[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001235237A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JP2001235237A
JP2001235237A JP2000041285A JP2000041285A JP2001235237A JP 2001235237 A JP2001235237 A JP 2001235237A JP 2000041285 A JP2000041285 A JP 2000041285A JP 2000041285 A JP2000041285 A JP 2000041285A JP 2001235237 A JP2001235237 A JP 2001235237A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
liquid pump
pump
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000041285A
Other languages
Japanese (ja)
Other versions
JP4084915B2 (en
Inventor
Masahiro Nishihara
正博 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2000041285A priority Critical patent/JP4084915B2/en
Publication of JP2001235237A publication Critical patent/JP2001235237A/en
Application granted granted Critical
Publication of JP4084915B2 publication Critical patent/JP4084915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating system capable of reducing running cost with a small compressor power without necessity of raising a condensing pressure and reducing an apparatus cost by satisfying when a part of a refrigerant route is designed for a high pressure resistance. SOLUTION: A refrigerant liquid pump 12 is provided between a condenser 4 of a refrigerant forward tube 2 and an expansion valve 6. The other end of a bypass tube 13 connected at one end between the condenser 4 and the pump 12 on the way of the forward tube is connected between the pump 12 and the valve 6 on the way of the forward tube, and an opening/closing valve 14 is provided on the way of the tube 13. In the case of a cooling operation, the valve 14 is opened, and the pump 12 is stopped. However, in the case of a high temperature operation for holding a high temperature in a chamber to be air conditioned, the valve 14 is closed and the pump 12 is driven.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は環境試験装置におけ
る試験室等の被空調室の空気調和用に好適な冷凍システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system suitable for air conditioning of a room to be conditioned such as a test room in an environmental test apparatus.

【0002】[0002]

【従来の技術とその問題点】環境試験室内の温度を変化
させて各種のテストを行う環境試験装置においては、冷
凍システムと適宜のヒータとで試験室内を所要の温度に
冷却あるいは加温する構成となっている。
2. Description of the Related Art In an environmental test apparatus for performing various tests by changing the temperature in an environmental test chamber, a configuration in which the test chamber is cooled or heated to a required temperature by a refrigeration system and an appropriate heater. It has become.

【0003】例えば試験室内が45℃程度の高温に加温
され、かつ試験室内を高湿度に保つような試験を行う場
合には、冷凍システムによる冷却運転は停止するが、冷
凍システムの蒸発器内に低温の冷媒が残っていると、蒸
発器の表面で試験室内の水分が結露し、試験室内の空気
が除湿されて高湿度を維持できなくなってしまうので、
蒸発器内における冷媒蒸発温度を試験室内温度に近い例
えば42℃程度まで上昇させる高温運転を行っている。
For example, when performing a test in which the test chamber is heated to a high temperature of about 45 ° C. and the test chamber is maintained at a high humidity, the cooling operation by the refrigeration system is stopped, but the inside of the evaporator of the refrigeration system is stopped. If low-temperature refrigerant remains in the evaporator, the moisture in the test chamber will condense on the surface of the evaporator, and the air in the test chamber will be dehumidified, making it impossible to maintain high humidity.
A high-temperature operation is performed to raise the refrigerant evaporation temperature in the evaporator to a temperature close to the test room temperature, for example, about 42 ° C.

【0004】従来の冷凍システムにおいて冷媒蒸発温度
を上昇させるには、冷媒の凝縮圧力を大ならしめている
が、凝縮圧力を高くするには圧縮機動力を大とせねばな
らず、ランニングコストが嵩むという問題がある。
In a conventional refrigeration system, the condensing pressure of the refrigerant is increased in order to raise the refrigerant evaporation temperature. However, in order to increase the condensing pressure, the power of the compressor must be increased, which increases the running cost. There's a problem.

【0005】また、冷凍システム全体の設計圧力が凝縮
圧力に十分対応できるものでなければならず、しかも凝
縮圧力を上昇させるには凝縮器における冷却水との熱交
換を停止する必要があり、高温運転時に凝縮器への冷却
水の供給を停止するための冷却水バイパス機構も設けな
ければならないので、装置コストも大幅に嵩むという問
題がある。
Further, the design pressure of the entire refrigeration system must be sufficient to cope with the condensing pressure. In order to increase the condensing pressure, it is necessary to stop heat exchange with the cooling water in the condenser. Since a cooling water bypass mechanism for stopping the supply of the cooling water to the condenser during operation must be provided, there is a problem that the cost of the apparatus is significantly increased.

【0006】さらに近年、冷凍システムに使用される冷
媒自体も凝縮圧力の高い代替冷媒が採用されるようにな
っており、例えば従来から使用されているR22の凝縮
圧力が40℃で1.44MPa、50℃で1.86MP
aであるのに対し、代替冷媒のひとつであるR507A
の凝縮圧力は40℃で1.88MPa、50℃で2.3
8MPaであり、さらに前記圧縮機動力や設計圧力を大
ならしめねばならず、よりランニングコストおよび装置
コストが嵩む原因となっている。
Further, in recent years, alternative refrigerants having a high condensing pressure have been adopted as refrigerants used in refrigeration systems. For example, the condensing pressure of R22 conventionally used is 1.44 MPa at 40.degree. 1.86MP at 50 ° C
a, but R507A, one of the alternative refrigerants
Is 1.88 MPa at 40 ° C. and 2.3 at 50 ° C.
8 MPa, and the compressor power and the design pressure must be increased, which further increases running cost and equipment cost.

【0007】[0007]

【目的】本発明の目的とするところは、凝縮圧力を大な
らしめる必要がなく、圧縮機動力が小でランニングコス
トの低減を期すことができ、しかも冷媒経路の一部を高
耐圧設計のものとすれば事が足りて装置コストを低減で
きる冷凍システムを提供することにある。
[Object] The object of the present invention is to eliminate the need to increase the condensing pressure, to reduce the compressor power and to reduce running costs, and to design a part of the refrigerant path with a high pressure resistance design. It is therefore an object of the present invention to provide a refrigeration system capable of reducing the apparatus cost.

【0008】[0008]

【本発明の構成】上記目的を達成するために、本発明に
係る冷凍システムは、圧縮機の吐出口から被空調室内の
蒸発器の入口に到る冷媒往管に凝縮器および膨張弁が設
けられ、前記蒸発器の出口から前記圧縮機の吸入口に到
る冷媒復管に蒸発圧力調整弁を有する冷凍システムにお
いて、前記冷媒往管の凝縮器と膨張弁との間に、冷媒液
ポンプを設け、また、冷媒往管の途中における前記凝縮
器と冷媒液ポンプとの間に一端を接続したバイパス管の
他端を冷媒往管の途中における前記冷媒液ポンプと膨張
弁との間に接続して同バイパス管の途中に開閉弁を設
け、冷却運転の際には前記開閉弁が開かれるとともに冷
媒液ポンプが停止されているが、前記被空調室内を高温
に保つ高温運転の際には前記開閉弁が閉ざされるととも
に冷媒液ポンプが駆動される構成のものとしてある。
In order to achieve the above object, a refrigeration system according to the present invention is provided with a condenser and an expansion valve in a refrigerant outgoing pipe extending from a discharge port of a compressor to an inlet of an evaporator in a room to be air-conditioned. In a refrigeration system having an evaporation pressure regulating valve in the refrigerant return pipe from the outlet of the evaporator to the suction port of the compressor, a refrigerant liquid pump is provided between the condenser and the expansion valve of the refrigerant outward pipe. The other end of the bypass pipe having one end connected between the condenser and the refrigerant liquid pump in the middle of the refrigerant outgoing pipe is connected between the refrigerant liquid pump and the expansion valve in the middle of the refrigerant outgoing pipe. An on-off valve is provided in the middle of the bypass pipe, and in the cooling operation, the on-off valve is opened and the refrigerant liquid pump is stopped, but in the high-temperature operation for keeping the room to be air-conditioned at high temperature, The on-off valve is closed and the refrigerant liquid pump runs. Is the certain as configuration.

【0009】[0009]

【実施例】以下、本発明に係る冷凍システムの実施例を
添付図面に示す具体例に基づいて詳細に説明する。圧縮
機1の吐出口に一端が接続された冷媒往管2の他端は、
油分離器3、凝縮器4、受液器5および膨張弁6を経て
被空調室たる試験室7内に設けた空調器8内の蒸発器9
に接続されている。同蒸発器9に一端が接続された冷媒
復管10の他端は、蒸発圧力調整弁11を介して前記圧
縮機1の吸入口に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a refrigeration system according to the present invention will be described below in detail with reference to specific examples shown in the accompanying drawings. The other end of the refrigerant outward pipe 2 whose one end is connected to the discharge port of the compressor 1 is
An evaporator 9 in an air conditioner 8 provided in a test room 7 which is a room to be air-conditioned via an oil separator 3, a condenser 4, a liquid receiver 5, and an expansion valve 6.
It is connected to the. The other end of the refrigerant return pipe 10, one end of which is connected to the evaporator 9, is connected to the suction port of the compressor 1 via an evaporation pressure adjusting valve 11.

【0010】しかして、本発明に係る冷凍システムは前
記冷媒往管2における受液器5と膨張弁6との間に冷媒
液ポンプ12を設けてあり、また、同ポンプ12の入口
側と同出口側の冷媒往管2にはバイパス管13の入口と
出口をそれぞれ接続してあって、同バイパス管13の途
中に開閉弁14を設けてある。
In the refrigeration system according to the present invention, a refrigerant liquid pump 12 is provided between the receiver 5 and the expansion valve 6 in the refrigerant outgoing pipe 2, and the refrigerant liquid pump 12 has the same structure as the inlet side of the pump 12. The inlet and outlet of the bypass pipe 13 are connected to the refrigerant outlet pipe 2 on the outlet side, respectively, and an on-off valve 14 is provided in the middle of the bypass pipe 13.

【0011】前記冷媒液ポンプ12は冷凍システムが冷
却運転を行っている間は停止しており、この際、バイパ
ス管13の開閉弁14が開かれ、受液器5からの冷媒は
バイパス管13を迂回して膨張弁6へ送られるが、試験
室7内を高温に保つ高温運転の際には冷媒液ポンプ12
が駆動されるとともに前記バイパス管13の開閉弁14
が閉ざされて、受液器5からの冷媒は冷媒液ポンプ12
により加圧されて膨張弁6へ送られる。
The refrigerant liquid pump 12 is stopped while the refrigeration system is performing the cooling operation. At this time, the on-off valve 14 of the bypass pipe 13 is opened, and the refrigerant from the receiver 5 is supplied to the bypass pipe 13. Is bypassed to the expansion valve 6, but the refrigerant liquid pump 12
Is driven and the on-off valve 14 of the bypass pipe 13 is
Is closed, and the refrigerant from the liquid receiver 5 is supplied to the refrigerant liquid pump 12.
And is sent to the expansion valve 6.

【0012】前記凝縮器4と受液器5はキャビテーショ
ン防止のために冷媒液ポンプ12よりも高い位置に設け
るか、あるいは受液器5と冷媒液ポンプ12との間に過
冷却器を設ける。なお、図中の符号15は送風機、16
a、16bはガス戻し管、17は逆止弁を示している。
The condenser 4 and the liquid receiver 5 are provided at a position higher than the refrigerant liquid pump 12 to prevent cavitation, or a supercooler is provided between the liquid receiver 5 and the refrigerant liquid pump 12. In addition, the code | symbol 15 in a figure is a blower, 16
Reference numerals a and 16b denote gas return pipes, and reference numeral 17 denotes a check valve.

【0013】次ぎに上述のように構成した本発明に係る
冷凍システムの作用を説明する。冷却運転時には、前記
バイパス管13の開閉弁14が開かれ、圧縮機1からの
冷媒が冷媒往管2により油分離器3、凝縮器4、受液器
5からバイパス管13へ流れ、膨張弁6を経て蒸発器9
内に流入し、送風機15により空調器8内を流過する室
内空気と熱交換する。そして蒸発器9からの冷媒は、冷
媒往管10により、蒸発圧力調整弁11を経て圧縮機1
へ戻される。
Next, the operation of the refrigeration system according to the present invention configured as described above will be described. During the cooling operation, the on-off valve 14 of the bypass pipe 13 is opened, and the refrigerant from the compressor 1 flows from the oil separator 3, the condenser 4, and the receiver 5 to the bypass pipe 13 by the refrigerant forward pipe 2, and the expansion valve 6 through evaporator 9
And heat exchange with the room air flowing through the air conditioner 8 by the blower 15. The refrigerant from the evaporator 9 passes through the refrigerant outgoing pipe 10 via the evaporating pressure regulating valve 11 to the compressor 1.
Returned to

【0014】高温運転時には、図示省略のヒータ等によ
り試験室内の空気を加温するとともに、冷凍システムに
おいては前記バイパス管13の開閉弁14が閉ざされる
とともに冷媒液ポンプ12が駆動される。
During high-temperature operation, the air in the test chamber is heated by a heater or the like (not shown), and in the refrigeration system, the on-off valve 14 of the bypass pipe 13 is closed and the refrigerant liquid pump 12 is driven.

【0015】冷媒液ポンプ12の駆動により、膨張弁6
の入口側における冷媒圧力が上昇して蒸発器9内におけ
る冷媒の蒸発圧力も上昇し、蒸発器内における冷媒の蒸
発温度が試験室内の温度近くに保たれる。蒸発器9から
の冷媒は蒸発圧力調整弁11により減圧されて圧縮機1
へ戻される。
The expansion valve 6 is driven by driving the refrigerant liquid pump 12.
The refrigerant pressure on the inlet side of the evaporator 9 increases, and the evaporating pressure of the refrigerant in the evaporator 9 also increases, and the evaporation temperature of the refrigerant in the evaporator is kept close to the temperature in the test chamber. The refrigerant from the evaporator 9 is decompressed by the evaporating pressure regulating valve 11 and
Returned to

【0016】次ぎに、冷媒にR22を使用し、試験室7
内の温度を例えば45℃に保つ高温運転を行う際の具体
例に基づいて本発明に係る冷凍システムの作用をより詳
細に説明する。試験室7内を45℃に保つ場合、蒸発器
9表面における除湿作用を防止するには蒸発器内におけ
る冷媒の蒸発温度を42℃程度まで上昇させる必要があ
り、この場合、膨張弁6の入口における冷媒圧力を冷媒
凝縮温度が50℃程度になる圧力まで上昇させなければ
ならない。
Next, using R22 as a refrigerant,
The operation of the refrigeration system according to the present invention will be described in more detail based on a specific example when performing a high-temperature operation in which the inside temperature is maintained at, for example, 45 ° C. When the inside of the test chamber 7 is kept at 45 ° C., it is necessary to raise the evaporation temperature of the refrigerant in the evaporator to about 42 ° C. in order to prevent the dehumidifying action on the surface of the evaporator 9. Must be increased to a pressure at which the refrigerant condensing temperature becomes about 50 ° C.

【0017】図2は上述した高温運転時の冷凍システム
における冷媒のモリエル線図を示し、aは圧縮機1入
口、bは同出口、cは冷媒液ポンプ12入口、dは膨張
弁6入口、eは蒸発器9入口、fは蒸発圧力調整弁11
入口の各冷媒状態を示している。同図において、ab間
の圧力差ΔP1 は圧縮機1による昇圧、cd間の圧力差
ΔP2 は冷媒液ポンプ12による昇圧であり、圧縮機1
においては凝縮温度40℃の圧力(R22では1.44
MPa)までの昇圧で事が足りる。
FIG. 2 is a Mollier diagram of the refrigerant in the refrigeration system at the time of the high-temperature operation described above, wherein a is the inlet of the compressor 1, b is the same outlet, c is the inlet of the refrigerant liquid pump 12, d is the inlet of the expansion valve 6, e is the evaporator 9 inlet, f is the evaporating pressure regulating valve 11
The state of each refrigerant at the inlet is shown. In the drawing, a pressure difference ΔP 1 between a and ab is a pressure increase by the compressor 1, and a pressure difference ΔP 2 between cd and a pressure increase by the refrigerant liquid pump 12.
At a pressure of 40 ° C. for the condensation temperature (1.44 for R22).
It is sufficient to increase the pressure up to MPa).

【0018】図3は本発明の冷凍システムとの比較のた
めに示す従来のものの冷媒のモリエル線図を示し、a’
は圧縮機入口、b’は同出口、d’は膨張弁6入口、
e’は蒸発器9入口、f’は蒸発圧力調整弁11入口の
各冷媒状態を示している。同図において、a’b’間の
圧力差ΔPは全て圧縮機による昇圧であり、したがって
圧縮機においては凝縮温度50℃の圧力(R22では
1.86MPa)までの昇圧が必要である。
FIG. 3 shows a Mollier diagram of a conventional refrigerant shown for comparison with the refrigeration system of the present invention, wherein a ′ is shown.
Is the compressor inlet, b 'is the same outlet, d' is the expansion valve 6 inlet,
e 'indicates the state of each refrigerant at the inlet of the evaporator 9 and f' indicates the state of each refrigerant at the inlet of the evaporation pressure regulating valve 11. In the drawing, the pressure difference ΔP between a ′ and b ′ is all pressure rise by the compressor, and therefore, it is necessary to raise the pressure to a pressure of 50 ° C. (1.86 MPa for R22) in the compressor.

【0019】これら図2、3から明らかなように、本発
明に係る冷凍システムにおける圧縮機動力は従来のもの
に比して格段に小なるものとすることができ、しかも圧
縮機から冷媒液ポンプ入口までの冷媒経路を高耐圧力の
ものとする必要がないことがわかる。
As apparent from FIGS. 2 and 3, the power of the compressor in the refrigeration system according to the present invention can be made significantly smaller than that of the conventional refrigeration system. It is understood that the refrigerant path to the inlet does not need to have a high withstand pressure.

【0020】次ぎに、本発明に係る冷凍システムにおけ
る必要動力について、次表1に示す具体的数値に基づい
て説明する。なお、次表1の数値は現在実用に供されて
いる或る冷凍機の能力表から抜粋したものであり、使用
冷媒はR22、吸入ガス温度は5℃である。
Next, the required power in the refrigeration system according to the present invention will be described based on specific numerical values shown in Table 1 below. The numerical values in the following Table 1 are extracted from a performance table of a certain refrigerator currently in practical use. The refrigerant used is R22, and the suction gas temperature is 5 ° C.

【0021】[0021]

【表1】 [Table 1]

【0022】まず、冷媒循環量はR22の40℃凝縮
時、42℃蒸発時における各エンタルピが112.77
kcal/kg 、152.19kcal/kg であるから、 冷媒循環量=337.6×3320/(152.19−112.77) =28433(kg/h)=0.419(m3/min) となる。したがって、冷媒液ポンプの動力は、R22の
40℃液における比重量が1132kg/m3 であるから、
冷媒液ポンプの効率を0.5とすると ポンプ動力=0.419×42×1132/(6122×0.5) =6.5(BKw) である。
First, the circulating amount of the refrigerant is 112.77 for each enthalpy when R22 condenses at 40 ° C. and evaporates at 42 ° C.
Since kcal / kg and 152.19 kcal / kg, the refrigerant circulation amount = 337.6 × 3320 / (152.19−112.77) = 28433 (kg / h) = 0.419 (m 3 / min) Become. Therefore, the power of the refrigerant liquid pump is as follows: the specific weight of R22 at 40 ° C. liquid is 1132 kg / m 3 ,
Assuming that the efficiency of the refrigerant liquid pump is 0.5, pump power = 0.419 × 42 × 1132 / (6122 × 0.5) = 6.5 (BKw).

【0023】また、40℃における冷却能力は表1から
379.5(JRT) であるが、膨張弁入口における実際の
凝縮温度は50℃であるから冷却能力は50℃における
冷却能力である337.6(JRT) であればよく、軸動力
を冷却能力に対して単純比例するものと仮定すると、 軸動力(圧縮機動力)=296.3×337.6/379.5 =263.6(BKw) となり、 動力合計=263.6+6.5=270.1(BKw) である。
The cooling capacity at 40 ° C. is 379.5 (JRT) from Table 1. However, since the actual condensation temperature at the expansion valve inlet is 50 ° C., the cooling capacity is the cooling capacity at 50 ° C. 6 (JRT), and assuming that the shaft power is simply proportional to the cooling capacity, the shaft power (compressor power) = 296.3 x 337.6 / 379.5 = 263.6 (BKw ), And the total power = 263.6 + 6.5 = 270.1 (BKw).

【0024】また、従来の冷凍システムにおいては圧縮
機によって凝縮温度50℃まで昇圧するので、圧縮機動
力は表1から365.8(BKw) である。したがって、本
発明の冷凍システムによる動力合計270.1(BKw) は
従来のものに比して約26%の動力低減を達成すること
ができる。
In the conventional refrigeration system, since the pressure is raised to 50 ° C. by the compressor, the power of the compressor is 365.8 (BKw) from Table 1. Therefore, the total power of 270.1 (BKw) by the refrigeration system of the present invention can achieve a power reduction of about 26% as compared with the conventional one.

【0025】[0025]

【発明の効果】本発明に係る冷凍システムは、被空調室
内を高温に保つ高温運転時には圧縮機における加圧によ
り凝縮器内で液化した冷媒をさらに冷媒液ポンプで加圧
して膨張弁へ送るので、凝縮器における冷媒の凝縮圧力
をさほど上昇させる必要がない。
In the refrigeration system according to the present invention, the refrigerant liquefied in the condenser by pressurization in the compressor is further pressurized by the refrigerant liquid pump and sent to the expansion valve during high temperature operation in which the room to be air-conditioned is kept at a high temperature. In addition, there is no need to increase the condensation pressure of the refrigerant in the condenser so much.

【0026】したがって、圧縮機動力を増大させる必要
がなくてランニングコストの低減を期すことができ、ま
た、冷媒液ポンプから膨張弁に至るまでの冷媒経路だけ
を高圧に耐え得る設計のものとすれば他の冷媒経路は通
常の設計圧力で事が足り、さらに凝縮器への冷却水経路
を切り替えて凝縮圧力を上昇させるような特別な構成は
不要であって、装置コストの低減を期すことができる。
Therefore, it is not necessary to increase the power of the compressor, so that the running cost can be reduced, and only the refrigerant path from the refrigerant liquid pump to the expansion valve can be designed to withstand high pressure. For the other refrigerant paths, normal design pressure is sufficient, and there is no need to switch the cooling water path to the condenser to increase the condensation pressure. it can.

【0027】また、従来から使用されている冷媒に比し
て凝縮圧力の高いものが多い代替冷媒を採用する場合に
おいても、冷凍システム全体を高耐圧のものとする必要
がないとともに圧縮機動力も大ならしめる必要がなく、
装置コストおよびランニングコストを増大させることな
く代替冷媒を採用することができるというメリットもあ
る。
Even when an alternative refrigerant having a higher condensing pressure than conventional refrigerants is employed, the entire refrigeration system does not need to have a high pressure resistance and the power of the compressor is large. No need to break
There is also an advantage that an alternative refrigerant can be adopted without increasing the equipment cost and the running cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷凍システムの実施例を示す構成
図。
FIG. 1 is a configuration diagram showing an embodiment of a refrigeration system according to the present invention.

【図2】本発明に係る冷凍システムの高温運転時におけ
る冷媒のモリエル線図。
FIG. 2 is a Mollier diagram of a refrigerant during a high-temperature operation of the refrigeration system according to the present invention.

【図3】従来の冷凍システムの高温運転時における冷媒
のモリエル線図。
FIG. 3 is a Mollier diagram of a refrigerant during a high-temperature operation of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷媒往管 3 油分離器 4 凝縮器 5 受液器 6 膨張弁 7 試験室 8 空調器 9 蒸発器 10 冷媒復管 11 蒸発圧力調整弁 12 冷媒液ポン
プ 13 バイパス管 14 開閉弁 15 送風機 16a、16b ガス戻し管 17 逆止弁
REFERENCE SIGNS LIST 1 compressor 2 refrigerant outgoing pipe 3 oil separator 4 condenser 5 liquid receiver 6 expansion valve 7 test chamber 8 air conditioner 9 evaporator 10 refrigerant return pipe 11 evaporation pressure regulating valve 12 refrigerant liquid pump 13 bypass pipe 14 on-off valve 15 Blower 16a, 16b Gas return pipe 17 Check valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機の吐出口から被空調室内の蒸発器の
入口に到る冷媒往管に凝縮器および膨張弁が設けられ、
前記蒸発器の出口から前記圧縮機の吸入口に到る冷媒復
管に蒸発圧力調整弁を有する冷凍システムにおいて、前
記冷媒往管の凝縮器と膨張弁との間に、冷媒液ポンプを
設け、また、冷媒往管の途中における前記凝縮器と冷媒
液ポンプとの間に一端を接続したバイパス管の他端を冷
媒往管の途中における前記冷媒液ポンプと膨張弁との間
に接続して同バイパス管の途中に開閉弁を設け、冷却運
転の際には前記開閉弁が開かれるとともに冷媒液ポンプ
が停止されているが、前記被空調室内を高温に保つ高温
運転の際には前記開閉弁が閉ざされるとともに冷媒液ポ
ンプが駆動される構成としてなる冷凍システム。
1. A condenser and an expansion valve are provided in a refrigerant outgoing pipe extending from a discharge port of a compressor to an inlet of an evaporator in a room to be air-conditioned.
In a refrigeration system having an evaporation pressure regulating valve in a refrigerant return pipe from the outlet of the evaporator to the suction port of the compressor, a refrigerant liquid pump is provided between a condenser and an expansion valve of the refrigerant outward pipe, The other end of the bypass pipe having one end connected between the condenser and the refrigerant liquid pump in the middle of the refrigerant outgoing pipe is connected between the refrigerant liquid pump and the expansion valve in the middle of the refrigerant outgoing pipe. An on-off valve is provided in the middle of the bypass pipe, and in the cooling operation, the on-off valve is opened and the refrigerant liquid pump is stopped, but in the high-temperature operation for keeping the room to be air-conditioned at a high temperature, the on-off valve is provided. The refrigeration system has a configuration in which the refrigerant liquid pump is driven while the pump is closed.
JP2000041285A 2000-02-18 2000-02-18 Refrigeration system Expired - Lifetime JP4084915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041285A JP4084915B2 (en) 2000-02-18 2000-02-18 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041285A JP4084915B2 (en) 2000-02-18 2000-02-18 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2001235237A true JP2001235237A (en) 2001-08-31
JP4084915B2 JP4084915B2 (en) 2008-04-30

Family

ID=18564545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041285A Expired - Lifetime JP4084915B2 (en) 2000-02-18 2000-02-18 Refrigeration system

Country Status (1)

Country Link
JP (1) JP4084915B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132545A (en) * 2005-11-08 2007-05-31 Taikisha Ltd Air conditioning system
JP2007155315A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2012145296A (en) * 2011-01-13 2012-08-02 Toyo Eng Works Ltd Refrigeration system
CN107677154A (en) * 2017-11-17 2018-02-09 大冶斯瑞尔换热器有限公司 A kind of phase-change heat-exchanger for high-performance computer
CN112197373A (en) * 2020-08-31 2021-01-08 珠海格力电器股份有限公司 Machine room air conditioning unit and control method thereof
CN112682910A (en) * 2020-12-08 2021-04-20 珠海格力电器股份有限公司 Method and system for switching operation modes of dual-power cooling system
CN116951800A (en) * 2023-09-15 2023-10-27 广东美的暖通设备有限公司 Control method, control device, dual-cycle refrigeration system and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618118B1 (en) * 2023-04-11 2023-12-27 (주)하이세이브아시아 Liquid refrigerant mild method for supplying low temperature refrigerant to the suction side of the refrigerant liquid pump that circulates the refrigerant in the refrigeration system under increased pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132545A (en) * 2005-11-08 2007-05-31 Taikisha Ltd Air conditioning system
JP2007155315A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
JP4583290B2 (en) * 2005-11-08 2010-11-17 株式会社大気社 Air conditioning system
JP2012145296A (en) * 2011-01-13 2012-08-02 Toyo Eng Works Ltd Refrigeration system
CN107677154A (en) * 2017-11-17 2018-02-09 大冶斯瑞尔换热器有限公司 A kind of phase-change heat-exchanger for high-performance computer
CN112197373A (en) * 2020-08-31 2021-01-08 珠海格力电器股份有限公司 Machine room air conditioning unit and control method thereof
CN112682910A (en) * 2020-12-08 2021-04-20 珠海格力电器股份有限公司 Method and system for switching operation modes of dual-power cooling system
CN116951800A (en) * 2023-09-15 2023-10-27 广东美的暖通设备有限公司 Control method, control device, dual-cycle refrigeration system and storage medium
CN116951800B (en) * 2023-09-15 2024-01-02 广东美的暖通设备有限公司 Control method, control device, dual-cycle refrigeration system and storage medium

Also Published As

Publication number Publication date
JP4084915B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
JP3925545B2 (en) Refrigeration equipment
USRE39924E1 (en) Refrigeration system with modulated condensing loops
KR20040050477A (en) An air-condition system
JP4317793B2 (en) Cooling system
US11448408B2 (en) Multi-type air conditioner
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
WO2007102345A1 (en) Refrigeration device
KR100761285B1 (en) Air conditioner
JPH09119749A (en) Air conditioner
US7353664B2 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
JP4084915B2 (en) Refrigeration system
JP2022052743A (en) Multi-air conditioner for heating, cooling and ventilation
JP2001296068A (en) Regenerative refrigerating device
JP5216557B2 (en) Refrigeration cycle equipment
KR100528292B1 (en) Heat-pump type air conditioner
WO2009096179A1 (en) Auxiliary unit for heating and air conditioner
EP1686332A2 (en) Reversible cycle air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
KR100524719B1 (en) By-pass device with variable flow rate of multi air-conditioner system
CN110207419B (en) Multi-split system
KR100613502B1 (en) Heat pump type air conditioner
JP2698175B2 (en) Air conditioner
JPH10300254A (en) Air conditioner
KR20050022784A (en) A heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4084915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term