[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001508375A - Hybrid drive - Google Patents

Hybrid drive

Info

Publication number
JP2001508375A
JP2001508375A JP51113297A JP51113297A JP2001508375A JP 2001508375 A JP2001508375 A JP 2001508375A JP 51113297 A JP51113297 A JP 51113297A JP 51113297 A JP51113297 A JP 51113297A JP 2001508375 A JP2001508375 A JP 2001508375A
Authority
JP
Japan
Prior art keywords
rotor
control device
transmission
hybrid drive
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP51113297A
Other languages
Japanese (ja)
Inventor
サダランガニ,チャンドウル
バックストロム,トマス
オストルンド,ステファン
Original Assignee
アセア ブラウン ボベリ アクチボラグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アセア ブラウン ボベリ アクチボラグ filed Critical アセア ブラウン ボベリ アクチボラグ
Publication of JP2001508375A publication Critical patent/JP2001508375A/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/005Machines with only rotors, e.g. counter-rotating rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/06Dynamo-electric clutches; Dynamo-electric brakes of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/918Continuously variable

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

(57)【要約】 クラッチ27を介してエネルギコンバータ23が結合されている出力軸26を備えた内燃機関21含むハイブリッド駆動装置であって、前記エルギコンバータ23は第1と第2のロータ24、25を有している。ロータ24、25は相互に対して同心状に配置され、相互に対して異なる速度で回転し得る。第1のロータ24には永久磁石が設けられ、第2のロータ25には、例えば電気バッテリ22のような直流電源から直流電流が供給されるAC/DCコンバータ30介して電流が供給される1個以上の巻き線が設けられている。連続的に可変なトランスミッション29がエネルギコンバータ23のロータ24、25の1個に結合されている。本発明は、またハイブリッド駆動装置のための制御装置にも関する。 (57) Abstract: A hybrid drive device including an internal combustion engine 21 having an output shaft 26 to which an energy converter 23 is coupled via a clutch 27, wherein the ERG converter 23 includes a first and a second rotor 24. , 25. The rotors 24, 25 are arranged concentrically with respect to each other and can rotate at different speeds with respect to each other. The first rotor 24 is provided with a permanent magnet, and the second rotor 25 is supplied with a current via an AC / DC converter 30 supplied with a DC current from a DC power source such as the electric battery 22. More than one winding is provided. A continuously variable transmission 29 is coupled to one of the rotors 24, 25 of the energy converter 23. The invention also relates to a control device for the hybrid drive.

Description

【発明の詳細な説明】 ハイブリッド駆動装置 本発明は請求の範囲第1項の前文に記載のハイブリッド駆動装置に関する。ま た、本発明はハイブリッド駆動装置用の制御装置にも関する。 自動車の駆動装置としてハイブリッド駆動装置を配設することは以前から知ら れている。ドイツ特許第A−41 18 678号は、内燃機関と、バッテリと 、内燃機関およびバッテリとによって駆動しうる駆動軸とからなるハイブリッド 駆動装置に関する。スリップリングモータあるいは2個の同心状のロータからな るエネルギコンバータを介して内燃機関からのエネルギおよびバッテリからのエ ネルギが駆動軸へ伝達される。内燃機関の軸に接合された外側ロータには永久磁 石が設けられ、駆動軸に接合された内側ロータには、スリップリングにより交流 電流が供給され、変流器を介してバッテリに結合されている巻き線が設けられて いる。駆動軸は、該駆動軸の回転運動を自動車の車軸に伝える固定変速比のトラ ンスミッションに接合されている。 米国特許第3 796 278号は、一実施例においては、内燃機関と、電源 と、電磁クラッチと、電動モータとギアボックスとからなるハイブリッド駆動装 置に関する。内燃機関は電磁クラッチを介して電動モータに結合されている。電 動モータの出力軸はギアボックスに接合されている。電磁クラッチは2個の同心 状のロータであって、一方が電源から電流が供給される巻き線が設けられている ロータから構成されている。ハイブリッド駆動装置は電動モータへの電流供給を 制御する制御装置によって制御されている。 本発明の一目的は、例えば本駆動装置の排気のような環境要件や、作動寿命や 作動特性に関して内燃機関とバッテリとの間の負荷を最適に配分することが可能 なハイブリッド駆動装置を達成することである。 本発明の別の目的は、電源から給電される電気的に駆動されるエネルギコンバ ータと内燃機関とによって駆動を可能とし、電源から供給されるエネルギの時間 当たりの平均値がある明確な時間にわたって零であるか、あるいは殆ど零である ようなハイブリッド駆動装置を達成することである。 本発明の更に別の目的は有利な方法でハイブリッド駆動装置の最適作動を可能 とする制御装置を達成することである。 これらの目的は請求の第1項に記載のハイブリッド駆動装置および請求の範囲 第7項に記載の制御装置によって達成される。 請求の範囲第1項に記載の特徴を備えたハイブリッド駆動装置は、電気エネル ギコンバータと組み合わせた可変速トランスミッションが内燃機関が最適の回転 数とトルクで作動出来る自由度を向上させることを可能とするので内燃機関の例 外的に高い効率を達成する。 本発明を添付図面に示す多数の例を参照して以下に詳細に説明する。 第1図は周知の技術による直列のハイブリッド駆動装置を示す図、 第2図は周知の技術による並列のハイブリッド駆動装置を示す図、 第3A図から第3C図まではハイブリッド駆動装置における諸要素の出力が相 互に作用する態様を線図の形で示す図、 第4図は本発明によるハイブリッド駆動装置の概略図、 第5A図から第5D図までは効率と排気とを線図の形で内燃機関の特性を示す 図、 第6図は本発明ハイブリッド駆動装置における制御装置のブロック線図、 第7図は本発明によるエネルギコンバータの部分的に断面で示す側面図である 。 ハイブリッド駆動装置は二つのグループ、すなわち直列ハイブリッド装置と並 列ハイブリッド装置とに分かれる。第1図に示す直列ハイブリッド装置は基本的 に、内燃機関1と、AC発電機2と、整流器3と、変流器4と、殆どの場合かご 形誘導モータであるACモータ5と、ギアボックス6とバッテリ7とから構成さ れている。内燃機関1の回転数とトルクとは、原則として、本装置においては完 全に自由に決定出来る。 並列ハイブリッド装置とは、第2図から判るように、内燃機関11と、電動モ ータ12と、変流器13と、バッテリ14と、ギアボックス15とに基づいてい る。内燃機関11と電動モータ12の速度は本装置においては同じである。変流 器13を介して、バッテリ14の動力は駆動装置16に供給することが可能で、 本装置に付加的なトルクを提供することが出来る。 第3A図は一定回転数において一定の動力を発生させる内燃機関を線図で示す 。自動車の動力消費は変動するので、自動車の駆動輪に動力を供給すべき場合、 エネルギコンバータは電動モータとして作用する。自動車に余分の運動エネルギ がある場合、あるいは自動車にブレーキをかけるべき場合、動力はバッテリに送 られ、従ってバッテリは充電され、この場合はコンバータは発電機として作用す る。このことは第3B図に示されており、時間を示す軸の上の領域はコンバータ のモータとしてのモードを表わし、時間軸の下の領域はコンバータの発電機とし てのモードを表わしている。ハイブリッド作動に対しては、内燃機関は、当該作 動形式に対する平均の必要動力に対応した動力を提供するようセットされる。必 要動力の増減は、第3C図に示すように、コンバータによって補正される。 第4図は本発明によるハイブリッド駆動装置の概略図であって、本ハイブリッ ド駆動装置は自動車用の駆動手段である。本ハイブリッド駆動装置においては、 内燃機関21からのエネルギは、個々のシャフトを有する2個の同心状のロータ 24、25を備えたエネルギコンバータ23において、例えばバッテリ22のよ うな直接の動力源からのエネルギと組み合わされる。内側のロータでよい第1の ロータ24は内燃機関21の出力軸26に機械的に結合され、該出力軸26は、 内燃機関21をエネルギコンバータ23のロータ24、25の中の一方に結合す る機械的、あるいは電気的クラッチ27によってロック、あるいは制動すること が可能である。外側ロータで良い第2のロータ25はCVT(連続可変トランス ミッション)の可変変速比を備えたギアボックス29を介して車軸28に結合す ることが可能である。連続可変トランスミッションは当該技術分野の専門家には 周知であるので、それらの構造や機能についてはここでは詳細に説明しない。 CVTをハイブリッド駆動装置に接続することにより、内燃機関21は効率と 排気に関して最適な回転数とトルクで作動するようセットすることが出来る。こ の最適な回転数とトルクとは内燃機関21に対して種々の負荷をかけて試験する ことによって得られる内燃機関21の特性によって決められる。内燃機関の特性 の例が効率および排気の線図の形で第5A図から第5D図までに示されている。 第5A図に示す線図の曲線は各種の回転数とトルクとにおける内燃機関の効率の 各種値を表わしている。第5B図から第5D図まではそれぞれ、CO,NOx、 およびHC排出量の曲線を示している。ハイブリッド駆動装置をCVTと組み合 わせることにより、当該作動形式に対する最も有利な作動条件、すなわち内燃機 関21の作動ポイントを、内燃機関21の既知の特性に基づいて得ることが可能 である。例えば、高速道路での走行とか市街地での走行のように種々の形式の作 動が起こりうる。本発明の制御装置をハイブリッド駆動装置とCVTとに結合す ることにより、駆動源としてハイブリッド駆動装置を備えた自動車の作動特性は 、出力、効率、および排気に関して最適とすることが出来る。 このように、内燃機関21は当該作動形式に対して所望のトルクを提供し、回 転数は、エネルギコンバータ23とCVTとの間のシャフトの回転数の変動を補 正するようエネルギコンバータ23において調整される。自動車の車輪の負荷が 変動するとすれば、CVTの変速比が変更され、内燃機関21のセットした回転 数とトルクとが一定に留まるようコンバータ23において補正される。 エネルギコンバータ23にはバッテリ22からの直流を交流に変換する変流器 30を介して電流が提供される。変流器30は実施例に従って、スリップリング 31によってエネルギコンバータ23の外側ロータ25に結合されている。 エネルギコンバータ23は電気的には、永久磁性化した同期機械あるいはブラ シを備えた、あるいは備えていない個々に磁化した同期機械として構成すること が可能である。エネルギコンバータ23の2個のロータ24、25は相互に独立 して自由に回転出来る。外側ロータ25の回転方向は、ハイブリッド作動の間、 内側のロータ24の回転方向に追従する。このことは、内燃機関21とエネルギ コンバータ23との組み合わせが自動車を駆動することを意味する。電気的な作 動に対して、内燃機関21に結合されたロータ24はクラッチ27によってロッ クされ、第2のロータ25はいずれかの回転方向に回転しうる。ロータ24、2 5のトルクは大きさは等しいが、符号は反対である。外側ロータ25には、スリ ップリング31を介して電流が供給される巻き線が設けられ、内側のロータ24 には永久磁石が設けられている。 内燃機関21とバッテリ22との間の動力の配分は外側ロータ24と内側ロー タ25との間の回転数の差異によって調整される。回転数の相対的な差はプラス あるいはマイナスで有り得る。回転数の相対的な差の符号が、当該駆動装置のと る作動モードを決定する。 本発明のハイブリッド駆動装置には多数の種々の作動モードを確認することが 出来る。 1)第4図においてn2で指示する外側ロータ25の回転数がn1で指示する内 側ロータ24の回転数より大きい。この場合、内燃機関21とバッテリ22とは 協働して自動車を駆動する。自動車の車輪はn3で指示する回転数で回転する。 このハイブリッド作動は、例えば、自動車の急速な加速、あるいは上り坂での走 行時には有用である。その理由は、そのような場合には車輪のトルクを増加させ る必要があり、すなわちCVTをシフトダウンする必要があるからである。CV Tがシフトダウンするにつれて、n2が増加し、これは内燃機関の回転数を一定 に保つにはエネルギコンバータ23の速度を変える必要があることを意味する。 2)外側ロータ25の回転数n2が内側ロータ24の回転数n1と等しい。この 作動モードは、自動車が専ら内燃機関21のみによって駆動しうる高速道路での 走行に重要である。バッテリ22は必要なトルクを保つために外側ロータの巻き 線に直流を専ら供給する。バッテリの動力はエネルギコンバータ23でのロスを 補正するためにのみ使用される。 3)外側ロータ25の回転数n2が内側ロータ24の回転数n1より小さい。 この作動モードは主としてバッテリ22を充電するために使用される。 4)内燃機関21は作動しておらず、内側ロータ24は静止しており、一方外 側ロータ25が回転している。この作動モードにおいては、自動車は専らエネル ギコンバータ23によって駆動され、そのため、低い排気要件が厳しい市街での 走行に重要である。 5)変流器30またはバッテリ22に故障が発生した場合、自動車は内燃機関 21のみによって駆動することが可能である必要がある。このことは、抽出可能 トルクを増加させるために3相の巻き線と直列で結合することが可能な可変抵抗 の短絡手段32によって外側ロータの3相巻き線を短絡することによって可能と される。この作動モードにおいては、外側ロータ25は内側ロータ24に対して 遅相される。遅相の量は車軸28によって抽出されるトルクによって変わる。 6)更に、先ずCVTを介して外側ロータ25を車軸28にロックし、次いで 内燃機関21を始動させるためにエネルギコンバータ23を同期モータとして使 用することにより内燃機関21をバッテリ22によって始動させることが出来る 。 7)自動車の電気的作動の間の内燃機関21の始動は、内側ロータ24が回転 を始めるようクラッチ27を開放し、内燃機関21に所望の始動トルクと回転数 とが伝送されるように変流器30を制御することにより実行される。所望の始動 トルクを得るために自動車の運動エネルギおよびバッテリ22からエネルギがエ ネルギコンバータ23に供給される。 8)外側ロータ25を機械的にロックし、あるいは自動車の制動装置により自 動車の駆動軸28をロックすることによりハイブリッド駆動装置を予備の動力源 として使用することが出来る。内燃機関21が内側ロータを駆動する場合、エネ ルギコンバータ23は発電機として作用する。外側ロータのスリップリング31 を介してバッテリ22は充電でき、あるいは電流を外方へ抽出することが出来る 。 9)更に、ロータ24、25の一緒の機械的結合が可能である。これはn2= n1であることを意味する。その場合、自動車は内燃機関21によって推進され る。この形式の作動は、エネルギコンバータ23に亘って一定の回転数を保つた めにバッテリ22からの電流が何ら必要とされないため、本駆動装置におけるロ スを最小にすべき高速道路での走行に重要である。 作動特性を最適とし、ハイブリッド駆動装置からの排気を減少するために、制 御装置が推奨されている。第6図は本発明による制御装置の一実施例を示す。内 燃機関21とエネルギコンバータ23のトルクと回転数とを制御するための制御 装置40は、内燃機関21および変流器30へ、あるいはそこから信号をそれぞ れ発信したり受信したりし、かつ信号を伝送制御装置41へ発信し、前記制御装 置は、エネルギコンバータのロータ24、25の中の一方に接続されたCVTへ 信号を送る。回転数推定装置42がトルクおよび回転数を調整するために制御装 置40へ回転数と角度位置とに関する信号を提供する。回転数推定装置42は、 第1のロータ24と第2のロータ25とのそれぞれの回転数と角度位置とを検出 するためのエネルギコンバータのロータ24、25における回転数および角度セ ンサ(図示せず)で構成することが出来る。代替的に、回転数推定装置42は測 定された電流と電圧とから回転数と角度位置とを計算することが可能である。加 速ペダル44あるいはブレーキペダル45の位置を検出するペダル位置センサ4 3がトルクと回転数を制御するための信号を制御装置40に送る。 運転戦略装置46が、例えば自動車の運転者のような作業者によって選択すべ き適当な運転戦略に関する信号を制御パネル47によって受け取る。運転戦略装 置46はトルクと回転数とを調整する制御装置40とクラッチ27とへ信号を送 る。運転戦略装置46は例えばバッテリ22のような直流電源の電圧レベルと状 態とをモニタするモニタ48からの信号を受け取り、かつ排気、燃料と空気の混 合物、内燃機関の温度等に関する内燃機関21の状態を検出するセンサ49から の信号を受け取る。作業者にバッテリ22の状態に関する情報を提供するデイス プレイ50をモニタ48に結合することが可能である。 制御パネルから選択しうる各種の運転戦略の中には、ハイブリッド作動、純粋 な内燃機関による作動、および純粋な電気的作動がある。運転戦略装置46は、 効率や排気に関して最適な作動状態が得られるように、制御パネル47を介して 送られた指令を受け取り、ハイブリッド駆動装置の各種構成要素に信号を提供す る。本発明の一実施例によれば、制御パネル47は前述した9種類の作動モード の一つを選択することが出来る。 本発明によるハイブリッド駆動装置を加速したり、減速したりするための各種 の方法を第4図と第6図とを参照して以下説明する。ハイブリッド作動に対して ハイブリッド駆動装置をセットして車両が加速された場合、トランスミッション 制御装置40を介してCVTの変速比が瞬間的に増加すると、CVTに結合され たロータ25が車両の運動エネルギにより加速される。もしもn2がn1よりも大 きいとすれば、変流器30は、CVTに結合されたロータ25が加速された時、 内燃機関21に結合されたロータ24が内燃機関21のトルクや回転数に影響を 与えないようにトルクや回転数を調整するよう制御装置40によって制御される 。この場合、バッテリ22はCVTに結合されたロータ25が加速されると、動 力をエネルギコンバータ23に送る。もしもn2がn1よりも小さいとすれば、変 流器30は、n2が増加した時バッテリ22の電荷が減少するように制御される 。この結果、車軸28のトルクや回転数が増加し、内燃機関のトルクや回転数を 一 定に留まらせる。車軸において所望の回転数および(または)トルクが得られる ように変速比は少量、あるいは大量に増加させることが可能である。エネルギコ ンバータ23に亘ってのトルクは一定である。 更に、内燃機関21のトルクをある間隔内で制御することが可能で、すなわち 内燃機関21のトルクは外側ロータ25が加速されるように若干増加することが 可能である。もしもn2がn1よりも大きいとすれば、変流器30は、CVTに結 合された外側ロータ25が加速すると、バッテリ22が電流をエネルギコンバー タ23に提供するようにトルクと回転数とを調整するように制御装置40によっ て制御される。もしもn2がn1よりも小さいとすれば、バッテリ22はエネルギ コンバータ23から動力を受け取る。このことはバッテリ22が充電されること を意味する。制御手段によって変流器30を制御することにより、回転数n2が 増加すると、この電荷を減少することが出来る。そうすれば、内燃機関21のト ルクが元の値に戻るのと同時にCVTの変速比が増加する。駆動装置の効率と排 気とが最適となるように所望の回転数/トルクが得られるまでこの手順が繰り返 される。 CVTをその開放位置において、内燃機関の全動力で、あるいは代替的にエネ ルギコンバータ23とトランスミッション29との間に一方向クラッチを配置さ せて、CVTに結合されている外側ロータ25を加速させることによりハイブリ ッド駆動装置を加速する別の可能性が得られる。外側ロータ25が所望の回転数 まで加速されると、CVTが係合され、自動車を加速する。もしもn2がn1より も大きいとすれば、変流器30は、CVTに結合されたロータ25が加速すると 、バッテリ22がエネルギコンバータ23に電流を提供するようにトルクと回転 数とに関して制御装置40によって制御される。もしもn2がn1よりも小さいと すれば、変流器30は、n2が増加するとバッテリ22の電荷が減少するように 制御される。CVTに結合されたロータ2が電気的観点から考えて望ましいもの より高い回転数を有している場合、トルクが一定に保たれ、かつ内燃機関21が 制動されないように変速比を減少させ、同時に変流器30を制御することにより 車両を加速するためにその運動エネルギを使用することが可能である。 回生制動に対して、ハイブリッド駆動装置が電気的作動に対してセットされて いる場合、バッテリ22に動力が送られるよう変流器30を制御することにより 、あるいはCVTに結合されたロータ2の回転数n2が車両の運動エネルギによ り増加するようCVTをダウンシフトすることにより動力がバッテリ22に送ら れる。ロータ25がフライホイールとして機能するという事実のため、自動車速 度は低減する。ロータ25の運動エネルギは自動車を加速させるために車輪に向 かって再び導かれる。 ハイブリッド駆動装置がハイブリッド駆動にセットされているとすれば、ロー タ25が減速した場合も、内燃機関21のトルクや回転数は影響を受けないよう に、CVTの変速比を下げ、同時に変流器30を制御することにより車両に制動 を加えることが出来る。もしもn2がn1よりも大きいとすれば、変流器30は、 CVTに結合されたロータ25が減速したときバッテリ22がエネルギコンバー タ23にエネルギを出すように制御されている。もしもn2がn1よりも小さいと すれば、n2が減少するとバッテリ22の電荷が増加するように変流器30は制 御されている。 第7図は本発明によるエネルギコンバータ23の一例を示している。外側ロー タ25は基本的には、従来のモータにおけるステータと似ているが、回転が可能 なようにされている。外側ロータ25には、スリップリング31を介して電流が 送られる1個以上の巻き線33が設けられている。内側ロータ24は永久磁石で 作られている。純粋の電気的作動においては最大速度を増すように弱め界磁制御 を達成しうるようにされている。エネルギコンバータ23はまた、外側ロータ2 5で発生した熱を逸らせるように冷却手段を備えることが可能である。 ハイブリッド駆動装置は固定式動力源、あるいは例えば、車両やボートにおけ る動力源とし得ること、およびハイブリッド駆動装置における内燃機関はピスト ンエンジンあるいはガスタービンとし得ることを指摘すべきである。The present invention relates to a hybrid drive according to the preamble of claim 1. The invention also relates to a control device for a hybrid drive. It has long been known to provide a hybrid drive as a drive for a motor vehicle. DE-A-41 18 678 relates to a hybrid drive comprising an internal combustion engine, a battery and a drive shaft which can be driven by the internal combustion engine and the battery. The energy from the internal combustion engine and the energy from the battery are transmitted to the drive shaft via a slip ring motor or an energy converter consisting of two concentric rotors. The outer rotor joined to the shaft of the internal combustion engine is provided with a permanent magnet, and the inner rotor joined to the drive shaft is supplied with alternating current by a slip ring and connected to the battery via a current transformer. A winding is provided. The drive shaft is connected to a transmission with a fixed transmission ratio that transmits the rotational motion of the drive shaft to the axle of the vehicle. U.S. Pat. No. 3,796,278 relates, in one embodiment, to a hybrid drive comprising an internal combustion engine, a power source, an electromagnetic clutch, an electric motor and a gearbox. The internal combustion engine is connected to the electric motor via an electromagnetic clutch. The output shaft of the electric motor is joined to the gearbox. The electromagnetic clutch is composed of two concentric rotors, one of which is provided with a winding provided with a current supplied from a power supply. The hybrid drive device is controlled by a control device that controls current supply to the electric motor. One object of the present invention is to achieve a hybrid drive that can optimally distribute the load between the internal combustion engine and the battery with respect to environmental requirements such as the exhaust of the drive and the operating life and operating characteristics. That is. Another object of the present invention is to enable operation by an electrically driven energy converter powered by a power supply and an internal combustion engine so that the average value per hour of the energy supplied by the power supply is zero over a defined time. , Or nearly zero. Yet another object of the present invention is to achieve a control device which allows an optimal operation of the hybrid drive in an advantageous manner. These objects are achieved by a hybrid drive device according to claim 1 and a control device according to claim 7. A hybrid drive having the features of claim 1 enables a variable speed transmission in combination with an electric energy converter to increase the degree of freedom in which the internal combustion engine can operate at an optimum speed and torque. So achieve exceptionally high efficiency of the internal combustion engine. The present invention will be described in detail below with reference to a number of examples shown in the accompanying drawings. FIG. 1 is a diagram showing a serial hybrid drive device according to a known technique. FIG. 2 is a diagram showing a parallel hybrid drive device according to a known technology. FIGS. 3A to 3C are diagrams of various elements in the hybrid drive device. FIG. 4 shows diagrammatically the manner in which the outputs interact, FIG. 4 is a schematic diagram of the hybrid drive according to the invention, FIGS. 5A to 5D show the efficiency and the exhaust in a diagrammatic manner FIG. 6 is a block diagram of a control device in the hybrid drive device of the present invention, and FIG. 7 is a side view partially showing a cross section of the energy converter according to the present invention. Hybrid drives are divided into two groups: series hybrids and parallel hybrids. The series hybrid device shown in FIG. 1 basically comprises an internal combustion engine 1, an AC generator 2, a rectifier 3, a current transformer 4, an AC motor 5, which is in most cases a squirrel-cage induction motor, and a gearbox. 6 and a battery 7. In principle, the rotational speed and the torque of the internal combustion engine 1 can be completely freely determined in the present device. The parallel hybrid device is based on the internal combustion engine 11, the electric motor 12, the current transformer 13, the battery 14, and the gearbox 15, as can be seen from FIG. The speeds of the internal combustion engine 11 and the electric motor 12 are the same in the present device. Through the current transformer 13, the power of the battery 14 can be supplied to the drive 16, which can provide additional torque to the device. FIG. 3A shows, diagrammatically, an internal combustion engine that generates a constant power at a constant speed. Since the power consumption of a vehicle fluctuates, the energy converter acts as an electric motor when power is to be supplied to the drive wheels of the vehicle. If the vehicle has extra kinetic energy, or if the vehicle is to be braked, power is transferred to the battery, which charges the battery, in which case the converter acts as a generator. This is illustrated in FIG. 3B, where the area above the time axis represents the mode of the converter as a motor, and the area below the time axis represents the mode of the converter as a generator. For hybrid operation, the internal combustion engine is set to provide power corresponding to the average power requirements for the type of operation. The increase or decrease in the required power is corrected by the converter as shown in FIG. 3C. FIG. 4 is a schematic view of a hybrid drive device according to the present invention. The hybrid drive device is a driving means for an automobile. In the present hybrid drive, the energy from the internal combustion engine 21 is supplied to an energy converter 23 with two concentric rotors 24, 25 having individual shafts from a direct power source such as a battery 22, for example. Combined with energy. A first rotor 24, which may be an inner rotor, is mechanically coupled to an output shaft 26 of the internal combustion engine 21, which couples the internal combustion engine 21 to one of the rotors 24, 25 of the energy converter 23. It can be locked or braked by a mechanical or electric clutch 27. A second rotor 25, which may be an outer rotor, can be coupled to the axle 28 via a gearbox 29 with a CVT (continuously variable transmission) variable speed ratio. Since continuously variable transmissions are well known to those skilled in the art, their structure and function will not be described in detail here. By connecting the CVT to the hybrid drive, the internal combustion engine 21 can be set to operate at optimal speed and torque with respect to efficiency and exhaust. The optimum rotation speed and torque are determined by the characteristics of the internal combustion engine 21 obtained by testing the internal combustion engine 21 under various loads. Examples of the characteristics of an internal combustion engine are shown in FIGS. 5A to 5D in the form of efficiency and exhaust diagrams. The curves in the diagram shown in FIG. 5A represent various values of the efficiency of the internal combustion engine at various rotational speeds and torques. 5B to 5D show curves of CO, NOx, and HC emissions, respectively. By combining the hybrid drive with the CVT, it is possible to obtain the most advantageous operating conditions for the type of operation, ie the operating point of the internal combustion engine 21, based on the known characteristics of the internal combustion engine 21. For example, various types of operation can occur, such as driving on a highway or driving in an urban area. By coupling the control device of the present invention to a hybrid drive and a CVT, the operating characteristics of a vehicle with a hybrid drive as a drive source can be optimized with respect to power, efficiency and emissions. In this way, the internal combustion engine 21 provides the desired torque for the type of operation, and the speed is adjusted in the energy converter 23 to compensate for variations in the speed of the shaft between the energy converter 23 and the CVT. You. If the load on the wheels of the vehicle fluctuates, the speed ratio of the CVT is changed, and correction is made in the converter 23 so that the set rotation speed and torque of the internal combustion engine 21 remain constant. Current is supplied to the energy converter 23 via a current transformer 30 that converts direct current from the battery 22 into alternating current. The current transformer 30 is connected to the outer rotor 25 of the energy converter 23 by a slip ring 31 according to the embodiment. The energy converter 23 can be configured electrically as a permanent magnet synchronous machine or an individually magnetized synchronous machine with or without brushes. The two rotors 24, 25 of the energy converter 23 can rotate freely independently of each other. The rotation direction of the outer rotor 25 follows the rotation direction of the inner rotor 24 during hybrid operation. This means that the combination of the internal combustion engine 21 and the energy converter 23 drives an automobile. For electrical operation, the rotor 24 coupled to the internal combustion engine 21 is locked by the clutch 27 and the second rotor 25 can rotate in any rotational direction. The torques of the rotors 24, 25 are equal in magnitude but opposite in sign. The outer rotor 25 is provided with a winding to which a current is supplied via a slip ring 31, and the inner rotor 24 is provided with a permanent magnet. The distribution of power between the internal combustion engine 21 and the battery 22 is adjusted by the difference in the number of revolutions between the outer rotor 24 and the inner rotor 25. The relative difference between the rotational speeds can be positive or negative. The sign of the relative difference between the speeds determines the operating mode of the drive. Many different modes of operation can be ascertained in the hybrid drive of the present invention. 1) is larger than the rotational speed of the inner rotor 24 the rotational speed of the outer rotor 25 is indicated by n 1 to instruct at n 2 in Figure 4. In this case, the internal combustion engine 21 and the battery 22 cooperate to drive the automobile. Vehicle wheel is rotated at a rotational speed indicated at n 3. This hybrid operation is useful, for example, when the vehicle is rapidly accelerating or traveling uphill. The reason is that in such a case, it is necessary to increase the torque of the wheels, that is, to shift down the CVT. As the CVT shifts down, n 2 increases, which means that the speed of the energy converter 23 needs to be changed to keep the internal combustion engine speed constant. 2) equal rotational speed n 2 of the outer rotor 25 and the rotational speed n 1 of the inner rotor 24. This mode of operation is important for driving on highways where the vehicle can be driven exclusively by the internal combustion engine 21 only. The battery 22 supplies exclusively direct current to the windings of the outer rotor to maintain the required torque. The power of the battery is used only to correct the loss in the energy converter 23. 3) the rotational speed n 2 of the outer rotor 25 is smaller than the rotational speed n 1 of the inner rotor 24. This operation mode is mainly used for charging the battery 22. 4) The internal combustion engine 21 is not operating, the inner rotor 24 is stationary, while the outer rotor 25 is rotating. In this mode of operation, the motor vehicle is driven exclusively by the energy converter 23, so that low emissions requirements are important for driving in severe urban areas. 5) When a failure occurs in the current transformer 30 or the battery 22, the vehicle needs to be able to be driven only by the internal combustion engine 21. This is made possible by short-circuiting the three-phase windings of the outer rotor by means of variable resistance short-circuit means 32 which can be coupled in series with the three-phase windings to increase the extractable torque. In this mode of operation, the outer rotor 25 is retarded with respect to the inner rotor 24. The amount of lag depends on the torque extracted by axle 28. 6) Furthermore, the internal rotor 21 can be started by the battery 22 by first locking the outer rotor 25 to the axle 28 via the CVT and then using the energy converter 23 as a synchronous motor to start the internal combustion engine 21. I can do it. 7) To start the internal combustion engine 21 during the electric operation of the vehicle, the clutch 27 is released so that the inner rotor 24 starts rotating, and the internal combustion engine 21 is changed so that the desired starting torque and the desired rotation speed are transmitted to the internal combustion engine 21. This is performed by controlling the flow device 30. The kinetic energy of the motor vehicle and energy from the battery 22 are supplied to the energy converter 23 to obtain a desired starting torque. 8) The hybrid drive can be used as a backup power source by locking the outer rotor 25 mechanically or by locking the drive shaft 28 of the vehicle with the vehicle braking device. When the internal combustion engine 21 drives the inner rotor, the energy converter 23 acts as a generator. The battery 22 can be charged via the outer rotor slip ring 31 or the current can be extracted outward. 9) Furthermore, a mechanical connection of the rotors 24, 25 together is possible. This means that n 2 = n 1 . In that case, the vehicle is propelled by the internal combustion engine 21. This type of operation is important for highway travel where loss in the drive is to be minimized since no current from the battery 22 is required to maintain a constant speed across the energy converter 23. is there. A controller is recommended to optimize operating characteristics and reduce emissions from the hybrid drive. FIG. 6 shows an embodiment of the control device according to the present invention. A control device 40 for controlling the torque and the number of revolutions of the internal combustion engine 21 and the energy converter 23 transmits and receives signals to and from the internal combustion engine 21 and the current transformer 30, respectively, and outputs the signals. Transmitting to a transmission controller 41, the controller sends a signal to a CVT connected to one of the energy converter rotors 24,25. A speed estimator 42 provides signals relating to speed and angular position to controller 40 to adjust the torque and speed. The rotation speed estimating device 42 includes rotation speed and angle sensors (not shown) in the rotors 24 and 25 of the energy converter for detecting the respective rotation speeds and angular positions of the first rotor 24 and the second rotor 25. ). Alternatively, the rotational speed estimator 42 can calculate the rotational speed and the angular position from the measured current and voltage. A pedal position sensor 43 for detecting the position of the acceleration pedal 44 or the brake pedal 45 sends a signal for controlling the torque and the rotation speed to the control device 40. Driving strategy device 46 receives by control panel 47 a signal regarding the appropriate driving strategy to be selected by the operator, for example, the driver of a motor vehicle. The driving strategy device 46 sends a signal to the control device 40 for adjusting the torque and the rotation speed and the clutch 27. The driving strategy device 46 receives signals from a monitor 48 that monitors the voltage level and condition of a DC power source, such as the battery 22, and monitors the condition of the internal combustion engine 21 with respect to emissions, fuel and air mixture, temperature of the engine, and the like. Is received from the sensor 49 for detecting. A display 50 that provides information to the operator about the condition of the battery 22 can be coupled to the monitor 48. Among the various operating strategies that can be selected from the control panel are hybrid operation, operation with a pure internal combustion engine, and pure electric operation. The driving strategy device 46 receives commands sent via the control panel 47 and provides signals to the various components of the hybrid drive so as to obtain optimal operating conditions in terms of efficiency and emissions. According to one embodiment of the present invention, control panel 47 can select one of the nine operating modes described above. Various methods for accelerating and decelerating the hybrid drive according to the present invention will be described below with reference to FIGS. 4 and 6. When the hybrid drive is set for hybrid operation and the vehicle is accelerated, when the speed ratio of the CVT increases instantaneously via the transmission control device 40, the rotor 25 coupled to the CVT is driven by the kinetic energy of the vehicle. Accelerated. If n 2 is greater than n 1 , the current transformer 30 indicates that when the rotor 25 coupled to the CVT is accelerated, the rotor 24 coupled to the internal combustion engine 21 Is controlled by the control device 40 so as to adjust the torque and the rotation speed so as not to affect the rotation speed. In this case, the battery 22 sends power to the energy converter 23 when the rotor 25 coupled to the CVT is accelerated. If n 2 is less than n 1 , current transformer 30 is controlled so that the charge on battery 22 decreases when n 2 increases. As a result, the torque and the rotation speed of the axle 28 increase, and the torque and the rotation speed of the internal combustion engine are kept constant. The transmission ratio can be increased by a small amount or a large amount so as to obtain a desired rotational speed and / or torque at the axle. The torque across the energy converter 23 is constant. Furthermore, the torque of the internal combustion engine 21 can be controlled within a certain interval, that is, the torque of the internal combustion engine 21 can be slightly increased so that the outer rotor 25 is accelerated. If n 2 is greater than n 1 , current transformer 30 adjusts the torque and speed so that battery 22 provides current to energy converter 23 when outer rotor 25 coupled to the CVT accelerates. It is controlled by the control device 40 to adjust. If n 2 is less than n 1 , battery 22 receives power from energy converter 23. This means that the battery 22 is charged. By controlling the current transformer 30 by the control means, when the rotation speed n 2 increases, this charge can be reduced. Then, the speed ratio of the CVT increases at the same time when the torque of the internal combustion engine 21 returns to the original value. This procedure is repeated until the desired speed / torque is obtained so that the efficiency of the drive and the exhaust are optimal. By accelerating the outer rotor 25 coupled to the CVT in its open position at full power of the internal combustion engine, or alternatively with a one-way clutch between the energy converter 23 and the transmission 29 Another possibility is obtained for accelerating the hybrid drive. When the outer rotor 25 is accelerated to a desired speed, the CVT is engaged to accelerate the vehicle. If n 2 is greater than n 1 , current transformer 30 controls torque and speed so that battery 22 provides current to energy converter 23 as rotor 25 coupled to CVT accelerates. Controlled by device 40. If n 2 is less than n 1 , current transformer 30 is controlled such that as n 2 increases, the charge on battery 22 decreases. If the rotor 2 coupled to the CVT has a higher rotational speed than desired from an electrical point of view, the gear ratio is reduced so that the torque is kept constant and the internal combustion engine 21 is not braked, By controlling the current transformer 30, it is possible to use its kinetic energy to accelerate the vehicle. For regenerative braking, by controlling the current transformer 30 to power the battery 22 when the hybrid drive is set for electrical operation, or by rotating the rotor 2 coupled to the CVT. Power is transferred to the battery 22 by downshifting the CVT so that the number n 2 is increased by the kinetic energy of the vehicle. Due to the fact that rotor 25 functions as a flywheel, vehicle speed is reduced. The kinetic energy of the rotor 25 is redirected towards the wheels to accelerate the vehicle. Assuming that the hybrid drive device is set to the hybrid drive, the speed ratio of the CVT is reduced so that the torque and the rotation speed of the internal combustion engine 21 are not affected even when the rotor 25 decelerates, and at the same time, the current transformer By controlling 30, braking can be applied to the vehicle. If n 2 is greater than n 1 , current transformer 30 is controlled such that battery 22 provides energy to energy converter 23 when rotor 25 coupled to the CVT decelerates. If n 2 is smaller than n 1 , current transformer 30 is controlled such that as n 2 decreases, the charge on battery 22 increases. FIG. 7 shows an example of the energy converter 23 according to the present invention. The outer rotor 25 is basically similar to the stator of a conventional motor, but is rotatable. The outer rotor 25 is provided with one or more windings 33 to which a current is sent via the slip ring 31. The inner rotor 24 is made of a permanent magnet. In purely electrical operation, field-weakening control can be achieved to increase the maximum speed. Energy converter 23 can also include cooling means to divert heat generated in outer rotor 25. It should be pointed out that the hybrid drive can be a fixed power source or, for example, in a vehicle or a boat, and that the internal combustion engine in the hybrid drive can be a piston engine or a gas turbine.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),EA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GE,H U,IL,IS,JP,KE,KG,KP,KR,KZ ,LC,LK,LR,LS,LT,LU,LV,MD, MG,MK,MN,MW,MX,NO,NZ,PL,P T,RO,RU,SD,SE,SG,SI,SK,TJ ,TM,TR,TT,UA,UG,US,UZ,VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, LS, MW, SD, S Z, UG), EA (AM, AZ, BY, KG, KZ, MD , RU, TJ, TM), AL, AM, AT, AU, AZ , BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, H U, IL, IS, JP, KE, KG, KP, KR, KZ , LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, P T, RO, RU, SD, SE, SG, SI, SK, TJ , TM, TR, TT, UA, UG, US, UZ, VN

Claims (1)

【特許請求の範囲】 1. カップリング(27)を介して、第1と第2のロータ(24、25)を 有するエネルギコンバータ(23)が接続されている出力軸(26)を備えた内 燃機関(21)を含むハイブリッド駆動装置であって、前記ロータ(24、25 )が相互に対して異なる速度で回転可能であり、前記ロータ(24、25)の少 なくとも一方に、例えば電気バッテリ(22)のような直流電源からの直流電流 が変流器(30)を介して供給される1個以上の巻き線(33)が設けられてい るハイブリッド駆動装置において、変速比可変のトランスミッション(29)が エネルギコンバータのロータ(24、25)の中の一方に結合されており、前記 トランスミッション(29)と変流器(30)とが制御装置によって協働するこ とを特徴とするハイブリッド駆動装置。 2. 第1のロータ(24)には永久磁石が、第2のロータ(25)には巻き 線(33)が設けられていることを特徴とする請求の範囲第1項に記載のハイブ リッド駆動装置。 3. 第1のロータ(24)が第2のロータ(25)の内側で同心状に配置さ れており、第1のロータ(24)がカップリング(27)を介して内燃機関(2 1)の出力軸(26)に結合され、第2のロータ(25)がトランスミッション (29)に結合されていることを特徴とする請求の範囲第1項あるいは第2項に 記載のハイブリッド駆動装置。 4. 前記カップリング(27)がロック可能で、従って、回転しないように し得るクラッチであることを特徴とする請求の範囲第1項から第3項までのいず れか1項に記載のハイブリッド駆動装置。 5. 前記巻き線(33)が3相電流が供給される3相巻き線であることを特 徴とする請求の範囲第1項または第2項に記載のハイブリッド駆動装置。 6. 前記3相の巻き線に該3相巻き線を短絡させるための可変抵抗の係合可 能な短絡手段(32)が設けられていることを特徴とする請求の範囲第5項に記 載のハイブリッド駆動装置。 7. 前記トランスミッション(29)が車両の駆動軸すなわち車軸(28) に結合されていることを特徴とする請求の範囲第1項から第6項までのいずれか 1項に記載のハイブリッド駆動装置。 8. 前記トランスミッション(29)が連続的に可変のトランスミッション (CVT)であることを特徴とする請求の範囲第1項から第7項までのいずれか 1項に記載のハイブリッド駆動装置。 9. エネルギコンバータ(23)がカップリング(27)を介して結合され ている出力軸(26)を備えた内燃機関(21)を含む車輪自動車であって、前 記エネルギコンバータ(23)が第1と第2のロータ(24、25)を有してお り、前記ロータ(24、25)が相互に対して異なる速度で回転可能で、前記ロ ータ(24、25)の少なくとも一方には、電気バッテリ(22)のような直流 電源からの直流電流が変流器(30)を介して供給される1個以上の巻き線(3 3)が設けられている車輪自動車において、変速比可変のトランスミッション( 29)が前記エネルギコンバータのロータ(24、25)の一方に結合され、前 記トランスミッション(29)と変流器(30)とは制御装置によって協働する ことを特徴とする車輪自動車。 10.クラッチ(27)を介して相互に接続されている内燃機関(21)とエ ネルギコンバータ(23)とのトルクと回転速度とを制御する制御装置(40) を含む、たとえば自動車の駆動源であるハイブリッド駆動装置のための制御装置 において、前記エネルギコンバータ(23)が相互に対して異なる速度で回転可 能な第1と第2のロータ(24、25)を有しており、前記ロータ(24、25 )の中の少なくとも一方には例えば電気バッテリ(22)のような直流電源から 直流電流が変流器(30)を介して供給される1個以上の巻き線(33)が設け られており、トルクと回転速度とを制御する前記制御装置(40)は内燃機関( 21)と変流器(30)へ、あるいはそれらから信号を発信したり、受信したり 、かつ制御装置(41)へ信号を送り、前記制御装置(41)の方は前記エネル ギコンバータの前記ロータ(24、25)の中の一方に結合された連続的に可変 のトランスミッション(29)に信号を送り、更に、第1のロータ(24)と第 2のロータ(25)の回転速度を検出するために回転速度センサが設けられてお り、前記回転速度センサは回転速度推定装置(42)に信号を送り、前記回転速 度推 定装置(42)の方はトルクと回転速度とを制御する制御装置(40)に信号を 送り、加速器あるいはブレーキペダル(44、45)の位置を検出するペダル位 置センサ(43)がトルクと回転速度とを制御する制御装置(40)に信号を送 ることを特徴とするハイブリッド駆動装置のための制御装置。 11.制御パネル(47)を介して作業者によって選択されるべき適当な運転 戦略に関する信号を運転戦略装置(46)が受け取り、その後運転戦略装置(4 6)がトルクと回転速度とを制御する制御装置(40)とクラッチ(27)とに 信号を提供し、前記運転戦略装置(46)は直流電源の電圧レベルをモニタし、 内燃機関(21)の状態を検出するセンサ(49)から信号を受け取るモニタ( 48)から信号を受け取ることを特徴とする請求の範囲第10項に記載の制御装 置。 12.前記第1のロータ(24)が永久磁石を備え、第2のロータ(25)が 巻き線(33)を備えていることを特徴とする請求の範囲第10項または第11 項に記載の制御装置。 13.前記第1のロータ(24)が第2のロータ(25)内に同心状に配置さ れており、前記第1のロータ(24)がクラッチ(27)を介して内燃機関(2 1)の出力軸(26)に結合されており、前記第2のロータ(25)が前記トラ ンスミッション(29)に結合されていることを特徴とする請求の範囲第10項 から第12項までのいずれか1項に記載の制御装置。 14.前記クラッチ(27)がロック可能で、従って回転出来ないようにし得 ることを特徴とする請求の範囲第10項から第13項までのいずれか1項に記載 の制御装置。 15.前記巻き線(33)が3相電流が供給される3相巻き線であることを特 徴とする請求の範囲第10項から第12項までのいずれか1項に記載の制御装置 。 16.前記3相巻き線には、該3相巻き線を短絡させることが可能なように可 変抵抗の係合可能な短絡手段(32)が設けられていることを特徴とする請求の 範囲第15項に記載の制御装置。 17.前記トランスミッション(29)が車両の駆動軸すなわち車軸(28) に結合されていることを特徴とする請求の範囲第10項から第16項までのいず れか1項に記載の制御装置。 18.前記トランスミッション(29)が連続的に可変のトランスミッション (CVT)であることを特徴とする請求の範囲第10項から第17項までのいず れか1項に記載の制御装置。[Claims]   1. The first and second rotors (24, 25) are connected via the coupling (27). Having an output shaft (26) to which an energy converter (23) is connected. A hybrid drive system including a fuel engine (21), wherein the rotor (24, 25) ) Are rotatable at different speeds with respect to each other, and less of said rotors (24, 25). At least on one side, a DC current from a DC power source, for example an electric battery (22) Is provided with one or more windings (33) supplied via a current transformer (30). Transmission with variable gear ratio (29) Coupled to one of the energy converter rotors (24, 25); The transmission (29) and the current transformer (30) cooperate by a control device. And a hybrid drive device.   2. A permanent magnet is wound on the first rotor (24), and a winding is wound on the second rotor (25). Hive according to claim 1, characterized in that a line (33) is provided. Lid drive.   3. A first rotor (24) is arranged concentrically inside a second rotor (25). The first rotor (24) is connected via the coupling (27) to the internal combustion engine (2). 1) is coupled to the output shaft (26) and the second rotor (25) is (29) The method according to (1) or (2), wherein The hybrid drive as described.   4. The coupling (27) is lockable and therefore not rotating The clutch according to any one of claims 1 to 3, wherein The hybrid drive device according to claim 1.   5. The winding (33) is a three-phase winding to which a three-phase current is supplied. The hybrid drive device according to claim 1 or 2, wherein   6. A variable resistor for short-circuiting the three-phase winding to the three-phase winding is engageable. A short circuit means (32) is provided. Onboard hybrid drive.   7. The transmission (29) is a drive shaft of a vehicle, that is, an axle (28). Any one of claims 1 to 6 characterized by being coupled to 2. The hybrid drive device according to claim 1.   8. A transmission wherein the transmission (29) is continuously variable. (CVT), any one of claims 1 to 7 2. The hybrid drive device according to claim 1.   9. Energy converter (23) is coupled via coupling (27) A wheeled vehicle including an internal combustion engine (21) with an output shaft (26) The energy converter (23) has first and second rotors (24, 25). The rotors (24, 25) are rotatable at different speeds relative to each other; At least one of the data (24, 25) includes a direct current such as an electric battery (22). One or more windings (3) supplied with DC current from a power supply via a current transformer (30). In a wheeled vehicle provided with 3), a transmission with a variable gear ratio ( 29) is coupled to one of the rotors (24, 25) of the energy converter, The transmission (29) and the current transformer (30) cooperate by a control device. A wheel car characterized by the above.   10. And an internal combustion engine (21) interconnected via a clutch (27). A control device (40) for controlling the torque and the rotation speed of the energy converter (23) , For example, a control device for a hybrid drive device that is a drive source of an automobile Wherein said energy converters (23) can rotate at different speeds with respect to each other. Operable first and second rotors (24, 25). ) Includes at least one of a DC power supply such as an electric battery (22). Providing one or more windings (33) through which direct current is supplied via a current transformer (30); The control device (40) for controlling the torque and the rotation speed is an internal combustion engine ( 21) and send or receive signals to or from the current transformer (30) And a signal is sent to the control device (41), and the control device (41) Continuously variable coupled to one of the rotors (24, 25) of the gear converter To the first transmission (29), and further to the first rotor (24) A rotation speed sensor is provided to detect the rotation speed of the second rotor (25). The rotation speed sensor sends a signal to a rotation speed estimation device (42), Degree The control device (42) sends a signal to the control device (40) that controls the torque and the rotation speed. Pedal position for detecting the position of the feed, accelerator or brake pedal (44, 45) The position sensor (43) sends a signal to a control device (40) that controls the torque and the rotation speed. A control device for a hybrid drive device, comprising:   11. Appropriate operation to be selected by the operator via the control panel (47) The driving strategy device (46) receives the signal regarding the strategy, and thereafter, receives the driving strategy device (4). 6) a control device (40) for controlling the torque and the rotation speed and a clutch (27). Providing a signal, wherein the driving strategy device (46) monitors the voltage level of the DC power supply, A monitor that receives a signal from a sensor (49) that detects the state of the internal combustion engine (21) ( The control device according to claim 10, wherein a signal is received from (48). Place.   12. The first rotor (24) includes a permanent magnet, and the second rotor (25) 11. The method according to claim 10, further comprising a winding. The control device according to Item.   13. The first rotor (24) is disposed concentrically within a second rotor (25). The first rotor (24) is connected to the internal combustion engine (2) via a clutch (27). 1) and the second rotor (25) is coupled to the output shaft (26). 11. A transmission according to claim 10, wherein said transmission is coupled to said transmission. 13. The control device according to any one of items 12 to 12.   14. The clutch (27) may be lockable and thus unable to rotate. The method according to any one of claims 10 to 13, wherein: Control device.   15. The winding (33) is a three-phase winding to which a three-phase current is supplied. The control device according to any one of claims 10 to 12, characterized in that: .   16. The three-phase winding can be short-circuited so that the three-phase winding can be short-circuited. A short-circuit means (32) capable of engaging a variable resistance is provided. Item 16. The control device according to Item 15.   17. The transmission (29) is a drive shaft of a vehicle, that is, an axle (28). Claims 10 to 16 characterized in that they are connected to The control device according to claim 1.   18. A transmission wherein the transmission (29) is continuously variable. (CVT). Any one of claims 10 to 17 The control device according to claim 1.
JP51113297A 1995-09-04 1996-09-03 Hybrid drive Ceased JP2001508375A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9503043A SE505214C2 (en) 1995-09-04 1995-09-04 hybrid Drive
SE9503043-3 1995-09-04
PCT/SE1996/001090 WO1997009191A1 (en) 1995-09-04 1996-09-03 Hybrid drive system

Publications (1)

Publication Number Publication Date
JP2001508375A true JP2001508375A (en) 2001-06-26

Family

ID=20399363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51113297A Ceased JP2001508375A (en) 1995-09-04 1996-09-03 Hybrid drive

Country Status (7)

Country Link
US (1) US6098735A (en)
EP (1) EP0848671B1 (en)
JP (1) JP2001508375A (en)
AU (1) AU6949196A (en)
DE (1) DE69618647T2 (en)
SE (1) SE505214C2 (en)
WO (1) WO1997009191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009581B1 (en) * 2002-11-18 2011-01-20 일렉트릭 라인 웁란드 에이비 System for storage of power and vehicle provided with the same
WO2016199813A1 (en) * 2015-06-09 2016-12-15 株式会社豊田自動織機 Power control device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783762B1 (en) 1998-09-29 2000-11-24 Renault MOTORIZATION DEVICE FOR HYBRID VEHICLE
DE19850052A1 (en) * 1998-10-30 2000-05-04 Asea Brown Boveri Generator with dual drive with two drive machines has first gearbox shaft arranged between generator shaft and slip ring shaft and second drive machine connected to second gearbox shaft
SE514510C2 (en) * 1998-12-08 2001-03-05 Abb Ab Hybrid drive device and wheeled vehicles equipped with a hybrid drive device
JP2000224714A (en) * 1999-02-03 2000-08-11 Mitsubishi Motors Corp Vehicle with electric motor
JP3153527B2 (en) * 1999-04-05 2001-04-09 本田技研工業株式会社 Hybrid vehicle control device
DE10036504B4 (en) * 1999-08-02 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg powertrain
JP3391750B2 (en) * 1999-10-28 2003-03-31 株式会社デンソー Vehicle accessory drive
EP1098422A1 (en) * 1999-11-08 2001-05-09 PILLER-GmbH No-break power supply with an electrical machine and a flywheel
DE10011956A1 (en) * 2000-03-11 2001-09-27 Mannesmann Sachs Ag Electric machine e.g. starter-generator for vehicles, has control circuit with individual components arranged inside housing, extending radially outside housing wall with respect to rotation axis of rotor
US6405818B1 (en) * 2000-04-11 2002-06-18 Ford Global Technologies, Inc. Hybrid electric vehicle with limited operation strategy
AU2002212088A1 (en) * 2000-09-21 2002-04-02 Robert Bosch G.M.B.H Starting device
SE521861C2 (en) * 2000-10-02 2003-12-16 Volvo Europa Truck Nv A hybrid drive system for a motor vehicle
DE10057092A1 (en) 2000-11-17 2002-05-23 Zahnradfabrik Friedrichshafen Drive system for vehicle has left and right drive wheels, each driven by electric motor(s) and gearbox with mechanical, continuously adjustable gear unit(s) with bevel pulley pairs, belt element
EP1244201A1 (en) * 2001-03-21 2002-09-25 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Electromechanical coupling device for power transmission in vehicles
US6507128B2 (en) * 2001-05-23 2003-01-14 General Electric Company Low-energy storage fast-start uninterruptible power supply system and method
US6857918B1 (en) * 2002-03-28 2005-02-22 Bombardier Recreational Products Inc. Personal watercraft having a hybrid power source
US7008342B2 (en) * 2003-08-15 2006-03-07 Silvatech Global Systems Ltd. Electro-mechanical continuously variable transmission
US7002317B2 (en) * 2004-02-18 2006-02-21 Honeywell International Inc. Matched reactance machine power-generation system
WO2005112235A1 (en) * 2004-05-18 2005-11-24 Synergetic Engineering Pty Ltd Hybrid propulsion system
US20050258082A1 (en) * 2004-05-24 2005-11-24 Lund Mark T Additive dispensing system and water filtration system
US8893927B2 (en) 2004-05-24 2014-11-25 Pur Water Purification Products, Inc. Cartridge for an additive dispensing system
US7670479B2 (en) * 2004-05-24 2010-03-02 PUR Water Purification, Inc. Fluid container having an additive dispensing system
US7332881B2 (en) 2004-10-28 2008-02-19 Textron Inc. AC drive system for electrically operated vehicle
US7240751B2 (en) * 2005-05-09 2007-07-10 Ford Global Technologies, Llc Dual rotor motor for a hybrid vehicle transmission
EP1742336B1 (en) * 2005-07-04 2011-03-09 Jörg Oldenburg Continuous electrical gearing
US7624830B1 (en) * 2005-07-22 2009-12-01 Kevin Williams Energy recoverable wheel motor
US7654355B1 (en) * 2006-01-17 2010-02-02 Williams Kevin R Flywheel system for use with electric wheels in a hybrid vehicle
US7710081B2 (en) 2006-10-27 2010-05-04 Direct Drive Systems, Inc. Electromechanical energy conversion systems
US7880355B2 (en) * 2006-12-06 2011-02-01 General Electric Company Electromagnetic variable transmission
JP4693865B2 (en) * 2007-08-27 2011-06-01 株式会社豊田中央研究所 Power transmission device
US7926889B2 (en) 2007-10-29 2011-04-19 Textron Innovations Inc. Hill hold for an electric vehicle
EP2072310A1 (en) * 2007-12-18 2009-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO An accessory drive system and use of an electromechanical converter
CN102099090A (en) * 2008-07-21 2011-06-15 3M创新有限公司 Apparatus for dispersing additive into a fluid stream
US8253298B2 (en) 2008-07-28 2012-08-28 Direct Drive Systems, Inc. Slot configuration of an electric machine
GB2463502A (en) * 2008-09-16 2010-03-17 Flybrid Systems Llp Electrical machine, such as a flywheel starter generator
US8231504B2 (en) * 2009-02-16 2012-07-31 GM Global Technology Operations LLC Powertrain with dual rotor motor/generator
US20110094807A1 (en) * 2009-10-26 2011-04-28 Steve Pruitt Electric drive system for passive vehicle
US8733481B2 (en) 2010-03-23 2014-05-27 GM Global Technology Operations LLC Method for starting an engine of a hybrid powertrain
WO2011150297A2 (en) * 2010-05-26 2011-12-01 Ares Transportation Technologies Power transmission system for hybrid vehicle
DE102011106372A1 (en) * 2011-07-04 2013-01-10 Auma Riester Gmbh & Co. Kg Actuator with an assembly for the electrical manual actuation of an actuator
EP2554421A3 (en) 2011-08-01 2015-10-07 Dana Limited Method and apparatus for transferring power between a flywheel and a vehicle
US9000644B2 (en) * 2012-06-05 2015-04-07 Remy Technologies, L.L.C. Concentric motor power generation and drive system
US9203234B2 (en) * 2013-01-28 2015-12-01 Deere & Company Fault detection system and method for a generator
CN103812300A (en) * 2013-02-04 2014-05-21 摩尔动力(北京)技术股份有限公司 Electromagnetic contra-rotating engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1340249A (en) * 1916-11-29 1920-05-18 Pieper Henri Automatic controlling apparatus for mixed driving systems
CA969600A (en) * 1971-05-28 1975-06-17 Fukuo Shibata Electromagnetic coupling and electric rotating machine arrangement control system
JPS53167B2 (en) * 1971-09-15 1978-01-06
US4282947A (en) * 1978-05-11 1981-08-11 Vadetec Corporation Hybrid vehicular power system and method
DE2943554A1 (en) * 1979-10-27 1981-05-07 Volkswagenwerk Ag HYBRID DRIVE FOR A VEHICLE, IN PARTICULAR MOTOR VEHICLE
US4625823A (en) * 1984-09-17 1986-12-02 Aisin Seiki Kabushiki Kaisha Control system and method for a flywheel type power delivery system
DE3889911T2 (en) * 1987-02-18 1995-01-05 Hino Motors Ltd ELECTRIC BRAKE AND AUXILIARY ACCELERATION DEVICE FOR VEHICLES.
DE4118678A1 (en) * 1991-06-07 1992-12-10 Detlef Prof Dipl Ing Wodni Vehicle hybrid transmission with regenerative electric motor - has slip ring motor and control circuit with battery storage
DE4217668C1 (en) * 1992-05-28 1993-05-06 Daimler Benz Ag Method for controlling a hybrid drive that drives a vehicle
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
US5697466A (en) * 1992-11-12 1997-12-16 Kabushikikaisha Equos Research Hybrid vehicle
DE4318949C2 (en) * 1993-02-19 1999-03-18 Mannesmann Ag Electrical machine with at least one clutch
DE4323601A1 (en) * 1993-07-09 1995-01-12 Mannesmann Ag Drive arrangement for a hybrid vehicle
DE4408719C1 (en) * 1994-03-15 1995-07-06 Volkswagen Ag Combined electric generator and motor for vehicle hybrid drive
US5495912A (en) * 1994-06-03 1996-03-05 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Hybrid powertrain vehicle
JP3414059B2 (en) * 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 Vehicle drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009581B1 (en) * 2002-11-18 2011-01-20 일렉트릭 라인 웁란드 에이비 System for storage of power and vehicle provided with the same
WO2016199813A1 (en) * 2015-06-09 2016-12-15 株式会社豊田自動織機 Power control device

Also Published As

Publication number Publication date
US6098735A (en) 2000-08-08
WO1997009191A1 (en) 1997-03-13
EP0848671A1 (en) 1998-06-24
AU6949196A (en) 1997-03-27
DE69618647T2 (en) 2002-08-14
SE9503043L (en) 1997-03-05
EP0848671B1 (en) 2002-01-02
DE69618647D1 (en) 2002-02-28
SE505214C2 (en) 1997-07-14
SE9503043D0 (en) 1995-09-04

Similar Documents

Publication Publication Date Title
JP2001508375A (en) Hybrid drive
US5701062A (en) Pulsing control for an inertial drive system for a multi-motor binary array vehicle
US5823280A (en) Hybrid parallel electric vehicle
CN102815294B (en) Engine start control device for hybrid vehicles
EP0634980B1 (en) Electric vehicle drive train with rollback detection and compensation
US7195087B2 (en) Drive apparatus for vehicle
US8666579B2 (en) Hybrid vehicle
US6123163A (en) Controlling apparatus for a hybrid car
WO1996022894A9 (en) Pulsing control for an inertial drive system for a multi-motor binary array vehicle
US20070240922A1 (en) Power Output Apparatus and Hybrid Vehicle Equipped With the Same
US20050051371A1 (en) Method for controlling a wheel drive system of a hybrid vehicle
JPS6157204B2 (en)
JP2005512498A (en) Apparatus and method for adjusting the running speed of a vehicle
JP3052820B2 (en) Vehicle drive device and drive control method thereof
US20210276536A1 (en) Vehicle
JP2004352042A (en) Hybrid vehicle
JP3216590B2 (en) Operation control device for prime mover and operation control device for hybrid vehicle
JPH04297330A (en) Series-parallel complex hybrid car system
JPH11332019A (en) Power transmission apparatus and four-wheel-drive-vehicle using the same
JP3099723B2 (en) Vehicle engine control device and control method thereof
JP3173436B2 (en) Hybrid electric vehicle
EP0648635B1 (en) Hybrid propulsion system for vehicles, in particular for urban use
JP3180671B2 (en) Power output device
JPH07250403A (en) Controller for electric vehicle
JPH10150702A (en) Power output device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040623

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040809

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20041101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207