[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001313035A - Nonaqeuos cell - Google Patents

Nonaqeuos cell

Info

Publication number
JP2001313035A
JP2001313035A JP2000128922A JP2000128922A JP2001313035A JP 2001313035 A JP2001313035 A JP 2001313035A JP 2000128922 A JP2000128922 A JP 2000128922A JP 2000128922 A JP2000128922 A JP 2000128922A JP 2001313035 A JP2001313035 A JP 2001313035A
Authority
JP
Japan
Prior art keywords
electrode
carbon
functional group
electrolyte
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000128922A
Other languages
Japanese (ja)
Other versions
JP4682395B2 (en
Inventor
Tatsuhiro Fukuzawa
達弘 福沢
Yasuhiko Osawa
康彦 大澤
Mikio Kawai
幹夫 川合
Yuji Tanjo
雄児 丹上
Hideaki Horie
英明 堀江
Takaaki Abe
孝昭 安部
Osamu Shimamura
修 嶋村
Toshihiro Takegawa
寿弘 竹川
Ryuzo Kamimura
隆三 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000128922A priority Critical patent/JP4682395B2/en
Publication of JP2001313035A publication Critical patent/JP2001313035A/en
Application granted granted Critical
Publication of JP4682395B2 publication Critical patent/JP4682395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conduction promoting agent which can improve adhesion of an electrode without increasing the volume of binder or decreasing the volume of conduction promoting agent, and to provide a nonaqueous cell using the same. SOLUTION: The conduction promoting agent includes the same volume of fine carbon particles with functional group which dislocates and ionizes in nonaqueous solvent, and fine carbon particles practically without functional group on their surface. A cathode electrode and/or an anode electrode of the nonaqueous cell includes the conduction promoting agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電助材及びかか
る導電助材を用いた正極及び/又は負極を備える非水電
池に関する。
The present invention relates to a non-aqueous battery provided with a conductive auxiliary and a positive electrode and / or a negative electrode using the conductive auxiliary.

【0002】[0002]

【従来の技術】リチウム二次電池、リチウムイオン二次
電池の電極は、通常、電極活物質と、電極の導電性を向
上させるための導電助材と、それらを、集電体である金
属箔上に結着するバインダーとからなる。電極を製造す
る際、電極材料と集電体との密着性は、電極の性能を左
右する重要な要素となる。電極の密着性が悪いと、充放
電の繰り返しの耐久性が低下したり、電極材料の脱落に
より容量が低下し、微小短絡の原因となったりする。
2. Description of the Related Art Electrodes of a lithium secondary battery and a lithium ion secondary battery are usually made of an electrode active material, a conductive auxiliary material for improving the conductivity of the electrode, and a metal foil as a current collector. And a binder bound thereon. When manufacturing an electrode, the adhesion between the electrode material and the current collector is an important factor that affects the performance of the electrode. If the adhesion of the electrode is poor, the durability of repeated charge / discharge is reduced, or the capacity is reduced due to the drop of the electrode material, which causes a micro short circuit.

【0003】電極材料と集電体との密着性は、結着剤で
あるバインダーの量を増加すれば向上するが、バインダ
ーは電池の反応には直接関与せず、それ自体は導電性も
有さないため、電極全体に占めるバインダーの分量が増
加すると、その結果、電池の容量が低下し、電極の抵抗
も大きくなる。また、電極の抵抗を下げるために電極材
料に導電助材を加えることが一般的に実施されており、
例えば、特開平10−306193号公報が示すよう
に、導電助材として一般的なアセチレンブラックを用い
ると、アセチレンブラックはバインダーを吸収してしま
うため、アセチレンブラックの分量が増加すると、電極
の密着性が低下するという問題がある。
[0003] The adhesion between the electrode material and the current collector can be improved by increasing the amount of the binder, which is a binder, but the binder does not directly participate in the reaction of the battery and has conductivity itself. Therefore, when the amount of the binder in the entire electrode increases, as a result, the capacity of the battery decreases and the resistance of the electrode increases. Also, it is common practice to add a conductive auxiliary to the electrode material in order to reduce the resistance of the electrode,
For example, as shown in Japanese Patent Application Laid-Open No. 10-306193, when general acetylene black is used as a conductive additive, acetylene black absorbs a binder. Therefore, when the amount of acetylene black increases, the adhesion of the electrode increases. Is reduced.

【0004】そして、最近リチウム二次電池の非水電解
液のかわりにポリマー電解質を用いたものが開発されて
いる。この電解質のポリマー化により、電池の形状自由
性やコンパクト化が期待できる。しかし、現状のポリマ
ー電解質のイオン伝導性は、せいぜい10-4S/cm程度
で、非水電解液と比較すると2桁程度小さい。そのた
め、ポリマー中に電解液を含浸させたゲル電解質の検討
が行われている。電解質をゲル化しても、室温での伝導
度が10-3S/cmをこえることが報告されている。たと
えば、J. Y. Songらがこれについて総説を発表している
〔J. Power Sources, 77(1999)183.〕公開
特許としてはたとえば、特開平8−264205などが
ある。ゲル電解質としては、ポリエチレンオキシド系、
ポリアクリロニトリル系、ポリメチルメチクリル系、ポ
リフッカビニリデン系、及びこれらを含む共重合体など
が提案されている。
Recently, lithium secondary batteries using a polymer electrolyte instead of a non-aqueous electrolyte have been developed. By polymerizing the electrolyte, it is expected that the battery can be freely shaped and compact. However, the ionic conductivity of the current polymer electrolyte is at most about 10 −4 S / cm, which is about two orders of magnitude smaller than that of the non-aqueous electrolyte. Therefore, a gel electrolyte in which an electrolyte is impregnated in a polymer has been studied. It has been reported that even when the electrolyte is gelled, the conductivity at room temperature exceeds 10 -3 S / cm. For example, JY Song et al. Have published a review on this [J. Power Sources, 77 (1999) 183. Patent publications include, for example, JP-A-8-264205. As a gel electrolyte, polyethylene oxide-based,
There have been proposed polyacrylonitrile-based, polymethylmethacrylic-based, polyfukkavinylidene-based copolymers, and copolymers containing these.

【0005】しかしながら従来のゲル状ポリマー電解質
は、高分子マトリックスが電解液を含有することを特徴
とし、全固体型のポリマー電解質に比べればイオン伝導
度が改善されているものの、まだ電解液のレベルに及ば
ず、この電解質を用いて電池を構成した場合、電解質相
の低イオン伝導性のため、電極の内部抵抗が大きく、出
力が低下して電流を流しにくくなるので、電池の充放電
容量を十分に引き出せない。容量を引き出せるようにす
るには、電極内でのイオン伝導度を向上させ、内部抵抗
を低くする必要がある。
[0005] However, the conventional gel polymer electrolyte is characterized in that the polymer matrix contains an electrolytic solution. Although the ionic conductivity is improved as compared with the all solid type polymer electrolyte, the level of the electrolytic solution is still low. When a battery is formed using this electrolyte, the internal resistance of the electrode is large due to the low ionic conductivity of the electrolyte phase, the output is reduced, and it becomes difficult to flow current. We cannot pull out enough. In order to be able to extract the capacitance, it is necessary to improve the ionic conductivity in the electrode and lower the internal resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、バイ
ンダーの量を増加したり、導電助材の量を減少したりす
ることなく、電極の密着性を向上させることができる導
電助材及び該導電助材を用いた正極及び/又は負極を備
えた非水電池を提供する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive auxiliary material capable of improving the adhesion of an electrode without increasing the amount of a binder or reducing the amount of a conductive auxiliary material. A nonaqueous battery provided with a positive electrode and / or a negative electrode using the conductive auxiliary material is provided.

【0007】[0007]

【課題を解決するための手段】請求項1記載の非水電池
は、非水溶液中でイオン解離しうる官能基を表面に有し
たカーボンを含むことを特徴とする。
The non-aqueous battery according to the present invention is characterized in that the non-aqueous battery contains carbon having a functional group capable of dissociating ions in a non-aqueous solution on its surface.

【0008】請求項2記載の非水電池は、非水溶液中で
イオン解離しうる官能基が、スルホン酸基の塩であるこ
とを特徴とする。
[0008] A non-aqueous battery according to a second aspect is characterized in that the functional group capable of dissociating ions in a non-aqueous solution is a salt of a sulfonic acid group.

【0009】請求項3記載の非水電池は、スルホン酸基
の塩が、リチウムのスルホン酸塩であることを特徴とす
る。
The non-aqueous battery according to claim 3 is characterized in that the salt of the sulfonic acid group is a lithium sulfonate.

【0010】請求項4記載の非水電池は、イオン解離し
うる官能基を表面に有したカーボンと有しないカーボン
の両方を含むことを特徴とする。
A non-aqueous battery according to a fourth aspect is characterized in that the non-aqueous battery contains both carbon having an ion-dissociable functional group on the surface and carbon having no functional group.

【0011】請求項5記載の非水電池は、イオン解離し
うる官能基を表面に有したカーボンが、粒子の平均粒径
が1μm 以下の微粒子状及び/又はアスペクト比が50
0以下で直径が20μm 以下の繊維状であることを特徴
とする。
[0011] In the nonaqueous battery according to the fifth aspect, the carbon having an ion-dissociable functional group on the surface is fine particles having an average particle diameter of 1 µm or less and / or having an aspect ratio of 50 or less.
It is a fibrous shape having a diameter of 0 or less and a diameter of 20 μm or less.

【0012】請求項6記載の非水電池は、イオン解離し
うる官能基を表面に有したカーボンの含有量が、電極活
物質の1〜30重量%であることを特徴とする。
A non-aqueous battery according to a sixth aspect is characterized in that the content of carbon having ion-dissociable functional groups on the surface is 1 to 30% by weight of the electrode active material.

【0013】請求項7記載の非水電池は、電解質はポリ
マーとリチウム塩を溶解した有機電解液から成るゲル状
ポリマー電解質であることを特徴とする。
The non-aqueous battery according to the present invention is characterized in that the electrolyte is a gel-like polymer electrolyte comprising an organic electrolyte solution in which a polymer and a lithium salt are dissolved.

【0014】[0014]

【発明の実施の形態】本発明の非水電池用電極に用いる
導電助材は、該導電助材の全部又は一部に非水溶液中で
イオン解離しうる官能基を表面に有したカーボンを含む
ことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive auxiliary used for the electrode for a non-aqueous battery of the present invention contains carbon having on its surface a functional group capable of dissociating ions in a non-aqueous solution in all or a part of the conductive auxiliary. It is characterized by the following.

【0015】まず、本発明の非水電池に用いる導電助材
には非水溶液中でイオン解離しうる官能基を表面に有し
たカーボンが含有される。ここで非水溶液とは、プロピ
レンカーボネート(PC)、エチレンカーボネート(E
C)、ジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)、エチメメチルカーボネート(EM
C)、ジメトキシエタン DME)等の単体もしくは混
合溶液に、支持塩としてLiPF6 ,LiBF4 ,Li
ClO4 ,LiAsF6 等を溶解させたものである。更
に高容量の非水電池を得るには、電解質としてポリマー
とリチウム塩を溶解した有機電解液から成るゲル状ポリ
マー電解質を用いることが好ましく、リチウムイオンポ
リマー二次電池の充放電容量を大きくできる。
First, the conductive additive used in the non-aqueous battery of the present invention contains carbon having a surface having a functional group capable of dissociating ions in a non-aqueous solution. Here, the non-aqueous solution means propylene carbonate (PC), ethylene carbonate (E
C), dimethyl carbonate (DMC), diethyl carbonate (DEC), etimemethyl carbonate (EM
C), dimethoxyethane DME) or a simple or mixed solution, as a supporting salt, LiPF 6 , LiBF 4 , Li
It is obtained by dissolving ClO 4 , LiAsF 6 and the like. In order to obtain a non-aqueous battery with a higher capacity, it is preferable to use a gel polymer electrolyte composed of an organic electrolyte solution in which a polymer and a lithium salt are dissolved as the electrolyte, and the charge / discharge capacity of the lithium ion polymer secondary battery can be increased.

【0016】イオン解離しうる官能基には、例えばスル
ホン酸基の塩、カルボキシル基の塩、イミド基の塩、メ
サイド基の塩が含まれる。特にリチウム二次電池、リチ
ウムイオン二次電池の電極に用いる場合には、スルホン
酸基のリチウム塩が望ましい。かかるイオン解離しうる
官能基を表面に有するためのカーボンには、種々の方法
で製造されるカーボンブラックの他、天然グラファイ
ト、有機物を炭化することによって造られる種々のカー
ボンなどが含まれる。
The ion-dissociable functional groups include, for example, salts of sulfonic acid groups, salts of carboxyl groups, salts of imide groups, and salts of meside groups. In particular, when used for an electrode of a lithium secondary battery or a lithium ion secondary battery, a lithium salt of a sulfonic acid group is desirable. Examples of the carbon having a functional group capable of dissociating ions on the surface include carbon black produced by various methods, natural graphite, various carbons produced by carbonizing organic substances, and the like.

【0017】本発明の導電助材は、上記イオン解離しう
る官能基を表面に有したカーボンの他に、官能基を事実
上表面に有さないカーボンを含む。導電助材中に、イオ
ン解離しうる官能基を表面に有するカーボンを含有する
割合は、10〜80重量%である。かかる範囲とするこ
とにより電極の導電性をもったまま密着性を向上させる
ことができる。官能基を事実上表面に有さないとは、通
常の合成法で製造されるアセチレンブラック等が表面に
有するイオン解離性基の量を超えない状態をいう。
The conductive additive of the present invention contains, in addition to the carbon having the ion-dissociable functional group on the surface thereof, carbon having substantially no functional group on the surface. The proportion of carbon having a functional group capable of ion dissociation on the surface in the conductive additive is 10 to 80% by weight. By setting the content in such a range, the adhesion can be improved while maintaining the conductivity of the electrode. The phrase "having virtually no functional group on the surface" refers to a state in which acetylene black or the like produced by an ordinary synthesis method does not exceed the amount of ion dissociable groups on the surface.

【0018】カーボン微粒子を用いる場合、その大きさ
は、1nmから10μm が電極の耐久性、密着性から好
ましく、この範囲の大きさにすることにより電極活物質
間にカーボン微粒子のネットワークを形成することがで
き、電極の導電性を向上することができる。また、この
目的に使えるカーボンとしては、必ずしも微粒子である
必要はなく、表面領域にイオン解離性基を設けられる繊
維状のものでもよく、アスペクト比が500以下で直径
が20μm 以下の繊維状カーボンを用いるのが好まし
い。また、導電助材としてのカーボンの含有量は、電極
活物質の1から30重量%であることが特に好ましい。
When carbon fine particles are used, the size thereof is preferably 1 nm to 10 μm from the viewpoint of durability and adhesion of the electrode. By setting the size within this range, a network of carbon fine particles is formed between the electrode active materials. And the conductivity of the electrode can be improved. The carbon usable for this purpose does not necessarily need to be fine particles, and may be a fibrous carbon having an ion dissociable group in the surface region. A fibrous carbon having an aspect ratio of 500 or less and a diameter of 20 μm or less may be used. It is preferably used. Further, the content of carbon as a conductive additive is particularly preferably 1 to 30% by weight of the electrode active material.

【0019】電極内で、電子伝導性とイオン伝導性の向
上を同時に解決するための本発明の、密着性以外の別の
効果の概念を図1に示す。電子はカーボン骨格上を移動
し、周りのイオン性領域をイオンが移動することを模式
的に示している。カーボンの周りのイオン性領域をつく
ることで、イオンが通りやすくなり、結果としてイオン
伝導性の向上になると考えられる。
FIG. 1 shows the concept of another effect other than the adhesion of the present invention for simultaneously solving the improvement of the electron conductivity and the ion conductivity in the electrode. Electrons schematically move on the carbon skeleton and move in the surrounding ionic region. It is considered that the creation of an ionic region around the carbon facilitates the passage of ions, resulting in an improvement in ionic conductivity.

【0020】このように本発明の非水電池に用いる導電
助材においては、表面に、非水溶液中でイオン解離する
官能基を有するカーボンブラックは、電極材料スラリー
中で官能基の塩がイオン解離することにより、それら同
士で反発し合い、より小さな単位で分散する。
As described above, in the conductive aid used in the non-aqueous battery of the present invention, carbon black having a functional group that dissociates in a non-aqueous solution on the surface is formed by dissociating the salt of the functional group in the electrode material slurry. By doing so, they repel each other and disperse in smaller units.

【0021】通常、導電助材として用いられるアセチレ
ンブラックは、数百nm程度の二次粒子を形成するため、
その空孔部分にバインダーが吸収されてしまうが、官能
基を有するカーボンブラックは、分散性がよく、大きな
二次粒子を形成しにくいため、バインダーを吸収しな
い。このため、官能基を有するカーボンブラックを導電
助材として用いると、アセチレンブラックを導電助剤と
して同量使用した場合に比べて、電極の密着性が向上す
る。
Normally, acetylene black used as a conductive additive forms secondary particles of about several hundred nm.
Although the binder is absorbed in the pores, the carbon black having a functional group does not absorb the binder because it has good dispersibility and is difficult to form large secondary particles. Therefore, when carbon black having a functional group is used as the conductive additive, the adhesion of the electrode is improved as compared with the case where acetylene black is used in the same amount as the conductive additive.

【0022】リチウムイオン電池の電極のような微粒子
を塗布したような電極の内部抵抗や分極現象については
よくわからない面が多いが、応答性のよい電極を構成す
るためには電極厚さを薄くする等の形状因子の制御の他
に、(1)電極活物質の電荷移動過程を速くし、(2)
電極内での電子伝導性を向上し、(3)電極内でのイオ
ン伝導性を向上することが重要と考えられる。電子伝導
抵抗の低減については、溶液系の電池でも通常アセチレ
ンブラック等の導電助材の添加が行われる。イオン伝導
抵抗の低減には、微粒子状や繊維状のカーボンに、スル
ホン酸リチウムのようなイオン解離性基を設けたカーボ
ンを用いることにより、電子伝導性とイオン導電性を同
時に改善できると考えて検討した。
Although the internal resistance and the polarization phenomenon of an electrode coated with fine particles, such as an electrode of a lithium ion battery, are not well understood, the thickness of the electrode is reduced in order to form an electrode having good response. In addition to controlling shape factors such as (1) speeding up the charge transfer process of the electrode active material, (2)
It is considered important to improve the electron conductivity in the electrode and (3) to improve the ion conductivity in the electrode. In order to reduce the electron conduction resistance, a conductive additive such as acetylene black is usually added even in a solution-based battery. In order to reduce the ion conduction resistance, it is thought that electron conductivity and ionic conductivity can be improved simultaneously by using carbon in which fine particles or fibrous carbon is provided with an ion dissociable group such as lithium sulfonate. investigated.

【0023】本発明の導電助材は、非水電池及び/又は
負極の電極に用いて、非水電池を構成することができ
る。図2を参照しながら説明する。非水電池は、薄膜状
の正極(1)と負極(2)を、それらの間にセパレータ
ー(3)を挟んで捲回した捲回体を、電池缶(7)に挿
入し、正極リード(4)を正極側蓋(6)に、負極リー
ド(5)を電池缶底に溶接して、缶内部に非水溶液の電
解液を満たすことにより構成されるものである。
The conductive auxiliary material of the present invention can be used for a non-aqueous battery and / or a negative electrode to constitute a non-aqueous battery. This will be described with reference to FIG. In a nonaqueous battery, a thin film of a positive electrode (1) and a negative electrode (2), and a separator (3) sandwiched between them, a rolled body is inserted into a battery can (7), and a positive electrode lead ( 4) is welded to the positive electrode side cover (6), the negative electrode lead (5) is welded to the bottom of the battery can, and the inside of the can is filled with a non-aqueous electrolyte.

【0024】本発明の電解質としては、ポリマーとリチ
ウム塩を溶解した有機電解液から成るゲル状ポリマー電
解質が好ましく使用できる。本発明は、ゲル状ポリマー
電解質の電池用電極にリチウムイオン解離性基を形成さ
せた微粒子およびまたは繊維状のカーボンを含ませるこ
とにより新規で高容量のリチウムイオンポリマー二次電
池を構成しようというものである。リチウムイオンポリ
マー二次電池の正極は、正極活物質微粒子と前記イオン
解離性基を設けたカーボンの混合物の空隙をゲル状ポリ
マー電解質が満たした構成となっており、負極は、正極
活物質を負極活物質に換えて同様にして製作する。これ
らの正負の電極で、別途製作したゲル状ポリマー電解質
膜を挟み薄型電池を構成した。図面3にその断面の模式
図を示す。
As the electrolyte of the present invention, a gel polymer electrolyte comprising an organic electrolytic solution in which a polymer and a lithium salt are dissolved can be preferably used. The present invention intends to constitute a novel and high-capacity lithium-ion polymer secondary battery by incorporating fine particles having a lithium-ion dissociable group and / or fibrous carbon into a battery electrode of a gel-like polymer electrolyte. It is. The positive electrode of the lithium ion polymer secondary battery has a configuration in which the gel polymer electrolyte fills the voids of the mixture of the positive electrode active material fine particles and the carbon provided with the ion dissociating group, and the negative electrode has the positive electrode active material as the negative electrode. It is manufactured in the same manner in place of the active material. A thin battery was constructed by sandwiching a separately manufactured gel polymer electrolyte membrane between these positive and negative electrodes. FIG. 3 shows a schematic diagram of the cross section.

【0025】[0025]

【実施例】本発明を次の実施例及び比較例により説明す
る。実施例1 イオン解離性基を形成させた微粒子又は繊維状、あるい
はその両方の形状のカーボンとして、表面にスルホン酸
基を有するカーボンブラックを選んで本発明実施の一形
態を説明する。なお、表面にスルホン酸基を有するカー
ボンブラックは、カーボンブラックを濃硫酸等でスルホ
ン化することにより得られる。本発明で用いるのは、カ
ーボンに結合したスルホン酸基を水酸化リチウム等で中
和して、スルホン酸リチウム塩として、十分に乾燥した
物を使用する。以後これをスルホン化カーボンブラック
5重量%、LiCoO2 85重量%、バインダーとして
ポリフッ化ビニリデン10重量%、溶媒としてN−メチ
ルピロリドンを加え、ホモジナイザーで混合してスラリ
ー状とし、アルミ箔上に塗布乾燥し、正極とした。負極
にはLi金属を使用した。これらで電解液として1Mの
LiPF6 のプロピレンカーボネートジメチルカーボネ
ート溶液(混合比1:1)を染み込ませた石英ガラス濾
紙を挟み、コイン含セルを構成した。この電極は、表1
に示すとおり、導電性は比較例2と同程度で密着性が更
に向上されたものであった。電極の密着性の評価は、1
5mm四方の粘着性テープを電極表面に貼り、200mm/
min の速度で電極面に対して垂直に剥がした時の破断荷
重を測定することにより行った(図4)。導電性の評価
は、電極表面に、鏡面に磨いたSUS製の電極を押し付
け、SUS製電極と集電体缶の抵抗を測定することによ
り行った。上記評価の結果を、電極破断荷重として表1
に示した。
The present invention will be described with reference to the following examples and comparative examples. Example 1 One embodiment of the present invention will be described by selecting carbon black having a sulfonic acid group on its surface as carbon in the form of fine particles and / or fibrous or both having ion-dissociable groups formed thereon. Note that carbon black having a sulfonic acid group on the surface is obtained by sulfonating carbon black with concentrated sulfuric acid or the like. In the present invention, a sulfonic acid group bonded to carbon is neutralized with lithium hydroxide or the like, and a sufficiently dried lithium sulfonic acid salt is used. Thereafter, this was added with 5% by weight of sulfonated carbon black, 85% by weight of LiCoO 2 , 10% by weight of polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a solvent. Then, a positive electrode was obtained. Li metal was used for the negative electrode. A quartz glass filter paper impregnated with a 1 M LiPF 6 propylene carbonate dimethyl carbonate solution (mixing ratio 1: 1) as an electrolytic solution was sandwiched therebetween to form a coin-containing cell. This electrode is shown in Table 1.
As shown in Table 2, the conductivity was almost the same as that of Comparative Example 2, and the adhesion was further improved. The evaluation of electrode adhesion was 1
A 5mm square adhesive tape is stuck on the electrode surface and 200mm /
The measurement was performed by measuring the breaking load when peeled perpendicularly to the electrode surface at a speed of min (FIG. 4). The conductivity was evaluated by pressing a mirror-polished SUS electrode against the electrode surface and measuring the resistance between the SUS electrode and the current collector can. Table 1 shows the results of the evaluation as electrode breaking loads.
It was shown to.

【0026】実施例2 スルホン化カーボンブラック2.5重量%、アセチレン
ブラック2.5重量%、LiCoO2 85重量%、バイ
ンダーとしてポリフッ化ビニリデン10重量%、溶媒と
してN−メチルピロリドンを加え、ホモジナイザーで混
合してスラリー状とし、アルミ箔上に塗布乾燥し、正極
としたこの正極を用い、実施例1と同様の構成でコイン
型セルを構成した。密着性、導電性の評価は実施例1と
同様の手法により行った。この電極は表1に示すとお
り、実施例1と比較しても伝導性が大幅に向上した、電
極の密着性も実施例1と同程度のものであった。また図
5に示すとおり充放電も問題なく行うことができ、電極
として問題のない性能を有するものであった。
Example 2 2.5% by weight of sulfonated carbon black, 2.5% by weight of acetylene black, 85% by weight of LiCoO 2 , 10% by weight of polyvinylidene fluoride as a binder, N-methylpyrrolidone as a solvent, and a homogenizer. A coin-shaped cell was formed in the same configuration as in Example 1 by using this positive electrode, which was mixed to form a slurry, applied and dried on an aluminum foil, and used as a positive electrode. Evaluation of adhesion and conductivity was performed by the same method as in Example 1. As shown in Table 1, the conductivity of the electrode was greatly improved as compared with Example 1, and the adhesion of the electrode was almost the same as that of Example 1. In addition, as shown in FIG. 5, charging and discharging could be performed without any problem, and the electrode had satisfactory performance as an electrode.

【0027】比較例1 アセチレンブラック5重量%、LiCoO2 85重量
%、バインダーとしてポリフッ化ビニリデン10重量
%、溶媒としてN−メチルピロリドンを加え、ホモジナ
イザーで混合してスラリー状とし、アルミ箔上に塗布乾
燥し、正極とした。負極にはLi金属を使用した。これ
らで電解液として1MのLiPF6 のプロピレンカーボ
ネート−ジメチルカーボネート溶液(混合比1:1)を
染み込ませた石英ガラス濾紙を挟み、コイン型セルを構
成した。この電極は、表1に示すとおり、導電性は問題
なかったが、密着性が悪いものであった。上記実施例1
〜2及び比較例1〜2で得られた導電助材を用いた電極
の抵抗と密着性を(電極破断荷重)以下の表1に示す。
Comparative Example 1 5% by weight of acetylene black, 85% by weight of LiCoO 2 , 10% by weight of polyvinylidene fluoride as a binder and N-methylpyrrolidone as a solvent were mixed with a homogenizer to form a slurry, which was coated on an aluminum foil. It dried and was set as the positive electrode. Li metal was used for the negative electrode. A quartz glass filter paper impregnated with a 1 M LiPF 6 propylene carbonate-dimethyl carbonate solution (mixing ratio 1: 1) was sandwiched between them to form a coin cell. As shown in Table 1, this electrode had no problem in conductivity, but had poor adhesion. Example 1 above
The resistance and adhesion of the electrodes using the conductive aids obtained in Comparative Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below (electrode breaking load).

【0028】[0028]

【表1】 表中、電極の抵抗 ◎は、抵抗が非常に小さいことを示
す。○は、電極として使用に耐えうることを示す。 電極の密着性◎は、密着性が非常によいことを示す。○
は、電極としての使用に耐えることを示す。Δは、密着
性が悪いことを示す。
[Table 1] In the table, the resistance 電極 of the electrode indicates that the resistance is very small. ○ indicates that it can be used as an electrode. The adhesion ◎ of the electrode indicates that the adhesion is very good. ○
Indicates that it can be used as an electrode. Δ indicates that the adhesion is poor.

【0029】実施例3 スルホン化カーボンブラックを含むポリマー電位質複合
正極は以下の方法で作製した。正極活物質としてLiM
n204を60重量%、スルホン化カーボンブラック1
0重量%、高分子の原料モノマーとして、ポリエチレン
グリコールジアクリレート7重量%、電解質溶液23重
量%、アゾイソブチロニトリルを0.2重量%加えてよ
く攪拌混合して、できたペーストをアルミニウム集電体
に塗布して80℃にて1時間加熱重合して正極とした。
用いた電解質溶液は、プロピレンカーボネートとエチレ
ンカーボネートの体積比1:1の混合溶媒に、1モル/
リットルのLiPF6 塩を溶解させたものである。正極
活物質のかわりに負極活物質として、ハードカーボンを
用いて同様にして、負極を製作した。ポエチレングリコ
ールジアクリレートと電解質溶液の重量比を前記と同様
にして調製し、重量比0.5の重合開始剤ベンジルジメ
チルケタールを加え、紫外線重合してゲル状のポリマー
電解質膜を製作した。作製したゲル電解質ポリマー膜を
先に製作した正極と負極でサンドイッチして、それぞれ
の集電体からリードを取り出せるようにして、アルミニ
ウムのラミネートパックに収納後、シールして薄型電池
を構成した。
Example 3 A polymer-electrolyte composite positive electrode containing sulfonated carbon black was prepared by the following method. LiM as positive electrode active material
n204, 60% by weight, sulfonated carbon black 1
0% by weight, 7% by weight of polyethylene glycol diacrylate, 23% by weight of an electrolyte solution, and 0.2% by weight of azoisobutyronitrile were added as high molecular weight monomers and mixed well with stirring. It was applied to an electric conductor and polymerized by heating at 80 ° C. for 1 hour to obtain a positive electrode.
The electrolyte solution used was 1 mol / mol in a mixed solvent of propylene carbonate and ethylene carbonate in a volume ratio of 1: 1.
One liter of LiPF 6 salt is dissolved. A negative electrode was similarly manufactured using hard carbon as the negative electrode active material instead of the positive electrode active material. The weight ratio of polyethylene glycol diacrylate and the electrolyte solution was prepared in the same manner as described above, and a polymerization initiator benzyldimethyl ketal having a weight ratio of 0.5 was added, followed by ultraviolet polymerization to produce a gel polymer electrolyte membrane. The produced gel electrolyte polymer membrane was sandwiched between the positive electrode and the negative electrode produced earlier, so that the lead could be taken out from each current collector, stored in an aluminum laminate pack, and then sealed to form a thin battery.

【0030】実施例4 実施例3において、正極活物質LiMn204を60重
量%として、スルホン化カーボンブラックを5重量%と
した以外は同様にして正極を作製し、負極も同様な組成
により製作して、実施例3とほぼ同じサイズの薄型電池
を作製した。
Example 4 A positive electrode was prepared in the same manner as in Example 3, except that the positive electrode active material LiMn204 was changed to 60% by weight and the sulfonated carbon black was changed to 5% by weight. A thin battery having substantially the same size as that of Example 3 was manufactured.

【0031】比較例2 実施例3において、スルホン化カーボンブラックを通常
のアセチレンブラックに替えた以外は同様にして、正
極、負極、ゲル電解質ポリマー膜を作製し、実施例3と
同じサイズの薄型電池を作製した。
Comparative Example 2 A positive electrode, a negative electrode, and a gel electrolyte polymer membrane were prepared in the same manner as in Example 3 except that the sulfonated carbon black was replaced with ordinary acetylene black. Was prepared.

【0032】図6に、実施例3、実施例4、比較例2で
作製した電池の充放電特性を示す。充電は、4.2Vま
で5mAの定電流充電後、4.2Vで定電圧充電を行い、
合計4時間の充電時間とした。これを、1mAから8mAの
範囲で2Vまで定電流放電を行ったときの放電容量の結
果をまとめたものである。図から明らかなように、電極
中のアセチレンブラックをスルホン化カーボンブラック
に替えることにより、高電流密度で流せる電池容量が大
幅に増大していることがわかる。実施例3に見られるよ
うにスルホン化カーボンブラックの量を増やすと、更に
改善されるが、あまり増やしすぎると、電極中での活物
質量が相対的に減るので、取り出せる電気量が減少して
しまうので、リチウムイオン解離性基を成型させたカー
ボンの量は、5から15重量%が好ましく使える。
FIG. 6 shows the charge / discharge characteristics of the batteries produced in Examples 3, 4 and Comparative Example 2. After charging 5mA constant current up to 4.2V, constant voltage charging at 4.2V,
The total charging time was 4 hours. This is a summary of the results of the discharge capacity when a constant current discharge is performed from 2 mA to 2 V in the range of 1 mA to 8 mA. As is apparent from the figure, the battery capacity that can be passed at a high current density is greatly increased by replacing acetylene black in the electrode with sulfonated carbon black. As can be seen from Example 3, the amount of sulfonated carbon black is further improved by increasing the amount. However, if the amount is excessively increased, the amount of active material in the electrode is relatively reduced, so that the amount of electricity that can be taken out decreases. Therefore, the amount of carbon having a lithium ion dissociable group molded therein is preferably 5 to 15% by weight.

【0033】[0033]

【発明の効果】本発明は、非水溶液中でイオン解離する
官能基を有するカーボン微粒子と、通常の官能基を事実
上有さないカーボン微粒子の両方とを混合して、好まし
くは1:1の比で混合、非水電池用電極の導電助材とし
て使用することにより、電池の容量や電極の導電性を低
下させることなく、電極の密着性を大幅に向上させるこ
とができる。また更に、ゲル状のポリマー電解質を用い
た電池においても本発明の構成にすることにより、高容
量の非水電池を得ることができる。
According to the present invention, both a carbon fine particle having a functional group capable of dissociating ions in a non-aqueous solution and a carbon fine particle having substantially no ordinary functional group are mixed, preferably in a ratio of 1: 1. By mixing at a ratio and using it as a conductive aid for electrodes for non-aqueous batteries, the adhesion of the electrodes can be significantly improved without reducing the capacity of the battery or the conductivity of the electrodes. Furthermore, a battery using a gel polymer electrolyte can be used to obtain a high-capacity nonaqueous battery by adopting the configuration of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に使用するカーボンの模式図である。FIG. 1 is a schematic view of carbon used in the present invention.

【図2】 非水電解質二次電池の一構成例を示す概略断
面図である。
FIG. 2 is a schematic sectional view showing a configuration example of a non-aqueous electrolyte secondary battery.

【図3】 本発明の薄型のリチウムイオンポリマー二次
電池の断面図である。
FIG. 3 is a cross-sectional view of the thin lithium ion polymer secondary battery of the present invention.

【図4】 密着性評価試験の概念図。FIG. 4 is a conceptual diagram of an adhesion evaluation test.

【図5】 本発明のスルホン酸塩導入カーボンブラック
とアセチレンブラックとを用いて作製した電極(実施例
2)の充放電曲線図である。評価条件は、実施例1,2
で構成したコイル型セルを、電流密度0.28mA/cm2
しで、充電終止電圧4.2V、放電終止電圧3.5Vで
定電流充放電させたものである。
FIG. 5 is a charge / discharge curve diagram of an electrode (Example 2) produced using the sulfonate-introduced carbon black and acetylene black of the present invention. The evaluation conditions were the same as in Examples 1 and 2.
The current density of 0.28 mA / cm 2
The battery was charged and discharged at a constant current of 4.2 V and a discharge termination voltage of 3.5 V at a constant current.

【図6】 本発明の実施例及び比較例のリチウムイオン
ポリマー二次電池の放電容量の放電電流密度依存性を示
す図である。
FIG. 6 is a diagram showing the discharge current density dependence of the discharge capacity of the lithium ion polymer secondary batteries of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレーター 4 正極リード 5 負極リード 6 正極側蓋 7 電池缶 8 治具 9 両面テープ 10 電極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Positive side cover 7 Battery can 8 Jig 9 Double-sided tape 10 Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川合 幹夫 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 丹上 雄児 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 堀江 英明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 安部 孝昭 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 嶋村 修 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 竹川 寿弘 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 上村 隆三 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H029 AJ03 AK03 AL12 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 CJ11 CJ22 DJ08 DJ12 DJ15 DJ16 EJ12 HJ00 HJ05 5H050 AA08 BA17 BA18 CA08 CB12 DA02 DA03 DA10 EA24 FA12 FA16 FA17 GA14 GA21 GA22 HA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Mikio Kawai, Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Yuji Tangami, 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa, Nissan Motor Co., Ltd. (72) Inventor Hideaki Horie 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd. (72) Inventor Takaaki Abe 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Osamu Shimamura Kanagawa 2 in Takaracho, Kanagawa-ku, Yokohama, Nissan Motor Co., Ltd. (72) Inventor Toshihiro Takekawa 2 in Takaracho, Kanagawa-ku, Yokohama-shi Nissan Motor Co., Ltd. (72) Ryuzo Uemura 2, Takaracho in Kanagawa-ku, Kanagawa Prefecture F-term (reference) in Nissan Motor Co., Ltd. 5H029 AJ03 AK03 AL12 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 CJ11 CJ22 DJ08 DJ12 DJ15 DJ16 EJ12 HJ00 HJ05 5H050 AA08 BA17 BA18 CA08 CB12 DA02 DA03 DA10 EA24 FA12 FA16 FA17 GA14 GA21 GA22 HA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極の少なくとも片方の電極が導
電助材として、非水溶液中でイオン解離しうる官能基を
表面に有したカーボンを含むことを特徴とする非水電
池。
1. A non-aqueous battery, wherein at least one of the positive electrode and the negative electrode contains, as a conductive additive, carbon having on its surface a functional group capable of dissociating ions in a non-aqueous solution.
【請求項2】 非水溶液中でイオン解離しうる官能基
が、スルホン酸基の塩であることを特徴とする請求項1
記載の非水電池。
2. The functional group capable of dissociating ions in a non-aqueous solution is a salt of a sulfonic acid group.
The non-aqueous battery as described.
【請求項3】 スルホン酸基の塩が、リチウムのスルホ
ン酸塩であることを特徴とする請求項2記載の非水電
池。
3. The non-aqueous battery according to claim 2, wherein the salt of the sulfonic acid group is a lithium sulfonate.
【請求項4】 イオン解離しうる官能基を表面に有した
カーボンと有しないカーボンの両方を含むことを特徴と
する請求項1記載の非水電池。
4. The non-aqueous battery according to claim 1, wherein the non-aqueous battery contains both carbon having an ion-dissociable functional group on the surface and carbon having no ion-dissociable functional group.
【請求項5】 イオン解離しうる官能基を表面に有した
カーボンが、粒子の平均粒径が1μm 以下の微粒子状及
び/又はアスペクト比が500以下で直径が20μm 以
下の繊維状であることを特徴とする請求項1記載の非水
電池。
5. The method according to claim 1, wherein the carbon having an ion-dissociable functional group on its surface is in the form of fine particles having an average particle diameter of 1 μm or less and / or fibrous particles having an aspect ratio of 500 or less and a diameter of 20 μm or less. The non-aqueous battery according to claim 1, wherein:
【請求項6】 イオン解離しうる官能基を表面に有した
カーボンの含有量が、電極活物質の1〜30重量%であ
ることを特徴とする請求項1記載の非水電池。
6. The non-aqueous battery according to claim 1, wherein the content of carbon having a functional group capable of dissociating ions on the surface is 1 to 30% by weight of the electrode active material.
【請求項7】 電解質はポリマーとリチウム塩を溶解し
た有機電解液から成るゲル状ポリマー電解質であること
を特徴とする請求項5記載の非水電池。
7. The non-aqueous battery according to claim 5, wherein the electrolyte is a gel polymer electrolyte composed of an organic electrolyte in which a polymer and a lithium salt are dissolved.
JP2000128922A 2000-04-28 2000-04-28 Non-aqueous battery Expired - Fee Related JP4682395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128922A JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128922A JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JP2001313035A true JP2001313035A (en) 2001-11-09
JP4682395B2 JP4682395B2 (en) 2011-05-11

Family

ID=18638283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128922A Expired - Fee Related JP4682395B2 (en) 2000-04-28 2000-04-28 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP4682395B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
WO2016207497A1 (en) * 2015-06-23 2016-12-29 Centre National De La Recherche Scientifique (Cnrs) Method for preparing a composite electrode
JPWO2017038067A1 (en) * 2015-08-31 2018-06-14 日本ゼオン株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547387A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1999031175A1 (en) * 1997-12-15 1999-06-24 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same
JP2002514245A (en) * 1996-12-30 2002-05-14 イドロ―ケベック Surface modified carbonized material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547387A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH05174810A (en) * 1991-12-18 1993-07-13 Sanyo Electric Co Ltd Battery electrode and battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2002514245A (en) * 1996-12-30 2002-05-14 イドロ―ケベック Surface modified carbonized material
WO1999031175A1 (en) * 1997-12-15 1999-06-24 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US10033045B2 (en) 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
WO2016207497A1 (en) * 2015-06-23 2016-12-29 Centre National De La Recherche Scientifique (Cnrs) Method for preparing a composite electrode
FR3038145A1 (en) * 2015-06-23 2016-12-30 Centre Nat Rech Scient PROCESS FOR PREPARING A COMPOSITE ELECTRODE
JPWO2017038067A1 (en) * 2015-08-31 2018-06-14 日本ゼオン株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP4682395B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US6413676B1 (en) Lithium ion polymer electrolytes
JP4249607B2 (en) Composite polymer electrolyte for lithium secondary battery containing single ion conductor and method for producing the same
JP4352475B2 (en) Solid electrolyte secondary battery
CN108258236B (en) 18650 cylindrical lithium battery with high specific capacity and long cycle life and preparation method thereof
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
CN112713266B (en) Negative electrode slurry and application thereof
JP2000149906A (en) Lithium secondary battery
JPH10255842A (en) Lithium-polymer secondary battery
CN100416910C (en) Non-aqueous electrolyte secondary battery
KR20020080797A (en) Process for Preparing Lithium Polymer Secondary Batteries Employing Cross-linked Gel Polymer Electrolyte
KR20040092188A (en) Composite polymer electrolytes having different morphology for lithium rechargeable battery and method for preparing the same
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP3508514B2 (en) Organic electrolyte battery
JP2003514355A (en) Secondary lithium battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2002008730A (en) Lithium secondary battery
JP2003331838A (en) Lithium secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
CN219513132U (en) Battery cell
JP2000067918A (en) Lithium secondary battery
WO2022143262A1 (en) Energy storage device
CN106169616A (en) A kind of nickel cobalt lithium aluminate large-capacity high-power lithium ion accumulator
JP2000003728A (en) Lithium secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees