[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001318085A - Padding pipe inspecting method - Google Patents

Padding pipe inspecting method

Info

Publication number
JP2001318085A
JP2001318085A JP2000135051A JP2000135051A JP2001318085A JP 2001318085 A JP2001318085 A JP 2001318085A JP 2000135051 A JP2000135051 A JP 2000135051A JP 2000135051 A JP2000135051 A JP 2000135051A JP 2001318085 A JP2001318085 A JP 2001318085A
Authority
JP
Japan
Prior art keywords
tube
echo
cladding
thickness
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000135051A
Other languages
Japanese (ja)
Inventor
Ryuzo Yamada
龍三 山田
Takao Hiyamizu
孝夫 冷水
Koji Horio
浩次 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000135051A priority Critical patent/JP2001318085A/en
Publication of JP2001318085A publication Critical patent/JP2001318085A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a padding pipe inspecting method capable of providing a clear reflection echo when a padding pipe made by padding a metallic pipe having coarse grain structure with a different kind of metal is inspected by an ultrasonic inspection method and capable of surely detecting whether a defect exists in the joint boundary face of the padding pipe or how thick the cladding weld is. SOLUTION: When the size of a reflection echo is detected by launching an ultrasound into the padding pipe 10 made by padding an outer surface or inner surface of the metallic pipe 12 having coarse grain structure with a different kind of metal 14, a longitudinal ultrasonic wave is used having a wide band characteristic, especially a wide band characteristic of frequencies from 3 to 4 MHz. When it is detected whether a defect exists in the joint surface of the padding pipe 10, the position of a gate for echo detection is changed according to the pipe thickness of the metallic pipe 12. The thickness of the cladding weld is found from the difference between the pipe thickness of the metallic pipe 12 measured before padding and the pipe thickness of the padding pipe 10 measured after padding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、肉盛管の検査方法
に関し、さらに詳しくは、プラント用鋼管、ラインパイ
プ、油井管等、金属管の外面又は内面に異種金属を肉盛
りした肉盛管の接合界面に発生した欠陥の有無の検査及
び肉盛り厚さの計測に好適な肉盛管の検査方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a cladding tube, and more particularly, to a cladding tube in which a dissimilar metal is clad on an outer surface or an inner surface of a metal tube such as a steel pipe for a plant, a line pipe, and an oil well tube. The present invention relates to a method for inspecting a cladding tube suitable for inspecting for the presence or absence of a defect generated at a bonding interface of the metal and measuring the thickness of the cladding.

【0002】[0002]

【従来の技術】過酷な条件下で使用される金属管には、
強度、耐食性、耐熱疲労性等、複数の特性を満足するこ
とが求められる。単一の材料からなる金属管でこのよう
な複数の特性を両立させるのは困難であることから、こ
のような場合には、金属管の外面又は内面に異種金属を
肉盛りした肉盛管が用いられる。例えば、強固な結晶組
織を有する遠心鋳造管の内面に、耐食性向上を目的とし
て厚さ数mmの異種金属を肉盛りした肉盛管は、耐食性
と耐熱疲労性を兼ね備えていることから、熱分解炉など
の化学プラントへの応用が期待されている。
2. Description of the Related Art Metal tubes used under severe conditions include:
It is required to satisfy a plurality of properties such as strength, corrosion resistance, and thermal fatigue resistance. Since it is difficult to achieve such a plurality of characteristics simultaneously with a metal tube made of a single material, in such a case, a cladding tube in which a different metal is clad on the outer surface or inner surface of the metal tube is used. Used. For example, a cladding tube in which a dissimilar metal with a thickness of several mm is clad for the purpose of improving corrosion resistance on the inner surface of a centrifugally cast tube having a strong crystal structure, since it has both corrosion resistance and heat fatigue resistance, is thermally decomposed. Application to chemical plants such as furnaces is expected.

【0003】肉盛管は、肉盛溶接法により製造される
が、高い要求特性を満足させるためには、金属管と異種
金属の接合界面に欠陥がないこと及び肉盛厚さが所定の
厚さ以上であることが求められる。従って、肉盛管の品
質を保証するためには、接合界面における欠陥の有無及
び肉盛厚さを非破壊で検査する必要がある。このような
検査には、一般に、周波数1〜15MHz程度の超音波
を用いた超音波探傷法が用いられる。
[0003] The cladding tube is manufactured by a cladding welding method, but in order to satisfy the high required characteristics, there is no defect in the joining interface between the metal tube and the dissimilar metal and the cladding thickness is a predetermined thickness. More than that is required. Therefore, in order to guarantee the quality of the cladding tube, it is necessary to non-destructively inspect the presence or absence of a defect at the bonding interface and the cladding thickness. For such an inspection, generally, an ultrasonic flaw detection method using ultrasonic waves having a frequency of about 1 to 15 MHz is used.

【0004】また、肉盛管の全面に渡って欠陥の有無を
検査する場合において、常時、反射エコーの大きさを監
視するのは、膨大なメモリーを必要とし、実用的ではな
い。そのため、通常は、超音波を入射させてから所定時
間が経過した後に所定時間間隔の監視領域(以下、これ
を「ゲート」という。)を設定し、ゲート内の最大出力
が、あるしきい値を超えたか否かによって、欠陥の有無
を判定する方法が採られる。このゲートの設定方式とし
ては、表面エコー同期方式と、ディレーゲート方式が知
られている。表面エコー同期方式は、表面エコーが観測
されてから一定時間が経過した後にゲートを設定する方
式である。一方、ディレーゲート方式は、超音波を送信
してから一定時間が経過した後にゲートを設定する方式
である。
[0004] Further, when inspecting the entire surface of the cladding tube for the presence or absence of a defect, it is not practical to constantly monitor the magnitude of the reflected echo because it requires a huge memory. Therefore, usually, a monitoring area (hereinafter, referred to as a “gate”) at a predetermined time interval is set after a predetermined time has elapsed from the irradiation of the ultrasonic wave, and the maximum output in the gate is set to a certain threshold value. A method of determining the presence or absence of a defect depending on whether or not the number of defects has been exceeded is adopted. As the gate setting method, a surface echo synchronization method and a delay gate method are known. The surface echo synchronization method is a method in which a gate is set after a certain period of time has elapsed since the surface echo was observed. On the other hand, the delay gate method is a method in which a gate is set after a certain period of time has elapsed after transmitting an ultrasonic wave.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、例え
ば、遠心鋳造管のように、金属管の結晶粒径が大きい場
合に超音波の周波数を高くすると、粒界における超音波
の散乱が大きくなり、反射エコーが得られないという問
題がある。一方、超音波の周波数を下げると、分解能が
低下し、測定精度が低下するという問題がある。
However, if the frequency of the ultrasonic wave is increased when the crystal grain size of the metal tube is large, such as a centrifugally cast tube, the scattering of the ultrasonic wave at the grain boundary increases, and There is a problem that echo cannot be obtained. On the other hand, when the frequency of the ultrasonic wave is reduced, there is a problem that the resolution is reduced and the measurement accuracy is reduced.

【0006】また、ゲートの設定方式として表面エコー
同期方式を採用する場合、金属管の管厚が一定であるこ
とが前提となる。そのため、金属管の管厚が一定してい
ない場合には、ゲートが接合界面からはずれ、欠陥エコ
ーが得られないという問題がある。一方、ディレーゲー
ト方式は、金属管と超音波探触子との間の距離が一定で
あることが前提となる。そのため、仮に金属管の管厚が
一定であっても、不可抗力により金属管と超音波探触子
との間の距離が変動すると、ゲートが接合界面からはず
れ、欠陥エコーが得られないという問題がある。
When the surface echo synchronization method is adopted as the gate setting method, it is assumed that the thickness of the metal tube is constant. Therefore, when the thickness of the metal tube is not constant, there is a problem that the gate is displaced from the bonding interface and a defect echo cannot be obtained. On the other hand, the delay gate method is based on the premise that the distance between the metal tube and the ultrasonic probe is constant. Therefore, even if the thickness of the metal tube is constant, if the distance between the metal tube and the ultrasonic probe fluctuates due to force majeure, the gate will be displaced from the bonding interface, and the defect echo will not be obtained. is there.

【0007】さらに、金属管と肉盛金属の間の音響イン
ピーダンスの差は一般に小さいので、肉盛管に対して超
音波を入射させても、接合状態が良好である接合界面か
らの反射エコーは得られない。そのため、超音波探傷法
を用いて、肉盛厚さを直接求めるのは困難である。
Further, since the difference in acoustic impedance between the metal tube and the cladding metal is generally small, even if ultrasonic waves are incident on the cladding tube, the reflected echo from the joint interface where the joint is in a good condition is not significant. I can't get it. Therefore, it is difficult to directly determine the build-up thickness by using the ultrasonic flaw detection method.

【0008】本発明が解決しようとする課題は、粗大結
晶粒組織を有する金属管に異種金属を肉盛りした肉盛管
を超音波探傷法により検査する場合において、明確な反
射エコーが得られる肉盛管の検査方法を提供することに
ある。
The problem to be solved by the present invention is to provide a metal tube having a coarse grain structure in which a different type of metal is built up by using an ultrasonic flaw detection method. An object of the present invention is to provide a method for inspecting a filling tube.

【0009】また、本発明が解決しようとする他の課題
は、金属管の管厚が一定していない場合、あるいは、肉
盛管と超音波探触子との間の距離が一定していない場合
であっても、接合界面における欠陥の有無を確実に検出
することが可能な肉盛管の検査方法を提供することにあ
る。
Another problem to be solved by the present invention is that the thickness of the metal tube is not constant, or the distance between the cladding tube and the ultrasonic probe is not constant. Even in such a case, an object of the present invention is to provide a method for inspecting a cladding tube, which can reliably detect the presence or absence of a defect at a bonding interface.

【0010】さらに、本発明が解決しようとする他の課
題は、金属管と肉盛金属との間の音響インピーダンスの
差が小さい場合であっても、肉盛厚さを正確に計測可能
な肉盛管の検査方法を提供することにある。
Another problem to be solved by the present invention is that even if the difference in acoustic impedance between the metal pipe and the overlay metal is small, the overlay thickness can be measured accurately. An object of the present invention is to provide a method for inspecting a filling tube.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、金属管の外面又は内面に異種金属を肉盛
りした肉盛管に対して超音波を入射し、反射エコーの大
きさを検出する反射エコー検出工程を備えた肉盛管の検
査方法において、前記金属管は、粗大結晶粒組織を有
し、前記超音波として、広帯域特性を有する縦波超音波
を用いたことを要旨とするものである。この場合、前記
超音波は、その周波数が3〜4MHzであることが望ま
しい。
In order to solve the above-mentioned problems, the present invention is directed to a method of applying ultrasonic waves to a cladding tube in which a dissimilar metal is clad on the outer surface or inner surface of a metal tube, and the size of a reflected echo is increased. In the method for inspecting a cladding tube having a reflection echo detecting step of detecting the depth, the metal tube has a coarse crystal grain structure, and as the ultrasonic wave, a longitudinal wave ultrasonic wave having a wide band characteristic is used. It is an abstract. In this case, the frequency of the ultrasonic wave is desirably 3 to 4 MHz.

【0012】また、本発明の2番目は、金属管の外面又
は内面に異種金属を肉盛りした肉盛管に対して超音波を
入射し、反射エコーの大きさを検出する反射エコー検出
工程を備えた肉盛管の検査方法において、前記反射エコ
ー検出工程は、前記金属管と前記異種金属の界面に生成
した欠陥に起因する欠陥エコーを検出するものであり、
肉盛り前に測定された前記金属管の管厚に応じて、前記
欠陥エコーを検出するためのゲート位置を変化させるゲ
ート位置調節工程をさらに備えていることを要旨とする
ものである。
A second aspect of the present invention is a reflected echo detecting step of detecting the magnitude of a reflected echo by irradiating an ultrasonic wave to a cladding tube in which a dissimilar metal is clad on the outer or inner surface of the metal tube. In the method for inspecting a cladding tube provided, the reflection echo detection step is to detect a defect echo caused by a defect generated at an interface between the metal tube and the dissimilar metal,
The gist is that the method further includes a gate position adjusting step of changing a gate position for detecting the defect echo in accordance with the thickness of the metal tube measured before building up.

【0013】さらに、本発明の3番目は、金属管の外面
又は内面に異種金属を肉盛りした肉盛管に対して超音波
を入射し、反射エコーの大きさを検出する反射エコー検
出工程を備えた肉盛管の検査方法において、前記反射エ
コー検出工程は、前記肉盛管の表面反射に起因する表面
エコー及び底面反射に起因する底面エコーを検出するも
のであり、肉盛り前に測定された前記金属管の管厚と、
前記表面エコー及び前記底面エコーの到達時間の差から
求めた前記肉盛管の管厚との差から、前記肉盛管の肉盛
厚さを求める肉盛厚さ算出工程をさらに備えていること
を要旨とするものである。
A third aspect of the present invention is a reflected echo detecting step of detecting the magnitude of a reflected echo by irradiating an ultrasonic wave to a cladding tube in which a dissimilar metal is clad on the outer or inner surface of the metal tube. In the inspection method of the cladding tube provided, the reflected echo detection step is to detect a surface echo caused by the surface reflection of the cladding tube and a bottom echo caused by the bottom reflection, and is measured before the cladding. Said metal tube thickness,
The method further comprises a cladding thickness calculating step of calculating a cladding thickness of the cladding tube from a difference from a tube thickness of the cladding tube obtained from a difference between arrival times of the surface echo and the bottom surface echo. It is the gist.

【0014】粗大結晶粒組織を有する金属管の外面又は
内面に異種金属を肉盛りした肉盛管を超音波探傷法によ
り検査する場合において、広帯域特性を有する縦波超音
波、特に、周波数3〜4MHzの広帯域特性を有する縦
波超音波を使用すると、分解能を高く維持したまま、粒
界における超音波の散乱を抑制することができる。その
ため、明確な反射エコーが得られ、欠陥の有無及び肉盛
厚さを高い精度で検査することができる。
When inspecting a cladding tube in which a different metal is clad on the outer surface or the inner surface of a metal tube having a coarse crystal grain structure by an ultrasonic flaw detection method, a longitudinal wave ultrasonic wave having a wide band characteristic, particularly, a frequency of 3 to The use of longitudinal ultrasonic waves having a wide band characteristic of 4 MHz makes it possible to suppress the scattering of ultrasonic waves at grain boundaries while maintaining high resolution. Therefore, a clear reflected echo is obtained, and the presence or absence of a defect and the thickness of the overlay can be inspected with high accuracy.

【0015】また、予め測定された金属管の管厚に応じ
て、ゲート位置を変化させると、金属管の管厚が一定し
ていない場合、あるいは、肉盛管と超音波探触子との間
の距離が変動する場合であっても、接合面に発生した欠
陥に起因する欠陥エコーを確実に検出することができ
る。
When the gate position is changed in accordance with the previously measured thickness of the metal tube, if the thickness of the metal tube is not constant, or if the thickness of the cladding tube and the ultrasonic probe are different. Even when the distance between them fluctuates, it is possible to reliably detect a defect echo caused by a defect generated on the bonding surface.

【0016】さらに、肉盛り後に前記肉盛管に超音波を
入射し、表面エコー及び底面エコーの到達時間の差から
前記肉盛管の管厚を測定し、肉盛り前の金属管の管厚
と、肉盛管の管厚との差を求めれば、金属管と異種金属
の間の音響インピーダンスの差が小さい場合であって
も、肉盛厚さを容易かつ正確に求めることができる。
Further, after the cladding, an ultrasonic wave is applied to the cladding tube, the thickness of the cladding tube is measured from the difference between the arrival times of the surface echo and the bottom surface echo, and the thickness of the metal tube before the cladding is measured. And the difference between the thickness of the cladding tube and the thickness of the cladding tube, the cladding thickness can be easily and accurately determined even when the difference in acoustic impedance between the metal tube and the dissimilar metal is small.

【0017】[0017]

【発明の実施の形態】以下に、本発明に係る肉盛管の検
査方法について詳細に説明する。本発明の第1の実施の
形態に係る肉盛管の検査方法は、粗大結晶粒組織を有す
る金属管の外面又は内面に異種金属を肉盛りした肉盛管
に超音波を入射し、反射エコーの大きさを検出する場合
において、広帯域特性を有する縦波超音波を用いたこと
を特徴とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for inspecting a cladding tube according to the present invention will be described in detail. The method for inspecting a cladding tube according to the first embodiment of the present invention is characterized in that ultrasonic waves are incident on a cladding tube in which a dissimilar metal is clad on an outer surface or an inner surface of a metal tube having a coarse crystal grain structure, and a reflection echo is formed. Is characterized by using longitudinal ultrasonic waves having a wide band characteristic when detecting the magnitude of.

【0018】この場合、使用する超音波の周波数は、3
〜4MHzが特に好適である。超音波の周波数が低周波
側、特に、3MHz未満であると、反射エコーの分解能
が低下していくので好ましくない。また、周波数が高周
波側、特に、4MHzを超えると、粒界における散乱に
よって超音波が大きく減衰する傾向を示し、明確な反射
エコーが得られないので好ましくない。さらに、周波数
が適正であっても、狭帯域特性を有する超音波を用いる
と、肉盛管の肉厚方向の分解能が低下するので好ましく
ない。
In this case, the frequency of the ultrasonic wave used is 3
-4 MHz is particularly preferred. It is not preferable that the frequency of the ultrasonic wave is on the low frequency side, particularly, less than 3 MHz, because the resolution of the reflected echo decreases. On the other hand, if the frequency is higher than the high-frequency side, in particular, 4 MHz, the ultrasonic waves tend to be greatly attenuated by scattering at the grain boundaries, and a clear reflected echo cannot be obtained. Further, even if the frequency is appropriate, it is not preferable to use an ultrasonic wave having a narrow band characteristic, because the resolution in the thickness direction of the cladding tube is reduced.

【0019】また、異種金属が肉盛られる金属管は、結
晶粒径が100〜1000μmであるもの(例えば、遠
心鋳造管など。)が好適である。このような粗大結晶粒
組織を有する金属管を備えた肉盛管に対して本発明を適
用すると、従来の方法に比して、反射エコーの検出精度
が向上するという利点がある。
The metal pipe on which the dissimilar metal is deposited is preferably one having a crystal grain size of 100 to 1000 μm (for example, a centrifugally cast pipe). When the present invention is applied to a cladding tube provided with a metal tube having such a coarse crystal grain structure, there is an advantage that the detection accuracy of the reflected echo is improved as compared with the conventional method.

【0020】図1に、粗大結晶粒組織を有する金属管に
対して超音波を入射したときの、超音波の周波数特性と
反射エコーの関係を示す。なお、図1において、「表面
エコー」とは、超音波の入射面から反射される反射エコ
ーをいい、「底面エコー」とは、超音波の入射面とは反
対側の面から反射される反射エコーをいう。また、「欠
陥エコー」とは、接合面に発生した欠陥から反射される
反射エコーをいう。
FIG. 1 shows the relationship between the frequency characteristics of the ultrasonic waves and the reflection echo when the ultrasonic waves are incident on a metal tube having a coarse crystal grain structure. In FIG. 1, “surface echo” refers to a reflected echo reflected from the incident surface of the ultrasonic wave, and “bottom echo” refers to a reflected light reflected from the surface opposite to the incident surface of the ultrasonic wave. Echo. Further, the “defect echo” refers to a reflected echo reflected from a defect generated on the bonding surface.

【0021】図1(a)に示すように、金属管が粗大結
晶粒組織を有する場合において、周波数が3MHz未満
の狭帯域特性を有する縦波超音波を使用すると、底面エ
コーは得られるが、底面エコーのパルス幅が広くなり、
分解能が低下する。そのため、このような金属管に異種
金属を肉盛りした場合において、肉盛厚さが薄いときに
は、欠陥エコーと底面エコーとを明確に分離するのが困
難となる。
As shown in FIG. 1A, in the case where the metal tube has a coarse crystal structure, if a longitudinal ultrasonic wave having a narrow band characteristic of less than 3 MHz is used, a bottom echo can be obtained. The pulse width of the bottom echo becomes wider,
Resolution decreases. Therefore, when the dissimilar metal is clad in such a metal tube, when the cladding thickness is small, it is difficult to clearly separate the defect echo from the bottom echo.

【0022】一方、図1(b)に示すように、周波数が
4MHzを超える狭帯域特性を有する縦波超音波を使用
すると、超音波の減衰が大きくなり、底面エコーが明確
に得られない。そのため、特に、金属管と異種金属の接
合界面に発生した小さな欠陥に起因する欠陥エコーを検
出するのが困難となる。
On the other hand, as shown in FIG. 1B, when a longitudinal ultrasonic wave having a narrow band characteristic exceeding 4 MHz is used, attenuation of the ultrasonic wave becomes large and a bottom echo cannot be clearly obtained. For this reason, it is particularly difficult to detect a defect echo caused by a small defect generated at the joint interface between the metal tube and the dissimilar metal.

【0023】これに対し、図1(c)に示すように、周
波数が3〜4MHzの広帯域特性を有する縦波超音波を
使用すると、分解能の高い底面エコーが得られる。ま
た、超音波の減衰が抑制されるので、多重反射に起因す
る底面エコーも検出することができる。そのため、金属
管が粗大結晶粒組織を有するものである場合、あるい
は、肉盛厚さが薄い場合であっても、欠陥エコーと底面
エコーを明確に分離できる。また、高感度が得られるの
で、欠陥の大きさが小さい場合であっても、欠陥の有無
を高精度で検出することができる。
On the other hand, as shown in FIG. 1C, when a longitudinal ultrasonic wave having a wide band characteristic of a frequency of 3 to 4 MHz is used, a bottom echo with high resolution can be obtained. In addition, since the attenuation of the ultrasonic wave is suppressed, the bottom echo caused by the multiple reflection can be detected. Therefore, even when the metal tube has a coarse crystal grain structure or when the build-up thickness is small, the defect echo and the bottom surface echo can be clearly separated. Further, since high sensitivity is obtained, the presence or absence of a defect can be detected with high accuracy even when the size of the defect is small.

【0024】次に、本発明の第2の実施の形態に係る検
査方法について説明する。本実施の形態に係る検査方法
は、金属管の外面又は内面に異種金属を肉盛りした肉盛
管に超音波を入射し、金属管と異種金属の接合界面に生
成した欠陥に起因する欠陥エコーを検出する場合におい
て、肉盛り前に測定された金属管の管厚に応じて、欠陥
エコーを検出するためのゲート位置を変化させることを
特徴とするものである。
Next, an inspection method according to a second embodiment of the present invention will be described. The inspection method according to the present embodiment is directed to a defect echo caused by a defect generated at a joining interface between a metal tube and a dissimilar metal by irradiating an ultrasonic wave to a cladding tube in which a dissimilar metal is clad on an outer surface or an inner surface of the metal tube. Is detected, the gate position for detecting a defect echo is changed according to the thickness of the metal tube measured before the cladding.

【0025】まず、肉盛り前の金属管の管厚を、金属管
の円周方向及び長手方向について計測する。管厚の計測
方法は、特に限定されるものではないが、金属管に対し
て垂直に超音波を入射し、金属管の表面エコー及び底面
エコーの到達時間の差を計測し、その差から管厚を求め
ると良い。この場合、超音波は、金属管の外面側から入
射しても良く、あるいは、内面側から入射しても良い。
First, the thickness of the metal pipe before the cladding is measured in the circumferential direction and the longitudinal direction of the metal pipe. The method of measuring the thickness of the tube is not particularly limited, but ultrasonic waves are incident perpendicularly to the metal tube, the difference in arrival time of the surface echo and the bottom surface echo of the metal tube is measured, and the tube is measured from the difference. Find the thickness. In this case, the ultrasonic waves may be incident from the outer surface side of the metal tube, or may be incident from the inner surface side.

【0026】なお、金属管が粗大結晶粒組織を有するも
のである場合において、超音波を用いて金属管の管厚を
測定する時には、上述したように、広帯域特性を有する
縦波超音波、特に、周波数3〜4MHzの広帯域特性を
有する縦波超音波を用いるのが好ましい。また、金属管
の管厚は、その全面に渡って計測することが望ましい
が、長手方向の管厚変動が少ない場合には、円周方向の
みの管厚変化を計測しても良い。
In the case where the metal tube has a coarse crystal grain structure and the thickness of the metal tube is measured by using ultrasonic waves, as described above, the longitudinal wave ultrasonic wave having a wide band characteristic, It is preferable to use longitudinal ultrasonic waves having a wide band characteristic of a frequency of 3 to 4 MHz. It is desirable to measure the thickness of the metal tube over the entire surface. However, when the variation in the thickness in the longitudinal direction is small, the change in the thickness in the circumferential direction may be measured.

【0027】次に、この金属管の外面又は内面に異種金
属を肉盛して肉盛管とする。この場合、肉盛条件が不適
切であると、金属管と異種金属の接合界面に欠陥が生成
することになる。また、肉盛条件あるいは金属管の管厚
変動によっては、肉盛厚さは、場所によって異なるもの
となる。
Next, a dissimilar metal is clad on the outer or inner surface of the metal tube to form a clad tube. In this case, if the cladding conditions are inappropriate, defects will be generated at the joint interface between the metal pipe and the dissimilar metal. Further, depending on the overlay condition or the thickness variation of the metal pipe, the overlay thickness varies depending on the location.

【0028】次に、図2(a)に示すように、得られた
肉盛管10の外面から所定の距離を離して超音波探触子
20を配置する。また、肉盛管10の外面と超音波探触
子20の間には、超音波の送受信を効率よく行うための
接触媒質を介在させる。接触媒質としては、通常、水が
用いられる。
Next, as shown in FIG. 2A, the ultrasonic probe 20 is arranged at a predetermined distance from the outer surface of the cladding tube 10 thus obtained. In addition, a couplant for efficiently transmitting and receiving ultrasonic waves is interposed between the outer surface of the cladding tube 10 and the ultrasonic probe 20. Water is usually used as the couplant.

【0029】なお、図2(a)に例示する肉盛管10
は、長手方向に管厚変動がある金属管12の内面に異種
金属14を肉盛りした内面肉盛管である。また、図2
(a)においては、金属管12と異種金属14の界面
に、欠陥16、16…が発生している状態が例示されて
いる。
The cladding tube 10 illustrated in FIG.
Is an inner cladding tube in which a dissimilar metal 14 is clad on the inner surface of a metal tube 12 having a tube thickness variation in the longitudinal direction. FIG.
1A illustrates a state in which defects 16, 16,... Are generated at the interface between the metal tube 12 and the dissimilar metal.

【0030】次に、図示しない回転手段を用いて肉盛管
10を軸の周りに回転させながら、図示しない移動手段
を用いて超音波探触子20を長手方向に移動させ、接合
界面の全面に渡って、欠陥エコーの有無を検査する。こ
の場合も、金属管12が粗大結晶粒組織を有するもので
あるときには、広帯域特性を有する縦波超音波、特に、
周波数3〜4MHzの広帯域特性を有する縦波超音波を
使用するのが好ましい。
Next, the ultrasonic probe 20 is moved in the longitudinal direction using moving means (not shown) while rotating the cladding tube 10 around the axis using rotating means (not shown), and Inspection of the presence or absence of a defective echo is performed. Also in this case, when the metal tube 12 has a coarse crystal grain structure, longitudinal ultrasonic waves having broadband characteristics, in particular,
It is preferable to use longitudinal ultrasonic waves having a wide band characteristic of a frequency of 3 to 4 MHz.

【0031】この時、図2(b)に示すように、所定の
時間間隔Dを有するゲートは、表面エコーが観測され
てから所定時間(以下、これを「ゲート位置」とい
う。)D が経過した後に設定されるが、ゲート位置D
を予め測定された金属管12の管厚に応じて変化させ
る。すなわち、(D+D/2)が、測定地点におけ
る金属管12の管厚の2倍の距離を音速で除した値(肉
盛り前の金属管12の表面エコー及び底面エコーの到達
時間の差に相当する。)にほぼ等しくなるように、ゲー
ト位置Dを変化させればよい。
At this time, as shown in FIG.
Time interval D2Gates with surface echoes are observed
A predetermined time (hereinafter referred to as “gate position”).
U. ) D 1Is set after the lapse of
1Is changed according to the previously measured thickness of the metal tube 12.
You. That is, (D1+ D2/ 2) at the measurement point
Of the distance twice the thickness of the metal tube 12
Reach of surface echo and bottom echo of metal tube 12 before prime
Equivalent to the time difference. ) So that the game
G position D1Should be changed.

【0032】金属管12が、例えば、遠心鋳造管である
場合、金属管12の円周方向の管厚変動が大きいことが
知られている。そのため、このような遠心鋳造管に異種
金属を肉盛りした肉盛管10に対して、表面エコー同期
方式を用いて超音波探傷を行うと、ゲートが接合界面か
ら外れ、欠陥16を検出できない場合がある。また、デ
ィレーゲート方式を用いると、金属管12の管厚変動が
ない場合であっても、肉盛りされた肉盛管10と超音波
探触子20の間の距離が変動すると、ゲートが接合界面
から外れ、欠陥を検出できない場合がある。
When the metal tube 12 is, for example, a centrifugally cast tube, it is known that the thickness of the metal tube 12 varies greatly in the circumferential direction. For this reason, when ultrasonic inspection using the surface echo synchronization method is performed on the cladding tube 10 in which a dissimilar metal is clad in such a centrifugally cast tube, the gate is separated from the bonding interface, and the defect 16 cannot be detected. There is. Further, when the delay gate method is used, even when the thickness of the metal tube 12 does not fluctuate, if the distance between the overlaid cladding tube 10 and the ultrasonic probe 20 fluctuates, the gate is bonded. There is a case where a defect comes off the interface and a defect cannot be detected.

【0033】これに対し、肉盛り前の金属管12の管厚
変動に応じてゲート位置Dを変化させると、ゲートを
常に接合界面近傍に設定することができる。また、表面
エコーが観測された時刻をゲート位置の基準とすると、
肉盛管10と超音波探触子20との間の距離が変動する
場合であっても、ゲートが常に接合界面近傍に設定さ
れ、高い精度で欠陥を検出することが可能となる。
[0033] In contrast, varying the gate position D 1 in accordance with the tube thickness variations of the padding before the metal tube 12 can be always set at the joint interface near the gate. If the time when the surface echo was observed is used as the reference for the gate position,
Even if the distance between the cladding tube 10 and the ultrasonic probe 20 fluctuates, the gate is always set near the bonding interface, and it is possible to detect defects with high accuracy.

【0034】さらに、金属管12が粗大結晶粒組織を有
する場合において、広帯域特性を有する縦波超音波、特
に、周波数が3〜4MHzの広帯域特性を有する縦波超
音波を用いると、分解能の高い欠陥エコーが得られる。
そのため、接合界面における融合不良等の欠陥を良好に
検出することができる。
Further, in the case where the metal tube 12 has a coarse crystal grain structure, the use of longitudinal ultrasonic waves having a wide band characteristic, in particular, longitudinal ultrasonic waves having a wide band characteristic of a frequency of 3 to 4 MHz, provides a high resolution. A defect echo is obtained.
Therefore, defects such as poor fusion at the bonding interface can be detected satisfactorily.

【0035】次に、本発明の第3の実施の形態に係る肉
盛管の検査方法について説明する。本実施の形態に係る
検査方法は、金属管の外面又は内面に異種金属を肉盛り
した肉盛管の肉盛厚さを測定する場合において、肉盛管
に対して超音波を入射し、表面エコーと底面エコーの到
達時間の差から肉盛管の管厚を測定し、これと、肉盛り
前に測定された金属管の管厚の差から肉盛厚さを求める
ことを特徴とするものである。
Next, a method for inspecting a cladding tube according to a third embodiment of the present invention will be described. Inspection method according to the present embodiment, when measuring the overlay thickness of the cladding tube in which the outer surface or the inner surface of the metal tube is clad with dissimilar metal, ultrasonic waves are incident on the cladding tube, the surface It is characterized in that the thickness of the cladding tube is measured from the difference between the arrival time of the echo and the bottom surface echo, and that the cladding thickness is determined from the difference between the thickness of the metal tube measured before the cladding. It is.

【0036】まず、前述と同様に、予め肉盛り前の金属
管の管厚を、金属管の円周方向及び長手方向について計
測し、次いで、金属管の外面又は内面に異種金属を肉盛
りする。この場合、金属管の管厚の計測方法は特に限定
されない点、金属管に対して垂直に超音波を入射し、金
属管の表面エコー及び底面エコーの到達時間の差を計測
し、その差から管厚を求める方法が好ましい点は、上述
した第2の実施の形態に係る検出方法と同様である。ま
た、金属管が粗大結晶粒組織を有するものである場合に
は、広帯域特性を有する縦波超音波、特に、周波数3〜
4MHzの広帯域特性を有する縦波超音波を用いるのが
好ましい点も、第2の実施の形態に係る検査方法と同様
である。
First, in the same manner as described above, the thickness of the metal tube before the cladding is measured in advance in the circumferential direction and the longitudinal direction of the metal tube, and then the different metal is clad on the outer or inner surface of the metal tube. . In this case, the method of measuring the thickness of the metal tube is not particularly limited. Ultrasonic waves are incident perpendicularly on the metal tube, and the difference between the arrival times of the surface echo and the bottom surface echo of the metal tube is measured. The point that the method of obtaining the tube thickness is preferable is the same as the detection method according to the above-described second embodiment. Further, when the metal tube has a coarse crystal grain structure, longitudinal ultrasonic waves having a broadband characteristic,
It is similar to the inspection method according to the second embodiment in that it is preferable to use longitudinal ultrasonic waves having a 4 MHz broadband characteristic.

【0037】次に、得られた肉盛管に対して垂直に超音
波を入射し、肉盛管の表面エコー及び底面エコーの到達
時間の差を計測し、その差から、肉盛管の管厚を求め
る。また、この時、肉盛管を軸の周りに回転させなが
ら、超音波探触子を肉盛管の長手方向に移動させ、肉盛
管の管厚を円周方向及び長手方向に渡って求める。この
場合も、金属管が粗大結晶粒組織を有するものである時
には、広帯域特性を有する縦波超音波、特に、周波数3
〜4MHzの広帯域特性を有する縦波超音波を用いるの
が好ましい。次いで、肉盛管の管厚と、予め測定された
金属管の管厚との差を求めれば、肉盛管の肉盛厚さを求
めることができる。
Next, ultrasonic waves are vertically incident on the obtained cladding tube, and the difference in arrival time between the surface echo and the bottom surface echo of the cladding tube is measured. From the difference, the tube of the cladding tube is measured. Find the thickness. Also, at this time, the ultrasonic probe is moved in the longitudinal direction of the cladding tube while rotating the cladding tube around the axis, and the thickness of the cladding tube is determined in the circumferential direction and the longitudinal direction. . Also in this case, when the metal tube has a coarse crystal grain structure, longitudinal ultrasonic waves having a broadband characteristic,
It is preferable to use longitudinal ultrasonic waves having a wide band characteristic of 44 MHz. Next, if the difference between the thickness of the cladding tube and the previously measured thickness of the metal tube is determined, the cladding thickness of the cladding tube can be determined.

【0038】金属管と異種金属の音響インピーダンスの
差が小さい場合、肉盛管に超音波を入射させても、接合
状態が良好である接合界面からの反射エコーは得られな
い。そのため、超音波探傷法を用いて、直接、肉盛厚さ
を計測するのは困難である。これに対し、肉盛り前の金
属管の管厚と肉盛管の管厚とを測定し、その差を求めれ
ば、金属管と異種金属の音響インピーダンスの差が小さ
い場合であっても、肉盛厚さを正確に計測することがで
きる。
When the difference between the acoustic impedance of the metal tube and the acoustic impedance of the dissimilar metal is small, even if ultrasonic waves are incident on the cladding tube, a reflected echo from the joint interface having a good joint state cannot be obtained. Therefore, it is difficult to directly measure the overlay thickness using the ultrasonic flaw detection method. On the other hand, by measuring the thickness of the metal tube before cladding and the thickness of the cladding tube, and determining the difference, even if the difference in acoustic impedance between the metal tube and the dissimilar metal is small, The embossed thickness can be measured accurately.

【0039】[0039]

【実施例】遠心鋳造管の内面に、肉盛溶接法により異種
金属を肉盛りした肉盛管を作製し、本発明に係る方法を
用いて、接合界面における欠陥の有無を調べた。なお、
肉盛管を作製する際には、溶接途中で故意に溶接電流を
下げ、接合界面に融合不良を発生させた。また、欠陥の
測定に際しては、肉盛り前の遠心鋳造管の管厚変化を予
め測定し、管厚変化に応じて、ゲート位置を変化させ
た。さらに、超音波探触子には、周波数3.5MHzの
広帯域フォーカス型超音波探触子を用いた。結果を、図
3に示す。
EXAMPLE A cladding tube in which dissimilar metals were clad on the inner surface of a centrifugally cast tube by a cladding welding method was manufactured, and the presence or absence of a defect at a joint interface was examined using the method according to the present invention. In addition,
In preparing the cladding tube, the welding current was intentionally reduced during welding, and a fusion defect occurred at the joint interface. In measuring the defects, a change in the thickness of the centrifugally cast pipe before the cladding was measured in advance, and the gate position was changed according to the change in the pipe thickness. Further, a broadband focus type ultrasonic probe having a frequency of 3.5 MHz was used as the ultrasonic probe. The results are shown in FIG.

【0040】図3より、肉盛管の端部からの距離(以
下、これを「長手方向位置」という。)が約150mm
までは、肉盛管の接合界面からの反射エコー高さ(以
下、これを「肉盛界面エコー高さ」という。)が小さ
く、良好な肉盛管が得られていることがわかる。これに
対し、長手方向位置が150mmを超えると、肉盛界面
エコー高さが増大していることがわかる。この領域は、
肉盛溶接の溶接電流を下げた領域に対応しており、接合
界面に発生した融合不良を本発明に係る方法によって検
出できたことを示している。
FIG. 3 shows that the distance from the end of the cladding tube (hereinafter referred to as "longitudinal position") is about 150 mm.
Up to this point, the height of the reflected echo from the joint interface of the cladding tube (hereinafter referred to as the "facing height of the cladding interface") is small, indicating that a good cladding tube is obtained. On the other hand, when the longitudinal position exceeds 150 mm, the build-up interface echo height increases. This area is
This corresponds to the region where the welding current of the overlay welding is lowered, and indicates that the fusion defect generated at the joint interface was detected by the method according to the present invention.

【0041】以上、本発明の実施の形態について詳細に
説明したが、本発明は、上記実施の形態に何ら限定され
るものではなく、本発明の要旨を逸脱しない範囲内で種
々の改変が可能である。例えば、上記実施の形態では、
内面肉盛管に対して本発明を適用した例について主に説
明したが、本発明は、外面肉盛管に対しても同様に適用
することができる。この場合、外面肉盛管の外面側から
超音波を入射させても良く、あるいは、外面肉盛管の内
面側から超音波を入射させてもよい。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. It is. For example, in the above embodiment,
Although an example in which the present invention is applied to an inner cladding tube has been mainly described, the present invention can be similarly applied to an outer cladding tube. In this case, ultrasonic waves may be incident from the outer surface side of the outer cladding tube, or ultrasonic waves may be incident from the inner surface side of the outer cladding tube.

【0042】また、上記実施の形態では、1個の超音波
探触子を用いて、欠陥の有無あるいは管厚を測定する方
法について説明したが、2個以上の超音波探触子を用い
て、欠陥の有無あるいは管厚を同時に測定しても良い。
Further, in the above-described embodiment, the method of measuring the presence or absence of a defect or the tube thickness using one ultrasonic probe has been described. However, the method using two or more ultrasonic probes has been described. The presence or absence of a defect or the tube thickness may be measured simultaneously.

【0043】[0043]

【発明の効果】本発明は、粗大結晶粒組織を有する金属
管の外面又は内面に異種金属を肉盛りした肉盛管に超音
波を入射し、反射エコーの大きさを検出する場合におい
て、前記超音波として、周波数3〜4MHzの広帯域特
性を有する縦波超音波を用いたので、高い分解能が得ら
れ、欠陥の有無あるいは肉盛厚さを高い精度で検査でき
るという効果がある。
According to the present invention, there is provided a method for detecting the magnitude of a reflected echo by irradiating an ultrasonic wave to a cladding tube in which a dissimilar metal is clad on the outer surface or inner surface of a metal tube having a coarse crystal grain structure. The use of longitudinal ultrasonic waves having a wide band characteristic of a frequency of 3 to 4 MHz as the ultrasonic waves has an effect that a high resolution can be obtained, and the presence or absence of a defect or the thickness of the overlay can be inspected with high accuracy.

【0044】また、肉盛管の接合界面に発生した欠陥に
起因する欠陥エコーを検出する場合において、肉盛り前
に測定された前記金属管の管厚に基づき、欠陥エコーを
検出するためのゲート位置を変化させると、金属管の管
厚が一定していない場合、あるいは、肉盛管と超音波探
触子との間の距離が変動する場合であっても、欠陥エコ
ーを確実に検出できるという効果がある。
When detecting a defect echo caused by a defect generated at the joint interface of the cladding tube, a gate for detecting the defect echo based on the thickness of the metal tube measured before the cladding. By changing the position, even when the thickness of the metal tube is not constant, or when the distance between the cladding tube and the ultrasonic probe fluctuates, the defect echo can be reliably detected. This has the effect.

【0045】さらに、肉盛管の肉盛厚さを測定する場合
において、肉盛り前に前記金属管の管厚を測定すると共
に、肉盛り後に前記肉盛管に超音波を入射し、表面エコ
ー及び底面エコーの到達時間の差から前記肉盛管の管厚
を測定すれば、その差から肉盛厚さを容易かつ正確に求
めることができるという効果がある。
Further, when measuring the thickness of the cladding tube, the thickness of the metal tube is measured before the cladding, and ultrasonic waves are incident on the cladding tube after the cladding, and the surface echo is measured. If the thickness of the cladding tube is measured from the difference between the arrival times of the bottom surface echo and the bottom echo, the cladding thickness can be easily and accurately obtained from the difference.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 超音波の周波数特性と反射エコーとの関係を
示す図である。
FIG. 1 is a diagram showing a relationship between a frequency characteristic of an ultrasonic wave and a reflected echo.

【図2】 本発明に係る欠陥の検査方法を説明する図で
ある。
FIG. 2 is a diagram illustrating a defect inspection method according to the present invention.

【図3】 肉盛管の接合面に発生した欠陥の検出例を示
す図である。
FIG. 3 is a diagram showing an example of detecting a defect generated on a joint surface of a cladding tube.

【符号の説明】[Explanation of symbols]

10 肉盛管 12 金属管 14 異種金属 16 欠陥 10 Overlay tube 12 Metal tube 14 Dissimilar metal 16 Defect

フロントページの続き Fターム(参考) 2F068 AA28 AA48 BB09 BB15 BB23 CC00 CC16 DD04 FF12 FF14 FF25 JJ12 JJ23 KK12 QQ02 2G047 AA07 AB01 BA03 BC07 BC18 CB01 GF11 GG02 GG30 Continued on the front page F term (reference) 2F068 AA28 AA48 BB09 BB15 BB23 CC00 CC16 DD04 FF12 FF14 FF25 JJ12 JJ23 KK12 QQ02 2G047 AA07 AB01 BA03 BC07 BC18 CB01 GF11 GG02 GG30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属管の外面又は内面に異種金属を肉盛
りした肉盛管に対して超音波を入射し、反射エコーの大
きさを検出する反射エコー検出工程を備えた肉盛管の検
査方法において、 前記金属管は、粗大結晶粒組織を有し、 前記超音波として、広帯域特性を有する縦波超音波を用
いたことを特徴とする肉盛管の検査方法。
1. An inspection of a cladding tube provided with a reflection echo detecting step of irradiating an ultrasonic wave to a cladding tube in which dissimilar metal is clad on an outer surface or an inner surface of a metal tube and detecting a magnitude of a reflection echo. In the method, the metal tube has a coarse crystal grain structure, and a longitudinal wave ultrasonic wave having a wide band characteristic is used as the ultrasonic wave.
【請求項2】 前記超音波は、その周波数が3〜4MH
zであることを特徴とする請求項1に記載の肉盛管の検
査方法。
2. The ultrasonic wave has a frequency of 3 to 4 MHz.
The inspection method for a cladding tube according to claim 1, wherein z is z.
【請求項3】 前記金属管は、結晶粒径が100〜10
00μmであることを特徴とする請求項1に記載の肉盛
管の検査方法。
3. The metal tube has a crystal grain size of 100 to 10.
The overlay inspection method according to claim 1, wherein the thickness is 00 µm.
【請求項4】 金属管の外面又は内面に異種金属を肉盛
りした肉盛管に対して超音波を入射し、反射エコーの大
きさを検出する反射エコー検出工程を備えた肉盛管の検
査方法において、 前記反射エコー検出工程は、前記金属管と前記異種金属
の界面に生成した欠陥に起因する欠陥エコーを検出する
ものであり、 肉盛り前に測定された前記金属管の管厚に応じて、前記
欠陥エコーを検出するためのゲート位置を変化させるゲ
ート位置調節工程をさらに備えていることを特徴とする
肉盛管の検査方法。
4. An inspection of a cladding tube provided with a reflection echo detecting step of irradiating an ultrasonic wave to a cladding tube in which dissimilar metal is clad on an outer surface or an inner surface of a metal tube and detecting a magnitude of a reflection echo. In the method, the reflection echo detecting step is to detect a defect echo caused by a defect generated at an interface between the metal tube and the dissimilar metal, and according to a tube thickness of the metal tube measured before the cladding. And a gate position adjusting step of changing a gate position for detecting the defect echo.
【請求項5】 金属管の外面又は内面に異種金属を肉盛
りした肉盛管に対して超音波を入射し、反射エコーの大
きさを検出する反射エコー検出工程を備えた肉盛管の検
査方法において、 前記反射エコー検出工程は、前記肉盛管の表面反射に起
因する表面エコー及び底面反射に起因する底面エコーを
検出するものであり、 肉盛り前に測定された前記金属管の管厚と、前記表面エ
コー及び前記底面エコーの到達時間の差から求めた前記
肉盛管の管厚との差から、前記肉盛管の肉盛厚さを求め
る肉盛厚さ算出工程をさらに備えていることを特徴とす
る肉盛管の検査方法。
5. An inspection of a cladding tube provided with a reflection echo detecting step of irradiating an ultrasonic wave to a cladding tube in which a dissimilar metal is clad on an outer surface or an inner surface of a metal tube and detecting a magnitude of a reflection echo. In the method, the reflected echo detection step is to detect a surface echo caused by surface reflection of the cladding tube and a bottom echo caused by bottom reflection, and the thickness of the metal tube measured before cladding. And a cladding thickness calculating step of calculating a cladding thickness of the cladding tube from a difference between a thickness of the cladding tube and a thickness of the cladding tube determined from a difference between arrival times of the surface echo and the bottom surface echo. Inspection method of cladding tube characterized by having.
JP2000135051A 2000-05-08 2000-05-08 Padding pipe inspecting method Pending JP2001318085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135051A JP2001318085A (en) 2000-05-08 2000-05-08 Padding pipe inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135051A JP2001318085A (en) 2000-05-08 2000-05-08 Padding pipe inspecting method

Publications (1)

Publication Number Publication Date
JP2001318085A true JP2001318085A (en) 2001-11-16

Family

ID=18643211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135051A Pending JP2001318085A (en) 2000-05-08 2000-05-08 Padding pipe inspecting method

Country Status (1)

Country Link
JP (1) JP2001318085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300196B1 (en) 2005-07-07 2013-08-26 가부시끼가이샤 히다치 세이사꾸쇼 Piping for steam turbines, a manufacturing method thereof, and main steam pipings for stem turbines using them re-heating pipings and generation plants
JP2021032639A (en) * 2019-08-21 2021-03-01 佐藤工業株式会社 Device and method for acoustic inspection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183962A (en) * 1984-10-01 1986-04-28 Kobe Steel Ltd Ultrasonic flaw detection of centrifugally cast pipe
JPS6232359A (en) * 1985-08-02 1987-02-12 Nippon Steel Corp Signal processing method for improving s/n in ultrasonic flaw detection
JPS62204107A (en) * 1986-03-04 1987-09-08 Kobe Steel Ltd Measuring method for liner thickness of duplex tube
JPH02102409A (en) * 1988-10-12 1990-04-16 Nkk Corp Measuring method for heat treatment depth
JPH0862192A (en) * 1994-08-25 1996-03-08 Tokimec Inc Ultrasonic flaw detection apparatus and flaw judgement method
JPH09304363A (en) * 1996-05-17 1997-11-28 Komatsu Ltd Method for ultrasonically detecting flaw in austenitic steel casting
JPH11101630A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Method and apparatus for measuring position of boundary of different substances by ultrasonic wave
JP2001059718A (en) * 1999-08-24 2001-03-06 Daido Steel Co Ltd Method for evaluating quality of metal joined pipe
JP2001071137A (en) * 1999-09-06 2001-03-21 Daido Steel Co Ltd Build-up welding method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183962A (en) * 1984-10-01 1986-04-28 Kobe Steel Ltd Ultrasonic flaw detection of centrifugally cast pipe
JPS6232359A (en) * 1985-08-02 1987-02-12 Nippon Steel Corp Signal processing method for improving s/n in ultrasonic flaw detection
JPS62204107A (en) * 1986-03-04 1987-09-08 Kobe Steel Ltd Measuring method for liner thickness of duplex tube
JPH02102409A (en) * 1988-10-12 1990-04-16 Nkk Corp Measuring method for heat treatment depth
JPH0862192A (en) * 1994-08-25 1996-03-08 Tokimec Inc Ultrasonic flaw detection apparatus and flaw judgement method
JPH09304363A (en) * 1996-05-17 1997-11-28 Komatsu Ltd Method for ultrasonically detecting flaw in austenitic steel casting
JPH11101630A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Method and apparatus for measuring position of boundary of different substances by ultrasonic wave
JP2001059718A (en) * 1999-08-24 2001-03-06 Daido Steel Co Ltd Method for evaluating quality of metal joined pipe
JP2001071137A (en) * 1999-09-06 2001-03-21 Daido Steel Co Ltd Build-up welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300196B1 (en) 2005-07-07 2013-08-26 가부시끼가이샤 히다치 세이사꾸쇼 Piping for steam turbines, a manufacturing method thereof, and main steam pipings for stem turbines using them re-heating pipings and generation plants
JP2021032639A (en) * 2019-08-21 2021-03-01 佐藤工業株式会社 Device and method for acoustic inspection
JP7357341B2 (en) 2019-08-21 2023-10-06 佐藤工業株式会社 Acoustic inspection device and method

Similar Documents

Publication Publication Date Title
US4669310A (en) High frequency ultrasonic technique for measuring oxide scale on the inner surface of boiler tubes
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
EP2053392A1 (en) Ultrasonic scanning device and method
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
EP1271097A2 (en) Method for inspecting clad pipe
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
US4445360A (en) Method for ultrasonically determining characteristics of a body
EP0139317A2 (en) Apparatus and method for the non-destructive inspection of solid bodies
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
EP0930502B1 (en) A method for examining bonded-metal by ultrasonic examination
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2009058238A (en) Method and device for defect inspection
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JP2001318085A (en) Padding pipe inspecting method
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JP2003344370A (en) Ultrasonic inspection method
JPH0376417B2 (en)
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
SU1698746A1 (en) Method of ultrasonic check of adhesion continuity of two materials with different acoustic resistance
JP2539019B2 (en) Ultrasonic flaw detection
JPS5831871B2 (en) Ultrasonic flaw detection method
JP2003302381A (en) Method for examinating ultrasonic wave
JPH07325070A (en) Ultrasonic method for measuring depth of defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316