[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002047501A - Titanium base powder - Google Patents

Titanium base powder

Info

Publication number
JP2002047501A
JP2002047501A JP2001155454A JP2001155454A JP2002047501A JP 2002047501 A JP2002047501 A JP 2002047501A JP 2001155454 A JP2001155454 A JP 2001155454A JP 2001155454 A JP2001155454 A JP 2001155454A JP 2002047501 A JP2002047501 A JP 2002047501A
Authority
JP
Japan
Prior art keywords
powder
titanium
less
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001155454A
Other languages
Japanese (ja)
Inventor
Hidekazu Fukazawa
英一 深澤
Satoshi Sugawara
智 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2001155454A priority Critical patent/JP2002047501A/en
Publication of JP2002047501A publication Critical patent/JP2002047501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide titanium hydride powder and titanium powder having the reduced content of oxygen and content of chlorine, combining excellent fluidity with compaction performance and suitable as the raw material for producing a sintered titanium or titanium alloy product by a powder metallurgy method. SOLUTION: In this titanium hydride powder produced by being subjected to a stage in which titanium or a titanium alloy is embrittled with hydrogen and having the maximum grain size of substantially <=150 μm, the ratio of the powder with a grain size of <=10 μm is <=8 wt.%, the content of oxygen is <=0.15 wt.%, and the content of chlorine is <=0.06 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素化チタン粉末
(水素化チタン合金粉末を含む、以下同じ)およびチタ
ン粉末(チタン合金粉末を含む、以下同じ)からなるチ
タン系粉末に係り、特に、粉末冶金法により焼結チタン
製品を製造するための原料として好適に用いられるチタ
ン系粉末に関する。
The present invention relates to a titanium-based powder comprising titanium hydride powder (including titanium hydride alloy powder, hereinafter the same) and titanium powder (including titanium alloy powder, hereinafter the same). The present invention relates to a titanium-based powder suitably used as a raw material for producing a sintered titanium product by a powder metallurgy method.

【0002】[0002]

【従来の技術】最近、粉末冶金法により製造された焼結
チタンまたは焼結チタン合金製品が、耐熱部材を初めと
する各種の分野に使用されてるようになっており、その
用途が拡大されている。その原料としては高品位で成形
性に優れる水素化脱水素法によるチタン粉末および水素
化チタン粉末の利用が図られている。この焼結チタンま
たは焼結チタン合金部材には優れた機械的特性が要求さ
れるが、その強度には酸素含有量が大きく影響し、チタ
ン系焼結部材中の酸素含有量が0.3重量%を超えると
伸びなどの機械的特性が著しく低下することが知られて
いる(豊田中央研究所 R&Dレビュー,26−1(1991),
44. )。焼結プロセスにおける不可避な酸素汚染を考慮
すると、原料となるチタン系粉末の酸素含有量は0.15重
量%以下に維持することが望ましい。
2. Description of the Related Art Recently, sintered titanium or sintered titanium alloy products manufactured by powder metallurgy have been used in various fields such as heat-resistant members. I have. As a raw material, use of titanium powder and titanium hydride powder by a hydrodehydrogenation method, which is high in quality and excellent in moldability, has been attempted. Although excellent mechanical properties are required for the sintered titanium or sintered titanium alloy member, the strength is greatly affected by the oxygen content, and the oxygen content in the titanium-based sintered member is 0.3% by weight. %, Mechanical properties such as elongation are known to be significantly reduced (Toyota Central R & D Review, 26-1 (1991),
44.). In consideration of unavoidable oxygen contamination in the sintering process, it is desirable to maintain the oxygen content of the titanium-based powder as the raw material at 0.15% by weight or less.

【0003】水素化チタン粉末およびチタン粉末の製造
方法のうち、チタンまたはチタン合金の水素脆性を利用
して、チタンまたはチタン合金を水素化させたのち任意
の粒度に粉砕して水素化チタン粉末とする方法、これを
真空加熱により脱水素してチタン粉末に転化させる水素
化脱水素法は、原料の品位を高めることにより高品質の
粉末を得ることが可能で、かつ粉体粒径を容易に調整す
ることができる利点があることから、水素化チタン粉末
及びチタン粉末の製造方法として注目されている。
[0003] Among the titanium hydride powder and the method for producing the titanium powder, the hydrogen embrittlement of titanium or titanium alloy is used to hydrogenate titanium or titanium alloy, and then pulverized to an arbitrary particle size to obtain titanium hydride powder. The hydrodehydrogenation method, in which this is dehydrogenated by vacuum heating to convert it to titanium powder, is capable of obtaining high-quality powder by improving the quality of the raw material, and easily reducing the powder particle size. Since it has an advantage that it can be adjusted, it is attracting attention as a method for producing titanium hydride powder and titanium powder.

【0004】この方法は、詳細には、チタンまたはチタ
ン合金原料を、高温下、水素ガス雰囲気中で水素化する
水素化工程、得られた水素化チタン塊状体を所定の粒度
に粉砕する粉砕工程を経て水素化チタン粉末を製造し、
粉砕後の水素化チタン粉末を高温下、真空中で脱水素す
る脱水素工程、脱水素時に焼結したチタン塊状体を解砕
する解砕工程を経てチタン系粉末を製造することからな
る。
[0004] Specifically, this method comprises a hydrogenation step of hydrogenating a titanium or titanium alloy raw material in a hydrogen gas atmosphere at a high temperature, and a pulverization step of pulverizing the obtained titanium hydride mass to a predetermined particle size. To produce titanium hydride powder,
The method comprises producing a titanium-based powder through a dehydrogenation step of dehydrogenating the pulverized titanium hydride powder in a vacuum at a high temperature and a pulverization step of pulverizing a sintered titanium mass at the time of dehydrogenation.

【0005】チタン系粉末は、粒径が小さい微細な粉末
が多くなるほど粉末全体の酸素含有量が増加するので、
粉末中の酸素含有量を低減する方法として、例えば水素
化チタン粉末の粒度分布を、予め粒径63μm 以下の微
粒を所定割合以下に制限するよう篩別、除去することに
よって粒度調整したのち、脱水素処理してチタン粉末を
得る方法が提案されている。(特開平5-247503号公報)
しかしながら、この方法では細粒粉末のうちの多くを除
去するために製品歩留りが大きく低下し、製造コストの
上昇を招くという難点がある。
[0005] In the titanium-based powder, the oxygen content of the entire powder increases as the number of fine powders having a small particle diameter increases.
As a method for reducing the oxygen content in the powder, for example, the particle size distribution of the titanium hydride powder is adjusted by sieving and removing fine particles having a particle size of 63 μm or less in advance to a predetermined ratio or less, and then dehydration. A method for obtaining titanium powder by elementary treatment has been proposed. (JP-A-5-247503)
However, this method has a drawback that a large amount of fine powder is removed, so that the product yield is greatly reduced and the production cost is increased.

【0006】一方、粉末冶金原料用の水素化チタン粉末
およびチタン粉末には流動性および成形性も重要である
から、これらの特性をも満足するものでなければなら
ず、微細な粒子性状と流動性を兼備するチタン粉末とし
て、粒子径範囲が5〜74μmで、平均粒子径が20μm
以下の粒子性状を有するものが提案されている( 特開
平7-278601号公報) が、このチタン粉末においては、粒
径が微細であるため酸素含有量の低減には限度があり、
例えば酸素含有量2000〜3000ppm(0.2 〜0.3wt
%)程度のものしか得ることができない。
On the other hand, fluidity and formability are also important for titanium hydride powder and titanium powder for powder metallurgy raw materials. Therefore, these properties must be satisfied. As a titanium powder having both properties, the particle diameter range is 5 to 74 μm, the average particle diameter is 20 μm
The one having the following particle properties has been proposed (Japanese Unexamined Patent Publication No. 7-278601) .However, in this titanium powder, there is a limit in reducing the oxygen content because the particle size is fine,
For example, an oxygen content of 2000 to 3000 ppm (0.2 to 0.3 wt.
%).

【0007】さらに、水素化工程に供するチタン材とし
てクロール法によって製造されたスポンジチタンを用い
る場合、スポンジチタンの製造工程で副生した塩化マグ
ネシウムを含有するため、通常0.08重量%程度の塩
素が含まれている。この塩素は水素化脱水素後のチタン
粉末にも不純物元素として残留し、最終製品である焼結
チタン部材の空孔を拡大、増加させ、疲労強度の低下を
招く原因として忌避されている。従って低塩素チタン粉
末が望まれており、その手段として水素化脱水素後のチ
タン粉末を水洗することによって残留塩素を除去する方
法も提案されている(特開平1-139706号) 。
Furthermore, when titanium sponge produced by the Kroll method is used as the titanium material to be subjected to the hydrogenation step, it contains magnesium chloride by-produced in the step of producing titanium sponge, so that about 0.08% by weight of chlorine is usually used. It is included. This chlorine remains as an impurity element also in the titanium powder after hydrodehydrogenation, and is repelled as a cause of expanding and increasing the porosity of the sintered titanium member as a final product, leading to a decrease in fatigue strength. Accordingly, a low-chlorine titanium powder is desired, and as a means therefor, a method of removing residual chlorine by washing the titanium powder after hydrodehydrogenation with water has been proposed (JP-A-1-139706).

【0008】しかしながら、水洗に用いる水は実質的に
塩素を含有しないイオン交換水を用いることが要求さ
れ、しかも水洗時の更なる酸素汚染も無視できず、それ
を回避するための完璧な乾燥手段が必須の要件となるた
め、資源・エネルギーコストの面で新たな課題が生ず
る。
However, it is required that the water used for washing be ion-exchanged water which does not substantially contain chlorine, and further oxygen contamination during washing cannot be ignored, and a perfect drying means for avoiding such contamination. Is an essential requirement, which raises new issues in terms of resource and energy costs.

【0009】本発明者らは、上記従来技術に残された課
題を解決するために種々検討した結果、粒径10μm 以
下の微粉末の粉末割合を調整することによって、水素化
チタン粉末中の含有酸素量を許容範囲である0.15重
量%以下に制御できることを見い出すと共に、不純物と
しての塩素が粒径10μm 以下の微粉末中に偏向して含
有されているという知見を得、上記の粒度調整によって
チタン系粉末中の塩素含有量をも併せて低減させ、さら
にチタン系粉末の流動性や成形性などの粉体特性を大幅
に改善し得ることを確認し、本発明を完成するに至っ
た。
The present inventors have conducted various studies to solve the problems left in the above prior art, and as a result, by adjusting the powder ratio of fine powder having a particle size of 10 μm or less, the content in the titanium hydride powder was adjusted. In addition to finding that the amount of oxygen can be controlled to an allowable range of 0.15% by weight or less, it has been found that chlorine as an impurity is deflected in fine powder having a particle size of 10 μm or less. It was also confirmed that the chlorine content in the titanium-based powder was also reduced by this, and it was further confirmed that powder properties such as flowability and moldability of the titanium-based powder could be significantly improved, and the present invention was completed. .

【0010】[0010]

【発明が解決しようとする課題】すなわち本発明の目的
は、酸素含有量と塩素含有量が低減され、優れた流動性
と成形性を備え、とくに粉末冶金法による焼結チタン製
品の製造用原料として好適に使用することのできる水素
化チタン粉末およびチタン粉末を提供することにある。
That is, an object of the present invention is to provide a raw material for producing a sintered titanium product by powder metallurgy, which has reduced oxygen content and chlorine content, has excellent fluidity and moldability. It is an object of the present invention to provide a titanium hydride powder and a titanium powder which can be suitably used as a powder.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による水素化チタン粉末は、チタンまたはチ
タン合金を水素脆化させる工程を経て生成される最大粒
径が実質的に150μm 以下の水素化チタン粉末であっ
て、粒径10μm 未満の粉末割合が8重量%以下である
ことを構成上の特徴とする。
According to the present invention, there is provided a titanium hydride powder having a maximum particle size of substantially 150 μm or less produced through a step of hydrogen embrittlement of titanium or a titanium alloy. Wherein the proportion of powder having a particle size of less than 10 μm is 8% by weight or less.

【0012】また、本発明によるチタン粉末は、上記の
水素化チタン粉末を脱水素して得られる最大粒径が実質
的に150μm 以下のチタン粉末であって、粒径10μ
m 以下の粉末割合が5重量%以下であることを構成上の
特徴とするものである。
The titanium powder according to the present invention is a titanium powder having a maximum particle size of substantially 150 μm or less obtained by dehydrogenating the above-mentioned titanium hydride powder, and having a particle size of 10 μm.
The compositional characteristic is that the proportion of powder of m or less is 5% by weight or less.

【0013】[0013]

【発明の実施の形態】本発明による水素化チタン粉末
は、チタンまたはチタン合金原料を水素脆化する水素化
工程を経て得られる最大粒径が実質的に150μm 以下
のものである。実質的に150μm 以下とは、篩別の
際、150μm の網目の上に残る粉末が若干存在する場
合もあるが、それも粉末全体の1%未満であり、99%
以上は150μm 以下であることを意味する。また該水
素化チタン粉末の平均粒径は100μm 以下であること
が粉末成形時の流動性と成形性を維持する上で好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The titanium hydride powder according to the present invention has a maximum particle size of substantially 150 μm or less obtained through a hydrogenation step of hydrogen embrittlement of a titanium or titanium alloy raw material. Substantially 150 μm or less means that there may be some powder remaining on the 150 μm mesh at the time of sieving, but that is also less than 1% of the whole powder and 99%
Above means 150 μm or less. The average particle size of the titanium hydride powder is preferably 100 μm or less in order to maintain fluidity and moldability during powder molding.

【0014】本発明における水素化チタン粉末は、粒径
10μm 以下の粉末割合を8重量%以下とすることによ
り、酸素含有量を0.15重量%以下、塩素含有量を
0.06重量%以下に制限されるから、粉末冶金用原料
として用いた場合、最終製品となるチタン系焼結部材の
酸素含有量と、塩素含有量が十分に低減される。また、
粒径10μm 以下の粉末割合を8重量%以下とすること
により、粉末冶金の際に要求される流動性が確保される
と共に、酸素含有量が高く、圧縮成形性の悪い微粉が取
り除かれることにより成形性も満足する水素化チタン粉
末を得ることができる。粒径10μm 未満の粉末割合が
8重量%を超えると、微粉末の割合が増加し、相対的に
酸素含有量と塩素含有量が高くなり、併せて流動性、成
形性も低下する。0.15%以下の酸素含有量は、当該
粉末を原料として粉末冶金法により製造された焼結チタ
ン製品または焼結チタン合金製品の伸びなどの機械的特
性を十分に満足できる範囲の酸素含有量であり、また、
0.06重量%以下の塩素含有量は、最終製品となるチ
タン系焼結部材の疲労強度などを満足する上で許容され
る範囲である。所望の酸素含有量と塩素含有量を確保す
るために、粒径10μm 以下の粉末割合は、目的とする
焼結製品に要求される粉末性状と設定される製品コスト
に応じて8重量%以下の範囲で適宜に調整され、例えば
5重量%以下とすることも好ましい。
The titanium hydride powder in the present invention has an oxygen content of 0.15% by weight or less and a chlorine content of 0.06% by weight or less by setting the proportion of powder having a particle size of 10 μm or less to 8% by weight or less. When used as a raw material for powder metallurgy, the oxygen content and the chlorine content of the titanium-based sintered member as the final product are sufficiently reduced. Also,
By setting the proportion of powder having a particle size of 10 μm or less to 8% by weight or less, the fluidity required in powder metallurgy is ensured, and the fine powder having a high oxygen content and poor compression moldability is removed. A titanium hydride powder that also satisfies the moldability can be obtained. If the proportion of powder having a particle size of less than 10 μm exceeds 8% by weight, the proportion of fine powder increases, the oxygen content and chlorine content relatively increase, and the fluidity and moldability also decrease. An oxygen content of 0.15% or less is an oxygen content in a range that can sufficiently satisfy mechanical properties such as elongation of a sintered titanium product or a sintered titanium alloy product manufactured by powder metallurgy using the powder as a raw material. And also
The chlorine content of 0.06% by weight or less is an allowable range for satisfying the fatigue strength of the titanium-based sintered member as the final product. In order to secure the desired oxygen content and chlorine content, the proportion of powder having a particle size of 10 μm or less should be 8% by weight or less depending on the powder properties required for the target sintered product and the set product cost. It is appropriately adjusted within the range, and for example, it is also preferable to set the content to 5% by weight or less.

【0015】本発明のチタン粉末は、上記した本発明の
水素化チタン粉末を真空中で加熱することによって脱水
素処理した後、解砕し、次いで粒度調整することによ
り、最大粒径が実質的に150μm 以下、粒径10μm
以下の粉末割合が5重量%以下であることが必須の要件
となる。
The titanium powder of the present invention is subjected to dehydrogenation treatment by heating the above-mentioned titanium hydride powder of the present invention in a vacuum, then crushed, and then adjusted for particle size, whereby the maximum particle size is substantially reduced. 150μm or less, particle size 10μm
It is an essential requirement that the following powder ratio is 5% by weight or less.

【0016】上記要件を備えた本発明のチタン粉末は、
酸素含有量が0.15重量%以下、塩素含有量が0.0
4重量%以下に制限されており、粉末冶金の原料として
供された場合、最終製品となるチタン系焼結部材の機械
的特性に悪影響を及ぼさない程度にまで低減されてい
る。また、微粉末の含有量が減少されることにより、粉
末成形の際の流動性は良好に維持され、酸素含有量が高
く、圧縮成形性の悪い微粒粉を可及的に除去することに
よって、粉末冶金用に供される際の成形性も効果的に確
保される。
The titanium powder of the present invention satisfying the above requirements is
Oxygen content is 0.15% by weight or less, chlorine content is 0.0
The content is limited to 4% by weight or less, and when used as a raw material for powder metallurgy, the content is reduced to a level that does not adversely affect the mechanical properties of the titanium-based sintered member as a final product. In addition, by reducing the content of the fine powder, the fluidity at the time of powder molding is maintained well, the oxygen content is high, by removing as much as possible fine powder having poor compression moldability, The formability when used for powder metallurgy is also effectively secured.

【0017】本発明の水素化チタン粉末は、スポンジチ
タン塊、チタンまたはチタン合金インゴット切削屑、ス
クラップ屑、加工工程途上で発生した端材などの原料
を、真空置換可能な水素化炉に装入し、1000℃以下
の高温下、水素ガス雰囲気中で水素脆化させて水素化処
理し、水素を3.5〜4.5重量%含有する水素化チタ
ンの塊状体を得たのち、この塊状体を機械的手段で粉砕
し、最大粒径が実質的に150μm 以下の水素化チタン
粉末を形成し、その後分級、篩別して微粉を除去し、粒
径10μm 以下の粉末割合を8重量%以下に整粒する。
機械的粉砕には、ボールミル、振動ミルなどの粉砕装置
が使用でき、分級には円形振動篩、気流分級器などの篩
別装置が用いられる。得られた水素化チタン粉末に含有
される酸素は0.15重量%以下、塩素は0.06重量
%以下に制限されている。
The titanium hydride powder of the present invention is prepared by charging raw materials such as titanium sponge lump, titanium or titanium alloy ingot cutting chips, scrap chips, and offcuts generated during the processing step into a hydrogenation furnace capable of vacuum replacement. Then, at a high temperature of 1000 ° C. or less, hydrogen embrittlement is performed in a hydrogen gas atmosphere and hydrogenation treatment is performed to obtain a block of titanium hydride containing 3.5 to 4.5% by weight of hydrogen. The body is pulverized by mechanical means to form a titanium hydride powder having a maximum particle size of substantially 150 μm or less, and then classified and sieved to remove fine powder, and to reduce the proportion of powder having a particle size of 10 μm or less to 8% by weight or less. Sizing.
For mechanical pulverization, a pulverizing device such as a ball mill or a vibration mill can be used, and for classification, a screening device such as a circular vibrating sieve or an airflow classifier is used. Oxygen contained in the obtained titanium hydride powder is limited to 0.15% by weight or less, and chlorine is limited to 0.06% by weight or less.

【0018】チタン粉末の製造は、上記の水素化チタン
粉末を容器に充填して、真空加熱型の脱水素炉に装入
し、例えば10-3Torr以下の真空中で、500〜900
℃程度の温度に加熱して脱水素し、得られたチタンの塊
状体を機械的に解砕処理した後、粒度調整することによ
り行われる。その結果として得られるチタン粉末は、最
大粒径が実質的に150μm 以下、粒径10μm 以下の
粉末割合が5重量%以下であり、酸素含有量は水素化チ
タン粉末と同じく0.15%以下、塩素含有量は0.0
4重量%以下に制限されるものである。
In the production of titanium powder, the above-mentioned titanium hydride powder is filled in a container, and charged into a vacuum-heating type dehydrogenation furnace, for example, in a vacuum of 10 -3 Torr or less, and 500 to 900 Torr.
It is carried out by heating to a temperature of about ° C to dehydrogenate, mechanically crushing the obtained titanium mass, and then adjusting the particle size. The resulting titanium powder has a maximum particle size of substantially 150 μm or less, a proportion of powder having a particle size of 10 μm or less of 5% by weight or less, and an oxygen content of 0.15% or less as in the case of titanium hydride powder. Chlorine content is 0.0
It is limited to 4% by weight or less.

【0019】本発明による水素化チタン粉末およびチタ
ン粉末は、粉末全体に対する特定粒径範囲の粉末割合を
調整することにより、酸素含有量と塩素含有量の低減が
可能となるとともに、流動性および成形性にも優れ、要
求される諸特性と設定コスト面でバランスのとれた高品
質の粉末冶金用原料として機能することができる。
The titanium hydride powder and the titanium powder according to the present invention can reduce the oxygen content and the chlorine content by adjusting the powder ratio in a specific particle size range with respect to the whole powder, and can improve the fluidity and the compactability. It has excellent properties and can function as a high-quality powder metallurgy raw material that is well balanced in terms of required characteristics and set costs.

【0020】[0020]

【実施例】以下、実施例により、本発明を比較例と対比
して説明する。 実施例1〜2 粒径1/2メッシュ以下のスポンジチタンを、水素化炉
に装入して水素化し、水素含有量4%の水素化スポンジ
チタンを製造したのち、得られた水素化スポンジチタン
の塊状体をボールミルで粉砕処理し、最大粒径が150
μm 以下の水素化チタン粉末とした。
EXAMPLES The present invention will be described below with reference to examples. Examples 1-2 A titanium sponge having a particle size of 1/2 mesh or less was charged into a hydrogenation furnace and hydrogenated to produce a hydrogenated sponge titanium having a hydrogen content of 4%. Pulverized with a ball mill to a maximum particle size of 150
It was a titanium hydride powder of μm or less.

【0021】ついで、気流分級器を用いて、水素化チタ
ン粉末中に含まれる粒径10μm 以下の粉末割合がそれ
ぞれ1.6重量%(実施例1)、7.3重量%(実施例
2)になるように微細粉末を除去した。得られた水素化
チタン粉末における酸素含有量、塩素含有量、流動性お
よび成形性の評価結果を表1に示す。
Then, using a gas classifier, the proportion of powder having a particle size of 10 μm or less contained in the titanium hydride powder was 1.6% by weight (Example 1) and 7.3% by weight (Example 2), respectively. The fine powder was removed so that Table 1 shows the evaluation results of the oxygen content, chlorine content, fluidity, and moldability of the obtained titanium hydride powder.

【0022】比較として、粒径10μm 以下の微細粉末
の除去を行わなかった水素化チタン粉末(比較例1)、
および粒径10μm 以下の粉末割合をさらに低減した水
素化チタン粉末(参考例)についても、酸素含有量と塩
素含有量を測定し、流動性および成形性を評価した。そ
の結果を併せて表1に示す。
For comparison, titanium hydride powder from which fine powder having a particle size of 10 μm or less was not removed (Comparative Example 1),
With respect to titanium hydride powder (Reference Example) in which the ratio of powder having a particle diameter of 10 μm or less was further reduced, the oxygen content and the chlorine content were measured, and the fluidity and moldability were evaluated. Table 1 also shows the results.

【0023】なお、粒径10μm 以下の粉末割合の測定
はレーザー回折法により行い、流動性はJIS Z 2505に準
拠して行い、必要に応じて針を使用した。成形性は、JS
PM4-69( ラトラー試験) に準拠し、該粉末を3トン/cm2
の成形圧でプレスしたペレット状成形体の重量減少率に
より評価した。
The ratio of powder having a particle size of 10 μm or less was measured by a laser diffraction method, the fluidity was measured in accordance with JIS Z 2505, and a needle was used as necessary. Formability is JS
According to PM4-69 (Rutler test), the powder was 3 ton / cm 2
Was evaluated by the weight reduction rate of the pellet-shaped molded body pressed at the molding pressure of

【0024】表1に示すように、本発明による水素化チ
タン粉末は、酸素含有量が低く、流動性に優れ、ラトラ
ー試験による成形性試験において優れた成形性を備えて
いることが実証されている。これに対して、微細粉末を
含む比較例1の粉末は酸素含有量が0.15重量%を超
え、塩素含有量も0.08重量%と高い値を示し、流動
性も実用に耐えないものである。参考例では、酸素含有
量はさらに低く、流動性、成形性も良好であったが、本
発明に従う水素化チタン粉末(実施例1〜2)の製品歩
留りが90%以上であったのに対して、参考例の水素化
チタン粉末の製品歩留りは60%以下であり、原料原単
位は1.5倍にも上昇した。
As shown in Table 1, it has been proved that the titanium hydride powder according to the present invention has a low oxygen content, is excellent in fluidity, and has excellent moldability in a moldability test by a Rutler test. I have. On the other hand, the powder of Comparative Example 1 containing fine powder has an oxygen content exceeding 0.15% by weight, a chlorine content as high as 0.08% by weight, and a fluidity that is not practical. It is. In the reference example, the oxygen content was further lower, the fluidity and the moldability were good, but the product yield of the titanium hydride powder according to the present invention (Examples 1 and 2) was 90% or more. As a result, the product yield of the titanium hydride powder of the reference example was 60% or less, and the raw material basic unit increased 1.5 times.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例3、4 実施例1および2の水素化チタン粉末を、脱水素炉に装
入し、10-3Torr以下の真空下で500〜900°Cに加
熱して脱水素することにより製造されたチタンの塊状体
をボールミルで粉砕して、最大粒径150μm 以下のチ
タン粉末を得た。得られたチタン粉末について実施例1
と同様の方法により酸素含有量を測定した。結果をまと
めて表2に示した。ここで実施例3および4は、それぞ
れ表1の実施例1および2で得られた水素化チタン粉を
原料にして得られたチタン粉を意味する。また、比較例
2は、表1の比較例1で得られた水素化チタン粉を原料
として得られたチタン粉を意味する。10μm 以下の粉
末の割合を5重量%以下に粒度調整した実施例3と4の
酸素含有量は、それぞれ0.12重量%と0.15重量
%であり酸素含有量の上限値(0.15重量%)以下に
ある。これに対して、10μm 以下の粉末の割合が5重
量%を超える比較例2では酸素含有量も0.15重量%
を超えており、粉末冶金用原料として好適ではない。
Examples 3 and 4 The titanium hydride powders of Examples 1 and 2 were charged into a dehydrogenation furnace and heated to 500 to 900 ° C. under a vacuum of 10 −3 Torr or less to dehydrogenate. The titanium mass produced by the above method was pulverized with a ball mill to obtain a titanium powder having a maximum particle size of 150 μm or less. Example 1 about the obtained titanium powder
The oxygen content was measured in the same manner as described above. The results are summarized in Table 2. Here, Examples 3 and 4 mean titanium powder obtained using the titanium hydride powder obtained in Examples 1 and 2 in Table 1 as a raw material. Comparative Example 2 means titanium powder obtained using the titanium hydride powder obtained in Comparative Example 1 in Table 1 as a raw material. The oxygen contents of Examples 3 and 4, in which the proportion of the powder having a particle size of 10 μm or less was adjusted to 5% by weight or less, were 0.12% by weight and 0.15% by weight, respectively. % By weight). On the other hand, in Comparative Example 2 in which the proportion of powder having a particle size of 10 μm or less exceeded 5% by weight, the oxygen content was 0.15% by weight.
And is not suitable as a raw material for powder metallurgy.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、酸素含有量と塩素含有
量が低減され、優れた流動性および成形性を兼備した水
素化チタン粉末およびチタン粉末が簡易な操作で低コス
トで提供され、当該粉末は、粉末冶金法による焼結チタ
ンまたはチタン合金製品製造用の粉末原料として好適に
利用することができる。
According to the present invention, a titanium hydride powder and a titanium powder having reduced oxygen content and chlorine content and having both excellent fluidity and moldability can be provided at a low cost by a simple operation. The powder can be suitably used as a powder raw material for producing a sintered titanium or titanium alloy product by a powder metallurgy method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チタンまたはチタン合金を水素脆化させ
る工程を経て生成される最大粒径が実質的に150μm
以下で、かつ、粒径10μm 以下の粉末割合が8重量%
以下であることを特徴とする水素化チタン粉末または水
素化チタン合金粉末。
The maximum particle size produced through the step of hydrogen embrittlement of titanium or a titanium alloy is substantially 150 μm.
Not more than 8% by weight of powder having a particle size of 10 μm or less
A titanium hydride powder or a titanium hydride alloy powder characterized by the following.
【請求項2】 酸素含有量が0.15重量%以下である
ことを特徴とする請求項1に記載の水素化チタン粉末ま
たは水素化チタン合金粉末。
2. The titanium hydride powder or titanium hydride alloy powder according to claim 1, wherein the oxygen content is 0.15% by weight or less.
【請求項3】 塩素含有量が0.06重量%以下である
ことを特徴とする請求項1乃至2に記載の水素化チタン
粉末または水素チタン合金粉末。
3. The titanium hydride powder or hydrogen titanium alloy powder according to claim 1, wherein the chlorine content is 0.06% by weight or less.
【請求項4】 平均粒径が100μm 以下であることを
特徴とする請求項1乃至3に記載の水素化チタン粉末ま
たは水素化チタン合金粉末。
4. The titanium hydride powder or titanium hydride alloy powder according to claim 1, wherein the average particle diameter is 100 μm or less.
【請求項5】 請求項1乃至4のいずれかに記載の水素
化チタン粉末または水素化チタン合金粉末を脱水素して
得られ、最大粒径が実質的に150μm 以下で、かつ粒
径10μm 以下の粉末割合が5重量%以下であることを
特徴とするチタン粉末またはチタン合金粉末。
5. The titanium hydride powder or titanium hydride alloy powder according to claim 1, which is obtained by dehydrogenation, has a maximum particle size of substantially 150 μm or less, and a particle size of 10 μm or less. A titanium powder or a titanium alloy powder, wherein a powder ratio of the titanium powder is 5% by weight or less.
【請求項6】 酸素含有量が0.15重量%以下、塩素
含有量が0.04重量%以下であることを特徴とする請
求項5に記載のチタン粉末またはチタン合金粉末。
6. The titanium powder or titanium alloy powder according to claim 5, wherein the oxygen content is 0.15% by weight or less and the chlorine content is 0.04% by weight or less.
JP2001155454A 1996-07-30 2001-05-24 Titanium base powder Pending JP2002047501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155454A JP2002047501A (en) 1996-07-30 2001-05-24 Titanium base powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21657596 1996-07-30
JP8-216575 1996-07-30
JP2001155454A JP2002047501A (en) 1996-07-30 2001-05-24 Titanium base powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21803797A Division JP3459342B2 (en) 1996-07-30 1997-07-29 Method for producing titanium-based powder

Publications (1)

Publication Number Publication Date
JP2002047501A true JP2002047501A (en) 2002-02-15

Family

ID=26521510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155454A Pending JP2002047501A (en) 1996-07-30 2001-05-24 Titanium base powder

Country Status (1)

Country Link
JP (1) JP2002047501A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902601B2 (en) 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
JP2006283104A (en) * 2005-03-31 2006-10-19 Osaka Yakin Kogyo Kk Production method of metal porous material
CN102554242A (en) * 2012-02-09 2012-07-11 西安宝德粉末冶金有限责任公司 Method for manufacturing micro-fine spherical titanium powder
CN102896321A (en) * 2012-10-26 2013-01-30 攀钢集团攀枝花钢铁研究院有限公司 Processing method for titanium and titanium alloy crushed aggregates
JPWO2019124047A1 (en) * 2017-12-18 2020-12-17 日立金属株式会社 Spherical Ti powder and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902601B2 (en) 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
JP2006283104A (en) * 2005-03-31 2006-10-19 Osaka Yakin Kogyo Kk Production method of metal porous material
JP4641209B2 (en) * 2005-03-31 2011-03-02 大阪冶金興業株式会社 Method for producing porous metal body
CN102554242A (en) * 2012-02-09 2012-07-11 西安宝德粉末冶金有限责任公司 Method for manufacturing micro-fine spherical titanium powder
CN102896321A (en) * 2012-10-26 2013-01-30 攀钢集团攀枝花钢铁研究院有限公司 Processing method for titanium and titanium alloy crushed aggregates
JPWO2019124047A1 (en) * 2017-12-18 2020-12-17 日立金属株式会社 Spherical Ti powder and its manufacturing method
JP7294141B2 (en) 2017-12-18 2023-06-20 株式会社プロテリアル Spherical Ti-based powder and method for producing the same

Similar Documents

Publication Publication Date Title
WO1998004375A1 (en) Titanium-base powder and process for the production of the same
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
CN111702184A (en) Preparation method of large FSSS cobalt powder
CA1233679A (en) Wrought p/m processing for prealloyed powder
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP2002047501A (en) Titanium base powder
US5902373A (en) Sponge-iron powder
JP2821662B2 (en) Titanium-based powder and method for producing the same
JPH1096003A (en) Titanium-based powder and its production
JPH10195504A (en) Titanium hydride powder and its production
CN110860686A (en) Small-particle-size cobalt-chromium-tungsten-molybdenum alloy spherical powder and preparation method thereof
RU2240896C1 (en) Method for producing finely divided titanium powder
JP2987603B2 (en) Method for producing titanium-based powder
US4464205A (en) Wrought P/M processing for master alloy powder
JP6987884B2 (en) Titanium powder and its manufacturing method
JP5628767B2 (en) Hydrogenation method of titanium alloy
JP3652993B2 (en) Spherical titanium hydride powder for sintered alloy, method for producing the powder, and method for producing sintered alloy
JPH07278612A (en) Method of grinding titanium sponge
JP6699209B2 (en) Aggregate of sponge titanium particles for producing titanium powder and method for producing the same
JPH0688153A (en) Production of sintered titanium alloy
JPH09125101A (en) Molybdenum coarse granule and its production
JPH0598369A (en) Cemented carbide manufacturing method
JPH0776707A (en) Method for producing titanium powder
JP6976415B2 (en) Titanium powder and its manufacturing method
JP5851772B2 (en) Titanium alloy hydride and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040812