JP2001305081A - Epma quantitative analysis method using analytical curve - Google Patents
Epma quantitative analysis method using analytical curveInfo
- Publication number
- JP2001305081A JP2001305081A JP2000126535A JP2000126535A JP2001305081A JP 2001305081 A JP2001305081 A JP 2001305081A JP 2000126535 A JP2000126535 A JP 2000126535A JP 2000126535 A JP2000126535 A JP 2000126535A JP 2001305081 A JP2001305081 A JP 2001305081A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- epma
- measured
- relative
- ray intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、バルク試料に電
子線を照射し、その試料から放射される特性X線を測定
してバルク試料のマトリックス中に固溶している微量元
素の定量分析を行うための方法に係り、特に、モンテカ
ルロシミュレーションの手法を用いて検量線を作製し、
電子線マイクロアナライザー(Electron probe microan
alyser; 以下「EPMA」と称する)により測定対象元
素の定量分析を行うEPMA定量分析法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for irradiating a bulk sample with an electron beam, measuring characteristic X-rays emitted from the sample, and performing a quantitative analysis of trace elements dissolved in a matrix of the bulk sample. According to the method for performing, in particular, using a technique of Monte Carlo simulation to create a calibration curve,
Electron probe microan
alyser; hereinafter referred to as “EPMA”).
【0002】[0002]
【従来の技術】バルク試料において、ある特定の元素と
材料特性との関係を明らかにするためには、化学分析等
によりバルク試料全体の平均組成を測定して当該元素の
平均含有量を求めること以外に、当該元素について、マ
トリックス中に固溶される含有量、析出物や介在物中に
おける含有量、結晶粒界やその付近での含有量等を個々
に測定し、その元素の濃度や濃度分布等の情報として得
る必要がある。2. Description of the Related Art In order to clarify the relationship between a specific element and a material property in a bulk sample, it is necessary to measure the average composition of the entire bulk sample by chemical analysis or the like to determine the average content of the element. Besides, for the element, the content of solid solution in the matrix, the content in precipitates and inclusions, the content at the crystal grain boundary and its vicinity, etc. are individually measured, and the concentration and concentration of the element It must be obtained as information such as distribution.
【0003】例えば、Al-Cu 合金の延性や破壊に及ぼす
微量元素Pの影響を調べたり、Al合金の組成及び諸性質
に及ぼす微量不純物VとMg、 Si、Cuの固溶量の変化を調
べたり、また、Al-Mn-Mg-Si-Cu系合金の耐蝕性に及ぼす
微量Ti元素の影響を調べること等の研究が行われてい
る。For example, the effects of trace elements P on the ductility and fracture of Al-Cu alloys are investigated, and the changes in the solid solution of Mg, Si, and Cu with trace impurities V on the composition and properties of Al alloys are investigated. In addition, research has been conducted on investigating the influence of a trace amount of Ti element on the corrosion resistance of Al-Mn-Mg-Si-Cu alloys.
【0004】そして、このようなバルク試料中のある特
定元素の含有量を測定する手段として、電子線マイクロ
アナライザー(EPMA)が用いられている。このEP
MAは、極めて細く絞った電子線(Electron probe)を
試料表面に照射し、その部分から放射される特性X線の
波長と強度とをX線分光器や検出器で測定し、これによ
って試料のその微小部に含まれている元素を定量するも
のであるから、試料のどの部分を測定しているかを知る
ことができ、また、試料を化学分析のように溶解したり
することなく非破壊的に分析することができるので、様
々な分野で様々な試料の分析に応用されている。An electron beam microanalyzer (EPMA) is used as a means for measuring the content of a specific element in such a bulk sample. This EP
MA irradiates an extremely narrowly focused electron beam (Electron probe) onto the sample surface, measures the wavelength and intensity of characteristic X-rays radiated from that portion using an X-ray spectrometer or a detector, and thereby obtains a sample. Because it quantifies the elements contained in the minute part, it is possible to know which part of the sample is being measured, and it is non-destructive without dissolving the sample like chemical analysis Because it can be analyzed in various fields, it is applied to the analysis of various samples in various fields.
【0005】しかるに、EPMA分析においては、測定
対象元素について、その濃度等の含有量として直接には
測定されず、当該元素のX線強度(カウント)として測
定されるので、この測定されたX線強度を元素含有量に
換算する必要がある。そして、このX線強度を濃度等の
含有量に変換する方法としては、1点の標準試料(順物
質又は純な単純物質)との比較により濃度を求めるZA
F法と、未知試料の組成に近い組成を持つ複数の標準試
料を用いてX線強度と濃度との関係を予め検量線として
求めておく検量線法とが知られている。[0005] However, in the EPMA analysis, the element to be measured is not directly measured as the content such as the concentration, but is measured as the X-ray intensity (count) of the element. It is necessary to convert the strength into element content. As a method of converting the X-ray intensity into a content such as a concentration, a ZA for obtaining a concentration by comparison with one standard sample (a normal substance or a pure simple substance) is used.
The F method and a calibration curve method in which the relationship between the X-ray intensity and the concentration is obtained in advance as a calibration curve using a plurality of standard samples having compositions close to the composition of the unknown sample are known.
【0006】しかしながら、ZAF法については、その
計算が極めて複雑であり、近年コンピューターによる計
算が可能になったといっても、数多くの箇所での測定が
必要な場合にはその計算に長時間を要し、また、試料が
多数であって短時間での測定結果を必要とする場合等に
は採用できない場合がある。However, the calculation of the ZAF method is extremely complicated, and even if it has become possible in recent years to calculate by computer, it takes a long time to perform measurement at many places. However, when there are a large number of samples and a measurement result in a short time is required, it may not be adopted.
【0007】また、検量線法については、未知試料の組
成に近い成分を持つ複数の標準試料を用意して予め検量
線を作製しなければならず、この未知試料の組成に近い
組成を持つ複数の標準試料を作製する必要があり、この
標準試料の作製に多大な手間を要するほか、時には作製
困難な場合もある。In the calibration curve method, a plurality of standard samples having components close to the composition of the unknown sample must be prepared and a calibration curve must be prepared in advance. It is necessary to prepare a standard sample, and the preparation of this standard sample requires a great deal of labor, and sometimes it is difficult to prepare.
【0008】[0008]
【発明が解決しようとする課題】そこで、本発明者は、
バルク試料について、マトリックス中に固溶したある特
定の元素の含有量をEPMA分析により個別に測定で
き、また、測定されたX線強度を短時間で元素含有量に
換算でき、しかも、未知試料の組成に近い組成を有する
複数の標準試料を作製する必要のないEPMA定量分析
法について鋭意検討した結果、X線発生領域より充分に
大きいマトリックス中に測定対象元素が所定の含有量で
固溶した複数の試料を想定し、これら各想定試料につい
てモンテカルロシミュレーションにより測定対象元素の
相対X線強度を算出してこの算出相対X線強度と想定含
有量との検量線を求め、得られた検量線を用いることに
より、実用可能な精度でバルク試料のマトリックス中に
固溶している微量元素を定量できることを見出し、本発
明を完成した。Therefore, the present inventor has proposed:
For bulk samples, the content of certain elements dissolved in the matrix can be individually measured by EPMA analysis, and the measured X-ray intensity can be converted to the element content in a short time. As a result of intensive studies on an EPMA quantitative analysis method that does not require the preparation of a plurality of standard samples having compositions close to the composition, it has been found that a plurality of elements having a predetermined content of the element to be measured are dissolved in a matrix sufficiently larger than the X-ray generation region. For each of these assumed samples, the relative X-ray intensity of the element to be measured is calculated by Monte Carlo simulation for each of these assumed samples, a calibration curve between the calculated relative X-ray intensity and the assumed content is obtained, and the obtained calibration curve is used. As a result, they have found that trace elements dissolved in a matrix of a bulk sample can be quantified with practically accurate accuracy, and have completed the present invention.
【0009】従って、本発明の目的は、バルク試料のマ
トリックス中に固溶している微量元素を、EPMA分析
で容易に、かつ、実用可能な精度で定量することができ
る検量線を用いたEPMA定量分析法を提供することに
ある。Accordingly, an object of the present invention is to provide an EPMA using a calibration curve capable of easily quantifying a trace element dissolved in a matrix of a bulk sample with EPMA analysis with a practically accurate accuracy. It is to provide a quantitative analysis method.
【0010】[0010]
【課題を解決するための手段】すなわち、本発明は、バ
ルク試料のマトリックス中に固溶している微量元素の定
量分析を行うための方法であり、X線発生領域より充分
に大きいマトリックス中に測定対象元素が所定の含有量
で固溶した複数の試料を想定し、これら各想定試料につ
いてモンテカルロシミュレーションにより測定対象元素
の相対X線強度を算出し、得られた各想定試料の算出相
対X線強度と各想定試料の想定含有量とから検量線を求
め、また、測定対象元素の含有量が未知である未知試料
についてEPMAにより測定対象元素の相対X線強度を
実測し、上記検量線と未知試料の相対X線強度の実測値
とから未知試料の測定対象元素を定量することを特徴と
する検量線を用いたEPMA定量分析法である。That is, the present invention relates to a method for quantitatively analyzing trace elements dissolved in a matrix of a bulk sample, wherein the method comprises the steps of: Assuming a plurality of samples in which the element to be measured is dissolved in a predetermined content, the relative X-ray intensity of the element to be measured is calculated for each of these assumed samples by Monte Carlo simulation, and the calculated relative X-rays of each of the obtained assumed samples are calculated. A calibration curve is determined from the intensity and the assumed content of each assumed sample, and the relative X-ray intensity of the element to be measured is actually measured by EPMA for an unknown sample in which the content of the element to be measured is unknown. This is an EPMA quantitative analysis method using a calibration curve, characterized by quantifying an element to be measured in an unknown sample from an actually measured relative X-ray intensity of the sample.
【0011】本発明方法において、適用可能なバルク試
料としては、そのマトリックスがX線発生領域より充分
に大きいものであれば特に制限はなく、金属、セラミッ
クス、ゴム、紙、ダンボール、プラスチック等をマトリ
ックスとする種々の試料を挙げることができる。特に、
本発明方法を適用する上で好ましいバルク試料は、測定
対象の微量元素が固溶する金属あるいはその合金であ
り、具体的には、例えばAl、Fe、Cu、Au、Si、Ni、Cr、
Ti等の単一金属元素からなる試料や、Al-Cu 、Al-Cr 、
Al-Zn 、Al-Mg 、Al-Fe 、Al-Si 等の二元系Al合金類
や、Al-Fe-Mn、Al-Fe-Si、Al-Fe-Mg-Si 、Al-Fe-Mn-Si
等の三元系あるいはそれ以上の多元系Al合金類や、化合
物中の微量元素等を挙げることができる。In the method of the present invention, the applicable bulk sample is not particularly limited as long as its matrix is sufficiently larger than the X-ray generation region. Metal, ceramics, rubber, paper, cardboard, plastic, etc. Various samples can be mentioned. In particular,
A bulk sample preferable for applying the method of the present invention is a metal or an alloy thereof in which a trace element to be measured is in solid solution, and specifically, for example, Al, Fe, Cu, Au, Si, Ni, Cr,
Samples composed of a single metal element such as Ti, Al-Cu, Al-Cr,
Binary Al alloys such as Al-Zn, Al-Mg, Al-Fe, Al-Si, Al-Fe-Mn, Al-Fe-Si, Al-Fe-Mg-Si, Al-Fe-Mn -Si
Ternary or higher ternary Al alloys, and trace elements in compounds.
【0012】本発明方法は、このようなバルク試料のマ
トリックス中に固溶している微量元素の定量分析を行う
ものであり、測定対象となる微量元素についても特に制
限されるものではなく、例えばアルミニウム中のMg、 C
u、 Si、 Zr、 Zn、 P 等の元素や、鉄中のAl、 S 等の元素
を挙げることができる。The method of the present invention performs quantitative analysis of trace elements dissolved in the matrix of such a bulk sample, and there is no particular limitation on the trace elements to be measured. Mg, C in aluminum
Examples include elements such as u, Si, Zr, Zn, and P, and elements such as Al and S in iron.
【0013】また、本発明方法においては、バルク試料
のマトリックス中に均一に分散して固溶している微量元
素の定量分析を行うことができるだけでなく、試料の種
類に分析の目的に応じて、例えば、鋳塊におけるバルク
試料のマトリックス中にある微量元素がどのように偏在
して固溶しているかを測定することもでき、更に、ソー
キング時の粒内の偏析等を測定することもできる。In the method of the present invention, not only can the quantitative analysis of the trace elements uniformly dispersed and dissolved in the matrix of the bulk sample be performed, but also the type of the sample depends on the purpose of the analysis. For example, it is also possible to measure how the trace elements in the matrix of the bulk sample in the ingot are unevenly distributed and forming a solid solution, and it is also possible to measure segregation in grains during soaking. .
【0014】そして、本発明方法においては、先ず、X
線発生領域より充分に大きいマトリックス中に測定対象
元素が所定の含有量で固溶した複数の試料を想定し、こ
れら各想定試料についてモンテカルロシミュレーション
により測定対象元素の相対X線強度を算出し、得られた
各想定試料の算出相対X線強度と各想定試料の想定含有
量とから検量線を求める。In the method of the present invention, first, X
Assuming a plurality of samples in which the element to be measured is solid-dissolved at a predetermined content in a matrix sufficiently larger than the line generating region, and for each of these assumed samples, calculate the relative X-ray intensity of the element to be measured by Monte Carlo simulation and obtain A calibration curve is determined from the calculated relative X-ray intensity of each assumed sample and the assumed content of each assumed sample.
【0015】ここで、複数の試料の想定は、これを一例
を挙げて具体的に説明すると、例えばバルク試料がCu元
素を概ね100〜1000ppm 程度の範囲で固溶するCu
濃度未知のAl-Cu 合金であって、このAl-Cu 合金中のCu
濃度を測定したい場合には、Al-Cu(100ppm)、Al-Cu(600p
pm)、Al-Cu(1200ppm)等の少なくとも2つ以上の想定Cu含
有量(Cu濃度)を有する複数のAl-Cu 合金試料を想定
し、これらの想定試料を標準試料としてモンテカルロシ
ミュレーションにより測定対象元素(Cu)の相対X線強
度を算出する。Here, the assumption of a plurality of samples will be specifically described with reference to an example. For example, a bulk sample in which Cu element is solid-dissolved in a range of about 100 to 1000 ppm of Cu element is described.
Al-Cu alloy whose concentration is unknown, and Cu in this Al-Cu alloy
If you want to measure the concentration, use Al-Cu (100ppm), Al-Cu (600p
pm), Al-Cu (1200ppm), etc. Assume multiple Al-Cu alloy samples with at least two or more assumed Cu contents (Cu concentration), and use these assumed samples as standard samples to measure by Monte Carlo simulation The relative X-ray intensity of the element (Cu) is calculated.
【0016】また、これら各想定試料についてのモンテ
カルロシミュレーションによる測定対象元素の相対X線
強度の計算は、実際に未知試料について行われるEPM
A分析の際の電子線照射条件(試料密度、試料サイズ、
X線取出角度、加速電圧、X線の種類等)を想定してそ
の場合と同じ条件で行い、この計算によって求められた
各相対試料の算出X線強度と測定対象元素の想定含有量
(濃度)とから検量線を作製する。The calculation of the relative X-ray intensity of the element to be measured by Monte Carlo simulation for each of these assumed samples is carried out by an EPM actually performed on an unknown sample.
Electron beam irradiation conditions (sample density, sample size,
The X-ray extraction angle, acceleration voltage, type of X-ray, etc.) are assumed and the same conditions are used. The calculated X-ray intensity of each relative sample obtained by this calculation and the assumed content (concentration) of the element to be measured ) To prepare a calibration curve.
【0017】このモンテカルロシミュレーションによる
計算においては、電子の軌跡を折れ線と仮定し、この折
れ線の1つの線分を平均自由行程とし、1つの線分と次
の線分との間の角度(散乱角)はある乱数に対応した確
率とし、更に1つの線分毎に電子のエネルギーが失われ
るとしてモデルを仮定し、平均自由行程の計算式
(1)、散乱角度(ω)及び回転角度(φ)の計算式
(2)、電子のエネルギーロス(ΔE)の計算式
(3)、電子が元素に衝突する確率(P)の計算式
(4)、電子散乱後の位置の計算式(5)、及び発
生X線量子数の計算式(6)の各計算式に基づいて相対
X線強度の計算が行なわれる。In the calculation by the Monte Carlo simulation, the trajectory of the electron is assumed to be a broken line, and one of the broken lines is defined as the mean free path, and the angle (scattering angle) between one line and the next line is assumed. ) Is a probability corresponding to a certain random number, further assumes a model assuming that electron energy is lost for each line segment, and calculates a mean free path equation (1), a scattering angle (ω), and a rotation angle (φ). Equation (2), Equation (3) for calculating electron energy loss (ΔE), Equation (4) for calculating the probability (P) that an electron collides with an element, Equation (5) for calculating the position after electron scattering, Then, the relative X-ray intensity is calculated based on each calculation formula (6) of the generated X-ray quantum number.
【0018】平均自由行程(λ)の計算式(1) λ[cm]=〔(0.0554E×103 )/ρ〕×{ΣA
C/〔Z1/3 (Z+1)〕}×10-8 散乱角度(ω)及び回転角度(φ)の計算式(2) cos(ω,ラジアン)=1−2βR/(1+β−R) φ(ラジアン)=2πR 電子のエネルギーロス(ΔE)の計算式(3) E>6.338Jの時 ΔE[Kev/cm]=7.85×104 ρΣ〔ZC/A・ln(1.16
6 E/J)〕/E E≦6.338Jの時 ΔE[Kev/cm]=7.85×104 ρΣ(ZC/A/J1/2 )/
1.26E1/2 Formula for calculating mean free path (λ) (1) λ [cm] = [(0.0554E × 10 3 ) / ρ] × {ΣA
C / [Z 1/3 (Z + 1)]} × 10 −8 Calculation formula of scattering angle (ω) and rotation angle (φ) (2) cos (ω, radian) = 1-2βR / (1 + β−R) φ (Radian) = 2πR Formula for calculating electron energy loss (ΔE) (3) When E> 6.338 J ΔE [Kev / cm] = 7.85 × 10 4 ρΣ [ZC / A · ln (1.16
6E / J)] / EE ≦ 6.338J ΔE [Kev / cm] = 7.85 × 10 4 ρΣ (ZC / A / J 1/2 ) /
1.26E 1/2
【0019】〔但し、上記計算式(1)〜(3)におい
て、Eは電子の所有エネルギー(Kev)を、ρは密度(g/cm
3) を、Zは原子番号を、Aは原子量を、Cは組成を、
βはスクリーニングパラメータを、Rは一様乱数(0〜1)
を、πは円周率(3.14)を、また、Jはイオン化ポ
テンシャル(Kev) をそれぞれ示す。〕[However, in the above formulas (1) to (3), E is the possessed energy of the electron (Kev), and ρ is the density (g / cm).
3 ), Z is the atomic number, A is the atomic weight, C is the composition,
β is a screening parameter, R is a uniform random number (0 to 1)
, Π indicates the pi (3.14), and J indicates the ionization potential (Kev). ]
【0020】ここで、上記イオン化ポテンシャル(J)
については、これまでに文献上、下記の3つの値 J=11.5Z×10-3 [Kev] J=0.00976Z+0.0588/Z0.19 [Kev] J={14.0〔1− exp(−0.1Z)〕+75.5
/ZZ/7.5−Z/(100+Z)}Z×10-3 [Kev] が提案されており、また、上記スクリーニングパラメー
タ(β)については、これまでに文献上、下記の3つの
値 β={5.44Z2/3 /E}×10-3 β={3.4Z2/3 /E(1.13+3.76α2 )
1/2 }×10-3 β={3.4Z2/3 /E}×10-3 〔但し、α={3.69(Z/E)}×10-3〕が提案
されているが、本発明方法では、これらの定数のうち、
特に J=11.5Z×10-3 [Kev]、及び、β={5.44
Z2/3 /E}×10-3 の値を用いる。このイオン化ポテンシャル(J)の定数
とスクリーニングパラメータ(β)の定数との組み合わ
せを採用することにより、モンテカルロシミュレーショ
ンによる計算結果が標準試料を用いて測定した実測値と
よく一致し、また、計算に入力される入射電子数をを可
及的に減少せしめることができ、大型コンピューターで
なくても計算可能になる。Here, the above ionization potential (J)
Has been described in the literature, the following three values J = 11.5Z × 10 −3 [Kev] J = 0.9776Z + 0.0588 / Z 0.19 [Kev] J = {14.0 [1-exp ( −0.1Z)] + 75.5
/ Z Z / 7.5 −Z / (100 + Z)} Z × 10 −3 [Kev] has been proposed. Regarding the screening parameter (β), the following three values β = {5.44Z 2/3 / E} × 10 -3 β = {3.4Z 2/3 /E(1.13+3.76α 2)
1/2 } × 10 -3 β = {3.4Z 2/3 / E} × 10 -3 [where α = {3.69 (Z / E)} × 10 -3 ] has been proposed. In the method of the present invention, among these constants,
In particular, J = 11.5Z × 10 −3 [Kev] and β = {5.44
A value of Z 2/3 / E} × 10 −3 is used. By adopting a combination of the constant of the ionization potential (J) and the constant of the screening parameter (β), the calculation result by the Monte Carlo simulation matches well with the actually measured value measured using the standard sample, and is input to the calculation. As a result, the number of incident electrons can be reduced as much as possible, and calculation can be performed without a large computer.
【0021】また、散乱角度(ω)の計算式(2)で用
いる一様乱数(R)についても、これまでに文献上、例
えば、中央二乗法(xk+1 =xk 2 の中央の数桁)、乗
算型相合式法〔xk+1 =λ・xk (mod,M)〕、混合型
合同式法〔xk+1 =λ・xk+μ(mod,M)〕等の多数
のものが提案されているが、本発明方法においては、通
常のパーソナルコンピューターに内蔵されているものを
そのまま使用することができ、例えば、市販の日本電気
(株)製パーソナルコンピューターに内蔵の乱数を好適
に用いることができる。The uniform random number (R) used in the equation (2) for calculating the scattering angle (ω) has also been described in the literature, for example, in the central square method (x k + 1 = x k 2 Several digits), multiplication type combination method [x k + 1 = λ · x k (mod, M)], mixed type congruential method [x k + 1 = λ · x k + μ (mod, M)], etc. Although many methods have been proposed, in the method of the present invention, those incorporated in an ordinary personal computer can be used as they are, for example, a random number incorporated in a commercially available personal computer manufactured by NEC Corporation. Can be suitably used.
【0022】ここで、多元系化合物に入射した電子がど
の原子と衝突するかは元素の衝突断面積による確率
(P)で決まり、次の計算式(4)で表される。 電子が元素に衝突する確率(P)の計算式(4) P=(σC/A)/Σ(σC/A) σ(散乱全断面積)=〔πe4 Z(Z+1)〕/〔4E
n 2 β(β+1)〕 e:電子の電荷(−4.8029×10-10 esu ) En :電子の運動エネルギー(eE/300×103 ) 例えば、3元系化合物の場合には次のように行なう。 0<F≦Pa …ならばa元素に衝突 Pa <F≦Pa +Pb …ならばb元素に衝突 Pa +Pb <F≦Pa +Pb +Pc …ならばc元素に衝突 (但し、Fは一様乱数値である。)Here, which atom the electron incident on the multi-system compound collides with is determined by the probability (P) based on the collision cross section of the element, and is expressed by the following equation (4). Formula (4) for calculating the probability (P) that an electron collides with an element: P = (σC / A) / Σ (σC / A) σ (total scattering cross section) = [πe 4 Z (Z + 1)] / [4E
n 2 β (β + 1)] e: electron charge (-4.8029 × 10 -10 esu) E n: electron kinetic energy (eE / 300 × 10 3) For example, in the following the case of ternary compound Do as follows. 0 <F ≦ P a ... if collides with a elemental P a <F ≦ P a + P b ... if collides with b element P a + P b <F ≦ P a + P b + P c ... if collides with c elements ( Here, F is a uniform random value.)
【0023】更に、電子散乱後の位置は次の電子散乱
後の位置の計算式(5)によって計算される。すなわ
ち、試料表面上にX−Y軸をとり、また、深さ方向にZ
軸をとり、原点に入射する電子のn番目の電子の終点位
置を(xn , yn ,zn )とすると、(n+1)番目の
電子の位置を(xn+1 , yn+1 ,zn+1 )は、先ず衝突
によりn番目の位置から(ω,φ)の方向(ω:衝突に
よる入射方向からの散乱角度、φ:回転角度)に散乱さ
れたとし、これを用いて(n+1)番目の電子の位置を
(x, y,z)座標軸に対する方向(θn+1 , ψn+1 )
で表すと、以下のようになる。Further, the position after electron scattering is calculated by the following equation (5) for calculating the position after electron scattering. That is, the XY axis is set on the sample surface, and the Z direction is set in the depth direction.
Taking the axis, the electron of the n-th electron of the end position which is incident at the origin (x n, y n, z n) When, (n + 1) -th position of the electron (x n + 1, y n + 1 , Z n + 1 ) are first scattered from the n-th position by the collision in the direction (ω, φ) (ω: scattering angle from the incident direction due to the collision, φ: rotation angle). The position of the (n + 1) th electron in the direction (θ n + 1 , ψ n + 1 ) with respect to the (x, y, z) coordinate axis
When expressed as follows,
【0024】電子散乱後の位置の計算式(5) cos(θn+1)=cos(θn ) cos(ω)-sin(θn ) sin(ω) co
s(φ) sin(ψn+1)=Asin(ψn ) +Bcos(ψn ) cos(ψn+1)=Acos(ψn ) −Bsin(ψn ) A=[ cos(ω)-cos(θn ) cos(θn+1)] /[ sin(θn )
sin(θn+1)] B=sin(φ) sin(ω) /sin(θn+1) xn+1 =xn +λsin(θn+1)cos(ψn+1)×104 (μ
m) yn+1 =yn +λsin(θn+1)sin(ψn+1)×104 (μ
m) zn+1 =zn +λcos(θn+1)×104 (μm)Formula for calculating the position after electron scattering (5) cos (θ n + 1 ) = cos (θ n ) cos (ω) -sin (θ n ) sin (ω) co
s (φ) sin (ψ n + 1) = Asin (ψ n) + Bcos (ψ n) cos (ψ n + 1) = Acos (ψ n) -Bsin (ψ n) A = [cos (ω) -cos (θ n ) cos (θ n + 1 )] / [sin (θ n )
sin (θn + 1 )] B = sin (φ) sin (ω) / sin (θn + 1 ) xn + 1 = xn + λsin (θn + 1 ) cos (ψn + 1 ) × 10 4 (Μ
m) y n + 1 = y n + λsin (θ n + 1 ) sin (+ 1n + 1 ) × 10 4 (μ
m) z n + 1 = z n + λcos (θ n + 1) × 10 4 (μm)
【0025】そして、エネルギーEの電子が試料内の距
離λにおいて発生する発生X線量子数Iの計算は、次の
発生X線量子数の計算式(6)によって計算され、こ
の計算は入射された電子のエネルギーが元素の励起電圧
より低くなるまで繰り返して行なわれ、X線量子数は散
乱後との積算として計算される。Then, the calculation of the generated X-ray quantum number I at which the electron having the energy E is generated at the distance λ in the sample is calculated by the following equation (6) for calculating the generated X-ray quantum number. The process is repeated until the energy of the electrons becomes lower than the excitation voltage of the element, and the X-ray quantum number is calculated as an integrated value after scattering.
【0026】発生X線量子数の計算式(6) I=NA ρQ(E)WK Cλ/A NA :アボガドロ数(6.02×1023) A:原子量 ρ:密度(g/cm3) Q(E):イオン化断面積 Q(E)・Ek 2 =7.92×10-20 /U・ln
(U) U=E/Ek Ek :元素の励起電圧 [Kev] Wk :蛍光収率〔Wk =α4 /(1+α4 )〕 α=−0.0217+0.0332Z−1.14Z3 ×
10-6 X線吸収後のX線量子数の計算 I1 =I exp(−μρd) μ:X線質量吸収係数 d:X線の通過距離(cm)Formula for calculating the generated X-ray quantum number (6) I = N A ρ Q (E) W K Cλ / A N A : Avogadro number (6.02 × 10 23 ) A: Atomic weight ρ: Density (g / cm) 3 ) Q (E): ionization cross section Q (E) · E k 2 = 7.92 × 10 −20 / U · ln
(U) U = E / E k E k : excitation voltage of element [Kev] W k : fluorescence yield [W k = α 4 / (1 + α 4 )] α = −0.0217 + 0.0332Z−1.14Z 3 ×
10 -6 Calculation of X-ray quantum number after X-ray absorption I 1 = I exp (−μρd) μ: X-ray mass absorption coefficient d: X-ray passage distance (cm)
【0027】本発明において、上記計算式(1)〜
(6)を用いて行なうモンテカルロシミュレーション
は、通常1000個未満の電子について行なえば充分で
あり、好ましくは100以上500個以下程度の電子に
ついて行うのがよい。この計算対象の電子の数(入射電
子数)を1000個以上にしても、計算に多大な時間を
要するだけで計算精度の向上はあまり期待できず、ま
た、100個未満であると、場合によっては充分な計算
精度が得られない場合がある。In the present invention, the above formulas (1) to (1)
The Monte Carlo simulation performed using (6) is usually sufficient for less than 1000 electrons, and is preferably performed for about 100 or more and 500 or less electrons. Even if the number of electrons to be calculated (the number of incident electrons) is 1000 or more, a large amount of time is required for the calculation, and the calculation accuracy cannot be expected to be much improved. May not provide sufficient calculation accuracy.
【0028】本発明方法において、上記計算式(1)〜
(6)により、各想定試料における測定対象元素の算出
相対X線強度は、入射電子数を同じにして試料から得ら
れるX線量子数と100%試料から得られるX線量子数
との比として算出される。そして、検量線は、このよう
にして求められた各想定試料における算出相対X線強度
と各想定試料における測定対象元素の想定含有量(濃
度)との関係として求められる。In the method of the present invention, the above formulas (1) to (5)
According to (6), the calculated relative X-ray intensity of the element to be measured in each assumed sample is defined as the ratio of the X-ray quantum number obtained from the sample with the same number of incident electrons to the X-ray quantum number obtained from the 100% sample. Is calculated. Then, the calibration curve is obtained as a relationship between the calculated relative X-ray intensity of each assumed sample thus obtained and the assumed content (concentration) of the element to be measured in each assumed sample.
【0029】次に、本発明方法においては、測定対象元
素の含有量が未知である未知試料について、上記モンテ
カルロシミュレーションによる計算で用いた条件と同じ
条件で、EPMAにより測定対象元素の相対X線強度を
実測し、上記検量線と未知試料の相対X線強度の実測値
とから未知試料の測定対象元素を定量する。Next, in the method of the present invention, the relative X-ray intensity of the element to be measured is determined by EPMA for an unknown sample whose content of the element to be measured is unknown under the same conditions as those used in the calculation by the Monte Carlo simulation. Is measured, and the element to be measured in the unknown sample is quantified from the calibration curve and the measured value of the relative X-ray intensity of the unknown sample.
【0030】このEPMAによる相対X線強度の実測
は、測定対象の未知試料の種類や測定目的等に応じて適
宜行うことができ、例えば、未知試料の特定の微小部が
測定対象となる場合にはその未知試料の1つの測定点の
みについて行ってもよく、また、2種以上の未知試料の
比較を行う場合には、2つ以上の複数の測定点において
測定してその平均値を相対X線強度の実測値としてもよ
く、更には、微小な析出物の測り込みが考えられるよう
な場合には、未知試料について複数の測定領域を設定
し、最小の値の相対X線強度を見出して固溶濃度と推定
する等の手法を用いてもよい。The actual measurement of the relative X-ray intensity by the EPMA can be appropriately performed according to the type of the unknown sample to be measured, the purpose of the measurement, and the like. For example, when a specific minute portion of the unknown sample is to be measured, May be performed for only one measurement point of the unknown sample, or when comparing two or more types of unknown samples, measurement is performed at two or more measurement points and the average value is calculated as relative X It may be an actual measured value of the line intensity, and furthermore, when it is possible to measure a minute precipitate, set a plurality of measurement regions for the unknown sample and find the relative X-ray intensity of the minimum value. A technique such as estimating the solid solution concentration may be used.
【0031】また、本発明方法において、EPMAによ
る相対X線強度の実測の際の測定点については、バルク
試料のマトリックス中に固溶している微量元素の定量分
析を行うことが目的であるので、バルク試料のマトリッ
クス中に析出物、介在物、結晶粒界等の汚染物質が存在
する場合には、1,000倍以上の倍率の反射電子像を
CRT(Cathod Ray Tube) で観察しながら、これらの汚
染物質を避けて測定点を選ぶのがよく、これによってマ
トリックス中に固溶している微量元素をより正確に定量
分析することができる。Further, in the method of the present invention, the measurement points at the time of the actual measurement of the relative X-ray intensity by EPMA are intended to perform quantitative analysis of the trace elements dissolved in the matrix of the bulk sample. When contaminants such as precipitates, inclusions, and grain boundaries are present in the matrix of the bulk sample, a CRT (Cathod Ray Tube) is used to observe a backscattered electron image at a magnification of 1,000 times or more. It is preferable to select a measurement point while avoiding these contaminants, so that trace elements dissolved in the matrix can be quantitatively analyzed more accurately.
【0032】本発明方法は、バルク試料のマトリックス
中に固溶している微量元素をEPMA分析により容易に
つか正確に定量できるので、特に限定するものではない
が、例えば、アルミニウム中のソーキング過程における
Mgのミクロ偏析と機械的強度との関係、アルミニウム中
のCuの固溶量のミクロ偏析と腐蝕との関係、元素の急冷
凝固による固溶量の増加に伴うミクロ偏析と機械的強度
との関係、アルミ電線中のZrの固溶量のミクロ偏析と耐
熱性との関係等を目的とした定量分析に有用である。The method of the present invention is not particularly limited since the trace elements dissolved in the matrix of the bulk sample can be easily or accurately determined by EPMA analysis.
Relationship between micro-segregation of Mg and mechanical strength, relationship between micro-segregation of Cu solid solution in aluminum and corrosion, relationship between micro-segregation with increase in solid solution by rapid solidification of element and mechanical strength It is useful for quantitative analysis for the purpose of, for example, the relationship between micro-segregation of the amount of solid solution of Zr in aluminum electric wires and heat resistance.
【0033】[0033]
【発明の実施の形態】以下、波長分散型EPMA(島津
製作所製EPMA-8705;X線取出角度δ:52.5°)を用
いて行った実施例に基づいて、本発明の好適な実施の形
態を具体的に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below based on examples performed using a wavelength dispersion type EPMA (EPMA-8705 manufactured by Shimadzu Corporation; X-ray extraction angle δ: 52.5 °). The form will be specifically described.
【0034】実施例1(Al-Cu 合金試料について) 標準試料として、想定Cu濃度がそれぞれ100ppm 、 6
00ppm 、 及び1200ppm であり、想定試料サイズが
縦方向100μm×横方向100μm×深さ方向100
μmの大きさの立方体であり、密度が2.7g/cm3 であ
る3種のAl-Cu合金試料を想定し、日本電気(株)製パ
ーソナルコンピューター(PC N88 BASIC)を用い、表1
に示す物性値を使用し、入射電子数150個、及び加速
電圧15kV及び20kVの2水準の測定条件でモンテカル
ロシミュレーション(電子線軌跡シミュレーション)を
行い、Cu(Kα線)の算出相対X線強度を求めた。Example 1 (Al-Cu alloy sample) As standard samples, the assumed Cu concentrations were 100 ppm and 6 ppm, respectively.
And the expected sample size is 100 μm in the vertical direction × 100 μm in the horizontal direction × 100 in the depth direction.
Assuming three kinds of Al-Cu alloy samples having a size of μm and a density of 2.7 g / cm 3 , using a personal computer (PC N88 BASIC) manufactured by NEC Corporation, Table 1
Using the physical property values shown in Table 1, a Monte Carlo simulation (electron beam trajectory simulation) was performed under two measurement conditions of 150 incident electrons and acceleration voltages of 15 kV and 20 kV to calculate the calculated relative X-ray intensity of Cu (Kα ray). I asked.
【0035】[0035]
【表1】 [Table 1]
【0036】結果は表2に示す通りであり、算出相対X
線強度を横軸に、また、想定Cu濃度を縦軸にして計算結
果をプロットし、図1及び図2に示すように、加速電圧
15kVの場合にY=11.4X、及び加速電圧20kVの
場合にY=11.5Xの検量線を作製した。The results are as shown in Table 2, and the calculated relative X
The calculation results are plotted with the line intensity on the horizontal axis and the assumed Cu concentration on the vertical axis. As shown in FIGS. 1 and 2, when the acceleration voltage is 15 kV, Y = 11.4X and the acceleration voltage are 20 kV. In this case, a calibration curve of Y = 11.5X was prepared.
【0037】[0037]
【表2】 [Table 2]
【0038】次に、化学分析値が明らかであるCu-100%
試料及び3種のAl-Cu 試料を準備し、更にこれら3種の
Al-Cu 試料についてEPMA分析による元素マッピング
や線分析を行って場所によるCu濃度の偏析がないことを
確認し、上記電子線軌跡シミュレーションで得られた検
量線の検証を行うための検証用試料〔a:Cu-100% 、
b:Al-Cu(99ppm)、 c:Al-Cu(310ppm) 、及びd:Al-C
u(1000ppm)〕として用いた。これらの検証用試料につい
て、下記表3に示す条件で5ヶ所の測定点(但し、バッ
クグランド(BG)については1ヶ所)についてCuのX線強
度を測定し、3種の検証用Al-Cu 試料についてその相対
X線強度を求めた。Next, Cu-100% whose chemical analysis value is clear
A sample and three types of Al-Cu samples were prepared, and these three types
The Al-Cu sample was subjected to elemental mapping and line analysis by EPMA analysis to confirm that there was no segregation of Cu concentration depending on the location, and a verification sample for verifying the calibration curve obtained by the electron beam locus simulation [ a: Cu-100%,
b: Al-Cu (99 ppm), c: Al-Cu (310 ppm), and d: Al-C
u (1000 ppm)]. For these test samples, the X-ray intensity of Cu was measured at 5 measurement points (1 for the background (BG)) under the conditions shown in Table 3 below. The relative X-ray intensity of the sample was determined.
【0039】[0039]
【表3】 [Table 3]
【0040】検証用試料についてのEPMAによるX線
強度の測定は、CuのX線プロファイルを測定し、ピーク
波長と上限及び下限のバックグランド波長を求め、これ
らピーク波長と上限及び下限のバックグランド波長とを
分光器にセットしてこれらの波長でのX線強度を測定し
た。X線プロファイルの測定結果を図3〜図9に、ま
た、X線強度の測定結果を表4及び表5に、更に、3種
の検証用Al-Cu 試料における相対X線強度−Cu濃度の関
係をそれぞれ図1及び図2にプロットした。In the measurement of the X-ray intensity of the test sample by EPMA, the X-ray profile of Cu is measured, the peak wavelength, the upper and lower background wavelengths are determined, and the peak wavelength and the upper and lower background wavelengths are determined. Were set in a spectroscope and X-ray intensities at these wavelengths were measured. The measurement results of the X-ray profile are shown in FIGS. 3 to 9, the measurement results of the X-ray intensity are shown in Tables 4 and 5, and the relative X-ray intensity-Cu concentration of the three types of Al-Cu samples for verification are further shown. The relationships are plotted in FIGS. 1 and 2, respectively.
【0041】[0041]
【表4】 [Table 4]
【0042】[0042]
【表5】 [Table 5]
【0043】図1及び図2の結果から明らかなように、
実測された3種の検証用Al-Cu 試料における相対X線強
度−Cu濃度の関係を示すプロットは、精度良く検量線上
に位置することが確認され、この検量線がEPMA定量
分析に使用し得ることが検証された。また、3種の検証
用Al-Cu 試料において測定された相対X線強度から、上
で求められた検量線を用いてこれら3種の検証用Al-Cu
試料のCu濃度を算出すると、求められた計算濃度は表6
に示す通りであり、この点からも検量線がEPMA定量
分析に使用し得ることが検証された。As is clear from the results of FIGS. 1 and 2,
The plot showing the relationship between the relative X-ray intensity and the Cu concentration in the actually measured three types of Al-Cu samples for verification was confirmed to be accurately positioned on the calibration curve, and this calibration curve could be used for EPMA quantitative analysis. It was verified that. From the relative X-ray intensities measured for the three types of Al-Cu samples for verification, using the calibration curves obtained above, these three types of Al-Cu for verification were used.
When the Cu concentration of the sample was calculated, the calculated calculated concentration was as shown in Table 6.
This shows that the calibration curve can also be used for EPMA quantitative analysis.
【0044】[0044]
【表6】 [Table 6]
【0045】実施例2(Al-Cr 合金試料について) 標準試料として、想定Cr濃度がそれぞれ50ppm 、 10
0ppm 、 及び1000ppm であり、想定試料サイズが縦
方向100μm×横方向100μm×深さ方向100μ
mの大きさの立方体であり、密度が2.7g/cm3 である
3種のAl-Cr 合金試料を想定し、日本電気(株)製パー
ソナルコンピューター(PC N88 BASIC)を用い、表7に
示す物性値を使用し、入射電子数150個、及び加速電
圧15kVの測定条件で電子線軌跡シミュレーションを行
い、Cr(Kα線)の算出相対X線強度を求めた。Example 2 (Al-Cr alloy sample) As a standard sample, the assumed Cr concentrations were 50 ppm and 10 ppm, respectively.
0 ppm, and 1000 ppm, and the assumed sample size is 100 μm in the vertical direction × 100 μm in the horizontal direction × 100 μm in the depth direction.
Assuming three kinds of Al-Cr alloy samples, each of which is a cube having a size of m and a density of 2.7 g / cm 3 , using a personal computer (PC N88 BASIC) manufactured by NEC Corporation, Table 7 Using the physical properties shown, electron beam trajectory simulation was performed under the measurement conditions of 150 incident electrons and an acceleration voltage of 15 kV, and the calculated relative X-ray intensity of Cr (Kα ray) was obtained.
【0046】[0046]
【表7】 [Table 7]
【0047】結果は表8に示す通りであり、算出相対X
線強度を横軸に、また、想定Cr濃度を縦軸にして計算結
果をプロットし、図10に示すように、Y=11.6X
の検量線を作製した。The results are as shown in Table 8, and the calculated relative X
The calculation results are plotted with the line intensity on the horizontal axis and the assumed Cr concentration on the vertical axis, and as shown in FIG.
Was prepared.
【0048】[0048]
【表8】 [Table 8]
【0049】次に、化学分析値が明らかであるCr-100%
試料及び2種のAl-Cr 試料を準備し、更にこれら2種の
Al-Cr 試料についてEPMA分析による元素マッピング
や線分析を行って場所によるCr濃度の偏析がないことを
確認し、上記電子線軌跡シミュレーションで得られた検
量線の検証を行うための検証用試料〔a:Cr-100% 、
b:Al-Cr(106ppm)、及びc:Al-Cr(540ppm) 〕として用
いた。これらの検証用試料について、下記表9に示す条
件で5ヶ所の測定点(但し、バックグランド(BG)につい
ては1ヶ所)についてCrのX線強度を測定し、2種の検
証用Al-Cr 試料についてその相対X線強度を求めた。Next, Cr-100% whose chemical analysis value is clear
A sample and two Al-Cr samples were prepared, and these two
The Al-Cr sample was subjected to elemental mapping and line analysis by EPMA analysis to confirm that there was no segregation of Cr concentration depending on the location, and a verification sample for verifying the calibration curve obtained by the electron beam locus simulation [ a: Cr-100%,
b: Al-Cr (106 ppm) and c: Al-Cr (540 ppm)]. For these verification samples, the X-ray intensity of Cr was measured at 5 measurement points (1 for the background (BG)) under the conditions shown in Table 9 below, and two types of Al-Cr for verification were used. The relative X-ray intensity of the sample was determined.
【0050】[0050]
【表9】 [Table 9]
【0051】検証用試料についてのEPMAによるX線
強度を測定は、CrのX線プロファイルを測定し、ピーク
波長と上限及び下限のバックグランド波長を求め、これ
らピーク波長と上限及び下限のバックグランド波長とを
分光器にセットしてこれらの波長でのX線強度を測定し
た。Crのピーク波長は2.291Åであり、また、上限
及び下限のバックグランド波長はそれぞれ2.301Å
及び2.279Åであった。また、X線強度の測定結果
を表10に、更に、2種の検証用Al-Cr 試料における相
対X線強度−Cr濃度の関係を図10にプロットした。The X-ray intensity of the test sample by EPMA was measured by measuring the X-ray profile of Cr, determining the peak wavelength, the upper and lower background wavelengths, and determining the peak wavelength and the upper and lower background wavelengths. Were set in a spectroscope and X-ray intensities at these wavelengths were measured. The peak wavelength of Cr is 2.291 °, and the upper and lower background wavelengths are 2.301 °, respectively.
And 2.279 °. Table 10 shows the measurement results of the X-ray intensity, and FIG. 10 shows the relationship between the relative X-ray intensity and the Cr concentration in the two kinds of Al-Cr samples for verification.
【0052】[0052]
【表10】 [Table 10]
【0053】図10の結果から明らかなように、実測さ
れた2種の検証用Al-Cr 試料における相対X線強度−Cr
濃度の関係を示すプロットは、精度良く検量線上に位置
することが確認され、この検量線がEPMA定量分析に
使用し得ることが検証された。また、2種の検証用Al-C
r 試料において測定された相対X線強度から、上で求め
られた検量線を用いてこれら2種の検証用Al-Cr 試料の
Cr濃度を算出すると、求められた計算濃度は表11に示
す通りであり、この点からも検量線がEPMA定量分析
に使用し得ることが検証された。As is apparent from the results shown in FIG. 10, the relative X-ray intensities—Cr
It was confirmed that the plot showing the relationship between the concentrations was accurately located on the calibration curve, and it was verified that this calibration curve could be used for EPMA quantitative analysis. In addition, two types of Al-C for verification
r From the relative X-ray intensity measured in the sample, using the calibration curve obtained above, the two types of verification Al-Cr samples
When the Cr concentration was calculated, the calculated concentrations were as shown in Table 11, and it was verified from this point that the calibration curve could be used for EPMA quantitative analysis.
【0054】[0054]
【表11】 [Table 11]
【0055】実施例3(Al-Zn 合金試料について) 標準試料として、想定Zn濃度がそれぞれ100ppm 、 1
000ppm 、 及び5000ppm であり、想定試料サイズ
が縦方向100μm×横方向100μm×深さ方向10
0μmの大きさの立方体であり、密度が2.7g/cm3 で
ある3種のAl-Zn 合金試料を想定し、日本電気(株)製
パーソナルコンピューター(PC N88 BASIC)を用い、表
12に示す物性値を使用し、入射電子数150個、及び
加速電圧15kVの測定条件で電子線軌跡シミュレーショ
ンを行い、Zn(Kα線)の算出相対X線強度を求めた。Example 3 (Al-Zn alloy sample) As a standard sample, the assumed Zn concentrations were 100 ppm and 1 ppm, respectively.
5,000 ppm, and 5000 ppm, and the assumed sample size is 100 μm in the vertical direction × 100 μm in the horizontal direction × 10 in the depth direction.
Using a personal computer (PC N88 BASIC) manufactured by NEC Corporation, assuming three kinds of Al-Zn alloy samples each having a cube having a size of 0 μm and a density of 2.7 g / cm 3. Using the physical property values shown, electron beam trajectory simulation was performed under the measurement conditions of 150 incident electrons and an acceleration voltage of 15 kV, and the calculated relative X-ray intensity of Zn (Kα ray) was obtained.
【0056】[0056]
【表12】 [Table 12]
【0057】結果は表13に示す通りであり、算出相対
X線強度を横軸に、また、想定Zn濃度を縦軸にして計算
結果をプロットし、図11に示すように、Y=11.9
Xの検量線を作製した。The results are as shown in Table 13, and the calculated results are plotted with the calculated relative X-ray intensity on the horizontal axis and the assumed Zn concentration on the vertical axis. As shown in FIG. 9
A calibration curve for X was prepared.
【0058】[0058]
【表13】 [Table 13]
【0059】次に、化学分析値が明らかであるZn-100%
試料及びAl-Zn 試料を準備し、更にAl-Zn 試料について
EPMA分析による元素マッピングや線分析を行って場
所によるZn濃度の偏析がないことを確認し、上記電子線
軌跡シミュレーションで得られた検量線の検証を行うた
めの検証用試料〔a:Zn-100% 、b:Al-Zn(101ppm)、
及びc:Al-Zn(960ppm) 〕として用いた。これらの検証
用試料について、下記表14に示す条件で5ヶ所の測定
点(但し、バックグランド(BG)については1ヶ所)につ
いてZnのX線強度を測定し、検証用Al-Zn 試料について
その相対X線強度を求めた。Next, Zn-100%, whose chemical analysis value is clear,
A sample and an Al-Zn sample were prepared, and elemental mapping and line analysis were performed on the Al-Zn sample by EPMA analysis to confirm that there was no segregation of Zn concentration by location. Verification sample for performing line verification [a: Zn-100%, b: Al-Zn (101 ppm),
And c: Al-Zn (960 ppm)]. For these test samples, the X-ray intensity of Zn was measured at 5 measurement points (1 for the background (BG)) under the conditions shown in Table 14 below, and for the test Al-Zn sample, The relative X-ray intensity was determined.
【0060】[0060]
【表14】 [Table 14]
【0061】検証用試料についてのEPMAによるX線
強度を測定は、ZnのX線プロファイルを測定し、ピーク
波長と上限及び下限のバックグランド波長を求め、これ
らピーク波長と上限及び下限のバックグランド波長とを
分光器にセットしてこれらの波長でのX線強度を測定し
た。Znのピーク波長は1.438Åであり、また、上限
及び下限のバックグランド波長はそれぞれ1.420Å
及び1.456Åであった。また、X線強度の測定結果
を表15に、更に、検証用Al-Zn 試料における相対X線
強度−Zn濃度の関係を図11にプロットした。For measuring the X-ray intensity of the test sample by EPMA, the X-ray profile of Zn is measured, the peak wavelength, the upper and lower background wavelengths are determined, and the peak wavelength and the upper and lower background wavelengths are determined. Were set in a spectroscope and X-ray intensities at these wavelengths were measured. The peak wavelength of Zn is 1.438 °, and the upper and lower background wavelengths are respectively 1.420 °.
And 1.456 °. The measurement results of X-ray intensity are plotted in Table 15, and the relationship between relative X-ray intensity and Zn concentration in the Al-Zn sample for verification is plotted in FIG.
【0062】[0062]
【表15】 [Table 15]
【0063】図11の結果から明らかなように、実測さ
れた検証用Al-Zn 試料における相対X線強度−Zn濃度の
関係を示すプロットは、精度良く検量線上に位置するこ
とが確認され、検量線がEPMA定量分析に使用し得る
ことが検証された。また、検証用Al-Zn 試料において測
定された相対X線強度から、上で求められた検量線を用
いて検証用Al-Zn 試料のZn濃度を算出すると、求められ
た計算濃度は表16に示す通りであり、この点からも検
量線がEPMA定量分析に使用し得ることが検証され
た。As is clear from the results shown in FIG. 11, the plot showing the relationship between the relative X-ray intensity and the Zn concentration of the actually measured Al-Zn sample for verification was accurately located on the calibration curve. It was verified that the line could be used for EPMA quantitative analysis. Further, when the Zn concentration of the Al-Zn sample for verification was calculated from the relative X-ray intensity measured for the Al-Zn sample for verification using the calibration curve obtained above, the calculated concentration is shown in Table 16. As shown, it was verified from this point that the calibration curve can be used for EPMA quantitative analysis.
【0064】[0064]
【表16】 [Table 16]
【0065】実施例4(Al-Mg 合金試料について) 標準試料として、想定Mg濃度がそれぞれ100ppm 、 5
00ppm 、 1000ppm 、 5000ppm 、3.0%、
6.0%、8.0%、9.0%、及び10.0%であ
り、想定試料サイズが縦方向100μm×横方向100
μm×深さ方向100μmの大きさの立方体であり、密
度が2.7g/cm3 である3種のAl-Mg 合金試料を想定
し、日本電気(株)製パーソナルコンピューター(PC N
88 BASIC)を用い、表17に示す物性値を使用し、入射
電子数150個、及び加速電圧15kV又は20kVの測定
条件で電子線軌跡シミュレーションを行い、Mg(Kα
線)の算出相対X線強度を求めた。Example 4 (Regarding Al-Mg alloy sample) As standard samples, assumed Mg concentrations were 100 ppm and 5 ppm, respectively.
00ppm, 1000ppm, 5000ppm, 3.0%,
6.0%, 8.0%, 9.0%, and 10.0%, and the assumed sample size is 100 μm in the vertical direction × 100 in the horizontal direction.
Assuming three kinds of Al-Mg alloy samples having a size of μm × 100 μm in the depth direction and a density of 2.7 g / cm 3 , a personal computer (PCN) manufactured by NEC Corporation
88 BASIC), using the physical property values shown in Table 17, simulating an electron beam trajectory under the measurement conditions of 150 incident electrons and an acceleration voltage of 15 kV or 20 kV, and using Mg (Kα
The relative X-ray intensity was calculated.
【0066】[0066]
【表17】 [Table 17]
【0067】結果は表18に示す通りであり、算出相対
X線強度を横軸に、また、想定Mg濃度を縦軸にして計算
結果をプロットし、図12〜図14に示すように、加速
電圧15kVの場合にY(ppm) =9.9X及びY(%) =9
9X、及び加速電圧20kVの場合にY(%) =103Xの
検量線を作製した。The results are as shown in Table 18. The calculated results are plotted with the calculated relative X-ray intensity on the horizontal axis and the assumed Mg concentration on the vertical axis. As shown in FIGS. Y (ppm) = 9.9X and Y (%) = 9 when the voltage is 15 kV
A calibration curve of Y (%) = 103 × was prepared at 9 × and an acceleration voltage of 20 kV.
【0068】[0068]
【表18】 [Table 18]
【0069】次に、化学分析値が明らかであるMg-100%
試料及び10種のAl-Mg 試料を準備し、更にこれら10
種のAl-Mg 試料についてEPMA分析による元素マッピ
ングや線分析を行って場所によるMg濃度の偏析がないこ
とを確認し、上記電子線軌跡シミュレーションで得られ
た検量線の検証を行うための検証用試料〔a:Mg-100%
、b:Al-Mg(82ppm)、 c:Al-Mg(0.522%) 、d:Al-Mg
(1.01%)、 e:Al-Mg(1.99%)、f:Al-Mg(3.01%)、 g:A
l-Mg(4.12%)、h:Al-Mg(4.81%)、 i:Al-Mg(5.70%)、
j:Al-Mg(7.55%)、及びk:Al-Mg(8.38%)〕として用い
た。これらの検証用試料について、下記表19に示す条
件で10ヶ所の測定点(但し、バックグランド(BG)につ
いては1ヶ所)についてMgのX線強度を測定してその平
均値を求め、10種の検証用Al-Mg 試料についてその相
対X線強度を求めた。Next, Mg-100% whose chemical analysis value is clear
A sample and 10 kinds of Al-Mg samples were prepared.
For elemental Al-Mg samples, elemental mapping by EPMA analysis and line analysis were performed to confirm that there was no segregation of Mg concentration by location, and for verification to verify the calibration curve obtained by the electron beam trajectory simulation. Sample [a: Mg-100%
, B: Al-Mg (82 ppm), c: Al-Mg (0.522%), d: Al-Mg
(1.01%), e: Al-Mg (1.99%), f: Al-Mg (3.01%), g: A
l-Mg (4.12%), h: Al-Mg (4.81%), i: Al-Mg (5.70%),
j: Al-Mg (7.55%) and k: Al-Mg (8.38%)]. For these verification samples, the X-ray intensity of Mg was measured at ten measurement points (one for the background (BG)) under the conditions shown in Table 19 below, and the average value was determined. The relative X-ray intensity of the Al-Mg sample for verification was determined.
【0070】[0070]
【表19】 [Table 19]
【0071】検証用試料についてのEPMAによるX線
強度を測定は、MgのX線プロファイルを測定し、ピーク
波長と上限及び下限のバックグランド波長を求め、これ
らピーク波長と上限及び下限のバックグランド波長とを
分光器にセットしてこれらの波長でのX線強度を測定し
た。Mgのピーク波長は9.889Åであり、また、上限
及び下限のバックグランド波長はそれぞれ9.949Å
及び9.789Åであった。また、X線強度の測定結果
を表20に、更に、検証用Al-Mg 試料における相対X線
強度−Mg濃度の関係を図12〜図14にプロットした。The X-ray intensity of the test sample by EPMA was measured by measuring the X-ray profile of Mg, determining the peak wavelength, the upper and lower background wavelengths, and determining the peak wavelength and the upper and lower background wavelengths. Were set in a spectroscope and X-ray intensities at these wavelengths were measured. The peak wavelength of Mg is 9.889 °, and the upper and lower background wavelengths are 9.949 °, respectively.
And 9.789 °. Table 20 shows the measurement results of the X-ray intensity, and FIGS. 12 to 14 show the relationship between the relative X-ray intensity and the Mg concentration in the Al-Mg sample for verification.
【0072】[0072]
【表20】 [Table 20]
【0073】[0073]
【表21】 [Table 21]
【0074】図12〜図14の結果から明らかなよう
に、実測された10種の検証用Al-Mg試料における相対
X線強度−Mg濃度の関係を示すプロットは、精度良く検
量線上に位置することが確認され、この検量線がEPM
A定量分析に使用し得ることが検証された。また、10
種の検証用Al-Mg 試料において測定された相対X線強度
から、上で求められた検量線を用いてこれら10種の検
証用Al-Mg 試料のMg濃度を算出すると、求められた計算
濃度は表22に示す通りであり、この点からも検量線が
EPMA定量分析に使用し得ることが検証された。As is clear from the results shown in FIGS. 12 to 14, plots showing the relationship between the relative X-ray intensity and the Mg concentration in the ten kinds of Al-Mg samples for verification actually measured are accurately positioned on the calibration curve. It was confirmed that this calibration curve
A It was verified that it can be used for quantitative analysis. Also, 10
From the relative X-ray intensities measured in the test Al-Mg samples, the Mg concentrations of these 10 test Al-Mg samples were calculated using the calibration curve obtained above, and the calculated calculated concentration was obtained. Is as shown in Table 22, and from this point, it was verified that the calibration curve could be used for EPMA quantitative analysis.
【0075】[0075]
【表22】 [Table 22]
【0076】[0076]
【発明の効果】本発明のEPMA定量分析法によれば、
バルク試料のマトリックス中に固溶している微量元素
を、EPMA分析で容易に、かつ、実用可能な精度で定
量することができる。According to the EPMA quantitative analysis method of the present invention,
Trace elements dissolved in the matrix of the bulk sample can be easily quantified by EPMA analysis and with practically accurate accuracy.
【図1】 図1は、本発明の実施例1で得られた加速電
圧15kVの時の検量線である。FIG. 1 is a calibration curve at an acceleration voltage of 15 kV obtained in Example 1 of the present invention.
【図2】 図2は、本発明の実施例1で得られた加速電
圧20kVの時の検量線である。FIG. 2 is a calibration curve at an acceleration voltage of 20 kV obtained in Example 1 of the present invention.
【図3】 図3は、本発明の実施例1においてEPMA
を用い、加速電圧15kVで測定したCu-100% の検証用試
料のX線プロファイルを示すグラフ図である。FIG. 3 is a diagram showing an EPMA according to the first embodiment of the present invention;
FIG. 3 is a graph showing an X-ray profile of a Cu-100% verification sample measured at an acceleration voltage of 15 kV using the method shown in FIG.
【図4】 図4は、本発明の実施例1においてEPMA
を用い、加速電圧15kVで測定したAl-Cu(99ppm)の検証
用試料のX線プロファイルを示すグラフ図である。FIG. 4 is a diagram showing EPMA according to the first embodiment of the present invention;
FIG. 5 is a graph showing an X-ray profile of a sample for verification of Al-Cu (99 ppm) measured at an acceleration voltage of 15 kV by using FIG.
【図5】 図5は、本発明の実施例1においてEPMA
を用い、加速電圧15kVで測定したAl-Cu(310ppm) の検
証用試料のX線プロファイルを示すグラフ図である。FIG. 5 is a diagram showing an EPMA according to the first embodiment of the present invention.
FIG. 5 is a graph showing an X-ray profile of a verification sample of Al-Cu (310 ppm) measured at an acceleration voltage of 15 kV using the method shown in FIG.
【図6】 図6は、本発明の実施例1においてEPMA
を用い、加速電圧15kVで測定したAl-Cu(1000ppm)の検
証用試料のX線プロファイルを示すグラフ図である。FIG. 6 is a diagram showing EPMA according to the first embodiment of the present invention.
FIG. 6 is a graph showing an X-ray profile of a sample for verification of Al-Cu (1000 ppm) measured at an acceleration voltage of 15 kV by using FIG.
【図7】 図3は、本発明の実施例1においてEPMA
を用い、加速電圧20kVで測定したCu-100% の検証用試
料のX線プロファイルを示すグラフ図である。FIG. 3 is a diagram showing an EPMA according to the first embodiment of the present invention;
FIG. 4 is a graph showing an X-ray profile of a Cu-100% verification sample measured at an acceleration voltage of 20 kV using the above method.
【図8】 図8は、本発明の実施例1においてEPMA
を用い、加速電圧20kVで測定したAl-Cu(310ppm) の検
証用試料のX線プロファイルを示すグラフ図である。FIG. 8 is a diagram showing EPMA according to the first embodiment of the present invention;
FIG. 6 is a graph showing an X-ray profile of a sample for verification of Al-Cu (310 ppm) measured at an acceleration voltage of 20 kV using the method shown in FIG.
【図9】 図9は、本発明の実施例1においてEPMA
を用い、加速電圧20kVで測定したAl-Cu(1000ppm)の検
証用試料のX線プロファイルを示すグラフ図である。FIG. 9 is a diagram showing an EPMA according to the first embodiment of the present invention.
FIG. 6 is a graph showing an X-ray profile of a sample for verification of Al-Cu (1000 ppm) measured at an acceleration voltage of 20 kV by using FIG.
【図10】 図10は、本発明の実施例2で得られた加
速電圧15kVの時の検量線である。FIG. 10 is a calibration curve at an acceleration voltage of 15 kV obtained in Example 2 of the present invention.
【図11】 図11は、本発明の実施例3で得られた加
速電圧15kVの時の検量線である。FIG. 11 is a calibration curve at an acceleration voltage of 15 kV obtained in Example 3 of the present invention.
【図12】 図12は、本発明の実施例4で得られたMg
濃度 ppm領域における加速電圧15kVの時の検量線であ
る。FIG. 12 shows Mg obtained in Example 4 of the present invention.
7 is a calibration curve at an acceleration voltage of 15 kV in a concentration ppm range.
【図13】 図13は、本発明の実施例4で得られたMg
濃度%領域における加速電圧15kVの時の検量線であ
る。FIG. 13 shows Mg obtained in Example 4 of the present invention.
It is a calibration curve at an acceleration voltage of 15 kV in a concentration% region.
【図14】 図14は、本発明の実施例4で得られたMg
濃度%領域における加速電圧20kVの時の検量線であ
る。FIG. 14 shows Mg obtained in Example 4 of the present invention.
5 is a calibration curve at an acceleration voltage of 20 kV in a concentration% region.
Claims (6)
いる微量元素の定量分析を行うための方法であり、X線
発生領域より充分に大きいマトリックス中に測定対象元
素が所定の含有量で固溶した複数の試料を想定し、これ
ら各想定試料についてモンテカルロシミュレーションに
より測定対象元素の相対X線強度を算出し、得られた各
想定試料の算出相対X線強度と各想定試料の想定含有量
とから検量線を求め、また、測定対象元素の含有量が未
知である未知試料についてEPMAにより測定対象元素
の相対X線強度を実測し、上記検量線と未知試料の相対
X線強度の実測値とから未知試料の測定対象元素を定量
することを特徴とする検量線を用いたEPMA定量分析
法。1. A method for quantitatively analyzing trace elements dissolved in a matrix of a bulk sample, wherein a predetermined amount of an element to be measured is contained in a matrix sufficiently larger than an X-ray generation region. Assuming a plurality of dissolved samples, for each of these assumed samples, the relative X-ray intensity of the element to be measured is calculated by Monte Carlo simulation, and the calculated relative X-ray intensity of each of the obtained assumed samples and the assumed content of each assumed sample are calculated. From the calibration curve, the relative X-ray intensity of the element to be measured is actually measured by EPMA for an unknown sample in which the content of the element to be measured is unknown. EPMA quantitative analysis method using a calibration curve, characterized by quantifying an element to be measured in an unknown sample from a sample.
求項1に記載の検量線を用いたEPMA定量分析法。2. The method for quantitatively analyzing EPMA using a calibration curve according to claim 1, wherein the EPMA is a wavelength dispersive EPMA.
である請求項1に記載の検量線を用いたEPMA定量分
析法。3. The EPMA quantitative analysis method using a calibration curve according to claim 1, wherein the matrix of the sample is a metal or an alloy thereof.
マグネシウム、チタン、及び鉄から選ばれた金属又はそ
の合金である請求項3に記載の検量線を用いたEPMA
定量分析法。4. The metal or its alloy is aluminum, copper,
The EPMA using the calibration curve according to claim 3, wherein the EPMA is a metal selected from magnesium, titanium, and iron or an alloy thereof.
Quantitative analysis method.
は、未知試料の複数の測定点で測定された実測相対X線
強度の平均値である請求項1〜4のいずれかに記載の検
量線を用いたEPMA定量分析法。5. The calibration according to claim 1, wherein the value of the measured relative X-ray intensity of the unknown sample is an average value of the measured relative X-ray intensity measured at a plurality of measurement points of the unknown sample. EPMA quantitative analysis using X-ray.
算は、その計算式中における以下の計算式(2)〜
(4) 散乱角度(ω)及び回転角度(φ)の計算式(2) cos(ω,ラジアン)=1−2βR/(1+β−R) φ(ラジアン)=2πR 電子のエネルギーロス(ΔE)の計算式(3) E>6.338Jの時 ΔE[Kev/cm]=7.85×104 ρΣ〔ZC/A・ln(1.16
6 E/J)〕/E E≦6.338Jの時 ΔE[Kev/cm]=7.85×104 ρΣ(ZC/A/J1/2 )/
1.26E1/2 電子が元素に衝突する確率(P)の計算式(4) P=(σC/A)/Σ(σC/A) σ(散乱全断面積)=〔πe4 Z(Z+1)〕/〔4E
n 2 β(β+1)〕 〔但し、上記計算式(2)〜(4)において、Eは電子
の所有エネルギー(Kev)を、Aは原子量を、ρは密度(g/
cm3) を、Zは原子番号を、Jはイオン化ポテンシャル
(Kev) を、βはスクリーニングパラメータを、Rは一様
乱数(0〜1)を、πは円周率(3.14)を、Cは組成
を、eは電子の電荷(−4.8029×10 -10 esu )
を、En は電子の運動エネルギー(eE/300×10
3 )をそれぞれ示す〕において、 J=11.5Z×10-3 [Kev]、及び、 β={5.44Z2/3 /E}×10-3 を用い、入射電子数1000個未満で行う請求項1〜5
のいずれかに記載の検量線を用いたEPMA定量分析
法。6. A total number calculated by a Monte Carlo simulation.
Is calculated by the following formulas (2) to
(4) Calculation formula of scattering angle (ω) and rotation angle (φ) (2) cos (ω, radian) = 1-2βR / (1 + β-R) φ (radian) = 2πR Energy loss of electron (ΔE) Formula (3) When E> 6.338 J ΔE [Kev / cm] = 7.85 × 10FourρΣ [ZC / A · ln (1.16
6E / J)] / E When E ≦ 6.338J ΔE [Kev / cm] = 7.85 × 10FourρΣ (ZC / A / J1/2) /
1.26E1/2 Equation (4) for calculating the probability (P) that an electron collides with an element: P = (σC / A) / Σ (σC / A) σ (total scattering cross section) = [πeFourZ (Z + 1)] / [4E
n Twoβ (β + 1)] [However, in the above formulas (2) to (4), E is an electron
Is the owned energy (Kev), A is the atomic weight, ρ is the density (g /
cmThree), Z is the atomic number, J is the ionization potential
(Kev), β is the screening parameter, R is uniform
Random number (0 to 1), π is pi (3.14), C is composition
And e is the electron charge (−4.8029 × 10 -Tenesu)
To EnIs the kinetic energy of the electron (eE / 300 × 10
Three) Respectively], J = 11.5Z × 10-3 [Kev] and β = {5.44Z2/3/ E} × 10-3 And using less than 1,000 incident electrons.
EPMA quantitative analysis using the calibration curve described in any of
Law.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000126535A JP2001305081A (en) | 2000-04-26 | 2000-04-26 | Epma quantitative analysis method using analytical curve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000126535A JP2001305081A (en) | 2000-04-26 | 2000-04-26 | Epma quantitative analysis method using analytical curve |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001305081A true JP2001305081A (en) | 2001-10-31 |
Family
ID=18636303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000126535A Pending JP2001305081A (en) | 2000-04-26 | 2000-04-26 | Epma quantitative analysis method using analytical curve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001305081A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003532A (en) * | 2005-06-24 | 2007-01-11 | Oxford Instruments Analytical Ltd | Method and apparatus for material identification |
JP2013096954A (en) * | 2011-11-04 | 2013-05-20 | Jfe Steel Corp | Method and device for analyzing inclusion in steel |
JP2015148499A (en) * | 2014-02-06 | 2015-08-20 | 日本電子株式会社 | Particle analysis device and program |
US10773196B2 (en) | 2018-01-24 | 2020-09-15 | Pro-Pure Inc. | Gluing method of a filter cartridge |
EP4063842A1 (en) | 2021-03-22 | 2022-09-28 | JEOL Ltd. | X-ray spectrum analysis apparatus and method |
CN116593515A (en) * | 2023-07-13 | 2023-08-15 | 江苏省沙钢钢铁研究院有限公司 | Method for detecting boron element in steel |
-
2000
- 2000-04-26 JP JP2000126535A patent/JP2001305081A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003532A (en) * | 2005-06-24 | 2007-01-11 | Oxford Instruments Analytical Ltd | Method and apparatus for material identification |
JP2013096954A (en) * | 2011-11-04 | 2013-05-20 | Jfe Steel Corp | Method and device for analyzing inclusion in steel |
JP2015148499A (en) * | 2014-02-06 | 2015-08-20 | 日本電子株式会社 | Particle analysis device and program |
US10773196B2 (en) | 2018-01-24 | 2020-09-15 | Pro-Pure Inc. | Gluing method of a filter cartridge |
EP4063842A1 (en) | 2021-03-22 | 2022-09-28 | JEOL Ltd. | X-ray spectrum analysis apparatus and method |
CN116593515A (en) * | 2023-07-13 | 2023-08-15 | 江苏省沙钢钢铁研究院有限公司 | Method for detecting boron element in steel |
CN116593515B (en) * | 2023-07-13 | 2023-09-29 | 江苏省沙钢钢铁研究院有限公司 | Method for detecting boron element in steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lutz et al. | Energy dispersive X‐ray fluorescence analysis of ancient copper alloys: empirical values for precision and accuracy | |
JP5264061B2 (en) | Method and apparatus for substance identification | |
US6512810B1 (en) | Method of analyzing a specimen comprising a compound material by x-ray fluorescence analysis | |
Yao et al. | Element Analysis Based on Energy‐Dispersive X‐Ray Fluorescence | |
JP2008268076A (en) | Non-destructive discrimination method, and device | |
Pessanha et al. | Comparison of matrix effects on portable and stationary XRF spectrometers for cultural heritage samples | |
Horny et al. | Development of a new quantitative X-ray microanalysis method for electron microscopy | |
JP2001305081A (en) | Epma quantitative analysis method using analytical curve | |
Gójska et al. | Archaeological applications of spectroscopic measurements. Compatibility of analytical methods in comparative measurements of historical Polish coins | |
JP2012508379A (en) | Dynamic change of shaping time of X-ray detector | |
JP6994931B2 (en) | X-ray fluorescence analyzer and analysis method | |
Al Lafi et al. | PIXE data analysis by two‐dimensional correlation mapping techniques: Analysis of chloride and sulfate ions attack in homemade mortar samples | |
JP2002189005A (en) | Method for measuring thickness of inter-metallic compound using epma method, and method for measuring solid shape of inter-metallic compound using the same | |
Procop et al. | X-ray fluorescence as an additional analytical method for a scanning electron microscope | |
JP3409742B2 (en) | EPMA analysis method using Monte Carlo simulation | |
Zupanič | Extracting electron backscattering coefficients from backscattered electron micrographs | |
JP3424605B2 (en) | EPMA determination method for micro substances with different element composition ratios | |
KR20230069973A (en) | Computer-assisted method for determining the element fraction, in particular the Li fraction, of crystal elements having a small atomic number, and a data processing apparatus corresponding thereto | |
Bennun et al. | A Procedure for the Improvement in the Determination of a TXRF Spectrometer Sensitivity Curve | |
Černohorský et al. | ED XRF analysis of precious metallic alloys with the use of combined FP method | |
Haschke et al. | Micro‐XRF excitation in an SEM | |
Angeles-Chavez et al. | Chemical quantification of Mo-S, W-Si and Ti-V by energy dispersive X-ray spectroscopy | |
JP4834613B2 (en) | X-ray fluorescence analyzer and method | |
JP2978089B2 (en) | Particle size distribution measurement method for inclusions in metal | |
Li et al. | High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry |