JP2001307719A - Hydrogen storage alloy electrode - Google Patents
Hydrogen storage alloy electrodeInfo
- Publication number
- JP2001307719A JP2001307719A JP2000124401A JP2000124401A JP2001307719A JP 2001307719 A JP2001307719 A JP 2001307719A JP 2000124401 A JP2000124401 A JP 2000124401A JP 2000124401 A JP2000124401 A JP 2000124401A JP 2001307719 A JP2001307719 A JP 2001307719A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- alloy
- shaped
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 電池容量や高率放電特性のバラツキを小さく
することが可能な水素吸蔵合金電極を提供する。
【解決手段】 厚みが20μm以下の帯状もしくは薄片
状の水素吸蔵合金を作製し、粉砕後、結着剤や導電材等
とともにペースト状にして3次元多孔体に充填あるいは
2次元多孔基板に塗着し、水素吸蔵合金電極を作製す
る。
(57) [Problem] To provide a hydrogen storage alloy electrode capable of reducing variation in battery capacity and high-rate discharge characteristics. SOLUTION: A band-shaped or flake-shaped hydrogen-absorbing alloy having a thickness of 20 μm or less is prepared, pulverized, formed into a paste together with a binder or a conductive material, and filled into a three-dimensional porous body or applied to a two-dimensional porous substrate. Then, a hydrogen storage alloy electrode is manufactured.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気化学的な水素
の吸蔵・放出を可逆的に行える水素吸蔵合金を用いた水
素吸蔵合金電極に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly electrochemically storing and releasing hydrogen.
【0002】[0002]
【従来の技術】ニッケル水素二次電池は、水酸化ニッケ
ルを主体とする正極と水素吸蔵合金を主体とする負極を
セパレータを介在させてアルカリ電解液とともに密閉し
た構造を有するものであり、その水素吸蔵合金電極とし
ては、水素吸蔵合金と結着剤や導電材等とともにペース
ト状にして3次元多孔体に充填あるいは2次元多孔基板
に塗着したものを用いるのが一般的である。2. Description of the Related Art A nickel-hydrogen secondary battery has a structure in which a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy are hermetically sealed together with an alkaline electrolyte through a separator. As the storage alloy electrode, it is common to use a hydrogen storage alloy, a binder, a conductive material, or the like, which is pasted, filled into a three-dimensional porous body, or applied to a two-dimensional porous substrate.
【0003】通常、水素吸蔵合金電極に用いる水素吸蔵
合金は鋳造法により作製され、塊状合金を数十μm程度
まで粉砕することにより、電極材料として供されてい
る。しかし、鋳造法では冷却能力が低いため、大きな偏
析が生じやすく、均一な合金組織を作り難いという欠点
がある。Usually, a hydrogen storage alloy used for a hydrogen storage alloy electrode is produced by a casting method, and is used as an electrode material by pulverizing a bulk alloy to about several tens of μm. However, the casting method has a drawback in that since the cooling capacity is low, large segregation is likely to occur, and it is difficult to form a uniform alloy structure.
【0004】このような問題を解消する方法として、例
えば特開平7−97648号公報などに、合金溶湯を注
湯ノズルから、冷却された単ロール上または双ロール間
に吐出することによって溶湯を均一に急速冷却し、リボ
ン状またはフレーク状の合金を作製するというロール急
冷法が提案されている。As a method for solving such a problem, for example, Japanese Patent Application Laid-Open No. 7-97648 discloses a method in which a molten alloy is discharged from a pouring nozzle onto a cooled single roll or between twin rolls so as to make the molten metal uniform. A roll quenching method has been proposed in which a rapid cooling is performed to produce a ribbon-shaped or flake-shaped alloy.
【0005】[0005]
【発明が解決しようとする課題】ところが、上記のよう
なロール急冷法で合金を作製しても、リボン状又はフレ
ーク状合金の厚みが大きければ、例えば図4に示すよう
に、厚さTが100μm程度の薄片合金21を作製した
場合には、これを粉砕して篩にかけ、平均粒径が20〜
30μmの微粉末22を得たとしても、合金の結晶組織
が薄片21の厚さ方向に成長しているため、粉砕時に薄
片21の厚みに対して垂直方向には割れにくく、平行方
向には相対的に割れやすいことから、長径と短径の比の
大きい微粉末22が多くなる。However, even if the alloy is manufactured by the roll quenching method as described above, if the thickness of the ribbon-shaped or flake-shaped alloy is large, for example, as shown in FIG. When a flake alloy 21 having a thickness of about 100 μm is produced, it is pulverized and sieved, and has an average particle size of 20 to
Even if a fine powder 22 of 30 μm is obtained, since the crystal structure of the alloy grows in the thickness direction of the flake 21, it is difficult to crack in the direction perpendicular to the thickness of the flake 21 during pulverization, The fine powder 22 having a large ratio of the major axis to the minor axis is increased because the powder 22 is easily broken.
【0006】そのため、例えば目の寸法が20〜30μ
mの篩を用いた場合、その目を微粉末22の短径が通る
ことによって、20〜30μmより大きい長径を持つ微
粉末22が混じってしまうことになり、粒度分布が広が
ってしまう。その結果、電池を作製したときに容量や高
率放電特性にバラツキが生じるという問題がある。For this reason, for example, the size of the eye is 20 to 30 μm.
When a sieve of m is used, the fine powder 22 having a long diameter larger than 20 to 30 μm is mixed with the fine powder 22 when the short diameter of the fine powder 22 passes through the mesh, and the particle size distribution is widened. As a result, there is a problem that the capacity and the high-rate discharge characteristics vary when the battery is manufactured.
【0007】本発明は、上記従来の問題点に鑑み、電池
特性のバラツキを抑えることができる水素吸蔵合金電極
を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a hydrogen storage alloy electrode capable of suppressing variations in battery characteristics.
【0008】[0008]
【課題を解決するための手段】本発明の水素吸蔵合金電
極は、厚みが20μm以下である帯状もしくは薄片状の
水素吸蔵合金を用いたものである。The hydrogen storage alloy electrode of the present invention uses a band-shaped or flake-shaped hydrogen storage alloy having a thickness of 20 μm or less.
【0009】また、本発明の水素吸蔵合金電極は、厚み
が20μm以下である帯状もしくは薄片状の水素吸蔵合
金であり、粉砕後の合金粒子の長径と短径の比が2.0
以下である粒子が主体である水素吸蔵合金を用いたもの
である。The hydrogen storage alloy electrode of the present invention is a strip-shaped or flake-shaped hydrogen storage alloy having a thickness of 20 μm or less, and has a ratio of the major axis to the minor axis of the pulverized alloy particles of 2.0 or less.
A hydrogen storage alloy mainly composed of the following particles is used.
【0010】[0010]
【発明の実施の形態】以下、本発明の一実施形態の水素
吸蔵合金電極について、図1〜図3を参照して説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hydrogen storage alloy electrode according to one embodiment of the present invention will be described with reference to FIGS.
【0011】本実施形態の水素吸蔵合金電極において用
いる水素吸蔵合金粒子1は、図1に示すように、厚みが
20μm以下である帯状もしくは薄片状の水素吸蔵合金
2を粉砕し、篩にかけて作製したものである。As shown in FIG. 1, the hydrogen storage alloy particles 1 used in the hydrogen storage alloy electrode of the present embodiment are prepared by crushing a band-shaped or flake-shaped hydrogen storage alloy 2 having a thickness of 20 μm or less and sieving it. Things.
【0012】すなわち、水素吸蔵合金を粉砕した後に篩
をかける場合、合金粒子の長径が大きくても短径が篩の
目より小さければ目を通ってしまうため、分級後の合金
は粒度分布の幅が広がり、電池特性のバラツキの原因に
なる。しかし、帯状もしくは薄片状の水素吸蔵合金2の
厚みが20μm以下であれば、合金は厚さ方向に結晶成
長しているため、厚み方向に対して垂直方向には割れに
くく平行方向に相対的に割れ易いことから、粉砕後の合
金粒子1の形状は立方体に近い形状となる。したがっ
て、粒度分布の幅が狭くなるので、電池特性のバラツキ
も小さく抑えることができる。That is, when sieving after pulverizing the hydrogen-absorbing alloy, even if the major axis of the alloy particles is large, the alloy particles pass through the mesh if the minor axis is smaller than the mesh of the sieve. Spread, which causes variations in battery characteristics. However, when the thickness of the strip-shaped or flake-shaped hydrogen storage alloy 2 is 20 μm or less, the alloy is crystal-grown in the thickness direction, so that it is hard to crack in the direction perpendicular to the thickness direction and relatively in the parallel direction. Since the alloy particles 1 are easily broken, the shape of the pulverized alloy particles 1 becomes a shape close to a cube. Therefore, since the width of the particle size distribution is narrowed, the variation in the battery characteristics can be suppressed.
【0013】また、厚みが20μm以下の帯状もしくは
薄片状の水素吸蔵合金2の粉砕後、合金粒子1の長径と
短径の比が2.0以下である粒子が主体であれば、特に
バラツキが小さくなる。In addition, after the pulverization of the strip-shaped or flaky hydrogen-absorbing alloy 2 having a thickness of 20 μm or less, if the alloy particles 1 are mainly composed of particles having a ratio of the major axis to the minor axis of 2.0 or less, the variation is particularly large. Become smaller.
【0014】次に、水素吸蔵合金粒子1の製造方法の一
例を説明する。まず、水素吸蔵合金の原料を混合溶融
し、その溶湯を単ロール法や双ロール法などの鋳造法に
て急冷して厚さ略20μm以下の帯状もしくは薄片状の
水素吸蔵合金2を製造する。Next, an example of a method for producing the hydrogen storage alloy particles 1 will be described. First, a raw material of the hydrogen storage alloy is mixed and melted, and the molten metal is rapidly cooled by a casting method such as a single roll method or a twin roll method to produce a strip-shaped or flake-shaped hydrogen storage alloy 2 having a thickness of about 20 μm or less.
【0015】双ロール法の例を図2を参照して説明する
と、冷却チャンバー11内の上部に溶解炉12とタンデ
ィシュ13と注湯ノズル14が配設され、注湯ノズル1
4の直下両側に一対の冷却ロール15a、15bが両者
間に適当な隙間をあけた状態で互いに平行に対向して配
設されており、溶湯16が溶解炉12からタンディシュ
13を経て注湯ノズル14から数100〜数1000r
pmで回転する冷却ロール15a、15b間に噴射さ
れ、溶湯が両側の冷却ロール15a、15bに接触する
ことによって冷却され、結晶化しながら固化し、冷却チ
ャンバー11内を飛翔する間に冷却して薄片状の水素吸
蔵合金2が製造される。An example of the twin roll method will be described with reference to FIG. 2. A melting furnace 12, a tundish 13 and a pouring nozzle 14 are disposed in an upper portion of a cooling chamber 11, and a pouring nozzle 1 is provided.
A pair of cooling rolls 15a, 15b are disposed on both sides directly below and in parallel with each other with an appropriate gap therebetween, and a molten metal 16 is supplied from a melting furnace 12 through a tundish 13 to a pouring nozzle. 14 to several hundred to several thousand r
pm, the molten metal is cooled by contacting the cooling rolls 15a, 15b on both sides, solidified while crystallizing, and cooled while flying in the cooling chamber 11 to form a flake. A hydrogen storage alloy 2 in a shape of is produced.
【0016】この状の水素吸蔵合金2の厚さは、注湯ノ
ズル14からの溶湯の噴出量と冷却ロール15a、15
bの回転速度を調整することによって調整可能であり、
本実施形態では20μm以下となるように調整してい
る。The thickness of the hydrogen-absorbing alloy 2 depends on the amount of molten metal jetted from the pouring nozzle 14 and the cooling rolls 15a, 15a.
b can be adjusted by adjusting the rotation speed,
In the present embodiment, the distance is adjusted to be 20 μm or less.
【0017】その後、薄片状の水素吸蔵合金2を粗粉砕
した後、湿式ボルールミル等で粉砕して平均粒径が20
μm以下の微粒子とし、この水素吸蔵合金粒子1を結着
剤や導電材等とともにペースト状にして3次元多孔体に
充填あるいは2次元多孔基板に塗着し、電池の負極を構
成している。Thereafter, the flake-shaped hydrogen-absorbing alloy 2 is roughly pulverized and then pulverized by a wet-type bolur mill or the like to have an average particle diameter of 20 μm.
The hydrogen storage alloy particles 1 in the form of fine particles having a particle size of μm or less are pasted together with a binder, a conductive material, or the like, and filled in a three-dimensional porous body or coated on a two-dimensional porous substrate to constitute a negative electrode of a battery.
【0018】以上のようにして作製した負極を用いたニ
ッケル水素二次電池によれば、負極における水素吸蔵合
金粒子の平均粒径が略20μm以下でかつその中の大き
な粒の長径と短径の比が2.0以下のものが主体となっ
ているため、活物質の密度が均一でばらつきが少ないた
めに、電池容量や高率放電特性のばらつきを小さくする
ことができる。According to the nickel-hydrogen secondary battery using the negative electrode manufactured as described above, the average particle diameter of the hydrogen-absorbing alloy particles in the negative electrode is approximately 20 μm or less, and the major and minor diameters of the large particles in the hydrogen-absorbing alloy particles are smaller than 20 μm. Since the ratio is mainly 2.0 or less, the density of the active material is uniform and the variation is small, so that the variation in the battery capacity and the high-rate discharge characteristic can be reduced.
【0019】次に、具体実施例を比較例とともに説明す
る。Mm(ミッシュメタル、希土類元素の混合物)、N
i、Mn、Al、Coの各成分元素を、合金組成がMm
Ni 4.1 Mn0.4 Al0.3 Co0.4 となるように所定量
混合し、高周波誘導加熱により溶解して合金溶湯を作製
し、単ロール法により薄片状の水素吸蔵合金を作製し
た。このとき、射出ノズルからの溶湯射出量やロールの
回転数を制御することにより、薄片の厚みが15、2
0、30、50、100μmの5種類の水素吸蔵合金薄
片を作製した。Next, specific examples will be described together with comparative examples.
You. Mm (mixture of misch metal and rare earth element), N
i, Mn, Al, and Co, each having a composition of Mm
Ni 4.1Mn0.4Al0.3Co0.4Predetermined amount so that
Mix and melt by high frequency induction heating to produce molten alloy
Then, a flake-shaped hydrogen storage alloy was produced by the single roll method.
Was. At this time, the amount of molten metal injected from the injection nozzle and the roll
By controlling the number of revolutions, the thickness of the flakes becomes 15, 2
Five types of hydrogen storage alloy thin films of 0, 30, 50, and 100 μm
Pieces were made.
【0020】以上の各合金薄片をAr雰囲気下、900
℃で1時間熱処理した。そして、粗粉砕した後、湿式ボ
ールミルでさらに粉砕したが、粉砕時間やジルコニアボ
ール量を制御することにより、いずれの合金薄片を用い
た場合でも平均粒径が約20μmとなるようにした。こ
れらの合金粉末をそれぞれA〜Eとする。Each of the above alloy flakes was prepared in an Ar atmosphere at 900
Heat-treated at 1 ° C. for 1 hour. After the coarse pulverization, the powder was further pulverized by a wet ball mill. By controlling the pulverization time and the amount of zirconia balls, the average particle size was about 20 μm regardless of the type of alloy flake used. These alloy powders are designated A to E, respectively.
【0021】まず、これら合金粉末A〜Eについてタッ
プ密度を測定した。サンプリングは5回行い、平均値で
比較した。その結果、合金粉末A(厚み15μm)及び
B(厚み20μm)では、合金粉末C〜E(厚み30、
50、100μm)に比べて10〜15%大きな値を示
すことが分かった。これは、合金粉末A及びBがC〜E
に比べて粒子形状が均一になっているためと考えられ
る。First, tap densities of these alloy powders A to E were measured. Sampling was performed five times and compared with the average value. As a result, in the alloy powders A (thickness 15 μm) and B (thickness 20 μm), the alloy powders C to E (thickness 30,
(50, 100 μm). This is because the alloy powders A and B are CE
It is considered that the particle shape is more uniform than that of the above.
【0022】次に、合金粉末A〜Eを90℃で比重1.
3のKOH水溶液中で1時間浸漬攪拌し、水洗、脱水、
乾燥して水素吸蔵合金電極用の合金粉末A1〜E1を作
製した。これらの合金粉末100重量部に対して、カル
ボキシメチルセルロース0.15重量部、カーボンブラ
ック0.3重量部、スチレンブタジエン共重合体0.7
重量部を加え、これにさらに水を添加して練合し、ペー
ストを作製した。Next, the alloy powders A to E are mixed at 90 ° C. with a specific gravity of 1.
Immersion and stirring in KOH aqueous solution for 3 hours, washing with water, dehydration,
It dried and produced the alloy powder A1-E1 for hydrogen storage alloy electrodes. For 100 parts by weight of these alloy powders, 0.15 parts by weight of carboxymethyl cellulose, 0.3 parts by weight of carbon black, 0.7 parts by weight of styrene-butadiene copolymer
A weight part was added, and water was further added thereto and kneaded to prepare a paste.
【0023】このペーストをパンチングメタルに塗着
し、乾燥後ロールプレスを使用して所定の厚さにプレス
した後、所定の大きさに切断し、負極とした。This paste was applied to a punching metal, dried, pressed to a predetermined thickness using a roll press, and cut into a predetermined size to obtain a negative electrode.
【0024】この負極と公知の発泡ニッケル式正極を、
スルホン化処理を行ったポリプロピレン不織布セパレー
タを介装して渦巻き状に構成し、金属ケースに挿入し
た。そして、電解液として水酸化カリウムを主成分とす
る比重1.3のアルカリ水溶液を用い、各合金A1〜E
1について公知のAAサイズニッケル水素二次電池A2
〜E2を各20セル作製した。各電池の容量は1.2A
hである。This negative electrode and a known foamed nickel type positive electrode are
It was formed into a spiral with a sulfonated polypropylene nonwoven fabric separator interposed, and inserted into a metal case. Then, an alkaline aqueous solution having a specific gravity of 1.3 containing potassium hydroxide as a main component was used as an electrolytic solution.
AA size nickel-metal hydride secondary battery A2
To E2 were prepared for each 20 cells. The capacity of each battery is 1.2A
h.
【0025】このような電池A2〜E2について、25
℃で、10時間率(0.1C)で15時間充電し、5時
間率(0.2C)で1Vまで放電するサイクルを10サ
イクル行い、活性化を施した。そして、25℃での高率
放電試験(0.1Cで15時間充電し、1時間率(1
C)で1Vまで放電する)、および0℃での高率放電試
験(25℃、0.1Cで15時間充電し、0℃、1時間
率(1C)で1Vまで放電する)を行った。For such batteries A2 to E2, 25
The battery was activated at 10 ° C. for 15 hours at a rate of 10 hours (0.1 C) and discharged to 1 V at a rate of 5 hours (0.2 C). Then, a high-rate discharge test at 25 ° C. (charged at 0.1 C for 15 hours, and performed at a 1-hour rate (1
C), and a high-rate discharge test at 0 ° C. (charging at 25 ° C., 0.1 C for 15 hours, and discharging at 0 ° C., 1 hour rate (1 C) to 1 V).
【0026】このような試験を各20セルについて行
い、得られた放電容量の平均値に対する放電容量の最大
値と最小値の差の比率(Y)で容量のバラツキを評価し
た。その結果を図3に示した。図中には、上記活性化サ
イクルの10サイクル目の放電容量(活性化サイクル容
量)についても示した。Such a test was performed for each of 20 cells, and the variation in capacity was evaluated based on the ratio (Y) of the difference between the maximum value and the minimum value of the discharge capacity with respect to the average value of the obtained discharge capacities. The result is shown in FIG. The figure also shows the discharge capacity (activation cycle capacity) at the tenth cycle of the activation cycle.
【0027】図3より、放電レートが低い場合、活性化
サイクル容量は薄片厚みによる容量バラツキは比較的小
さかった。しかし、放電レートを大きくした場合は、薄
片厚みが20μm以下であれば、放電レートが低い場合
と比べても容量バラツキはあまり変わらないが、薄片厚
みが30μm以上では放電レートが大きくなると容量バ
ラツキが大きくなることが分かった。FIG. 3 shows that when the discharge rate is low, the variation in the activation cycle capacity due to the thickness of the flake is relatively small. However, when the discharge rate is increased, when the flake thickness is 20 μm or less, the capacity variation does not change much as compared with the case where the discharge rate is low. However, when the flake thickness is 30 μm or more, the capacity variation is increased when the flake thickness is 30 μm or more. It turned out to be bigger.
【0028】[0028]
【発明の効果】以上のように本発明によれば、帯状もし
くは薄片状の水素吸蔵合金の厚みが20μm以下である
ため、粉砕後の合金粒子の長径と短径の比が2.0を超
える粒子が少なくなり、そのためこのような水素吸蔵合
金を用いて電池を作製した場合、電池容量や高率放電特
性のバラツキを小さくすることができる。As described above, according to the present invention, since the thickness of the strip-shaped or flaky hydrogen storage alloy is 20 μm or less, the ratio of the major axis to the minor axis of the pulverized alloy particles exceeds 2.0. Particles are reduced, and therefore, when a battery is manufactured using such a hydrogen storage alloy, variations in battery capacity and high-rate discharge characteristics can be reduced.
【図1】本発明の一実施形態における水素吸蔵合金粉末
の形状の説明図である。FIG. 1 is an explanatory diagram of a shape of a hydrogen storage alloy powder according to an embodiment of the present invention.
【図2】同実施形態における水素吸蔵合金薄片の製造装
置の概略構成図である。FIG. 2 is a schematic configuration diagram of an apparatus for manufacturing a hydrogen storage alloy flake according to the embodiment.
【図3】水素吸蔵合金粉末を製造する薄片の厚みと電池
容量のバラツキとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the thickness of a flake for producing a hydrogen storage alloy powder and the variation in battery capacity.
【図4】従来例の水素吸蔵合金粉末の形状の説明図であ
る。FIG. 4 is an explanatory view of a shape of a conventional hydrogen storage alloy powder.
【符号の説明】 1 水素吸蔵合金粒子 2 帯状もしくは薄片状の水素吸蔵合金[Description of Signs] 1 Hydrogen storage alloy particles 2 Strip or flake hydrogen storage alloy
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森下 展安 静岡県湖西市境宿555番地 パナソニック EVエナジー株式会社内 (72)発明者 生駒 宗久 静岡県湖西市境宿555番地 パナソニック EVエナジー株式会社内 Fターム(参考) 5H050 AA08 AA19 BA14 CA03 CB17 DA03 EA10 EA22 EA28 FA17 HA04 HA05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyasu Morishita 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture Inside Panasonic EV Energy Corporation (72) Munehisa Ikoma 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture Inside Panasonic EV Energy Corporation F term (reference) 5H050 AA08 AA19 BA14 CA03 CB17 DA03 EA10 EA22 EA28 FA17 HA04 HA05
Claims (2)
いる水素吸蔵合金電極であって、前記水素吸蔵合金は厚
みが20μm以下であることを特徴とする水素吸蔵合金
電極。1. A hydrogen storage alloy electrode using a band-shaped or flake-shaped hydrogen storage alloy, wherein the hydrogen storage alloy has a thickness of 20 μm or less.
いる水素吸蔵合金電極であって、前記水素吸蔵合金は厚
みが20μm以下であり、粉砕後の合金粒子の長径と短
径の比が2.0以下である粒子が主体であることを特徴
とする電極用水素吸蔵合金電極。2. A hydrogen storage alloy electrode using a band-shaped or flake-shaped hydrogen storage alloy, wherein said hydrogen storage alloy has a thickness of not more than 20 μm, and a ratio of a major axis to a minor axis of crushed alloy particles is 2. A hydrogen-absorbing alloy electrode for an electrode, characterized by being mainly composed of particles having a particle size of 0 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000124401A JP2001307719A (en) | 2000-04-25 | 2000-04-25 | Hydrogen storage alloy electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000124401A JP2001307719A (en) | 2000-04-25 | 2000-04-25 | Hydrogen storage alloy electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001307719A true JP2001307719A (en) | 2001-11-02 |
Family
ID=18634537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000124401A Pending JP2001307719A (en) | 2000-04-25 | 2000-04-25 | Hydrogen storage alloy electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001307719A (en) |
-
2000
- 2000-04-25 JP JP2000124401A patent/JP2001307719A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5605585A (en) | Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same | |
EP0697745B1 (en) | Hydrogen-absorbing alloy electrode for metal hydride alkaline battery | |
JP3215235B2 (en) | Method for producing hydrogen storage alloy powder and hydrogen storage alloy powder | |
JP2920343B2 (en) | Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder | |
JP2001307719A (en) | Hydrogen storage alloy electrode | |
JP4110562B2 (en) | battery | |
US20170200946A1 (en) | Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery | |
JPH0763007B2 (en) | Manufacturing method of hydrogen storage electrode | |
JPH10237569A (en) | Hydrogen storate alloy for battery, its production and nickel-hydrogen secondary battery | |
JPH10265875A (en) | Hydrogen storage alloy, its production and nickel-hydrogen secondary battery | |
JP3370071B2 (en) | Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode | |
JP3981421B2 (en) | Hydrogen storage alloy for batteries and nickel metal hydride secondary battery | |
JPH10265888A (en) | Hydrogen storage alloy, its production and nickel-hydrogen secondary battery | |
JP3198896B2 (en) | Nickel-metal hydride battery | |
JP3553708B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH09289017A (en) | Hydrogen storage alloy for battery and nickel hydrogen secondary battery | |
JP2924382B2 (en) | Method for producing hydrogen storage alloy and alkaline storage battery using the alloy | |
CN107250398A (en) | Alloy powder for electrode, nickel-hydrogen accumulator negative pole and nickel-hydrogen accumulator using it | |
JPH0949040A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH0997607A (en) | Hydrogen storage alloy for battery, manufacture thereof, and nickel hydrogen secondary battery | |
JPH10102174A (en) | Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery | |
JPH0997608A (en) | Hydrogen storage alloy for battery, manufacture thereof, and nickel hydrogen secondary battery | |
JP3351227B2 (en) | Hydrogen storage alloy powder for battery and its manufacturing method | |
JPH09270255A (en) | Hydrogen storage alloy for battery and nickel hydrogen secondary battery | |
WO2016157672A1 (en) | Alloy powder for electrodes, negative electrode for nickel-hydrogen storage batteries using same and nickel-hydrogen storage battery |