[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001234222A - Dephosphorization method for molten pig iron - Google Patents

Dephosphorization method for molten pig iron

Info

Publication number
JP2001234222A
JP2001234222A JP2000039712A JP2000039712A JP2001234222A JP 2001234222 A JP2001234222 A JP 2001234222A JP 2000039712 A JP2000039712 A JP 2000039712A JP 2000039712 A JP2000039712 A JP 2000039712A JP 2001234222 A JP2001234222 A JP 2001234222A
Authority
JP
Japan
Prior art keywords
hot metal
concentration
exhaust gas
index
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000039712A
Other languages
Japanese (ja)
Inventor
Yuta Hino
雄太 日野
Naoki Kikuchi
直樹 菊池
Hideji Takeuchi
秀次 竹内
Hisashi Ogawa
尚志 小川
Mototatsu Sugisawa
元達 杉澤
Shigeru Ogura
滋 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000039712A priority Critical patent/JP2001234222A/en
Publication of JP2001234222A publication Critical patent/JP2001234222A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dephosphorization method for molten pig iron which is capable of making dephosphorization efficiency higher than heretofore by utilizing waste gas characteristics which may be rapidly measured. SOLUTION: In the molten pig iron treatment of blowing a flux for refining together with carrier gas into the molten pig iron held in a refining vessel and dephosphorizing the molten pig iron, the temperature and/or CO concentration and CO2 concentration of the waste gases are successively measured during the treatment and an index to judge the period when a decarburization reaction is vigorous in accordance with the measured value is selected or determined and the supply rate of the flux for refining and/or carrier gas is changed according to the value of this index.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑の脱燐方法に
係わり、詳しくは、所謂「溶銑予備処理」において、脱
炭反応を抑制して脱燐効率を高める技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal, and more particularly to a technique for suppressing decarburization reaction and increasing dephosphorization efficiency in so-called "hot metal pretreatment".

【0002】[0002]

【従来の技術】近年、製鋼工程においては、転炉での精
錬負荷を低減するため、溶銑を転炉へ装入する前に、予
め該溶銑が含有する珪素(以下、Si)、燐(以下、
P)を除去するようにしている。これは、溶銑予備処理
と称され、主に酸化鉄を主成分とする精錬用フラックス
及び/又は酸化性ガス(主として酸素ガス)を、溶銑中
に浸漬させたランスを介して該溶銑中に吹き込み、溶銑
が含有するSi、Pを酸化物としてスラグへ移行させる
ものである。その際、溶銑中のSiは、Pよりも酸素と
の親和力が高いので、まず先に優先的に酸化され、次い
でPが酸化される。このPの酸化(脱燐反応ともいう)
時には、溶銑が別途含有する炭素(以下、C)も酸化さ
れるが、そのCの酸化(脱炭反応ともいう)は、脱燐反
応の後半において溶銑中のP濃度が低下してくると盛ん
になる傾向がある。従って、脱炭反応が盛んになると、
吹き込んだ固体酸化剤や酸素ガスの全量に対して脱炭反
応に使用される酸素の割合が増加してくるので、脱燐効
率が低下し、低P濃度域まで脱燐処理する時間が長くな
ったり、処理コストの増大、さらには溶銑温度の低下と
いった好ましくない問題が生じる。そのため、溶銑予備
処理における脱燐をもっと効率良く行なう技術の出現が
望まれていた。
2. Description of the Related Art In recent years, in a steelmaking process, in order to reduce the refining load in a converter, silicon (hereinafter referred to as Si), phosphorus (hereinafter referred to as Si) contained in the hot metal before the hot metal is charged into the converter. ,
P) is removed. This is called hot metal pretreatment, in which a refining flux mainly composed of iron oxide and / or an oxidizing gas (mainly oxygen gas) is blown into the hot metal through a lance immersed in the hot metal. In addition, Si and P contained in the hot metal are transferred to slag as oxides. At that time, Si in the hot metal has a higher affinity for oxygen than P, so that it is first preferentially oxidized, and then P is oxidized. Oxidation of this P (also called dephosphorization reaction)
Occasionally, the carbon (hereinafter C) separately contained in the hot metal is also oxidized, but the oxidation of the C (also referred to as decarburization reaction) is active when the P concentration in the hot metal decreases in the latter half of the dephosphorization reaction. Tend to be. Therefore, when the decarburization reaction becomes active,
Since the ratio of oxygen used in the decarburization reaction to the total amount of the injected solid oxidizer and oxygen gas increases, the dephosphorization efficiency decreases, and the time for dephosphorization to a low P concentration region increases. Undesired problems such as an increase in processing cost and a decrease in hot metal temperature. Therefore, the appearance of a technique for more efficiently dephosphorizing in the hot metal pretreatment has been desired.

【0003】ところで、上記脱炭反応の生成物は、CO
ガス又はCO2ガスである。そこで、溶銑予備処理時の
排ガスの温度及び成分といった情報を、溶銑予備処理に
有効に利用しようという試みがある。例えば、特開平2
−209411号公報及び特公平7−17933号公報
は、排ガス中のCO及びCO2濃度を逐次測定し、その
測定値を用いて脱炭時の酸素効率を計算し、それから溶
銑中のP濃度を推定する技術を開示している。また、特
開昭62−7807号公報は、処理中に溶銑のP濃度に
基づき前記フラックスのキャリアガス流量及び/又は吹
き込み深さを調整して脱燐酸素効率を高める技術を提案
している。ちなみに、該公報には、溶銑中のP濃度が
0.03〜0.04質量%になった時にキャリアガスの
流量を増加させて高脱燐酸素効率を得たと記載されてい
る。
[0003] The product of the decarburization reaction is CO
Gas or CO 2 gas. Therefore, there is an attempt to effectively utilize information such as the temperature and components of the exhaust gas during the hot metal pretreatment for the hot metal pretreatment. For example, JP-A-2
Japanese Patent Publication No. 209411 and Japanese Patent Publication No. 7-17933 measure the CO and CO 2 concentrations in exhaust gas sequentially, calculate the oxygen efficiency during decarburization using the measured values, and then calculate the P concentration in the hot metal. A technique for estimating is disclosed. Japanese Patent Application Laid-Open No. Sho 62-7807 proposes a technique for adjusting the carrier gas flow rate and / or the blowing depth of the flux based on the P concentration of the hot metal during the treatment to increase the dephosphorization oxygen efficiency. Incidentally, the publication states that when the P concentration in the hot metal becomes 0.03 to 0.04 mass%, the flow rate of the carrier gas is increased to obtain high dephosphorization oxygen efficiency.

【0004】[0004]

【発明が解決しようとする課題】上記特開昭62−78
07号公報記載の技術は、P濃度がある一定の値になっ
たらキャリアガスの流量を増加させるという所謂「静的
(スタテイック)」なものであった。しかしながら、実
際の溶銑予備処理における脱燐反応には、溶銑の温度、
成分や反応容器の撹拌特性等、様々な因子が影響を与
え、P濃度をある値に固定してキャリガス流量を変更す
る目安にしただけでは所望の脱燐効率が得られない。ま
た、上記特開平2−209411号公報及び特公平7−
17933号公報に記載された脱炭酸素効率から推定さ
れる技術では、溶銑中のP濃度のばらつきが大きく、キ
ャリアガス流量の変更に適切なP濃度に到達したか否か
を正確に見極めることは困難であった。従って、排ガス
特性の測定で得た情報を上記特開昭62−7807号公
報記載の技術に適用するなどして溶銑予備処理における
脱燐効率の向上に利用した技術は、まだ存在していない
のが現状である。
The above-mentioned JP-A-62-78
The technique described in Japanese Patent Application Laid-Open No. 07-2007 is so-called "static" in which the flow rate of the carrier gas is increased when the P concentration reaches a certain value. However, the dephosphorization reaction in the actual hot metal pretreatment involves the temperature of the hot metal,
Various factors such as the components and the stirring characteristics of the reaction vessel influence, and a desired dephosphorization efficiency cannot be obtained only by fixing the P concentration to a certain value and changing the flow rate of the carry gas. Further, Japanese Patent Application Laid-Open No. 2-209411 and Japanese Patent Publication No.
According to the technique estimated from the decarbonation efficiency described in Japanese Patent No. 17933, the P concentration in the hot metal has a large variation, and it is impossible to accurately determine whether or not the P concentration has reached an appropriate P concentration for changing the carrier gas flow rate. It was difficult. Therefore, there is no technology that has been used to improve the dephosphorization efficiency in the hot metal pretreatment by applying the information obtained by measuring the exhaust gas characteristics to the technology described in Japanese Patent Application Laid-Open No. 62-7807. Is the current situation.

【0005】本発明は、かかる事情に鑑み、迅速測定が
可能な排ガス特性を利用し、脱燐効率を従来より高める
ことの可能な溶銑の脱燐方法を提供することを目的とし
ている。
[0005] In view of such circumstances, an object of the present invention is to provide a method for dephosphorizing hot metal which can utilize a characteristic of exhaust gas which can be measured quickly and which can increase the dephosphorization efficiency as compared with the prior art.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、その成果を本発明に具現化し
た。
Means for Solving the Problems The inventor has conducted intensive studies to achieve the above object and has embodied the results in the present invention.

【0007】すなわち、本発明は、精錬容器内に保持し
た溶銑中に、精錬用フラックスをキャリアガスと共に吹
き込み、該溶銑から脱燐する溶銑予備処理において、処
理中に排ガスの温度及び/又はCO濃度とCO2濃度を
逐次測定し、該測定値に基づき脱炭反応が盛んになる時
期を判断する指標を選択あるいは求め、該指標の値に応
じて前記精錬用フラックス及び/又はキャリアガスの供
給速度を変化させることを特徴とする溶銑の脱燐方法で
ある。
That is, according to the present invention, in a hot metal pretreatment for blowing a refining flux together with a carrier gas into a hot metal held in a refining vessel and dephosphorizing the hot metal, the temperature and / or the CO concentration of the exhaust gas during the processing are reduced. And CO 2 concentration are sequentially measured, and an index for judging when the decarburization reaction is active is selected or obtained based on the measured value, and the supply rate of the refining flux and / or the carrier gas is determined according to the value of the index. The method is a method for dephosphorizing hot metal, characterized in that

【0008】また、本発明は、前記指標を、排ガスの温
度としたり、あるいは排ガスのCO濃度及びCO2濃度
の和とすることを特徴とする溶銑の脱燐方法である。
The present invention is also a method for dephosphorizing hot metal, wherein the index is the temperature of the exhaust gas or the sum of the CO concentration and the CO 2 concentration of the exhaust gas.

【0009】さらに、本発明は、前記指標を、排ガスの
流量、CO濃度、CO2濃度及び溶銑量に基づき算出し
た溶銑中の炭素濃度とすることを特徴とする溶銑の脱燐
方法である。
Further, the present invention is a method for dephosphorizing hot metal, wherein the index is a carbon concentration in the hot metal calculated based on a flow rate of exhaust gas, a CO concentration, a CO 2 concentration and a hot metal amount.

【0010】加えて、本発明は、前記脱炭反応が盛んに
なる時期を、前記指標の値の経時変化における変曲点と
することを特徴とする溶銑の脱燐方法である。
[0010] In addition, the present invention is a method for dephosphorizing hot metal, wherein a time when the decarburization reaction becomes active is defined as an inflection point in the time-dependent change of the index value.

【0011】本発明によれば、排ガスの特性を逐次測定
し、その値を直ちに利用したり、あるいは加工して、脱
炭反応を抑制する操作因子の変更を行なう時期の判断指
標を得、その指標に基づき操業するようにしたので、脱
燐効率を従来より高めることが可能になる。
According to the present invention, the characteristics of the exhaust gas are measured successively, and the values are used immediately or processed to obtain a judgment index for determining when to change the operating factor for suppressing the decarburization reaction. Since the operation is performed based on the index, the dephosphorization efficiency can be increased as compared with the conventional case.

【0012】[0012]

【発明の実施の形態】以下、発明をなすに至った経緯を
交え、本発明の実施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the circumstances leading to the invention.

【0013】まず、発明者は、溶銑中の脱燐反応につい
て従来の考え方を見直した。溶銑の燐の酸化は、該溶銑
中に共存している元素のC、Si、Mn等と競合して起
きる。そして、溶銑への酸素の供給速度が一定であると
き、これら元素のうち、酸素との親和力が最も強いSi
が、次式に従い最初に酸化される。
First, the inventor reviewed the conventional concept regarding the dephosphorization reaction in hot metal. Oxidation of phosphorus in the hot metal occurs in competition with elements, such as C, Si, and Mn, which coexist in the hot metal. Then, when the supply rate of oxygen to the hot metal is constant, of these elements, Si, which has the strongest affinity for oxygen,
Is first oxidized according to the following formula:

【0014】[Si]+2[O]=(SiO2) ここで、[C]、[Si]、[P]及び[O]は、溶銑
中のC、Si、P、O濃度を、(SiO2)、(P
25)は、スラグ中のSiO2、及びP25濃度を表
す。また、[O]は、酸素源から供給されるが、それ
は、溶銑中に吹き込まれた精錬フラックス(主としてC
aO及び酸化鉄よりなる)中の酸化鉄分(固体酸素)及
び酸化性ガス中の気体酸素である。
[Si] +2 [O] = (SiO 2 ) Here, [C], [Si], [P] and [O] represent the concentrations of C, Si, P and O in the hot metal by (SiO 2 ), (P
2 O 5 ) represents the concentration of SiO 2 and P 2 O 5 in the slag. [O] is supplied from an oxygen source, which is produced by refining flux (mainly C
aO and iron oxide) (solid oxygen) and gaseous oxygen in the oxidizing gas.

【0015】その後、溶銑中のSi濃度が低下していく
と、次式に従いC及びPの酸化が進行していく。
Thereafter, as the Si concentration in the hot metal decreases, the oxidation of C and P proceeds according to the following equation.

【0016】[C]+[O]=CO(ガス) 2[P]+5[O]=(P25) さらに、溶銑表面から上方の雰囲気に抜け出したCOガ
スは、大気中の酸素と次式に従い反応して、CO2(ガ
ス)を生成する。
[C] + [O] = CO (gas) 2 [P] +5 [O] = (P 2 O 5 ) Further, the CO gas that has escaped from the surface of the hot metal to the atmosphere above is the oxygen and The reaction is performed according to the following formula to generate CO 2 (gas).

【0017】CO+1/O2=CO2 そこで、発明者は、脱燐処理中の排ガスの温度やCO、
CO2濃度に着目していれば、以下に説明するように、
これらの現象(溶銑中の脱炭反応、脱燐反応)を追跡で
きると考えた。
CO + 1 / O 2 = CO 2 Therefore, the inventor has determined the temperature of the exhaust gas during the dephosphorization treatment, CO,
If you focus on the CO 2 concentration, as explained below,
We thought that these phenomena (decarburization reaction and dephosphorization reaction in hot metal) could be traced.

【0018】脱燐反応が始まった当初では、溶銑中のP
濃度が高く、Pの酸化に使用される酸素が多いため、脱
炭に使用される酸素が抑えられ,COガスの発生量が抑
えられる。また、CO2の生成も抑制されるので、排ガ
スの温度は、反応開始直後に急上昇するが、その後は上
昇の割合が緩やかになる。しかし、Pの酸化が進行して
溶銑中のP濃度が低下してくると、Pの酸化速度は小さ
くなり、Cの酸化に用いられる酸素量が増加してくる。
その結果、COガスの発生量が増加し、排ガスの温度も
急上昇する。従って、もしPの酸化速度が小さくなり、
Cの酸化速度が大きくなる時点を把握できれば、その後
の不活性ガス、酸化性ガス及び/又は精錬フラックスの
吹き込み条件を変化させて、付随して起きる脱炭量が抑
制でき、脱燐効率を向上できる。
At the beginning of the dephosphorization reaction, P
Since the concentration is high and the amount of oxygen used for oxidizing P is large, the amount of oxygen used for decarburization is suppressed, and the amount of generated CO gas is suppressed. Further, since the generation of CO 2 is also suppressed, the temperature of the exhaust gas rapidly rises immediately after the start of the reaction, but thereafter, the rate of the rise becomes gentle. However, when the oxidation of P proceeds and the P concentration in the hot metal decreases, the oxidation rate of P decreases, and the amount of oxygen used for the oxidation of C increases.
As a result, the amount of generated CO gas increases, and the temperature of the exhaust gas also sharply increases. Therefore, if the oxidation rate of P decreases,
If it is possible to grasp the point at which the oxidation rate of C increases, then the conditions for blowing the inert gas, oxidizing gas and / or refining flux can be changed to suppress the accompanying decarburization amount and improve the dephosphorization efficiency. it can.

【0019】次に、発明者は、上記考えを確認するた
め、実際の溶銑予備処理操業において試験を行った。試
験装置は、図1に示すように、現在溶銑予備処理で精錬
容器として多用されているトピード・カーである。そし
て、このトピード・カーに溶銑を保持し、精錬用フラッ
クスの酸化鉄を窒素ガスをキャリアガスとし、CaOを
酸素ガスをキャリアガスとして気送し、ランスを介して
吹き込んだ。その吹き込み開始から終了までの間、排ガ
スの温度、流量、CO、CO2濃度を逐次それぞれのセ
ンサや機器で測定した。
Next, in order to confirm the above idea, the inventor conducted a test in an actual hot metal pretreatment operation. As shown in FIG. 1, the test apparatus is a torpedo car that is currently frequently used as a smelting vessel in hot metal pretreatment. Then, the hot metal was held in the torpedo car, and iron oxide of the flux for refining was blown through a lance by feeding nitrogen oxide as a carrier gas and CaO as an oxygen gas as a carrier gas. From the start to the end of the blowing, the temperature, the flow rate, the CO, and the CO 2 concentration of the exhaust gas were sequentially measured by the respective sensors and devices.

【0020】その測定結果の一例を、図2及び3に示
す。ここで、図2は排ガス温度の、図3は排ガス中のC
OガスとCO2ガス濃度の和の経時変化である。いずれ
の図においても、曲線が大きく変化する点(変曲点とい
う)の存在が明らかである。また、この変曲点は、図2
と図3とでほぼ同じ時間に出現していた。このことは、
これらの変曲点で前記したPの酸化速度の低下が起きる
のに伴い、Cの酸化速度が大きくなる点であることを示
唆している。
An example of the measurement result is shown in FIGS. Here, FIG. 2 shows the exhaust gas temperature, and FIG. 3 shows C in the exhaust gas.
This is a change over time of the sum of the O gas and CO 2 gas concentrations. In each of the figures, it is clear that there is a point where the curve greatly changes (referred to as an inflection point). This inflection point is shown in FIG.
And at about the same time in FIG. This means
It is suggested that the oxidation rate of C increases as the oxidation rate of P decreases at these inflection points.

【0021】そこで、発明者は、これらの測定値に排ガ
スの流量、溶銑の重量のデータも加えて、下記式に従い
溶銑中のC濃度を計算した。つまり、Cの反応量を経時
的に調査し、前記示唆を確認したのである。その結果、
図4に示すように、C濃度の経時変化にも、図2や図3
と同じ時間に変曲点が出現した。 ΔC=Σ{(Q・CCO+Q・COCO2)・Δt}×(1/22.4)×12 ×1000×(1/WHM)×100………(1)式 [C]=[C]I−ΔC ここで、ΔC:脱炭量(質量%) Q :排ガス流量(Nm3/min) CCO :排ガス中CO濃度(体積分率) COCO2:排ガス中CO2濃度(体積分率) Δt:排ガス分析時間(min) WHM:溶銑質量(ton) [C]:溶銑中のC濃度(質量%) [C]I:初期の溶銑中のC濃度(質量%) 以上の試験結果とその確認から、発明者は、溶銑予備処
理中にPの酸化が減り、Cの酸化が優先するように変化
する時間の判断に、排ガス温度、COガスとCO2ガス
の和、あるいは溶銑中のC濃度を指標として使用するこ
とにした。ちなみに、前記の変曲点に達したときの溶銑
中のP濃度を,既存の脱燐効率の回帰式から見積もった
ところ、0.040質量%であった。なお、これは、排
ガスの吸引を一定の吸引速度のIDFで行なっている場
合であって、排ガス流量が既知の値で一定になっている
場合には、排ガス流量を逐次測定せずに、その既知値を
用いて計算しても良い。
Therefore, the inventor added the data of the flow rate of the exhaust gas and the weight of the hot metal to these measured values, and calculated the C concentration in the hot metal according to the following equation. That is, the reaction amount of C was investigated over time to confirm the above suggestion. as a result,
As shown in FIG. 4, the change with time of the C concentration is not affected by the change in FIG.
An inflection point appeared at the same time as. ΔC = {(Q · C CO + Q · CO CO2 ) · Δt} × (1 / 22.4) × 12 × 1000 × (1 / W HM ) × 100 (1) Equation [C] = [ C] I- ΔC where ΔC: decarburization amount (% by mass) Q: exhaust gas flow rate (Nm 3 / min) C CO : CO concentration in exhaust gas (volume fraction) CO CO2 : CO 2 concentration in exhaust gas (volume Rate) Δt: Exhaust gas analysis time (min) W HM : Hot metal mass (ton) [C]: C concentration in hot metal (% by mass) [C] I : C concentration in initial hot metal (% by mass) From the results and confirmation, the inventor determined the exhaust gas temperature, the sum of CO gas and CO 2 gas, or the hot metal in determining the time during which the oxidation of P was reduced during the hot metal pretreatment and the oxidation of C was prioritized. The C concentration in the sample was used as an index. Incidentally, when the P concentration in the hot metal when the inflection point was reached was estimated from the existing regression equation for dephosphorization efficiency, it was 0.040% by mass. In addition, this is a case where the exhaust gas is sucked by the IDF with a constant suction speed, and when the exhaust gas flow rate is constant at a known value, the exhaust gas flow rate is not measured sequentially, The calculation may be performed using a known value.

【0022】ところで、かかる変曲点をPの酸化速度の
律速段階が、酸素供給律速から液相側物質移動律速へ移
行する変更点と考えると、変曲点以降においてそれ以前
と同じ撹拌力で溶銑を攪拌したのでは、それ以降の脱燐
速度はますます低下すると考えられる。そこで、発明者
は、前記変曲点以降でのキャリアガスの不活性ガス流量
を増加させて撹拌力を増大させたり、前記精錬用フラッ
クスの供給速度を変更させたり、あるいは酸化性ガスの
変更で脱燐末期での脱炭の抑制を図るようにしたのであ
る。
By the way, considering this inflection point as the point where the rate-limiting step of the oxidation rate of P shifts from the oxygen supply rate-limiting to the liquid phase-side mass transfer rate-limiting, after the inflection point, the same stirring force as before is used. If the hot metal was agitated, the dephosphorization rate after that would be further reduced. Then, the inventor increases the stirring gas power by increasing the inert gas flow rate of the carrier gas after the inflection point, or changes the supply speed of the refining flux, or changes the oxidizing gas. The aim was to suppress decarburization at the end of dephosphorization.

【0023】なお、本発明では、不活性ガスとしては、
アルゴンガスや窒素ガスの利用が望ましい。また、酸化
源としては、酸素ガスの他に固体の純酸化鉄を使用する
のが最も良いが、純酸化鉄の代替として焼結鉱やダス
ト、ミルスケールなど酸化鉄含有物質を用いても良い。
さらに、処理中の排ガス温度が上昇すると、排ガス中の
CO/CO2濃度も上昇するが、これら排ガス成分だけ
で変曲点を特定すると、排ガス総流量のバラツキや排ガ
ス中に含まれるダストによる詰まりから正確な特定がで
きないこともあるので、両者の併用が望ましい。加え
て、本発明では、実際の操業中に前記変曲点の同定をし
易くするため、各指標の値を経時的に微分して、その微
分値の大きさで判断するのが良い。その際、所謂「2階
微分値」を利用すると一層正確に変曲点が見い出せる。
変曲点では、「2階微分値」がほぼ0になるので、誤り
なく判断できるからである。さらに加えて、本発明で
は、前記精錬容器としては、底のあるものならばいかな
る精錬容器でも良いが、転炉又はトピード・カーとする
のが好ましい。
In the present invention, as the inert gas,
It is desirable to use argon gas or nitrogen gas. In addition, as the oxidation source, it is best to use solid pure iron oxide in addition to oxygen gas, but sinter ore, dust, and iron oxide-containing substances such as mill scale may be used instead of pure iron oxide. .
Furthermore, when the temperature of the exhaust gas during the treatment increases, the CO / CO 2 concentration in the exhaust gas also increases. In some cases, it is not possible to specify the exact value, and it is desirable to use both of them. In addition, in the present invention, in order to facilitate identification of the inflection point during actual operation, it is preferable to differentiate the value of each index with time and determine the magnitude of the differential value. At that time, the inflection point can be found more accurately by using a so-called “second-order differential value”.
At the inflection point, the “second-order differential value” becomes almost 0, so that the determination can be made without error. In addition, in the present invention, the smelting vessel may be any smelting vessel having a bottom, but is preferably a converter or a torpedo car.

【0024】[0024]

【実施例】高炉から出銑されたばかりで、表1に示す化
学成分を有する溶銑を、図1に示したトピード・カー1
に収容し、精錬用フラックの吹き込み装置を備えた溶銑
予備処理場に搬送した。そして、該溶銑2中にランス4
を浸漬させ、それを介して脱りんフラックス(75%焼
結鉱+25%CaO)を吹込み、溶銑予備処理操業を行
なった。吹き込みに使用したキャリアガスは、6Nm3
/minの酸素ガス、3Nm3/minの窒素ガスであ
る。この際、排ガスの温度、CO、CO2濃度及び排ガ
スの流量は、図1に示すようなそれぞれのセンサ5、
6、7あるいは機器9、10を用いて逐次測定した。ま
た、吹き込みは、本発明に係る溶銑の脱燐方法に従った
条件(発明例)と従わない条件(比較例)で行なわれ
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hot metal that has just been tapped from a blast furnace and has the chemical composition shown in Table 1 is supplied to a topped car 1 shown in FIG.
And transported to a hot metal pretreatment plant equipped with a blowing device for refining flux. And the lance 4 in the hot metal 2
, And a dephosphorization flux (75% sintered ore + 25% CaO) was blown through the molten iron to perform a hot metal pretreatment operation. The carrier gas used for blowing was 6 Nm 3
/ Min oxygen gas and 3 Nm 3 / min nitrogen gas. At this time, the temperature of the exhaust gas, the concentration of CO and CO 2, and the flow rate of the exhaust gas were determined by the respective sensors 5 as shown in FIG.
Measurements were made sequentially using 6, 7, or instruments 9, 10. The blowing was performed under the conditions according to the method for dephosphorizing hot metal according to the present invention (invention example) and under the conditions not following (comparative example).

【0025】吹き込み条件を一括して表2に示す。発明
例1は、排ガス特性を連続的に測定して、その測定値か
ら計算した溶銑中炭素濃度を指標として脱炭速度の増加
点となる前記変曲点を見定め、それ以降より処理終了ま
での期間を窒素流量及び送酸速度を変更した場合であ
る。発明例2、3は、発明例1と同じ指標で変曲点を知
り、それ以降の脱炭反応の増加時期に、発明例2では窒
素流量、発明例3では送酸速度をそれぞれ変更した場合
である。発明例4、5は、排ガス温度がほぼ500℃で
CO2濃度が急上昇した時点を変曲点と判断し、発明例
4ではそれ以降窒素ガスの流量を増加させた場合、発明
例5ではそれ以降の送酸速度を低下させた場合である。
これらの発明例に対して、比較例1は、変曲点以降も送
酸速度、不活性ガスの流量を一定で吹き込みを行った場
合であり、比較例2は、従来のように溶銑中のP濃度が
0.04質量%となる時期を推定して,その時期以降で
窒素ガス流量を増加させた場合である。なお、いずれの
場合においても変曲点、及び変更点の時点で処理を中断
し、サンプリングを行った。
Table 2 shows the blowing conditions collectively. Inventive Example 1 continuously measures the exhaust gas characteristics, determines the inflection point, which is the point of increase in the decarburization rate, using the carbon concentration in the hot metal calculated from the measured value as an index, and determines the inflection point from then on until the end of processing The period is a case where the nitrogen flow rate and the acid feed rate were changed. Inventive Examples 2 and 3 know the inflection point with the same index as in Inventive Example 1 and change the nitrogen flow rate in Inventive Example 2 and the acid supply rate in Inventive Example 3 during the subsequent increase in the decarburization reaction. It is. Inventive Examples 4 and 5 determine that the point at which the CO 2 concentration sharply increases at an exhaust gas temperature of approximately 500 ° C. is an inflection point. In Inventive Example 4, when the flow rate of nitrogen gas is increased thereafter, Inventive Example 5 This is the case where the subsequent acid supply rate is reduced.
In contrast to these invention examples, Comparative Example 1 was a case where the acid supply rate and the flow rate of the inert gas were blown at a constant rate even after the inflection point, and Comparative Example 2 was a conventional method in which This is a case where the time when the P concentration becomes 0.04% by mass is estimated, and the nitrogen gas flow rate is increased after that time. In each case, the processing was interrupted at the time of the inflection point and the point of change, and sampling was performed.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】実施結果を表3に一括して示す。表3よ
り、排ガス温度及び排ガス中CO、CO2濃度から計算
した指標の変曲点で、処理条件を変更させた発明例1、
2及び3は、いずれも処理開始から終了まで一定の不活
性ガス流量とした比較例1に対して、処理末期での脱炭
量が抑制されており、また末期の脱P酸素効率が良くな
っていることが明らかである。また、発明例4及び5の
ように、排ガス温度及びCO2濃度を指標として不活性
ガスの流量を増加させても、同様に末期の脱燐酸素効率
の向上が見られる。これに対して、あるP濃度の値で処
理条件を変更させた比較例2は、処理末期の脱炭量は少
ないが、脱燐酸素効率が低下している。なお、脱燐酸素
効率は、下記式で定義したものである。
Table 3 summarizes the results of the operation. From Table 3, Invention Example 1 in which the processing conditions were changed at the inflection point of the index calculated from the exhaust gas temperature and the CO and CO 2 concentrations in the exhaust gas,
In Comparative Examples 1 and 2 in which the flow rate of the inert gas was constant from the start to the end of the treatment, the amount of decarburization at the end of the treatment was suppressed, and the deoxygenation efficiency at the end of the treatment was improved. It is clear that Further, as in Invention Examples 4 and 5, even when the flow rate of the inert gas is increased using the exhaust gas temperature and the CO 2 concentration as indices, an improvement in the dephosphorization oxygen efficiency in the final stage can be similarly seen. On the other hand, in Comparative Example 2 in which the treatment conditions were changed at a certain P concentration value, the decarburization amount at the end of the treatment was small, but the dephosphorization oxygen efficiency was reduced. The dephosphorization oxygen efficiency is defined by the following equation.

【0029】脱燐酸素効率(%)={(脱燐に寄与した
酸素原単位)×100}/{酸化剤(フラックス)中酸
素原単位+酸素ガス原単位}
Dephosphorization oxygen efficiency (%) = {(oxygen unit contributing to dephosphorization) × 100} / {oxygen unit in oxidizing agent (flux) + oxygen gas unit}

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】以上述べたように、本発明により、溶銑
の低P濃度域までの予備処理が従来よりも高い脱燐効率
で実施できるようになり、溶銑予備処理のコストダウン
や処理時間の短縮が期待される。
As described above, according to the present invention, the pretreatment of hot metal to a low P concentration region can be performed with higher dephosphorization efficiency than before, thereby reducing the cost of hot metal pretreatment and reducing the processing time. Shortening is expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る溶銑の脱燐方法を実施した装置を
示す図である。
FIG. 1 is a view showing an apparatus in which a method for dephosphorizing hot metal according to the present invention is performed.

【図2】脱燐処理中の排ガス温度の経時変化を示す図で
ある。
FIG. 2 is a diagram showing a change over time in exhaust gas temperature during a dephosphorization treatment.

【図3】脱燐処理中の排ガスのCO濃度とCO2濃度の
和の経時変化を示す図である。
FIG. 3 is a diagram showing the change over time of the sum of the CO concentration and the CO 2 concentration of the exhaust gas during the dephosphorization treatment.

【図4】排ガス特性の測定値に基づき計算した溶銑中炭
素濃度の経時変化を示す図である。
FIG. 4 is a diagram showing a change with time of the carbon concentration in hot metal calculated based on measured values of exhaust gas characteristics.

【符号の説明】[Explanation of symbols]

1 混銑車(トピード・カー) 2 溶銑 3 排ガスダクト 4 ランス 5 熱電対 6 サンプリング管 7 ピトー管 8 上吹き気酸ランス 9 CO,CO2分析計 10 レコーダー 11 マノメーターREFERENCE SIGNS LIST 1 Topped car 2 Hot metal 3 Hot metal 3 Exhaust gas duct 4 Lance 5 Thermocouple 6 Sampling tube 7 Pitot tube 8 Top blowing acid lance 9 CO, CO 2 analyzer 10 Recorder 11 Manometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 秀次 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 小川 尚志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 杉澤 元達 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 小倉 滋 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K013 BA03 CB04 CC04 CF11 FA01 FA02 FA03 4K014 AA03 AC16 AD01 AD17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuji Takeuchi 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Chiba Works of Kawasaki Steel Corporation (72) Inventor Naoshi Ogawa 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Inside the Chiba Works, Steel Works Co., Ltd. (72) Inventor Mototatsu Sugisawa, 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Chiba Works, Chiba Works, Ltd. (72) Inventor Shigeru Ogura, 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture 4K013 BA03 CB04 CC04 CF11 FA01 FA02 FA03 4K014 AA03 AC16 AD01 AD17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 精錬容器内に保持した溶銑中に、精錬用
フラックスをキャリアガスと共に吹き込み、該溶銑から
脱燐する溶銑予備処理において、 処理中に排ガスの温度及び/又はCO濃度とCO2濃度
を逐次測定し、該測定値に基づき脱炭反応が盛んになる
時期を判断する指標を選択あるいは求め、該指標の値に
応じて前記精錬用フラックス及び/又はキャリアガスの
供給速度を変化させることを特徴とする溶銑の脱燐方
法。
In a hot metal pretreatment for blowing a refining flux together with a carrier gas into hot metal held in a refining vessel and dephosphorizing the hot metal, the temperature and / or the CO concentration and the CO 2 concentration of the exhaust gas during the processing. Are sequentially measured, and an index for judging when the decarburization reaction becomes active is selected or obtained based on the measured value, and the supply rate of the refining flux and / or the carrier gas is changed according to the value of the index. A method for dephosphorizing hot metal, comprising:
【請求項2】 前記指標を、排ガスの温度とすることを
特徴とする請求項1記載の溶銑の脱燐方法。
2. The method for dephosphorizing hot metal according to claim 1, wherein the index is an exhaust gas temperature.
【請求項3】 前記指標を、排ガスのCO濃度及びCO
2濃度の和とすることを特徴とする請求項1記載の溶銑
の脱燐方法。
3. The method according to claim 1, wherein the index is the CO concentration of the exhaust gas and the CO concentration.
2. The method for dephosphorizing hot metal according to claim 1, wherein the sum of the two concentrations is used.
【請求項4】 前記指標を、排ガスの流量、CO濃度、
CO2濃度及び溶銑量に基づき算出した溶銑中の炭素濃
度とすることを特徴とする請求項1記載の溶銑の脱燐方
法。
4. The method according to claim 1, wherein the index is a flow rate of exhaust gas, a CO concentration,
2. The method for dephosphorizing hot metal according to claim 1, wherein the carbon concentration in the hot metal is calculated based on the CO2 concentration and the amount of hot metal.
【請求項5】 前記脱炭反応が盛んになる時期を、前記
指標の値の経時変化における変曲点とすることを特徴と
する請求項1〜4のいずれかに記載の溶銑の脱燐方法。
5. The method for dephosphorizing hot metal according to claim 1, wherein the time when the decarburization reaction becomes active is defined as an inflection point in the time-dependent change of the index value. .
JP2000039712A 2000-02-17 2000-02-17 Dephosphorization method for molten pig iron Withdrawn JP2001234222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039712A JP2001234222A (en) 2000-02-17 2000-02-17 Dephosphorization method for molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039712A JP2001234222A (en) 2000-02-17 2000-02-17 Dephosphorization method for molten pig iron

Publications (1)

Publication Number Publication Date
JP2001234222A true JP2001234222A (en) 2001-08-28

Family

ID=18563233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039712A Withdrawn JP2001234222A (en) 2000-02-17 2000-02-17 Dephosphorization method for molten pig iron

Country Status (1)

Country Link
JP (1) JP2001234222A (en)

Similar Documents

Publication Publication Date Title
JP5300860B2 (en) Method for producing ultra-low carbon ferritic stainless steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP2010133030A (en) Method for decarbonization refining of chromium-containing molten steel under reduced pressure
WO2013024766A1 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP2001234222A (en) Dephosphorization method for molten pig iron
JP2013057120A (en) Method for desulfurizing molten steel and method for manufacturing molten steel
JP6330559B2 (en) Denitrification refining method
CN117529567A (en) Molten steel treatment method and steel production method
JPH10298631A (en) Method for melting clean steel
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP4816513B2 (en) Molten steel component estimation method
JP5704019B2 (en) Secondary refining method and manufacturing method of molten steel
JP2885620B2 (en) Converter refining method
CN113574188B (en) Blowing control method and blowing control device of converter type dephosphorization refining furnace
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JP3598899B2 (en) Melting method
JPH0925507A (en) Method for refining molten steel
JP5760982B2 (en) Method for refining molten steel
JP2003041311A (en) Method for desulfurizing molten pig iron
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JP2005206877A (en) Method for estimating carbon concentration at blowing time in converter
JPH0717933B2 (en) Hot metal pretreatment method
JP4404025B2 (en) Melting method of low nitrogen steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501