
US20100009256A1 (en) * | 2007-01-25 | 2010-01-14 | Nec Corporation | Polyradical compound-conductive material composite, method for producing the same, and battery using the same |
CN101595580B (en) * | 2007-01-25 | 2011-11-30 | 日本电气株式会社 | Polyradical compound-conductive material composite body, method for producing the same, and battery using the same |
US8475956B2 (en) * | 2007-01-25 | 2013-07-02 | Nec Corporation | Polyradical compound-conductive material composite, method for producing the same, and battery using the same |
JP5326575B2 (en) * | 2007-01-25 | 2013-10-30 | 日本電気株式会社 | Method for producing polyradical compound-conductive substance complex |
WO2011068217A1 (en) * | 2009-12-04 | 2011-06-09 | 学校法人 早稲田大学 | Air cell |
WO2014084182A1 (en) * | 2012-11-30 | 2014-06-05 | 日東電工株式会社 | Electricity storage device, electrode used therein, and porous sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3581304B2 (en) | 2004-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2948205B1 (en) | Method for producing negative electrode for secondary battery | |
JP3359164B2 (en) | Rechargeable battery | |
JPH10334948A (en) | Electrode, lithium secondary battery, and electric double layer capacitor using the electrode | |
JP2007042601A (en) | Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery | |
JP4632020B2 (en) | Non-aqueous electrolyte secondary battery | |
US20020089807A1 (en) | Polymer electrochemical capacitors | |
JP2003100284A (en) | Lithium secondary battery | |
JP2005209498A6 (en) | Non-aqueous electrolyte secondary battery | |
JP2023533051A (en) | Method for manufacturing lithium metal electrode, lithium metal electrode manufactured by the method, and lithium secondary battery including the same | |
JP3243239B2 (en) | Method for producing positive electrode for non-aqueous secondary battery | |
KR20170124700A (en) | Lithium-sulfur ultracapacitor and manufacturing method of the same | |
JP2007042602A (en) | Polymer battery | |
JP3581304B2 (en) | Polymer secondary battery and method for manufacturing battery electrode | |
JP3540629B2 (en) | Method for producing electrode for electrochemical device and electrochemical device | |
KR102057128B1 (en) | Expansion graphite anode material for lithium capacitors impregnated with lithium expansion graphite | |
JP2012089823A (en) | Lithium ion capacitor and manufacturing method for the same | |
JP2012253072A (en) | Lithium ion capacitor | |
JP3475530B2 (en) | Non-aqueous electrolyte secondary battery | |
EP4138169A1 (en) | Lithium secondary battery | |
JP4448963B2 (en) | Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same | |
JP3167767B2 (en) | Negative electrode for lithium secondary battery and method for producing the same | |
KR102495330B1 (en) | Manufacturing method of electrode active material for supercapacitor co-doped with nitrogen and fluorine and high power supercapacitor using the same and method of manufacturing thereof | |
JP2002117850A (en) | Negative electrode active material for nonaqueous electrolytic solution secondary battery | |
JP2014072129A (en) | Electrode for power storage device and power storage device using the same | |
JP4235285B2 (en) | Organic electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040528 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3581304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100730 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |