[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001335589A - Method for producing organoalkoxysilane - Google Patents

Method for producing organoalkoxysilane

Info

Publication number
JP2001335589A
JP2001335589A JP2000163238A JP2000163238A JP2001335589A JP 2001335589 A JP2001335589 A JP 2001335589A JP 2000163238 A JP2000163238 A JP 2000163238A JP 2000163238 A JP2000163238 A JP 2000163238A JP 2001335589 A JP2001335589 A JP 2001335589A
Authority
JP
Japan
Prior art keywords
compound
sup
producing
mol
organoalkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000163238A
Other languages
Japanese (ja)
Inventor
Hisayo Fukuzawa
寿代 福澤
Katsuji Shibata
勝司 柴田
Ayako Matsuo
亜矢子 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000163238A priority Critical patent/JP2001335589A/en
Publication of JP2001335589A publication Critical patent/JP2001335589A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for safely and efficiently producing an organomonoalkoxysilane in a high yield with eliminating unnecessary processes such as a separation while easily controlling the reaction. SOLUTION: The organomovoalkorysilave is produced by carrying out the hydrosilylation reaction of a silane compound of formula (1): R1R2HSiX...(1) (R1 and R2 are each independently a functional group constructed of atoms selected from C, H, O and N; and X is a halogen element) with a compound having an unsaturated carbon bond able to be hydrosilylated in a solvent and adding and reacting a metal alkoxide to the product without separating the reaction solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はオルガノアルコキシ
シランの製造方法に関する。
[0001] The present invention relates to a method for producing an organoalkoxysilane.

【0002】[0002]

【従来の技術】SiH結合を有するシリコン化合物と不
飽和脂肪酸化合物を反応させてC−Si結合を持つ化合
物を得る反応は、ヒドロシリル化反応と呼ばれ、広く用
いられている公知の技術である。ヒドロシリル化の触媒
は一般的に白金触媒が用いられている。
2. Description of the Related Art The reaction of reacting a silicon compound having a SiH bond with an unsaturated fatty acid compound to obtain a compound having a C-Si bond is called a hydrosilylation reaction and is a widely used known technique. As a catalyst for hydrosilylation, a platinum catalyst is generally used.

【0003】オルガノアルコキシシランの製造方法とし
ては、オルガノクロロシランとアルコールを反応させる
アルコキシ化反応がよく知られている。この方法では、
塩化水素ガスが発生するため、その回収方法や副生成物
による生成物の収率の低下が問題である。
As a method for producing an organoalkoxysilane, an alkoxylation reaction of reacting an organochlorosilane with an alcohol is well known. in this way,
Since hydrogen chloride gas is generated, there is a problem in a method of recovering the same and a decrease in the yield of a product due to a by-product.

【0004】塩化水素ガスが発生しない方法として、ア
ルコキシドを用いてアルコキシ化反応を行う技術が開示
されている。ジブロムシランとナトリウムアルコキシド
と反応させてジアルコキシシランを生成する方法は、M
illerらによりJ.Am.Chem.Soc.79
巻5604−5606頁(1957)に報告されてい
る。彼等は生成物が完全に分解しないようにするため、
不活性炭化水素溶媒および乾燥窒素雰囲気下で行うこと
が必須であると述べている。また、モノブロムシランは
この方法では反応しなかったと述べている。
As a method that does not generate hydrogen chloride gas, a technique of performing an alkoxylation reaction using an alkoxide is disclosed. A method for producing dialkoxysilane by reacting dibromosilane with sodium alkoxide is described in M.
J. Iller et al. Am. Chem. Soc. 79
Vol. 5604-5606 (1957). To ensure that the products do not decompose completely,
It is stated that it is essential to carry out under an inert hydrocarbon solvent and dry nitrogen atmosphere. It also states that monobromosilane did not react in this manner.

【0005】特開平6−73072号公報には、珪素原
子に少なくとも一個の水素原子が結合しているクロロシ
ランとナトリウムオルガノキシドを無溶媒で反応させ
て、高収率でオルガノオキシシランを得る方法が開示さ
れている。また、特開平11−315082号公報に
は、ジオルガノジクロロシランとナトリウムオルガノキ
シドを反応させてオルガノアルコキシシランを合成して
いる。しかし、珪素に結合した水素原子は非常に高い反
応性を持っているため、珪素に結合した水素原子を持つ
クロロシランを用いてオルガノオキシシラン水素化物を
製造する方法は、副生成物の問題がある。また、アルコ
キシドによるアルコキシ化反応は急激な発熱反応であ
り、無溶媒では温度の制御が困難であるという問題があ
る。
Japanese Patent Application Laid-Open No. Hei 6-73072 discloses a method for producing organooxysilane in high yield by reacting chlorosilane in which at least one hydrogen atom is bonded to a silicon atom with sodium organooxide without solvent. It has been disclosed. In Japanese Patent Application Laid-Open No. H11-315082, an organoalkoxysilane is synthesized by reacting diorganodichlorosilane with sodium organooxide. However, since a hydrogen atom bonded to silicon has a very high reactivity, a method of producing an organooxysilane hydride using chlorosilane having a hydrogen atom bonded to silicon has a problem of a by-product. . Further, the alkoxylation reaction with an alkoxide is a rapid exothermic reaction, and there is a problem that it is difficult to control the temperature without a solvent.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、分離
などの工程が少なく効率的で、かつ、反応の制御が容易
であり、安全に高収率でオルガノモノアルコキシシラン
が得られる製造方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a process for producing an organomonoalkoxysilane which is efficient with few steps such as separation, easy to control the reaction, and can safely and in high yield. Is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は下記(a)〜
(f)に記載の事項に関する。 (a) 溶媒中で式(1)で示されるシラン化合物と、
ヒドロシリル化が可能な不飽和炭素結合を持つ化合物と
をヒドロシリル化反応させた後、反応溶液を分離せずに
これに金属アルコキシドを添加して反応させることを特
徴とするオルガノアルコキシシランの製造方法。
Means for Solving the Problems The present invention provides the following (a) to
Regarding the matters described in (f). (A) a silane compound represented by the formula (1) in a solvent;
A method for producing an organoalkoxysilane, comprising: subjecting a compound having an unsaturated carbon bond capable of hydrosilylation to a hydrosilylation reaction, and then adding a metal alkoxide to the reaction solution without separating the reaction solution to cause a reaction.

【化3】 R<SUP>1</SUP>R<SUP>2</SUP>HSiX …式(1) (式中、R<SUP>1</SUP>、R<SUP>2</SUP>はそれぞれ炭
素原子、水素原子、酸素原子、窒素原子から選ばれる原
子で構成される官能基であり、同じ官能基であってもよ
い。Xはハロゲン元素を示す。) (b) 溶媒が、水酸基を持たないアミド化合物、ケト
ン化合物、エーテル化合物、炭化水素化合物、エステル
化合物及びニトリル化合物から選ばれる一つまたは複数
の化合物であることを特徴とする(a)に記載のオルガ
ノアルコキシシランの製造方法。 (c) 金属アルコキシドとして、式(2)で表される
アルコキシドを用いたことを特徴とする(a)または
(b)に記載のオルガノアルコキシシランの製造方法。
Embedded image R <SUP> 1 </ SUP> R <SUP> 2 </ SUP> HSix Formula (1) (where R <SUP> 1 </ SUP>, R <SUP> 2 </ SUP>> Is a functional group composed of atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, and a nitrogen atom, and may be the same functional group. X represents a halogen element.) (B) The solvent is The method for producing an organoalkoxysilane according to (a), wherein the compound is one or more compounds selected from amide compounds, ketone compounds, ether compounds, hydrocarbon compounds, ester compounds, and nitrile compounds having no hydroxyl group. . (C) The method for producing an organoalkoxysilane according to (a) or (b), wherein the alkoxide represented by the formula (2) is used as the metal alkoxide.

【化4】MOR<SUP>3</SUP> …式(2) (式中R<SUP>3</SUP>はアルキル基であり、Mはアルカ
リ金属である。) (d) シラン化合物がジメチルクロロシランであるこ
とを特徴とする(a)〜(c)のいずれかに記載のオル
ガノアルコキシシランの製造方法。 (e) シラン化合物と不飽和炭素結合を持つ化合物の
配合比が、シラン化合物1molに対して不飽和炭素結
合を持つ化合物0.8〜1.5molであることを特徴
とする(a)〜(d)のいずれかに記載のオルガノアル
コキシシランの製造方法。 (f) シラン化合物と金属アルコキシドの配合比が、
シラン化合物1molに対して金属アルコキシド0.8
〜1.5molであることを特徴とする(a)〜 (e)のいずれかに記載のオルガノアルコキシシランの
製造方法。
Embedded image MOR <SUP> 3 </ SUP> Formula (2) (wherein R <SUP> 3 </ SUP> is an alkyl group and M is an alkali metal). The method for producing an organoalkoxysilane according to any one of (a) to (c), which is dimethylchlorosilane. (E) The compounding ratio of the silane compound and the compound having an unsaturated carbon bond is 0.8 to 1.5 mol of the compound having an unsaturated carbon bond per 1 mol of the silane compound. d) The method for producing an organoalkoxysilane according to any one of the above. (F) The compounding ratio of the silane compound and the metal alkoxide is
Metal alkoxide 0.8 to 1 mol of silane compound
The method for producing an organoalkoxysilane according to any one of (a) to (e), wherein the amount is from 1.5 to 1.5 mol.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において原料となるシラン化合物としては式
(1)で示される化合物を使用することができる。官能
基R<SUP>1</SUP>、R<SUP>2</SUP>は例えば、メチル
基、エチル基、プロピル基、n−ブチル基、t−ブチル
基、オクタデシル基、オクチル基などの鎖状アルキル
基、シクロヘキシル基などの環状アルキル基、メルカプ
ト基、アミノ基、メチルアミノ基等のアルキル置換アミ
ノ基などから選ぶことができる。このような化合物とし
ては例えばジメチルクロロシラン、ジエチルクロロシラ
ン、ジエチルブロモシランなどが好ましく用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, a compound represented by the formula (1) can be used as a silane compound as a raw material. The functional groups R <SUP> 1 </ SUP> and R <SUP> 2 </ SUP> include, for example, methyl group, ethyl group, propyl group, n-butyl group, t-butyl group, octadecyl group, octyl group and the like. It can be selected from a cyclic alkyl group such as a chain alkyl group and a cyclohexyl group, and an alkyl-substituted amino group such as a mercapto group, an amino group and a methylamino group. As such a compound, for example, dimethylchlorosilane, diethylchlorosilane, diethylbromosilane and the like are preferably used.

【0009】本発明における溶媒は、原料となるモノハ
ロゲン化シランを溶解するもので、本発明の製造方法の
条件下で各成分との反応が進行しないものであればどの
ようなものでもよい。例えば、ホルムアミド、アセトア
ミド、N,N−ジメチルアセトアミド等のアミド化合
物、2−ブタノン、シクロヘキサノン、アセチルアセト
ン、2,3−ブタンジオン等のケトン化合物、ジプロピ
ルエーテル、2−メトキシエチルエーテル、ジブチルエ
ーテル、ジオキサン、テトラヒドロフランなどのエーテ
ル化合物、ヘキサン、トルエン、シクロヘキサン、2−
メチルペンタン、ベンゼン等の炭化水素化合物、ギ酸エ
チル、酢酸エチル、酢酸プロピル、プロピオン酸メチル
等のエステル化合物、アセトニトリル、プロピオニトリ
ルなどのニトリル化合物などを用いることができる。な
お、アルコール類はそれ自体がモノハロゲン化シランと
反応しやすく、これに伴ってハロゲン化水素が生じるた
め、本発明による生成物を得ることが難しくなり、ま
た、ハロゲン化水素の回収手段を講じる必要が生じる。
The solvent in the present invention dissolves the monohalogenated silane as a raw material, and may be any solvent as long as the reaction with each component does not proceed under the conditions of the production method of the present invention. For example, amide compounds such as formamide, acetamide, N, N-dimethylacetamide, ketone compounds such as 2-butanone, cyclohexanone, acetylacetone and 2,3-butanedione, dipropyl ether, 2-methoxyethyl ether, dibutyl ether, dioxane, Ether compounds such as tetrahydrofuran, hexane, toluene, cyclohexane, 2-
Hydrocarbon compounds such as methylpentane and benzene, ester compounds such as ethyl formate, ethyl acetate, propyl acetate and methyl propionate, and nitrile compounds such as acetonitrile and propionitrile can be used. It should be noted that alcohols themselves are liable to react with the monohalogenated silane, and hydrogen halide is thereby generated, so that it is difficult to obtain the product according to the present invention, and a means for recovering the hydrogen halide is employed. Need arises.

【0010】シラン化合物と不飽和炭素結合を持つ化合
物の反応には一般に白金触媒が用いられており、本発明
においてもこれを利用することができる。例えばヘキサ
クロロ白金(IV)酸六水和物などが好ましく用いられ
る。触媒の量はコスト面などからジメチルクロロシラン
の0.01当量以下が好ましく、10<SUP>-7</SUP>当
量未満では触媒の効果が十分に現れないおそれがあるた
め。10<SUP>-7</SUP>当量以上が好ましい。
A platinum catalyst is generally used for the reaction between a silane compound and a compound having an unsaturated carbon bond, and this can be used in the present invention. For example, hexachloroplatinic acid (IV) hexahydrate is preferably used. The amount of the catalyst is preferably 0.01 equivalent or less of dimethylchlorosilane from the viewpoint of cost and the like. If the amount is less than 10 <SUP> -7 </ SUP> equivalent, the effect of the catalyst may not be sufficiently exhibited. It is preferably at least 10 <SUP> -7 </ SUP> equivalent.

【0011】本発明におけるヒドロシリル化が可能な不
飽和炭素結合を持つ化合物としては、例えば、エチレ
ン、プロピレン、1−ブテン、1−ペンテン、1−ヘキ
セン、1−ヘプテン、1−オクテン、1−ノネン、1−
デセン、2−ブテン、イソブチレン、2−ペンテン、3
−メチル−1−ブテン、2−メチル−2−ブテン、2,
3−ジメチル−2−ブテン等のアルケン、アリルアセテ
ート、アセト酢酸アリル、アリルベンゼン、アリルグリ
シジルエーテル、アリルエチルエーテル、イソチオシラ
ン酸アリル、オイゲノール、3−アリルオキシ−1,2
−プロパンジオール、o−アリルフェノール、アリルフ
ェニルエーテル、アリル尿素、酢酸ビニル、4−ビニル
−1−シクロヘキセン、スチレン、メチルスチレンなど
のビニル基を持つ化合物が挙げられる。
The compound having an unsaturated carbon bond capable of hydrosilylation in the present invention includes, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-nonene. , 1-
Decene, 2-butene, isobutylene, 2-pentene, 3
-Methyl-1-butene, 2-methyl-2-butene, 2,
Alkenes such as 3-dimethyl-2-butene, allyl acetate, allyl acetoacetate, allyl benzene, allyl glycidyl ether, allyl ethyl ether, allyl isothiosilane, eugenol, 3-allyloxy-1,2
And compounds having a vinyl group such as -propanediol, o-allylphenol, allylphenylether, allylurea, vinyl acetate, 4-vinyl-1-cyclohexene, styrene and methylstyrene.

【0012】本発明における金属アルコキシドとしては
式(2)で表されるアルコキシドを用いることができ
る。このようなアルコキシドとしては例えばナトリウム
メトキシド、ナトリウムエトキシド、リチウムメトキシ
ド、カリウムメトキシドなどが好ましく用いられる。
The alkoxide represented by the formula (2) can be used as the metal alkoxide in the present invention. As such an alkoxide, for example, sodium methoxide, sodium ethoxide, lithium methoxide, potassium methoxide and the like are preferably used.

【0013】シラン化合物と不飽和炭素結合を有する化
合物の配合比は、シラン化合物1molに対して不飽和
炭素結合を有する化合物0.8〜1.5molとするこ
とが好ましく、Si−H結合が残らないように、不飽和
炭素結合を有する化合物を1.0〜1.5molとする
ことが特に好ましい。シラン化合物1molに対して不
飽和炭素結合を有する化合物が0.8mol未満の場
合、未反応のSi−H結合が多く、副生成物が生成し、
収率が悪くなるおそれがある。また、シラン化合物1m
olに対して不飽和炭素結合を有する化合物が1.5m
olを越える場合は余分な原料が多いことから、コスト
高になりやすい。
The compounding ratio of the silane compound and the compound having an unsaturated carbon bond is preferably 0.8 to 1.5 mol of the compound having an unsaturated carbon bond per 1 mol of the silane compound. It is particularly preferable that the compound having an unsaturated carbon bond be used in an amount of 1.0 to 1.5 mol so as not to cause such a problem. When the amount of the compound having an unsaturated carbon bond is less than 0.8 mol relative to 1 mol of the silane compound, many unreacted Si-H bonds are generated, and a by-product is generated.
Yield may be poor. In addition, silane compound 1m
1.5 m of a compound having an unsaturated carbon bond to ol
When the amount exceeds ol, the cost is likely to increase due to a large amount of extra raw materials.

【0014】また、シラン化合物と金属アルコキシドの
配合比は、シラン化合物1molに対して金属アルコキ
シドを0.8〜1.5molとすることが好ましく、金
属アルコキシドを1.0〜1.1molとすることが特
に好ましい。アルコキシドのジメチルクロロシランに対
する配合比が1.5を越えると、使用するアルコキシド
が過剰となることからコスト面で不利になりやすく、ま
た生成物と過剰のアルコキシドが混合し、分離が難しく
なる傾向がある。未反応のモノハロゲン化シランが大量
に残るため、効率面で不利になりやすい。
The compounding ratio of the silane compound to the metal alkoxide is preferably 0.8 to 1.5 mol of the metal alkoxide to 1 mol of the silane compound, and 1.0 to 1.1 mol of the metal alkoxide. Is particularly preferred. If the compounding ratio of the alkoxide to dimethylchlorosilane exceeds 1.5, the alkoxide to be used becomes excessive, so that it tends to be disadvantageous in terms of cost, and the product and the excess alkoxide are mixed, so that separation tends to be difficult. . Since a large amount of unreacted monohalogenated silane remains, it tends to be disadvantageous in terms of efficiency.

【0015】反応温度としては、溶媒の融点から沸点の
範囲とする。発熱反応となるため反応容器を冷却しなが
ら30〜70℃にすることが好ましい。30℃より低い
とヒドロシリル化及びアルコキシ化の速度が遅くなる傾
向があり、70℃より高いと急激に反応が進行し、生成
物が容器から吹き出すおそれがあるなど、反応制御が難
しくなる傾向がある。
The reaction temperature ranges from the melting point of the solvent to the boiling point. It is preferable to set the temperature to 30 to 70 ° C. while cooling the reaction vessel to cause an exothermic reaction. If the temperature is lower than 30 ° C., the rate of hydrosilylation and alkoxylation tends to be low. If the temperature is higher than 70 ° C., the reaction proceeds rapidly, and the reaction control tends to be difficult, for example, the product may be blown out of the container. .

【0016】反応溶液の濃度としては、シラン化合物と
不飽和炭素結合を有する化合物及び金属アルコキシドの
重量の和が、この重量の和に溶媒の重量を加えた重量に
対して90%以下であることが好ましく、10〜50%
が特に好ましい。90%を越える高濃度になると、温度
制御が難しくなる傾向がある。10%未満では反応時間
が長くなりすぎる傾向があり、また、使用する溶媒量が
増えることからコスト高になりやすい。
The concentration of the reaction solution is such that the sum of the weight of the silane compound, the compound having an unsaturated carbon bond, and the metal alkoxide is 90% or less based on the sum of this weight and the weight of the solvent. Is preferred, and 10 to 50%
Is particularly preferred. When the concentration is higher than 90%, temperature control tends to be difficult. If it is less than 10%, the reaction time tends to be too long, and the cost tends to be high because the amount of solvent used increases.

【0017】本発明の製造方法において、反応は乾燥気
体中で行うことが好ましく、不活性気体雰囲気下で行う
ことが特に好ましい。水分を含む雰囲気下ではSi−H
結合は水により分解され、Si−OH結合となるおそれ
がある。また、白金触媒は酸素によって失活する場合が
ある。
In the production method of the present invention, the reaction is preferably performed in a dry gas, particularly preferably in an inert gas atmosphere. Si-H under an atmosphere containing moisture
The bond may be decomposed by water to become a Si—OH bond. Further, the platinum catalyst may be deactivated by oxygen.

【0018】本発明において生成したオルガノアルコキ
シシランは、反応溶液から抽出、蒸留などによって分離
することができる。好ましくは減圧蒸留によって分離さ
れる。
The organoalkoxysilane produced in the present invention can be separated from the reaction solution by extraction, distillation and the like. Preferably it is separated by vacuum distillation.

【0019】本発明に製造方法の一例を以下に説明す
る。まず反応容器で触媒と溶媒を混合し、シラン化合物
を添加し、続けて不飽和炭素結合を有する化合物を添加
する。反応容器内の温度は徐々に上昇するので、30〜
70℃の範囲となるように反応容器を冷却するなどして
温度を調製する。以上の操作は不活性気体中で行う。反
応が十分に行われた後、溶液を取り出し、減圧蒸留によ
って分離することによって、生成したオルガノアルコキ
シシランを単離することができる。
An example of the manufacturing method according to the present invention will be described below. First, a catalyst and a solvent are mixed in a reaction vessel, a silane compound is added, and then a compound having an unsaturated carbon bond is added. Since the temperature inside the reaction vessel gradually rises,
The temperature is adjusted by, for example, cooling the reaction vessel to a temperature within the range of 70 ° C. The above operation is performed in an inert gas. After the reaction is sufficiently performed, the resulting organoalkoxysilane can be isolated by removing the solution and separating the solution by distillation under reduced pressure.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。 (実施例1)ヘキサクロロ白金(IV)酸六水和物0.1
04g(0.0002mol)をシクロヘキサノン15
8.1gに溶解させ、ジメチルクロロシラン43.7g
(0.5mol)、アリルベンゼン65.0g(0.5
5mol)を加えて攪拌した。反応溶液濃度は50%と
した。反応容器内の温度が徐々に上昇し、30分後には
約50℃となった。反応容器を氷冷しながら、40〜5
0℃の範囲になるように保持した。さらに30分後、反
応容器内の温度が低下し始めたため、氷冷を止めた。次
に、ナトリウムメトキシド29.7g(0.55mo
l)を添加して攪拌した。反応容器内の温度が上昇した
ため、氷冷して40〜50℃の範囲になるように保持し
た。約30分後に反応容器内の温度が低下し始めたた
め、反応溶液を取り出し、減圧蒸留を行った。その結
果、90〜100℃/13.3Paでの留分として、約
31gの透明な液体が得られた。この液体をNMR(核
磁気共鳴)により分析を行い、フェニルプロピルジメチ
ルメトキシシランであることを同定した。不純物の存在
は確認されなかった。収率は約20%であった。 (実施例2)ヘキサクロロ白金(IV)酸六水和物0.1
04g(0.0002mol)を2−ブタノン91gに
溶解させ、ジメチルクロロシラン43.7g(0.5m
ol)、酢酸ビニル47.3g(0.55mol)を加
えて攪拌した。反応溶液濃度は50%とした。反応容器
内の温度が徐々に上昇し、30分後には約50℃となっ
た。反応容器を氷冷しながら、40〜50℃の範囲にな
るように保持した。さらに30分後、反応容器内の温度
が低下し始めたため、氷冷を止めた。次に、ナトリウム
メトキシド29.7g(0.55mol)を添加して攪
拌した。反応容器内の温度が上昇したため、氷冷して4
0〜50℃の範囲になるように保持した。約30分後に
反応容器内の温度が低下し始めたため、反応溶液を取り
出し、減圧蒸留を行った。その結果、90〜100℃/
13.3Paでの留分として、約35gの透明な液体が
得られた。この液体をNMRにより分析を行い、酢酸エ
チルジメチルメトキシシランであることを同定した。不
純物の存在は確認されなかった。収率は約25%であっ
た。 (実施例3)ヘキサクロロ白金(IV)酸六水和物0.1
04g(0.0002mol)をトルエン106.5g
に溶解させ、ジメチルクロロシラン43.7g(0.5
mol)、アリルグリシジルエーテル62.8g(0.
55mol)を加えて攪拌した。反応溶液濃度は50%
とした。反応容器内の温度が徐々に上昇し、30分後に
は約50℃となった。反応容器を氷冷しながら、40〜
50℃の範囲になるように保持した。さらに30分後、
反応容器内の温度が低下し始めたため、氷冷を止めた。
次に、ナトリウムメトキシド29.7g(0.55mo
l)を添加して攪拌した。反応容器内の温度が上昇した
ため、氷冷して40〜50℃の範囲になるように保持し
た。約30分後に反応容器内の温度が低下し始めたた
め、反応溶液を取り出し、減圧蒸留を行った。その結
果、90〜100℃/13.3Paでの留分として、約
33gの透明な液体が得られた。この液体をNMRによ
り分析を行い、γ−グリシドキシプロピルジメチルメト
キシシランであることを同定した。不純物の存在は確認
されなかった。収率は約30%であった。 (比較例1)ジメチルクロロシラン43.7g(0.5
mol)をトルエン106.5gに溶解させ、ナトリウ
ムメトキシド29.7g(0.55mol)を添加して
攪拌した。反応容器内の温度が上昇し始めたため、氷冷
して20〜30℃の範囲になるように保持した。約30
分後に反応容器内の温度が低下し始めたため、ヘキサク
ロロ白金(IV)酸六水和物0.104g(0.000
2mol)とアリルグリシジルエーテル62.8g
(0.55mol)を加えて攪拌した。反応容器内の温
度が徐々に上昇し、30分後には約50℃となった。反
応容器を氷冷しながら40〜50℃の範囲になるように
保持した。さらに30分後、反応容器内の温度が低下し
始めたため、反応溶液を取り出し、減圧蒸留を行った。
その結果、90〜100℃/13.3Paでの留分とし
て、約4gの透明な液体が得られた。この液をNMRに
より分析を行い、γ−グリシドキシプロピルジメチルメ
トキシシランであることを同定した。収率は5%以下で
あった。 (比較例2)実施例3において、溶媒を用いなかったほ
かは実施例3と同様にして実験をおこなった。その結
果、アリルグリシジルエーテルを添加した直後に反応容
器内の温度が急上昇し、反応溶液の半分以上が容器の外
に噴き出した。実験を続行したものの、生成物は得られ
なかった。比較例1に示すようにアルコキシ化を先に行
った場合には、アルコキシ化によって生成するジメチル
アルコキシシランの沸点が約40℃であるため反応系に
留まりにくい。したがって収率が5%以下と低くなっ
た。また、ヒドロシリル化およびアルコキシ化は発熱反
応であるため、比較例2に示すように、溶媒を用いない
場合は反応容器内の温度が急激に上昇してしまい、反応
溶液が容器の外に噴き出してしまう。したがって生成物
を得ることができなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. (Example 1) Hexachloroplatinic acid (IV) hexahydrate 0.1
04 g (0.0002 mol) of cyclohexanone 15
Dissolved in 8.1 g, 43.7 g of dimethylchlorosilane
(0.5 mol), 65.0 g (0.5
5 mol) and stirred. The reaction solution concentration was 50%. The temperature inside the reaction vessel gradually increased and reached about 50 ° C. after 30 minutes. While cooling the reaction vessel with ice,
The temperature was kept within the range of 0 ° C. After an additional 30 minutes, the temperature inside the reaction vessel began to drop, so ice cooling was stopped. Next, 29.7 g of sodium methoxide (0.55 mol
l) was added and stirred. Since the temperature in the reaction vessel increased, the temperature was kept at 40 to 50 ° C. by cooling with ice. After about 30 minutes, the temperature inside the reaction vessel began to drop, so the reaction solution was taken out and distilled under reduced pressure. As a result, about 31 g of a transparent liquid was obtained as a fraction at 90 to 100 ° C./13.3 Pa. The liquid was analyzed by NMR (nuclear magnetic resonance) to identify it as phenylpropyldimethylmethoxysilane. The presence of impurities was not confirmed. The yield was about 20%. (Example 2) Hexachloroplatinic acid (IV) hexahydrate 0.1
04 g (0.0002 mol) was dissolved in 91 g of 2-butanone, and 43.7 g (0.5 m
ol) and 47.3 g (0.55 mol) of vinyl acetate were added and stirred. The reaction solution concentration was 50%. The temperature inside the reaction vessel gradually increased and reached about 50 ° C. after 30 minutes. The reaction vessel was kept at 40 to 50 ° C. while being cooled with ice. After an additional 30 minutes, the temperature inside the reaction vessel began to drop, so ice cooling was stopped. Next, 29.7 g (0.55 mol) of sodium methoxide was added and stirred. Since the temperature inside the reaction vessel rose,
The temperature was kept in the range of 0 to 50 ° C. After about 30 minutes, the temperature inside the reaction vessel began to drop, so the reaction solution was taken out and distilled under reduced pressure. As a result, 90-100 ° C /
As a fraction at 13.3 Pa, about 35 g of a clear liquid were obtained. This liquid was analyzed by NMR to identify it as ethyl acetate dimethylmethoxysilane. The presence of impurities was not confirmed. The yield was about 25%. (Example 3) Hexachloroplatinic acid (IV) hexahydrate 0.1
04 g (0.0002 mol) of toluene 106.5 g
In 43.7 g of dimethylchlorosilane (0.5
mol), 62.8 g of allyl glycidyl ether (0.
55 mol) and stirred. Reaction solution concentration is 50%
And The temperature inside the reaction vessel gradually increased and reached about 50 ° C. after 30 minutes. While cooling the reaction vessel with ice,
The temperature was kept within the range of 50 ° C. After another 30 minutes,
Ice cooling was stopped because the temperature inside the reaction vessel began to drop.
Next, 29.7 g of sodium methoxide (0.55 mol
l) was added and stirred. Since the temperature in the reaction vessel increased, the temperature was kept at 40 to 50 ° C. by cooling with ice. After about 30 minutes, the temperature inside the reaction vessel began to drop, so the reaction solution was taken out and distilled under reduced pressure. As a result, about 33 g of a transparent liquid was obtained as a fraction at 90 to 100 ° C./13.3 Pa. This liquid was analyzed by NMR and identified as γ-glycidoxypropyldimethylmethoxysilane. The presence of impurities was not confirmed. The yield was about 30%. (Comparative Example 1) 43.7 g of dimethylchlorosilane (0.5
mol) was dissolved in 106.5 g of toluene, and 29.7 g (0.55 mol) of sodium methoxide was added thereto, followed by stirring. Since the temperature inside the reaction vessel began to rise, it was kept on ice and cooled to 20 to 30 ° C. About 30
Minutes later, the temperature inside the reaction vessel began to decrease, so that 0.104 g (0.000 g) of hexachloroplatinic (IV) acid hexahydrate was used.
2 mol) and 62.8 g of allyl glycidyl ether
(0.55 mol) and stirred. The temperature inside the reaction vessel gradually increased and reached about 50 ° C. after 30 minutes. The reaction vessel was kept at 40 to 50 ° C. while cooling with ice. After a further 30 minutes, the temperature inside the reaction vessel began to drop, so the reaction solution was taken out and distilled under reduced pressure.
As a result, about 4 g of a transparent liquid was obtained as a fraction at 90 to 100 ° C./13.3 Pa. This solution was analyzed by NMR, and it was identified that it was γ-glycidoxypropyldimethylmethoxysilane. The yield was less than 5%. (Comparative Example 2) An experiment was performed in the same manner as in Example 3, except that no solvent was used. As a result, immediately after the addition of the allyl glycidyl ether, the temperature inside the reaction vessel rose rapidly, and more than half of the reaction solution spewed out of the vessel. The experiment was continued, but no product was obtained. When the alkoxylation is performed first as shown in Comparative Example 1, the boiling point of dimethylalkoxysilane generated by the alkoxylation is about 40 ° C., so that the dimethylalkoxysilane hardly stays in the reaction system. Therefore, the yield was as low as 5% or less. Further, since hydrosilylation and alkoxylation are exothermic reactions, as shown in Comparative Example 2, when no solvent is used, the temperature inside the reaction vessel rises sharply, and the reaction solution blows out of the vessel. I will. Therefore, no product could be obtained.

【0021】[0021]

【発明の効果】本発明の方法によれば、収率よくSi原
子に一つのアルコキシ基が結合したオルガノアルコキシ
シランを製造することができる。また、反応の制御が容
易になることから、オルガノアルコキシシランの製造を
安全に、かつ安全面などでのコスト増大を避けて、効率
よく行うことができる。
According to the method of the present invention, an organoalkoxysilane in which one alkoxy group is bonded to a Si atom can be produced with high yield. In addition, since the control of the reaction is facilitated, the production of the organoalkoxysilane can be carried out safely and efficiently without increasing the cost in terms of safety and the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H049 VN01 VP01 VQ12 VQ21 VQ30 VQ57 VR23 VR41 VS12 VS30 VS57 VV02 VV06 VV07 VV09 VV12 VV13 VW02 VW32  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4H049 VN01 VP01 VQ12 VQ21 VQ30 VQ57 VR23 VR41 VS12 VS30 VS57 VV02 VV06 VV07 VV09 VV12 VV13 VW02 VW32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶媒中で式(1)で示されるシラン化合
物と、ヒドロシリル化が可能な不飽和炭素結合を持つ化
合物とをヒドロシリル化反応させた後、反応溶液を分離
せずにこれに金属アルコキシドを添加して反応させるこ
とを特徴とするオルガノアルコキシシランの製造方法。 【化1】 R<SUP>1</SUP>R<SUP>2</SUP>HSiX …式(1) (式中、R<SUP>1</SUP>、R<SUP>2</SUP>はそれぞれ炭
素原子、水素原子、酸素原子、窒素原子から選ばれる原
子で構成される官能基であり、同じ官能基であってもよ
い。Xはハロゲン元素を示す。)
In a solvent, a silane compound represented by the formula (1) and a compound having an unsaturated carbon bond capable of hydrosilylation are subjected to a hydrosilylation reaction, and the reaction solution is separated without separating the reaction solution. A method for producing an organoalkoxysilane, wherein an alkoxide is added and reacted. [Image Omitted] R <SUP> 1 </ SUP> R <SUP> 2 </ SUP> HSix ... Formula (1) (where R <SUP> 1 </ SUP>, R <SUP> 2 </ SUP>> Is a functional group composed of atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, and a nitrogen atom, and may be the same functional group. X represents a halogen element.)
【請求項2】 溶媒が、水酸基を持たないアミド化合
物、ケトン化合物、エーテル化合物、炭化水素化合物、
エステル化合物及びニトリル化合物から選ばれる一つま
たは複数の化合物であることを特徴とする請求項1に記
載のオルガノアルコキシシランの製造方法。
2. The method according to claim 1, wherein the solvent is an amide compound having no hydroxyl group, a ketone compound, an ether compound, a hydrocarbon compound,
The method for producing an organoalkoxysilane according to claim 1, wherein the method is one or more compounds selected from an ester compound and a nitrile compound.
【請求項3】 金属アルコキシドとして、式(2)で表
されるアルコキシドを用いたことを特徴とする請求項1
または請求項2に記載のオルガノアルコキシシランの製
造方法。 【化2】MOR<SUP>3</SUP> …式(2) (式中R<SUP>3</SUP>はアルキル基であり、Mはアルカ
リ金属である。)
3. The alkoxide represented by the formula (2) is used as the metal alkoxide.
Alternatively, the method for producing an organoalkoxysilane according to claim 2. Embedded image MOR <SUP> 3 </ SUP> Formula (2) (wherein R <SUP> 3 </ SUP> is an alkyl group and M is an alkali metal).
【請求項4】 シラン化合物がジメチルクロロシランで
あることを特徴とする請求項1〜3のいずれかに記載の
オルガノアルコキシシランの製造方法。
4. The method for producing an organoalkoxysilane according to claim 1, wherein the silane compound is dimethylchlorosilane.
【請求項5】 シラン化合物と不飽和炭素結合を持つ化
合物の配合比が、シラン化合物1molに対して不飽和
炭素結合を持つ化合物0.8〜1.5molであること
を特徴とする請求項1〜4のいずれかに記載のオルガノ
アルコキシシランの製造方法。
5. The compound of claim 1, wherein the compounding ratio of the silane compound and the compound having an unsaturated carbon bond is 0.8 to 1.5 mol of the compound having an unsaturated carbon bond per 1 mol of the silane compound. 5. The method for producing an organoalkoxysilane according to any one of items 1 to 4.
【請求項6】 シラン化合物と金属アルコキシドの配合
比が、シラン化合物1molに対して金属アルコキシド
0.8〜1.5molであることを特徴とする請求項1
〜5のいずれかに記載のオルガノアルコキシシランの製
造方法。
6. The compound ratio of the silane compound to the metal alkoxide is 0.8 to 1.5 mol per 1 mol of the silane compound.
6. The method for producing an organoalkoxysilane according to any one of claims 1 to 5.
JP2000163238A 2000-05-31 2000-05-31 Method for producing organoalkoxysilane Pending JP2001335589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163238A JP2001335589A (en) 2000-05-31 2000-05-31 Method for producing organoalkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000163238A JP2001335589A (en) 2000-05-31 2000-05-31 Method for producing organoalkoxysilane

Publications (1)

Publication Number Publication Date
JP2001335589A true JP2001335589A (en) 2001-12-04

Family

ID=18667026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163238A Pending JP2001335589A (en) 2000-05-31 2000-05-31 Method for producing organoalkoxysilane

Country Status (1)

Country Link
JP (1) JP2001335589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463291A3 (en) * 2010-12-09 2013-06-26 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound.
CN109251220A (en) * 2018-10-22 2019-01-22 浙江衢州正邦有机硅有限公司 A kind of preparation method of dimethyldimethoxysil,ne

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463291A3 (en) * 2010-12-09 2013-06-26 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound.
EP2787000A1 (en) * 2010-12-09 2014-10-08 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing oranosilicon compound, and organosilicon compound
US8946464B2 (en) 2010-12-09 2015-02-03 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound
US9156864B2 (en) 2010-12-09 2015-10-13 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound
US9163037B2 (en) 2010-12-09 2015-10-20 Shin-Etsu Chemical Co., Ltd. Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound
CN109251220A (en) * 2018-10-22 2019-01-22 浙江衢州正邦有机硅有限公司 A kind of preparation method of dimethyldimethoxysil,ne

Similar Documents

Publication Publication Date Title
JPH0488024A (en) Production of carbinol group-containing organopolysiloxane
JP2001335589A (en) Method for producing organoalkoxysilane
JP5062231B2 (en) Organosilicon resin having alcoholic hydroxyl group and method for producing the same
JP3022161B2 (en) Method for producing fluorine-containing organopolysiloxane compound
JP4344936B2 (en) Method for producing organosilicon compound containing amino groups at both ends
EP3640255B1 (en) Method for producing silicon compound, and silicon compound
CN115916793A (en) Process for preparing siloxanes
JPH0977762A (en) Production of 1-allyloxymethyl-1,4-dioxane
JP2006502222A (en) Method for producing organofunctional silane
JP3197295B2 (en) Method for dechlorinating alkoxysilane
JP2001335588A (en) Method for producing organomonoalkoxysilane
JP3427145B2 (en) Method for producing 3-chloropropyltrimethoxysilane
US7932412B2 (en) Method of manufacturing an aminoaryl-containing organosilicon compound and method of manufacturing an intermediate product of the aforementioned compound
JP3856050B2 (en) Method for producing 3-chloropropylsilanes
US6245925B1 (en) Hydrosilylation of 4-vinyl-1-cyclohexene
JPH01117890A (en) Production of silane compound
JP2718601B2 (en) Method for producing chain-shaped polyorganosilane
JPH11199588A (en) Production of haloorganosilane compound
JP2758106B2 (en) Method for producing polyorganosilane
Gunji et al. Syntheses and Properties of Sila-Functional Oligosiloxanes—Linear and Cyclic Tetrasiloxanes with Methyl and Vinyl Groups—
JP3445322B2 (en) Method for producing long-chain n-alkyl group-containing silane
JPH0853472A (en) Method for producing trialkoxysilane
JP2004182669A (en) Improved method for producing epoxysilane compound
JP2001139581A (en) Method for producing phenoxysilane
JP2002255977A (en) Method for recovering and recycling solvent in the production of silicon compound bearing hydrolyzable group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100415