JP2001303151A - Sintered composite material and its producing method - Google Patents
Sintered composite material and its producing methodInfo
- Publication number
- JP2001303151A JP2001303151A JP2000122365A JP2000122365A JP2001303151A JP 2001303151 A JP2001303151 A JP 2001303151A JP 2000122365 A JP2000122365 A JP 2000122365A JP 2000122365 A JP2000122365 A JP 2000122365A JP 2001303151 A JP2001303151 A JP 2001303151A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- sintered
- thermal
- expansion
- high thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体装置の放熱
を行うヒートシンク材料等に使用される高熱伝導性およ
び低熱膨張性を有する焼結複合材料及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered composite material having high thermal conductivity and low thermal expansion used as a heat sink material for radiating heat of a semiconductor device, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、電子デバイスの高集積、高速化な
どの高性能化及び信頼性向上の要求から、電子回路基板
から発生した熱エネルギーの放熱能の向上が大きな課題
となっている。従来の電子回路基板の放熱材としては、
Cu、Cuクラッド材、Cu−W合金など高熱伝導性の
材料が用いられてきたが、密度が大きく、さらに半導体
材料のSi、IC基板やパッケージに使用されるAl2
O3やAlNなどのセラミックスやプラスチックに比べ
熱膨張係数の差が大きいため、熱応力による接合面の剥
離や基盤材を破壊してしまうという問題がある。これら
の問題を解決するため、熱伝導性に優れる金属と熱膨張
係数の小さいセラミックスの複合材が検討されている。
近年、特開昭63−290251号公報に記載されてい
るようなAl−SiC複合材が用いられるようになって
きた。この複合材は熱伝導性に優れ密度が小さくセラミ
ックス基板との熱膨張係数の差も小さい。しかしなが
ら、この複合材はSiCのスケルトンに溶融Alを溶浸
して作成するためAlの含有率に制限があった。よっ
て、さらに高い熱伝導率が必要な場合にはAlの含有率
を増やすことができないという問題がある。また、溶融
金属にセラミックス粒子を分散させる方法も開示されて
いるが、特殊な装置と製品までの加工が必要となるため
非常にコストがかかる。また、Alの融点が低いため、
ロウ付けの際、複合材が溶融するという問題もある。従
来の粉末冶金法を用いれば、いわゆるニアネットシェイ
プな複合材を得ることができるが、元来セラミックスと
金属は密着性が悪いため緻密な複合材が得られず、熱膨
張性および熱伝導性が不十分であり、また機械的強度も
十分ではなく放熱材としては不適である。2. Description of the Related Art In recent years, with the demand for higher performance and higher reliability such as higher integration and higher speed of electronic devices, improvement of heat radiation capability of heat energy generated from an electronic circuit board has become a major issue. As a heat dissipation material for conventional electronic circuit boards,
Materials with high thermal conductivity such as Cu, Cu clad material, and Cu-W alloy have been used, but have a high density, and furthermore, Si as a semiconductor material, and Al 2 used for IC substrates and packages.
Since there is a large difference in thermal expansion coefficient as compared with ceramics or plastics such as O 3 and AlN, there is a problem that a joint surface is peeled off or a base material is broken by thermal stress. In order to solve these problems, a composite material of a metal having excellent thermal conductivity and a ceramic having a small coefficient of thermal expansion has been studied.
In recent years, Al-SiC composite materials as described in JP-A-63-290251 have been used. This composite material has excellent thermal conductivity, a small density, and a small difference in thermal expansion coefficient from the ceramic substrate. However, since this composite material is prepared by infiltrating molten Al into a skeleton of SiC, the content of Al is limited. Therefore, there is a problem that the Al content cannot be increased when a higher thermal conductivity is required. Further, a method of dispersing ceramic particles in a molten metal is also disclosed, but it requires a special device and processing to a product, which is very costly. Also, since the melting point of Al is low,
There is also a problem that the composite material is melted during brazing. By using the conventional powder metallurgy method, a so-called near-net-shape composite material can be obtained. However, a dense composite material cannot be obtained due to poor adhesion between ceramics and metal. Is insufficient, and the mechanical strength is not sufficient.
【0003】[0003]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、緻密かつ加工性、強度に優れた低熱膨張
性、かつ高熱伝導性の複合材料およびその製造方法を得
ることにある。An object of the present invention is to provide a composite material which is dense, has excellent workability and strength, has low thermal expansion and high thermal conductivity, and a method for producing the same.
【0004】[0004]
【課題を解決するための手段】10気圧以上の圧力下で
焼結する焼結複合材料において、高熱伝導性金属を20
〜80体積%含有し、残部が低熱膨張複合酸化物、高融
点金属のうちの1種または2種以上からなることを特徴
とする焼結複合材料を得ることにより前記課題が解決で
きる。そして、粉末冶金法により10気圧以上の圧力下
で焼結することにより安価で量産できる。高熱伝導性金
属としてはCu,Al,Ag,Auなどの金属またはそ
れらの合金が使用できる。これらの高熱伝導性金属は必
要とする熱伝導率、熱膨張係数に応じて任意に選択する
ことができるが、2種以上を混合したものあるいはそれ
らの合金を用いてもよい。これら高熱伝導性金属の含有
量は20体積%から80体積%が望ましい。20体積%
より少ない場合は焼結が促進されず高熱伝導性を満足し
ない。また、80体積%より多い場合は複合酸化物また
は高融点金属による熱膨張係数を低下させる効果が小さ
い。複合酸化物としては、コーディエライト、スポデュ
メン、ユークリプタイト、ムライト、ジルコン、チタン
酸アルミニウム等の複合酸化物を使用することができ
る。これらの複合酸化物は高純度酸化物セラミックスと
比べて原料粉末をきわめて安価に入手することができ、
それらの熱膨張係数は6.0×10-6(1/℃)以下で
あり密度も小さい。また、Al2O3やZrO2などのよ
うな高純度酸化物は液体金属との接触角は90゜以上で
あり金属との接合はできない。しかし、ガラス相を伴う
複合酸化物を用いることにより金属との親和性が向上す
るため金属との接合が可能となり優れた密着性および緻
密性を得ることができる。熱膨張性、熱伝導性、緻密
性、原料および製造コスト、金属との密着性などを考慮
した場合、コーディエライトを使用するのが特に望まし
い。高融点金属としてはMo,Wなどを用いることがで
きる。これらの金属は高熱伝導性金属より熱膨張係数は
小さいが、熱伝導率が低熱膨張複合酸化物より高いた
め、焼結複合材においては熱伝導率の大幅な低下を抑制
する。また、これらの金属は高熱伝導性金属との親和性
に優れるため、焼結助剤としての効果も有する。SUMMARY OF THE INVENTION In a sintered composite material which is sintered under a pressure of 10 atm or more, a high heat conductive metal is used.
The above problem can be solved by obtaining a sintered composite material characterized by containing at least 80% by volume and the balance consisting of one or more of a low thermal expansion composite oxide and a high melting point metal. Then, by sintering under a pressure of 10 atm or more by powder metallurgy, mass production can be performed at low cost. Metals such as Cu, Al, Ag, and Au or alloys thereof can be used as the high heat conductive metal. These high thermal conductive metals can be arbitrarily selected according to the required thermal conductivity and thermal expansion coefficient, but a mixture of two or more or an alloy thereof may be used. The content of these high heat conductive metals is desirably from 20% by volume to 80% by volume. 20% by volume
If less, sintering is not promoted and high thermal conductivity is not satisfied. If the content is more than 80% by volume, the effect of lowering the coefficient of thermal expansion by the composite oxide or the high melting point metal is small. As the composite oxide, a composite oxide such as cordierite, spodumene, eucryptite, mullite, zircon, or aluminum titanate can be used. These composite oxides make it possible to obtain raw material powder at a very low price compared to high-purity oxide ceramics.
Their thermal expansion coefficient is 6.0 × 10 −6 (1 / ° C.) or less and their density is small. Further, high-purity oxides such as Al 2 O 3 and ZrO 2 have a contact angle with liquid metal of 90 ° or more and cannot be bonded to metal. However, by using a composite oxide with a glass phase, affinity with a metal is improved, so that bonding with a metal becomes possible, and excellent adhesion and denseness can be obtained. It is particularly desirable to use cordierite in consideration of thermal expansion properties, thermal conductivity, denseness, raw materials and production costs, adhesion to metals, and the like. Mo, W, or the like can be used as the high melting point metal. These metals have a lower coefficient of thermal expansion than the high thermal conductive metal, but have a higher thermal conductivity than the low thermal expansion composite oxide, so that a large decrease in the thermal conductivity is suppressed in the sintered composite material. In addition, since these metals have excellent affinity with highly heat conductive metals, they also have an effect as a sintering aid.
【0005】高熱伝導性金属は1から50μm程度、複
合酸化物は1から100μm程度、高融点金属は1から
20μm程度の平均粒径と、球状もしくは不規則形状等
の性状を有する出発原料粉末を用いることができる。上
記粉末の混合物の成形体は、10気圧以上の圧力下、使
用する金属の融点の70から98%の温度で焼結するこ
とにより緻密な焼結複合材を得ることができる。特に、
50気圧以上の圧力下で焼結することが緻密な焼結複合
材を得る点で望ましい。焼結複合材としては、低い熱膨
張係数が必要な場合には低熱膨張複合酸化物と高熱伝導
性金属の焼結複合材、高い熱伝導率が必要な場合には高
融点金属と高熱伝導性金属の焼結複合材などのように要
求される特性に応じて任意に選択することができる。特
に、前記焼結複合材よりも高い熱伝導率と低い熱膨張係
数が必要な場合には、低熱膨張複合酸化物と高融点金属
と高熱伝導性金属の焼結複合材を使用するのがよい。The starting material powder having an average particle diameter of about 1 to 50 μm for a high thermal conductive metal, about 1 to 100 μm for a complex oxide, and about 1 to 20 μm for a high melting point metal and having a spherical or irregular shape is used. Can be used. A compact sintered composite material can be obtained by sintering the compact of the powder mixture at a pressure of 10 atm or more at a temperature of 70 to 98% of the melting point of the metal used. In particular,
Sintering under a pressure of 50 atm or more is desirable from the viewpoint of obtaining a dense sintered composite material. When a low coefficient of thermal expansion is required, a sintered composite of a low thermal expansion composite oxide and a high thermal conductivity metal is used. When a high thermal conductivity is required, a high melting point metal and a high thermal conductivity are used. It can be arbitrarily selected according to required characteristics such as a sintered composite material of a metal. In particular, when a higher thermal conductivity and a lower coefficient of thermal expansion are required than the sintered composite material, it is preferable to use a sintered composite material of a low thermal expansion composite oxide, a high melting point metal, and a high thermal conductive metal. .
【0006】[0006]
【発明の実施の形態】請求項1記載の本発明は、高熱伝
導性金属を20〜80体積%含有し、残部が低熱膨張複
合酸化物、高融点金属のうち1種または2種以上からな
る焼結複合材料において、10気圧以上の圧力下で焼結
することを特徴とする低熱膨張、高熱伝導性の焼結複合
材料であるが、高熱伝導性金属と低熱膨張複合酸化物、
高融点金属のうち1種または2種以上からなるので低熱
膨張性かつ高熱伝導性があり、加工し易く、曲げ強度が
大きく、高圧で焼結するので緻密で常圧焼結のものより
高熱伝導性の材料を得ることができる。請求項2記載の
本発明は、高熱伝導性金属粉末と残部が低熱膨張複合酸
化物粉末、高融点金属粉末のうちの1種または2種以上
からなる粉末の混合物を、10気圧以上の圧力下で焼結
することを特徴とする焼結複合材料の製造方法である
が、この方法を利用することによりいわゆるニアネット
シェイプの焼結体が得られるので後加工が殆ど不要で安
価で低熱膨張、高熱伝導性の焼結複合材料が量産でき
る。以下、本発明を実施例を用いて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention according to claim 1 contains a high thermal conductive metal in an amount of 20 to 80% by volume, and the balance consists of one or more of a low thermal expansion complex oxide and a high melting point metal. The sintered composite material is a low thermal expansion, high thermal conductivity sintered composite material characterized by sintering under a pressure of 10 atm or more, but a high thermal conductive metal and a low thermal expansion composite oxide,
Made of one or more of the high melting point metals, it has low thermal expansion and high thermal conductivity, is easy to process, has high bending strength, and is sintered at high pressure, so it is dense and has higher thermal conductivity than that of normal pressure sintering Material can be obtained. The present invention according to claim 2 is to provide a mixture of a high thermal conductive metal powder and a powder composed of one or more of the low thermal expansion complex oxide powder and the high melting point metal powder at a pressure of 10 atm or more. This is a method for producing a sintered composite material characterized by sintering. By using this method, a so-called near net shape sintered body is obtained, so that post-processing is almost unnecessary, inexpensive, low thermal expansion, Mass production of sintered composites with high thermal conductivity. Hereinafter, the present invention will be described in detail with reference to examples.
【0007】[0007]
【実施例】高熱伝導性粒子としてCuを、複合酸化物と
してコーディエライトを高融点金属としてMoを用いた
本発明の低熱膨張、高熱伝導性の焼結複合材料を例にと
って説明する。平均粒径30μmの純度99.5%以上
のCu粉末と平均粒径50μmのコーディエライト(2
MgO−2Al2O3−5SiO2組成)と平均粒径4μm
のMo粉末粉末を表1の組成となるように秤量し、流動
型混合機にて30min混合した。この混合粉末を金型
にて成形後、850℃で60min、50気圧の圧力下
で焼結した。実施例No.1〜実施例No.7は、Cu
−コーディエライト系の本発明を示す。実施例No.8
〜実施例No.14は、Cu−Mo系の本発明を示す。
実施例No.15〜実施例No.25は、Cu−Mo−
コーディエライト系の本発明を示す。このようにして得
られた焼結複合材料の熱伝導率、熱膨張係数、相対密度
ならびに曲げ強度を測定したところ、表1に示すような
結果が得られた。EXAMPLE A low-thermal-expansion, high-thermal-conductivity sintered composite material of the present invention using Cu as a high thermal conductive particle, cordierite as a composite oxide and Mo as a high melting point metal will be described as an example. Cu powder having an average particle size of 30 μm and a purity of 99.5% or more and cordierite (2
MgO-2Al 2 O 3 -5SiO 2 composition) and average particle size 4 μm
Of Mo powder was weighed so as to have the composition shown in Table 1, and mixed with a fluid mixer for 30 minutes. This mixed powder was molded in a mold and then sintered at 850 ° C. for 60 minutes under a pressure of 50 atm. Example No. 1 to Example No. 1; 7 is Cu
-Shows the present invention of the cordierite series. Example No. 8
-Example No. 14 shows the present invention of Cu-Mo system.
Example No. 15 to Example No. 25 is Cu-Mo-
Fig. 2 shows a cordierite-based invention. The thermal conductivity, coefficient of thermal expansion, relative density and bending strength of the thus obtained sintered composite material were measured, and the results shown in Table 1 were obtained.
【0008】[0008]
【表1】 [Table 1]
【0009】表2は本発明の原料を用いるが配合量が本
発明から外れるものとCu、Mo、コーディエライトそ
れぞれの単体からなるものと、Al−70体積%SiC
からなるものを比較例として示す。比較例No.1〜比
較例No.2はCu−コーディエライト系材料、比較例
No.3〜比較例No.4はCu−Mo系材料、比較例
No.5〜比較例No.7はそれぞれCu、コーディエ
ライト、Mo単体による特性を示す。比較例No.8
は、Al−70体積%SiC材料の特性を示す。Table 2 shows that the raw materials of the present invention are used, but the amounts of the raw materials are out of the range of the present invention, those of Cu, Mo, and cordierite each consisting of a simple substance, and those of Al-70 vol.
Are shown as comparative examples. Comparative Example No. 1 to Comparative Example Nos. 2 is a Cu-cordierite-based material; 3 to Comparative Example Nos. 4 is a Cu—Mo-based material, Comparative Example No. Comparative Example No. 5 Numeral 7 indicates characteristics of Cu, cordierite, and Mo alone. Comparative Example No. 8
Indicates the characteristics of an Al-70 volume% SiC material.
【0010】[0010]
【表2】 [Table 2]
【0011】その結果、本発明の実施例No.1〜実施
例No.25は比較例No.1〜比較例No.8と比較
すると、緻密で高い熱伝導率と低い熱膨張係数を兼ね備
えており、また強度についても高い値を示し半導体装置
の放熱を行うヒートシンク材料等に使用するのに要求さ
れる特性を有するのに対して、比較例のものは、熱伝導
率、熱膨張係数、相対密度、引張強度の少なくともいず
れかが、半導体装置の放熱を行うヒートシンク材料等に
使用される特性を満足せず、それらの用途に使用できる
ものでなかった。As a result, in the embodiment No. 1 to Example No. 1; 25 is Comparative Example No. 25. 1 to Comparative Example Nos. Compared to 8, it has a high thermal conductivity and a low coefficient of thermal expansion, and has a high strength value, and has characteristics required for use as a heat sink material for heat dissipation of semiconductor devices. On the other hand, in the comparative example, at least one of the thermal conductivity, the thermal expansion coefficient, the relative density, and the tensile strength does not satisfy the characteristics used for a heat sink material that dissipates heat of the semiconductor device. It could not be used for any purpose.
【0012】[0012]
【発明の効果】本発明によって以下の効果を奏する。 1.本発明の焼結複合材は、熱伝導率が高く放熱性に優
れることからIC基板の高集積化、高性能化に有効であ
る。 2.高熱伝導性金属と複合酸化物を複合した場合、焼結
複合材の密度は高熱伝導性金属、高融点金属単体の材料
と比較して、密度が低くなるためIC基板の軽量化に有
効である。 3.熱膨張係数が小さいため、Si、セラミックス、低
熱膨張プラスチックなどと接合した場合でも熱応力によ
る剥離や破壊を生じず使用することができる。 4.高熱伝導性金属、複合酸化物金属と高融点金属の種
類及びその含有量を調整することで、熱膨張係数、熱伝
導率を任意の値に調整できるため、電子デバイスの放熱
材料として幅広く用いることができる。 5.緻密な材料であるため、機械的特性に優れ、熱サイ
クル、振動や衝撃などの信頼性が要求されるような環境
下での使用に適している。 6.原料粉末はきわめて安価で、通常の粉末冶金法によ
り製造できるため格別な装置を必要とせず大量にかつ経
済的にいわゆるニアネットシェイプの製品を製造するこ
とができる。According to the present invention, the following effects can be obtained. 1. INDUSTRIAL APPLICABILITY The sintered composite material of the present invention has high thermal conductivity and excellent heat dissipation, and is therefore effective for high integration and high performance of IC substrates. 2. When a composite of a high thermal conductive metal and a composite oxide is used, the density of the sintered composite material is lower than that of a single material of a high thermal conductive metal or a refractory metal alone, which is effective in reducing the weight of an IC substrate. . 3. Since it has a small coefficient of thermal expansion, it can be used without peeling or destruction due to thermal stress even when bonded to Si, ceramics, low thermal expansion plastic, or the like. 4. By adjusting the type and content of high thermal conductive metal, composite oxide metal and high melting point metal, the coefficient of thermal expansion and thermal conductivity can be adjusted to any value, so it can be widely used as a heat dissipation material for electronic devices Can be. 5. Since it is a dense material, it has excellent mechanical properties and is suitable for use in an environment where reliability such as thermal cycling, vibration, and impact is required. 6. Since the raw material powder is extremely inexpensive and can be manufactured by a usual powder metallurgy method, a so-called near net shape product can be manufactured in a large amount and economically without requiring any special equipment.
Claims (2)
材料において、高熱伝導性金属を20〜80体積%含有
し、残部が低熱膨張複合酸化物、高融点金属のうちの1
種または2種以上からなることを特徴とする焼結複合材
料。A sintered composite material sintered under a pressure of 10 atm or more contains a high thermal conductive metal in an amount of 20 to 80% by volume, and the balance is one of a low thermal expansion composite oxide and a high melting point metal.
A sintered composite material comprising a seed or two or more kinds.
酸化物粉末、高融点金属粉末のうちの1種または2種以
上からなる粉末の混合物を、10気圧以上の圧力下で焼
結することを特徴とする焼結複合材料の製造方法。2. A mixture of a high thermal conductive metal powder and a powder comprising at least one of a low thermal expansion composite oxide powder and a high melting point metal powder, the remainder being sintered under a pressure of 10 atm or more. A method for producing a sintered composite material, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122365A JP2001303151A (en) | 2000-04-18 | 2000-04-18 | Sintered composite material and its producing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000122365A JP2001303151A (en) | 2000-04-18 | 2000-04-18 | Sintered composite material and its producing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001303151A true JP2001303151A (en) | 2001-10-31 |
Family
ID=18632849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000122365A Withdrawn JP2001303151A (en) | 2000-04-18 | 2000-04-18 | Sintered composite material and its producing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001303151A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009016616A (en) * | 2007-07-05 | 2009-01-22 | Tdk Corp | Surge absorbing element, and light emitting device |
-
2000
- 2000-04-18 JP JP2000122365A patent/JP2001303151A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009016616A (en) * | 2007-07-05 | 2009-01-22 | Tdk Corp | Surge absorbing element, and light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4360061B2 (en) | Semiconductor device member and semiconductor device using the same | |
EP0248258A2 (en) | Improved heat sink device using composite metal alloy | |
JP4113971B2 (en) | Low expansion material and manufacturing method thereof | |
JPH07149588A (en) | Metallized highly heat conductive silicon nitride substrate, its production and silicon nitride module | |
JP3449683B2 (en) | Ceramic circuit board and method of manufacturing the same | |
JP2001303151A (en) | Sintered composite material and its producing method | |
JP3814924B2 (en) | Semiconductor device substrate | |
JP4407858B2 (en) | Module structure | |
JP3948797B2 (en) | Method for producing silicon carbide composite | |
JP2815656B2 (en) | High-strength heat-radiating structural member for packaged semiconductor devices | |
JP2001189325A (en) | Power module | |
JP2002294387A (en) | Sintered composite material and production method therefor | |
JP2002294385A (en) | Sintering composite material and production method therefor | |
JP2001284509A (en) | Al-SiC COMPOSITE BODY | |
JP2001107172A (en) | Sintered composite material having high thermal conductivity and its producing method | |
JP2003306730A (en) | Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT | |
JPH0997865A (en) | Radiation part | |
JPH0964254A (en) | Heat radiating member for semiconductor device | |
JP2001217364A (en) | Al-SiC COMPOSITE | |
JP2784540B2 (en) | Metallizing composition | |
JP3450167B2 (en) | Package for storing semiconductor elements | |
JP3420415B2 (en) | High thermal conductive composite material | |
JPH04125952A (en) | Ceramic package | |
JPH04949B2 (en) | ||
JPH04950B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070703 |