JP2002057325A - Solid state imaging device - Google Patents
Solid state imaging deviceInfo
- Publication number
- JP2002057325A JP2002057325A JP2000243748A JP2000243748A JP2002057325A JP 2002057325 A JP2002057325 A JP 2002057325A JP 2000243748 A JP2000243748 A JP 2000243748A JP 2000243748 A JP2000243748 A JP 2000243748A JP 2002057325 A JP2002057325 A JP 2002057325A
- Authority
- JP
- Japan
- Prior art keywords
- layer electrode
- electrode
- charge transfer
- imaging device
- transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 18
- 239000007787 solid Substances 0.000 title claims abstract 3
- 239000012535 impurity Substances 0.000 claims abstract description 22
- 238000002513 implantation Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 61
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、画素部で受光し蓄
積した電荷を、転送電極から印加される電圧によって電
荷転送手段で順次転送する固体撮像装置に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device in which electric charges received and accumulated in a pixel portion are sequentially transferred by electric charge transfer means by a voltage applied from a transfer electrode.
【0002】[0002]
【従来の技術】CCD(固体撮像装置)における電荷転
送部は、例えばn型のシリコン基板にp型のウェルを形
成し、そこにn型の不純物を注入することで電荷転送の
チャネル領域を構成している。2. Description of the Related Art A charge transfer section in a CCD (solid-state image pickup device) forms, for example, a p-type well in an n-type silicon substrate and injects n-type impurities into the well to form a charge transfer channel region. are doing.
【0003】また、この電荷転送部の上方には、複数の
転送電極が順に形成されている。例えば、3つの転送電
極から構成される場合、第1層電極、第2層電極、第3
層電極が電荷転送部の上方に一部オーバーラップする状
態で順に形成され、これらに所定のタイミングで駆動電
圧を印加することにより、画素部で蓄積した電荷を電荷
転送部で順次転送できるようになる。A plurality of transfer electrodes are sequentially formed above the charge transfer section. For example, in the case of three transfer electrodes, a first layer electrode, a second layer electrode,
The layer electrodes are sequentially formed in a state of partially overlapping above the charge transfer section, and by applying a drive voltage to these at a predetermined timing, the charges accumulated in the pixel section can be sequentially transferred by the charge transfer section. Become.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな固体撮像装置においては、電荷転送部を構成するチ
ャネル領域が一様な濃度の不純物注入によって形成され
ているため、実際の駆動条件下において電極の材質等に
よる伝搬遅延や他のクロックからのカップリングの影響
によって各電極に対応するポテンシャルが異なるという
現象が生じる。このポテンシャルの差は、電荷転送の取
り扱い電荷量の律束を発生させたり、転送効率の悪化を
招く原因となっている。However, in such a solid-state image pickup device, the channel region forming the charge transfer section is formed by implanting impurities of a uniform concentration, so that the electrodes are formed under actual driving conditions. A phenomenon occurs in which the potentials corresponding to the respective electrodes are different due to the propagation delay due to the material of the above or the effect of coupling from other clocks. This difference in potential causes a limitation in the amount of charge handled in charge transfer and causes a decrease in transfer efficiency.
【0005】[0005]
【課題を解決するための手段】本発明は、このような課
題を解決するために成されたものである。すなわち、本
発明は、画素部で蓄積した電荷を転送する電荷転送手段
と、電荷転送手段に対応して設けられる複数の転送電極
とを備える固体撮像装置であり、複数の転送電極の各印
加電圧によって電荷転送手段に形成されるポテンシャル
に応じ、電荷転送手段の各転送電極に対応する部分の不
純物注入濃度が各々設定されているものである。SUMMARY OF THE INVENTION The present invention has been made to solve such problems. That is, the present invention is a solid-state imaging device including a charge transfer unit that transfers charges accumulated in a pixel unit, and a plurality of transfer electrodes provided corresponding to the charge transfer unit. Accordingly, the impurity implantation concentration of the portion corresponding to each transfer electrode of the charge transfer means is set in accordance with the potential formed in the charge transfer means.
【0006】このような本発明では、電荷転送手段の各
転送電極に対応する部分の不純物注入濃度が各々設定さ
れているため、各転送電極の印加電圧によって形成され
る電荷転送手段の各ポテンシャルを揃えることができる
ようになる。According to the present invention, since the impurity implantation concentration of each portion corresponding to each transfer electrode of the charge transfer means is set, each potential of the charge transfer means formed by the voltage applied to each transfer electrode is reduced. Be able to align.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本実施形態に係る固体撮像
装置を説明する図で、(a)は模式平面図、(b)は
(a)のA−A’線模式断面図、(b)は(a)のB−
B’線模式断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are diagrams illustrating a solid-state imaging device according to the present embodiment, in which FIG. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along line AA ′ of FIG. 1A, and FIG. B-
FIG. 3 is a schematic sectional view taken along line B ′.
【0008】なお、本実施形態では、主として3層電極
3相駆動の全画素読み出し方式の固体撮像装置を例とし
て説明する。In this embodiment, a solid-state imaging device of an all-pixel readout system driven mainly by three-layer electrodes and three phases will be described as an example.
【0009】この固体撮像装置は、マトリックス状に配
置される複数の画素Sと、垂直方向に沿った画素S間に
形成される電荷転送部V−CCDと、電荷転送部V−C
CD上に順次形成される第1層電極1poly、第2層
電極2Poly、第3層電極3Polyとを備えてい
る。This solid-state imaging device has a plurality of pixels S arranged in a matrix, a charge transfer section V-CCD formed between the pixels S along a vertical direction, and a charge transfer section VC.
A first layer electrode 1poly, a second layer electrode 2Poly, and a third layer electrode 3Poly are sequentially formed on the CD.
【0010】ここで、第1層電極1poly、第2層電
極2Poly、第3層電極3Polyは、例えば多結晶
シリコンによって形成され、各電極間は層間絶縁膜を介
して積層されている。Here, the first layer electrode 1Poly, the second layer electrode 2Poly, and the third layer electrode 3Poly are formed of, for example, polycrystalline silicon, and are stacked between the respective electrodes via an interlayer insulating film.
【0011】固体撮像装置の画素Sは、入射光量に応じ
た電荷を蓄積し、所定のタイミングでその電荷を電荷転
送部V−CCDへ送り出す。電荷転送部V−CCDは、
第1層電極1polyに印加される駆動電圧Vφ1、第
2層電極2Polyに印加される駆動電圧Vφ3および
第3層電極3Polyに印加される駆動電圧Vφ2によ
って画素Sから読み出した電荷を順次転送していく。The pixel S of the solid-state image pickup device accumulates charges corresponding to the amount of incident light and sends out the charges to the charge transfer section V-CCD at a predetermined timing. The charge transfer unit V-CCD
The charge read out from the pixel S is sequentially transferred by the driving voltage Vφ1 applied to the first layer electrode 1poly, the driving voltage Vφ3 applied to the second layer electrode 2Poly, and the driving voltage Vφ2 applied to the third layer electrode 3Poly. Go.
【0012】所定のタイミングで発生する駆動電圧Vφ
1、Vφ2、Vφ3で電荷の転送を実現するため、第1
層電極1polyは水平方向に沿った画素S間に配線さ
れ、第2層電極2Polyは第1層電極1poly上に
重ねられるとともに、電荷転送部V−CCDの図中下方
向に半画素分突出して配線され、第3層電極3Poly
は電荷転送部V−CCD上に突出する第2層電極2Po
lyと一部オーバーラップするとともに第1層電極と第
2層電極2Polyとが重なる部分にも配線されてい
る。A drive voltage Vφ generated at a predetermined timing
1, to realize charge transfer at Vφ2 and Vφ3,
The layer electrode 1poly is wired between the pixels S along the horizontal direction, the second layer electrode 2Poly is superimposed on the first layer electrode 1poly, and projects half a pixel downward in the figure of the charge transfer unit V-CCD. Wired, the third layer electrode 3Poly
Is a second layer electrode 2Po protruding above the charge transfer section V-CCD.
ly is also overlapped with the first layer electrode and the second layer electrode 2Poly.
【0013】このような電極構造をとった場合、第1層
電極1polyと第3層電極3Polyとの間に挟まれ
る第2層電極2Polyの負荷が重くなり、第2層電極
2Polyで形成される駆動電圧Vφ3の実効振幅によ
って電荷転送部V−CCDの取り扱い電荷量が律束され
る。When such an electrode structure is adopted, the load on the second layer electrode 2Poly sandwiched between the first layer electrode 1Poly and the third layer electrode 3Poly becomes heavy, and is formed by the second layer electrode 2Poly. The amount of charge handled by the charge transfer unit V-CCD is determined by the effective amplitude of the drive voltage Vφ3.
【0014】図2は、3層電極の各駆動電圧を示すタイ
ミングチャートである。このように、図中○印で示す部
分において、第2層電極2Polyで形成される駆動電
圧Vφ3の実効振幅が完全にHighレベルになりきら
ない部分が発生している。これは、第2層電極2Pol
yの伝搬遅延や他の駆動電圧(クロック)からのカップ
リングによる影響のためである。FIG. 2 is a timing chart showing the driving voltages of the three-layer electrodes. As described above, in the portion indicated by a circle in the drawing, there is a portion where the effective amplitude of the drive voltage Vφ3 formed by the second layer electrode 2Poly does not completely reach the High level. This is the second layer electrode 2Pol
This is due to the influence of the propagation delay of y and the coupling from other driving voltages (clocks).
【0015】図3は、電荷転送部のポテンシャル模式図
である。これは、電荷転送部を構成するチャネル領域が
一様な不純物注入濃度で形成されている場合(従来例)
のポテンシャルを模式的に示している。FIG. 3 is a schematic diagram of the potential of the charge transfer section. This is when the channel region forming the charge transfer section is formed with a uniform impurity implantation concentration (conventional example).
Is schematically shown.
【0016】先に説明したように、第2層電極2Pol
yで形成される駆動電圧Vφ3の実効振幅が完全にHi
ghレベルになりきらない部分があることから、第1層
電極1polyや第3層電極3Polyの駆動電圧Vφ
1、Vφ2で形成されるポテンシャルに比べ、第2層電
極2Polyの駆動電圧Vφ3で形成されるポテンシャ
ルが浅い状態となる(図中p参照)。As described above, the second layer electrode 2Pol
The effective amplitude of the drive voltage Vφ3 formed by y is completely Hi.
gh level, the drive voltage Vφ of the first layer electrode 1poly and the third layer electrode 3Poly
1. The potential formed by the drive voltage Vφ3 of the second layer electrode 2Poly is lower than the potential formed by Vφ2 (see p in the figure).
【0017】このように一部分だけポテンシャルが浅く
なると、電荷転送部で取り扱うことができる全体の電荷
量は、その一部分の浅いポテンシャルに律束され、転送
効率の悪化を招くことになる。As described above, when the potential is only partially reduced, the total amount of charges that can be handled by the charge transfer section is limited by the shallow potential of the portion, resulting in deterioration of transfer efficiency.
【0018】そこで、本実施形態では、図4に示すよう
に、電極構造(配列/膜厚)を変えずに電荷転送部V−
CCDにおけるチャネル領域の不純物濃度プロファイル
を各電極に対応して設定することで、実効振幅を確保し
ている点に特徴がある。Therefore, in the present embodiment, as shown in FIG. 4, the charge transfer portion V- is maintained without changing the electrode structure (arrangement / film thickness).
It is characterized in that the effective amplitude is secured by setting the impurity concentration profile of the channel region in the CCD corresponding to each electrode.
【0019】具体的には、ポテンシャルが浅くなる電極
と対応するチャネル領域の不純物注入濃度を他の部分よ
り高くして、同じ電圧を加えた時のポテンシャルが深く
なるようにする。More specifically, the impurity implantation concentration in the channel region corresponding to the electrode whose potential becomes shallower is made higher than that in other portions so that the potential when the same voltage is applied becomes deeper.
【0020】図4に示す例では、第2層電極2Poly
に対応する電荷転送部V−CCDの部分C2の不純物注
入濃度をN+N’として、他の部分C1、C3の不純物
注入濃度Nに比べて高くする。In the example shown in FIG. 4, the second layer electrode 2Poly
The impurity implantation concentration of the portion C2 of the charge transfer portion V-CCD corresponding to the above is set to be N + N ', and is higher than the impurity implantation concentration N of the other portions C1 and C3.
【0021】これにより、第2層電極2Polyに対応
する電荷転送部V−CCDの部分C2が、第2層電極2
Polyの伝搬遅延等によって十分な振幅が取れないと
しても、元々のポテンシャルが深いことでHighバイ
アス印加時に他の部分C1、C3のポテンシャルと同程
度の深さにすることが可能となる。As a result, the portion C2 of the charge transfer section V-CCD corresponding to the second layer electrode 2Poly is connected to the second layer electrode 2Poly.
Even if a sufficient amplitude cannot be obtained due to the propagation delay of Poly or the like, the original potential is deep, so that the potential of the other portions C1 and C3 can be made as deep as the potential of the other portions C1 and C3 when the High bias is applied.
【0022】一方、Lowバイアスでは、ピンニングし
ているのでポテンシャルは他の部分C1、C3とほぼ同
じと考えられるため、第2層電極2Poly下でも実効
的な振幅を十分確保でき、一部分の浅いポテンシャルに
よる律束をなくして、電荷転送部V−CCDでの取り扱
い電荷量を増加させることができる。On the other hand, since the potential is considered to be almost the same as the other portions C1 and C3 in the low bias because of the pinning, the effective amplitude can be sufficiently secured even under the second layer electrode 2Poly, and the potential of the portion is shallow. , The amount of charge handled by the charge transfer unit V-CCD can be increased.
【0023】また、各電極に対応した不純物注入濃度の
設定により、全ての電極に対応するポテンシャルを揃え
ることもでき、電荷の転送効率を高めることもできる。By setting the impurity implantation concentration corresponding to each electrode, the potentials corresponding to all the electrodes can be made uniform, and the charge transfer efficiency can be increased.
【0024】ここで、擬似的に本実施形態の効果を確認
するために、第2層電極2Polyで形成する電圧値だ
けをオフセットさせた場合の取り扱い電荷量の測定値を
図5に示す。図5において、横軸は第2層電極2Pol
yの電圧のオフセット量、縦軸は取り扱い電荷量を示し
ている。Here, in order to simulate the effect of the present embodiment, FIG. 5 shows measured values of the amount of electric charges handled when only the voltage value formed by the second layer electrode 2Poly is offset. In FIG. 5, the horizontal axis is the second layer electrode 2Pol.
The voltage offset amount of y, and the vertical axis indicates the amount of charge handled.
【0025】この結果から、第2層電極2Polyに他
の電極より高い電圧を加える(振幅は同じ)と、取り扱
い電荷量を増加できることが分かる。言い換えると、第
2層電極2PolyのHighレベル時のポテンシャル
を他の電極の部分より深くすることで取り扱い電荷量を
増加できることが確認できる。From this result, it can be seen that when a higher voltage is applied to the second layer electrode 2Poly than the other electrodes (with the same amplitude), the amount of handled charges can be increased. In other words, it can be confirmed that the handling charge amount can be increased by making the potential of the second layer electrode 2Poly at the High level deeper than the other electrode portions.
【0026】また、図6は3層電極4相駆動構造の固体
撮像装置を説明する図で、(a)は概略平面図、(b)
は(a)のC−C’線概略断面図、(c)は(a)のD
−D’線概略断面図である。FIGS. 6A and 6B are views for explaining a solid-state imaging device having a three-layer electrode, four-phase driving structure. FIG. 6A is a schematic plan view, and FIG.
FIG. 3A is a schematic cross-sectional view taken along line CC ′ of FIG.
It is an outline sectional view taken on line -D '.
【0027】4相駆動構造では、第1層電極1poly
が水平方向に沿った画素S間に配線され、第2層電極2
Polyが第1層電極1poly上を2つに分けて重ね
られるとともに、各々が電荷転送部V−CCDの図中上
下方向に突出して配線される。また、第3層電極3Po
lyは、2つの第2層電極2Poly上に重ねられると
ともに第1層電極1polyにも重ねられる。In the four-phase driving structure, the first layer electrode 1poly
Is wired between the pixels S along the horizontal direction, and the second layer electrode 2
Poly is overlapped on the first layer electrode 1poly in two parts, and each is wired so as to protrude vertically in the drawing of the charge transfer unit V-CCD. In addition, the third layer electrode 3Po
ly is overlapped on the two second layer electrodes 2Poly and also on the first layer electrode 1Poly.
【0028】このような電極構造をとった場合、第1層
電極1polyと第3層電極3Polyとの間に挟まれ
る第2層電極2Polyの負荷が重くなり、第2層電極
2Polyで形成される駆動電圧Vφ1、Vφ3の実効
振幅が十分確保できないことになる。With such an electrode structure, the load on the second layer electrode 2Poly sandwiched between the first layer electrode 1Poly and the third layer electrode 3Poly becomes heavy, and the second layer electrode 2Poly is formed. This means that the effective amplitudes of the drive voltages Vφ1 and Vφ3 cannot be sufficiently secured.
【0029】そこで、図6(b)に示すように、電荷転
送部V−CCDを構成するチャネル領域の2つの第2層
電極2Polyと対応する部分C2の不純物注入濃度を
N+N’として、他の部分C1、C3の不純物注入濃度
Nに比べて高くする。Therefore, as shown in FIG. 6B, the impurity implantation concentration of the portion C2 corresponding to the two second layer electrodes 2Poly of the channel region constituting the charge transfer portion V-CCD is set to N + N ', and It is set higher than the impurity implantation concentration N of the portions C1 and C3.
【0030】これにより、第2層電極2Polyに対応
する電荷転送部V−CCDの部分C2が、第2層電極2
Polyの伝搬遅延等によって十分な振幅が取れないと
しても、元々のポテンシャルが深いことでHighバイ
アス印加時に他の部分C1、C3のポテンシャルと同程
度の深さにすることが可能となる。As a result, the portion C2 of the charge transfer section V-CCD corresponding to the second layer electrode 2Poly is connected to the second layer electrode 2Poly.
Even if a sufficient amplitude cannot be obtained due to the propagation delay of Poly or the like, the original potential is deep, so that the potential of the other portions C1 and C3 can be made as deep as the potential of the other portions C1 and C3 when the High bias is applied.
【0031】なお、上記実施形態では、主として第2層
電極2Polyの伝搬遅延が大きいものとして説明した
が、電極構造によっては第3層電極3Polyの伝搬遅
延が大きくなる場合も考えられる。この場合には、第3
層電極3Polyに対応するチャネル領域の部分C3の
不純物注入濃度を高くすればよい。In the above embodiment, the propagation delay of the second layer electrode 2Poly is mainly described. However, the propagation delay of the third layer electrode 3Poly may be large depending on the electrode structure. In this case, the third
What is necessary is just to increase the impurity implantation concentration of the portion C3 of the channel region corresponding to the layer electrode 3Poly.
【0032】つまり、各駆動電極に対応して形成される
チャネル領域のポテンシャルを揃えるよう不純物注入濃
度を設定すれば、いずれか一つのポテンシャルに律束さ
れることなく効率良く電荷転送を行うことができるよう
になる。That is, if the impurity implantation concentration is set so as to equalize the potential of the channel region formed corresponding to each drive electrode, efficient charge transfer can be performed without being restricted by any one potential. become able to.
【0033】また、本実施形態では、主として全画素読
み出し方式の固体撮像装置について説明したが、他の読
み出し方式の固体撮像装置であっても同様である。In this embodiment, the solid-state imaging device of the all-pixels reading system has been mainly described. However, the same applies to solid-state imaging devices of other reading systems.
【0034】[0034]
【発明の効果】以上説明したように、本発明によれば次
のような効果がある。すなわち、各転送電極に対応して
形成される電荷転送手段の各ポテンシャルを揃えること
ができ、飽和信号量の増加、電荷転送効率の向上を図る
ことが可能となる。これにより、単位画素サイズの小型
化、感度向上、読み出し電圧の低下、ブルーミングに対
するマージンの向上、シャッタ電圧の低下を図ることが
可能となる。As described above, the present invention has the following effects. That is, the potentials of the charge transfer means formed corresponding to the transfer electrodes can be made uniform, and the amount of the saturation signal can be increased and the charge transfer efficiency can be improved. As a result, it is possible to reduce the unit pixel size, improve the sensitivity, reduce the read voltage, improve the margin for blooming, and reduce the shutter voltage.
【図1】本実施形態に係る固体撮像装置を説明する図で
ある。FIG. 1 is a diagram illustrating a solid-state imaging device according to an embodiment.
【図2】3層電極の各駆動電圧を示すタイミングチャー
トである。FIG. 2 is a timing chart showing respective drive voltages of a three-layer electrode.
【図3】電荷転送部のポテンシャル模式図である。FIG. 3 is a schematic diagram of a potential of a charge transfer unit.
【図4】本実施形態の固体撮像装置における不純物注入
濃度分布を説明する模式図である。FIG. 4 is a schematic diagram illustrating an impurity implantation concentration distribution in the solid-state imaging device according to the embodiment.
【図5】2Polyで形成する電圧値だけをオフセット
させた場合の取り扱い電荷量の測定値を示す図である。FIG. 5 is a diagram showing measured values of the amount of handled charges when only a voltage value formed by 2Poly is offset.
【図6】3層電極4相駆動構造の固体撮像装置を説明す
る図である。FIG. 6 is a diagram illustrating a solid-state imaging device having a three-layer electrode, four-phase driving structure.
1poly…第1層電極、2Poly…第2層電極、3
Poly…第3層電極、S…画素1poly ... first layer electrode, 2Poly ... second layer electrode, 3
Poly: third layer electrode, S: pixel
Claims (4)
送手段と、 前記電荷転送手段に対応して設けられる複数の転送電極
とを備える固体撮像装置において、 前記複数の転送電極の各印加電圧によって前記電荷転送
手段に形成されるポテンシャルに応じ、前記電荷転送手
段の各転送電極に対応する部分の不純物注入濃度が各々
設定されていることを特徴とする固体撮像装置。1. A solid-state imaging device comprising: a charge transfer unit configured to transfer charges accumulated in a pixel unit; and a plurality of transfer electrodes provided corresponding to the charge transfer unit. Solid-state imaging device, wherein the impurity implantation concentration of a portion corresponding to each transfer electrode of the charge transfer means is set according to the potential formed in the charge transfer means.
れる前記ポテンシャルが、他の転送電極の前記印加電圧
によって形成される前記ポテンシャルより小さい場合、
前記電荷転送手段の、前記一の転送電極に対応するの部
分の不純物注入濃度を、前記他の転送電極に対応する部
分の不純物注入濃度より高く設定することを特徴とする
請求項1記載の固体撮像装置。2. When the potential formed by the applied voltage of one transfer electrode is smaller than the potential formed by the applied voltage of another transfer electrode,
2. The solid according to claim 1, wherein an impurity implantation concentration of a portion corresponding to said one transfer electrode of said charge transfer means is set higher than an impurity implantation concentration of a portion corresponding to said another transfer electrode. Imaging device.
て前記電荷転送手段に形成される各ポテンシャルが揃う
よう、前記電荷転送手段の各転送電極に対応する部分の
不純物注入濃度を設定することを特徴とする請求項1記
載の固体撮像装置。3. The method according to claim 1, further comprising: setting an impurity implantation concentration of a portion corresponding to each transfer electrode of said charge transfer means so that potentials formed in said charge transfer means are equalized by respective applied voltages of said plurality of transfer electrodes. The solid-state imaging device according to claim 1, wherein:
2層電極、第3層電極の順に構成される場合、前記電荷
転送手段の前記第2層電極に対応する部分の不純物注入
濃度を、他の電極に対応する部分の不純物注入濃度より
高く設定することを特徴とする請求項1記載の固体撮像
装置。4. When the plurality of transfer electrodes are formed in the order of a first-layer electrode, a second-layer electrode, and a third-layer electrode, an impurity is implanted into a portion of the charge transfer unit corresponding to the second-layer electrode. 2. The solid-state imaging device according to claim 1, wherein the concentration is set higher than an impurity implantation concentration of a portion corresponding to another electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000243748A JP2002057325A (en) | 2000-08-11 | 2000-08-11 | Solid state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000243748A JP2002057325A (en) | 2000-08-11 | 2000-08-11 | Solid state imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002057325A true JP2002057325A (en) | 2002-02-22 |
Family
ID=18734552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000243748A Pending JP2002057325A (en) | 2000-08-11 | 2000-08-11 | Solid state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002057325A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035950A (en) * | 2005-07-27 | 2007-02-08 | Sony Corp | Solid-state image pickup device, manufacturing method thereof and camera |
US8446508B2 (en) | 2005-07-27 | 2013-05-21 | Sony Corporation | Solid state imaging device with optimized locations of internal electrical components |
-
2000
- 2000-08-11 JP JP2000243748A patent/JP2002057325A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035950A (en) * | 2005-07-27 | 2007-02-08 | Sony Corp | Solid-state image pickup device, manufacturing method thereof and camera |
US8446508B2 (en) | 2005-07-27 | 2013-05-21 | Sony Corporation | Solid state imaging device with optimized locations of internal electrical components |
US8643757B2 (en) | 2005-07-27 | 2014-02-04 | Sony Corporation | Method of producing solid state imaging device with optimized locations of internal electrical components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09246514A (en) | Amplification type solid-state image sensing device | |
JP4777798B2 (en) | Solid-state imaging device and driving method thereof | |
JP4171137B2 (en) | Solid-state imaging device and control method thereof | |
US4987466A (en) | Solid state image sensor | |
JPS6262553A (en) | Solid state image pick-up device | |
JP3317248B2 (en) | Solid-state imaging device | |
JP4514912B2 (en) | Solid-state imaging device and driving method thereof | |
US7034876B2 (en) | Solid-state image pickup device and method for driving the same | |
US7052929B2 (en) | Solid state image pickup device capable of suppressing smear | |
US5397730A (en) | Method of making a high efficiency horizontal transfer section of a solid state imager | |
KR20040042841A (en) | Solid state imaging device and method of manufacturing the same | |
JP2002057325A (en) | Solid state imaging device | |
JP3718103B2 (en) | Solid-state imaging device, driving method thereof, and camera using the same | |
KR101293586B1 (en) | Solid-state image pickup device and driving method of solid-state image pickup device | |
US20100182477A1 (en) | Solid-state imaging device | |
JP2812003B2 (en) | Solid-state imaging device and driving method thereof | |
JPH0425714B2 (en) | ||
JP3301176B2 (en) | Charge transfer device | |
JP3047965B2 (en) | Solid-state imaging device | |
JPH11195779A (en) | Color linear image sensor and method for driving the same | |
JP4797302B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JP2003258234A (en) | Solid-state image sensor and its driving method | |
Yamada et al. | A 1/2-in 1.3 M-pixel progressive-scan IT-CCD for digital still camera applications | |
JPH02159063A (en) | Solid-state image-sensing device | |
JP3185939B2 (en) | Solid-state imaging device |