[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001227935A - Apparatus for predicting abnormality of journal bearing of large rotating machine - Google Patents

Apparatus for predicting abnormality of journal bearing of large rotating machine

Info

Publication number
JP2001227935A
JP2001227935A JP2000041385A JP2000041385A JP2001227935A JP 2001227935 A JP2001227935 A JP 2001227935A JP 2000041385 A JP2000041385 A JP 2000041385A JP 2000041385 A JP2000041385 A JP 2000041385A JP 2001227935 A JP2001227935 A JP 2001227935A
Authority
JP
Japan
Prior art keywords
bearing
scanning
ultrasonic
bush
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000041385A
Other languages
Japanese (ja)
Inventor
Tomonaga Oyamada
具永 小山田
Muneo Mizumoto
宗男 水本
Yoichi Inoue
陽一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000041385A priority Critical patent/JP2001227935A/en
Publication of JP2001227935A publication Critical patent/JP2001227935A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sliding-Contact Bearings (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To inform the replacement time of a journal bearing of a large rotating machine in operation by sharply detecting any abnormal state of the bearing by means of an apparatus enabling the machine to be installed without being dismantled to a large extent. SOLUTION: A scanning-ultrasonic-probe assembly 51 in which a plurality of scanning ultrasonic probes 2 are interconnected by elastic bodies 52 is installed outside of the bearing to detect the reflection time of an ultrasonic wave which is shortened by separation at the surfaces of contact between a boss 41 and a bush 42 and by the wear of the bush 42, and variations in the strength of reflected waves which is reduced by the wear and the separation, so as to predict the abnormal state of sliding parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型回転機械にお
けるジャーナル軸受の状態診断装置に係わり、特に回転
中にも軸受の状態を診断できる診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for diagnosing the condition of a journal bearing in a large rotating machine, and more particularly to a diagnostic apparatus capable of diagnosing the state of a bearing during rotation.

【0002】[0002]

【従来の技術】一般に、大型回転機械には回転軸を支え
るために軸受が設けられている。この軸受は回転軸の全
荷重を受ける構造であり、滑りジャーナル軸受が多く使
われている。このような滑りジャーナル軸受は円筒状の
軸受本体(ボス)とその内周面に接合された平軸受(ブ
シュ)とからなり、回転軸表面とブシュ表面との間は潤
滑油で満たされた摺動状態にある。
2. Description of the Related Art Generally, large rotating machines are provided with bearings for supporting a rotating shaft. This bearing has a structure that receives the entire load of the rotating shaft, and a sliding journal bearing is often used. Such a sliding journal bearing is composed of a cylindrical bearing body (boss) and a flat bearing (bushing) joined to the inner peripheral surface thereof, and a space between the rotating shaft surface and the bushing surface is filled with lubricating oil. In motion.

【0003】このような滑りジャーナル軸受が運転中
に、ボスとブシュとの接合部に剥離が発生すると、軸受
表面材料の摩耗、あるいは損傷を引き起こし、結果とし
て機械全体の故障停止を招く。
[0003] During the operation of such a sliding journal bearing, peeling at the joint between the boss and the bush causes wear or damage of the bearing surface material, resulting in a failure stop of the whole machine.

【0004】従来、ボスとブシュとの接合部における剥
離状態を計測するためには、定期的に機械の運転を止
め、その軸受部分を分解、あるいはそれに近い状態にし
て観察、あるいは機械的な計測を行っていた。このた
め、故障時においては原因の特定及びその修復作業を迅
速に行うことが困難であったほか、突然の異物混入など
によるブシュ表面の損傷状態は検知することが出来なか
った。大掛かりな分解作業は、検査員には多大な負担を
強いるものでもあった。また、軸受の状態を検知する手
段として、特開平5−34135号公報のような超音波を利用
してブシュ厚さを計測する方法が知られている。しか
し、周囲の大部分が保持具で覆われた軸受本体に計測装
置を取り付け、剥離状態のような一様でない損傷状態軸
受全体にわたり計測することは非常に困難であった。
Conventionally, in order to measure the peeling state at the joint between the boss and the bush, the operation of the machine is periodically stopped, and the bearing portion is disassembled or observed, or the mechanical measurement is performed. Had gone. For this reason, in the event of a failure, it was difficult to quickly identify the cause and repair the same, and it was not possible to detect the state of damage on the bush surface due to sudden entry of foreign matter. Extensive disassembly was a heavy burden on inspectors. Further, as a means for detecting the state of the bearing, a method of measuring the bush thickness using ultrasonic waves as disclosed in Japanese Patent Application Laid-Open No. 5-34135 is known. However, it has been very difficult to attach a measuring device to a bearing body whose surroundings are mostly covered with a holder, and to measure the entire bearing in a non-uniform damaged state such as a peeled state.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情の
解決法としてなされたものである。その目的は、大幅な
解体作業をすることなく取り付けることが可能であり、
しかも、ジャーナル軸受に発生するボスとブシュとの接
合部の剥離状態,ブシュ材料の摩耗状態、及びブシュ表
面の表面損傷状態を回転機械が運転したままの状態で軸
受の広範囲の領域にわたり計測し、ジャーナル軸受の信
頼性低下を未然に予知することの可能な滑りジャーナル
軸受用異常予知装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made as a solution to the above circumstances. Its purpose is that it can be installed without significant dismantling work,
Moreover, the peeling state of the joint between the boss and the bush, the abrasion state of the bushing material, and the surface damage state of the bushing, which occur in the journal bearing, are measured over a wide area of the bearing while the rotating machine is operated. It is an object of the present invention to provide a sliding journal bearing abnormality prediction device capable of predicting a decrease in the reliability of a journal bearing in advance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、音波信号の送受信方向を任意に走査可能
な走査型超音波プローブを大型回転機械のジャーナル軸
受部に設置し、超音波の反射時間と反射波強度を計測す
ることによりボスとブシュとの接合面における剥離状
態,ブシュ材料の摩耗状態、及びブシュ表面の損傷状態
を検出して機械全体の故障を未然に予知することにあ
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a scanning ultrasonic probe capable of arbitrarily scanning the transmitting and receiving direction of a sound signal on a journal bearing of a large rotating machine. Predict failure of the whole machine by detecting the peeling state at the joint surface between the boss and the bush, the abrasion state of the bush material, and the damage state of the bush surface by measuring the reflection time of the sound wave and the reflected wave intensity. It is in.

【0007】[0007]

【発明の実施の形態】以下、図1から図10の図面を参
照しながらこの発明の実施の形態を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS.

【0008】図1は本実施形態に係わる滑りジャーナル
軸受の異常予知装置の構成を示すブロック図である。こ
の図に示すように、本実施形態における異常予知装置
は、被検体である滑りジャーナル軸受1,走査型超音波
プローブ2,計測回路3,判定回路4,超音波映像装置
5,アラーム6により構成されている。走査型超音波プ
ローブ2を計測対象であるジャーナル軸受ボス外周面、
あるいは端部などに固定する。この走査型超音波プロー
ブ2は、計測回路3からの制御信号により軸受内部に超
音波パルスを発射し、軸受内部にて反射されて戻ってき
た超音波を受信する機能を持つ。また、その超音波パル
スの発信方向及び受信方向を1次元的、あるいは2次元
的に走査する機能を持つ。発信された超音波パルスは回
転軸表面とブシュ表面との界面、あるいはブシュとボス
との接合部における剥離箇所において反射され、再び戻
ってきた段階で走査型超音波プローブ2により受信され
る。
FIG. 1 is a block diagram showing the configuration of a device for predicting abnormality of a sliding journal bearing according to the present embodiment. As shown in this figure, the abnormality predicting device in the present embodiment is configured by a sliding journal bearing as a subject, a scanning ultrasonic probe 2, a measuring circuit 3, a judging circuit 4, an ultrasonic imaging device 5, and an alarm 6. Have been. Outer peripheral surface of a journal bearing boss to be measured by the scanning ultrasonic probe 2,
Alternatively, it is fixed to an end or the like. The scanning ultrasonic probe 2 has a function of emitting an ultrasonic pulse inside the bearing according to a control signal from the measurement circuit 3 and receiving the ultrasonic wave reflected back inside the bearing. Further, it has a function of scanning the transmitting direction and the receiving direction of the ultrasonic pulse one-dimensionally or two-dimensionally. The transmitted ultrasonic pulse is reflected at the interface between the rotating shaft surface and the bush surface or at the peeling point at the joint between the bush and the boss, and is received by the scanning ultrasonic probe 2 when returning.

【0009】計測回路は、各走査角度において超音波パ
ルスを発信してから反射波を受信するまでの時間である
反射時間、及び反射波の振幅の大きさである反射波強度
を計測する。これら計測回路により得られた反射時間,
反射波強度、及びその時の走査角度の情報は超音波映像
装置5に送られ、表示回路を経て扇形の被検体の断面像
として表示部に表示される。
The measuring circuit measures the reflection time, which is the time from transmission of an ultrasonic pulse at each scanning angle until reception of the reflected wave, and the reflected wave intensity, which is the magnitude of the amplitude of the reflected wave. The reflection time obtained by these measurement circuits,
Information on the reflected wave intensity and the scanning angle at that time is sent to the ultrasonic imaging device 5 and displayed on the display unit as a sector-shaped cross-sectional image of the subject via the display circuit.

【0010】一方、計測回路3による計測結果は判定回
路4にも送信され、計測された反射時間及び反射波強度
の絶対値が既定値を超えた場合、また過去の値と現在の
値とから得られた単位時間当たりの反射時間及び反射波
強度の変化量が別な既定値を超えた場合に、軸受の異常
状態と判定して軸受交換時期を知らせる信号をアラーム
6に点灯させるほか、単位時間あたりの反射時間の変化
量から軸受余寿命を1次関数的に予測し、余寿命に応じ
た別々の種類の信号をアラーム6に点灯させる。
On the other hand, the measurement result by the measurement circuit 3 is also transmitted to the judgment circuit 4, and when the measured reflection time and the absolute value of the reflected wave intensity exceed the predetermined values, or when the past value and the present value are used. If the change in the reflection time and the reflected wave intensity per unit time obtained exceeds another predetermined value, it is determined that the bearing is in an abnormal state, and a signal notifying the bearing replacement time is turned on in the alarm 6. The remaining life of the bearing is predicted as a linear function from the amount of change in the reflection time per time, and different types of signals corresponding to the remaining life are lit on the alarm 6.

【0011】図2は図1で示されたような本発明の装置
を適用した横軸型水力発電装置である。導入路21から
導入された水流は回転軸22の端部に取り付けられた回
転翼部23において回転翼との接触により回転軸22に
回転運動を発生させ、放出路25より外部に放出され
る。この回転軸22に発生した回転力は回転軸22中央
部近傍に取り付けられたロータとステータからなる発電
部26内のロータを回転させ、ロータとその外周に設置
されたステータとの間に起電力を発生させる。回転軸2
2はロータの取り付け部の両端近傍に設置された滑りジ
ャーナル軸受部1により支持される。
FIG. 2 shows a horizontal axis type hydroelectric generator to which the apparatus of the present invention as shown in FIG. 1 is applied. The water flow introduced from the introduction passage 21 causes the rotating shaft 22 to rotate in the rotating wing portion 23 attached to the end of the rotating shaft 22 by contact with the rotating wings, and is discharged from the discharging passage 25 to the outside. The rotating force generated on the rotating shaft 22 rotates the rotor in the power generation unit 26 composed of the rotor and the stator attached near the center of the rotating shaft 22, and generates an electromotive force between the rotor and the stator installed on the outer periphery thereof. Generate. Rotary axis 2
Reference numeral 2 is supported by a sliding journal bearing 1 installed near both ends of the rotor mounting portion.

【0012】図3(a),(b)に示すように複数個の走
査型超音波プローブ2を弾性体52を用いて変形自在な
棒状に結合させ、走査型超音波プローブ集合体51を形
成する。ジャーナル軸受28の外周面中央部は軸受ジグ
30により覆われて固定されているため、センサを取り
付ける面積を確保し難い。そのため、走査型超音波プロ
ーブ集合体51はジャーナル軸受28の外周面両端部に
センサ面を軸中心方向へ向けて取り付け治具及び絶縁性
の接着剤あるいはワイヤ等を用いて周方向に固定され
る。
As shown in FIGS. 3 (a) and 3 (b), a plurality of scanning ultrasonic probes 2 are connected into a deformable rod shape using an elastic body 52 to form a scanning ultrasonic probe assembly 51. I do. Since the center of the outer peripheral surface of the journal bearing 28 is covered and fixed by the bearing jig 30, it is difficult to secure an area for mounting the sensor. For this reason, the scanning ultrasonic probe assembly 51 is fixed circumferentially at both ends of the outer peripheral surface of the journal bearing 28 by using a mounting jig and an insulating adhesive or a wire with the sensor surface facing the axial center direction. .

【0013】走査型超音波プローブ集合体51からの信
号ケーブル32は軸受部の外部に取り出され、計測回路
3に接続される。走査型超音波プローブ集合体51にお
ける各々の走査型超音波プローブ2の内部には、1mm四
方の断面を持ち10MHzの超音波パルスを送受信可能
な微少な超音波振動子が多数存在し、各振動子が一つの
超音波送受信角度に対応している。計測回路3からの信
号によりこれらの振動子が順に動作させられることによ
り、図4のように1次元的、あるいは2次元的な走査を
行い、最大140°の範囲において各走査角度にて超音
波の送受信を行う。
The signal cable 32 from the scanning ultrasonic probe assembly 51 is taken out of the bearing and connected to the measuring circuit 3. Inside each scanning ultrasonic probe 2 in the scanning ultrasonic probe assembly 51, there are many small ultrasonic transducers each having a 1 mm square cross section and capable of transmitting and receiving 10 MHz ultrasonic pulses. The child corresponds to one ultrasonic transmission / reception angle. These transducers are sequentially operated by a signal from the measurement circuit 3 to perform one-dimensional or two-dimensional scanning as shown in FIG. 4 and to perform ultrasonic scanning at each scanning angle within a maximum range of 140 °. Transmission and reception.

【0014】計測回路3は、各走査型超音波プローブ2
を動作させ、各走査角度における超音波の反射時間,反
射波強度、及び走査角度を判定回路4並びに超音波映像
装置5に出力する。超音波映像装置5は計測回路3から
の信号を受け、内部の表示回路60に信号を伝達する。
判定回路4は計測回路3からの信号を受け、各走査角度
で得られたあるしきい値以上の超音波について、反射時
間とあらかじめ決定しておいた値とを比較して、反射時
間がその値よりも短くなった領域が発生した場合にはボ
スとブシュとの接合面において剥離が発生したと判断
し、軸受異常の発生を知らせる信号をアラーム6に点灯
させる。
The measuring circuit 3 includes the scanning ultrasonic probe 2
To output the ultrasonic reflection time, reflected wave intensity, and scanning angle at each scanning angle to the determination circuit 4 and the ultrasonic imaging device 5. The ultrasonic imaging apparatus 5 receives a signal from the measurement circuit 3 and transmits the signal to an internal display circuit 60.
The determination circuit 4 receives the signal from the measurement circuit 3 and compares the reflection time with a predetermined value for the ultrasonic wave having a certain threshold or more obtained at each scanning angle, and determines the reflection time. If an area shorter than the value occurs, it is determined that peeling has occurred at the joint surface between the boss and the bush, and a signal notifying the occurrence of a bearing abnormality is illuminated on the alarm 6.

【0015】一方、表示回路60は超音波の反射時間,
反射波強度、及びその時の走査角度から扇形上の走査範
囲内断面映像をモニタ61に2次元的に出力する。軸受
内を伝わる超音波は一般にブシュ表面と回転軸表面との
界面71,ボスとブシュとの界面における剥離部70、
あるいは軸受内の亀裂部において反射する。この断面映
像には、反射時間と走査角度とにより求めた超音波を反
射する場所が表示され、図5(a)におけるブシュ表面
と回転軸表面との界面71での反射は図5(b)の映像7
5のように、また、ボスとブシュとの接合面における剥
離部70での反射は映像76のように現れる。この映像
より剥離が生じた場合にはその場所を視覚的に特定でき
る。
On the other hand, the display circuit 60 determines the ultrasonic reflection time,
From the intensity of the reflected wave and the scanning angle at that time, a sectional image in the scanning range on the sector is output to the monitor 61 in a two-dimensional manner. Ultrasonic waves transmitted through the bearing generally have an interface 71 between the bush surface and the rotating shaft surface, a peeling portion 70 at the interface between the boss and the bush,
Alternatively, the light is reflected at a crack in the bearing. In this cross-sectional image, a place where the ultrasonic wave is determined based on the reflection time and the scanning angle is displayed. Picture 7 of
5, the reflection at the peeling portion 70 at the joint surface between the boss and the bush appears as an image 76. If peeling occurs from this image, the location can be visually specified.

【0016】図3(a),(b)に示すように、走査型超
音波プローブ集合体51は変形自在に形成されているた
め、被計測物であるジャーナル軸受に対して図6(a)
のように軸受の周囲に円筒状に巻き付けて固定できる。
この場合、走査型超音波プローブ2は図6(b)のよう
にセンサ面を中心方向へ向けて軸に平行に走査を行うよ
うに設置する。一方、走査型超音波プローブ集合体51
を円筒状に変形させて図7(a)のように軸受の端面に
固定した場合、走査型超音波プローブ2は図7(b)の
ようにセンサ面を軸と垂直な方向に向けて軸受の径方向
に沿って走査を行うように設置する。軸受が長い場合に
は、軸受両端に走査型超音波プローブ集合体51を固定
すると、より広範囲な計測を行うことができる。そのほ
かにも、軸受及び周辺の使用可能な空間にあわせて、半
円状や自由な曲線状に変形させて必要な場所に設置する
ことができるため、既に使用中の回転機械内に含まれる
軸受にも容易に設置することができる。あるいはあらか
じめ走査型超音波プローブ2を弾性体52にて半円筒状
や円筒状に連結してから用いてもよい。
As shown in FIGS. 3 (a) and 3 (b), the scanning ultrasonic probe assembly 51 is formed so as to be freely deformable.
And can be fixed by winding it around the bearing in a cylindrical shape.
In this case, the scanning ultrasonic probe 2 is installed so as to scan in parallel to the axis with the sensor surface facing the center as shown in FIG. 6B. On the other hand, the scanning ultrasonic probe assembly 51
Is deformed into a cylindrical shape and fixed to the end face of the bearing as shown in FIG. 7A, the scanning ultrasonic probe 2 has the sensor surface oriented in a direction perpendicular to the axis as shown in FIG. It is installed so as to perform scanning along the radial direction. When the bearing is long, a wider range of measurement can be performed by fixing the scanning ultrasonic probe assembly 51 to both ends of the bearing. In addition, since it can be deformed into a semicircle or a free curved shape according to the available space around the bearing and the surrounding area and installed at the required location, the bearing included in the rotating machine already in use Can be easily installed. Alternatively, the scanning ultrasonic probe 2 may be connected in a semi-cylindrical or cylindrical shape with the elastic body 52 before use.

【0017】判定回路4によるボスとブシュとの界面で
の剥離状態の判定は次のようにして行われる。剥離が発
生していない場合の計測結果の例を図8(a)に示す。
この図に示すように、剥離が発生していない場合には、
走査型超音波プローブ2より発射された超音波パルスは
ボス41内部を通じて伝播し、その多くはブシュ表面と
回転軸表面との界面71にて反射波を生じる。図8
(b)には剥離の発生した場合の計測結果の例を示す。
超音波パルスは同様にボス41内部を通じて伝播する
が、音響インピーダンスの大きく変化する剥離部70に
あたった場合にはそこで反射波を発生する。
The determination of the peeling state at the interface between the boss and the bush by the determination circuit 4 is performed as follows. FIG. 8A shows an example of a measurement result when no peeling has occurred.
As shown in this figure, when no peeling has occurred,
Ultrasonic pulses emitted from the scanning ultrasonic probe 2 propagate through the inside of the boss 41, and most of them generate reflected waves at the interface 71 between the bush surface and the rotating shaft surface. FIG.
(B) shows an example of a measurement result when peeling occurs.
Similarly, the ultrasonic pulse propagates through the inside of the boss 41. However, when the ultrasonic pulse hits the separation portion 70 where the acoustic impedance changes greatly, a reflected wave is generated there.

【0018】計測回路3においてこの剥離部70からの
反射波より求められる超音波の反射時間は、剥離の無い
場合にブシュ表面と回転軸表面との界面71からの反射
波より求められる反射時間に比べて短く、この時間差を
検知した場合にその走査位置に剥離状態が存在すると判
定する。また、比較の結果として、この時間差の絶対値
があらかじめ決定しておいた値を上回った場合には異常
値と判定して、アラーム6に軸受の交換時期を知らせる
信号を送る。一方、剥離部70により途中で反射した分
だけブシュ表面に達する超音波の強度が低下するため、
ブシュ表面と回転軸表面との界面における反射波の強度
も弱くなる。
In the measuring circuit 3, the reflection time of the ultrasonic wave obtained from the reflected wave from the separation portion 70 is the reflection time obtained from the reflection wave from the interface 71 between the bush surface and the rotating shaft surface when there is no separation. If this time difference is detected, it is determined that a peeling state exists at the scanning position. If the absolute value of the time difference exceeds a predetermined value as a result of the comparison, it is determined to be an abnormal value, and a signal notifying the bearing 6 of the time for replacing the bearing is sent to the alarm 6. On the other hand, since the intensity of the ultrasonic wave reaching the bush surface is reduced by the amount reflected on the way by the peeling portion 70,
The intensity of the reflected wave at the interface between the bushing surface and the rotating shaft surface also decreases.

【0019】一方、ブシュの摩耗状態の判定は次のよう
にして行われる。図9(a)に示すようなブシュ42が
摩耗していない場合に比べて、図9(b)に示すような
ブシュ42が摩耗した場合には厚みが小さくなることか
ら、ブシュ表面と回転軸表面との界面71にて反射され
る超音波の反射時間は全体として短くなる。すなわち、
超音波の反射時間はその伝達距離に依存することから、
摩耗により伝達距離が短くなると反射時間も短くなる。
この反射時間の減少よりブシュ42の摩耗状態が計測で
きる。比較の結果、計測された反射時間があらかじめ決
定しておいた反射時間を下回った場合には異常摩耗量と
判定し、アラ−ム6に軸受の交換時期を知らせる信号を
送る。
On the other hand, the determination of the abrasion state of the bush is performed as follows. When the bush 42 is worn as shown in FIG. 9B, the thickness is smaller than when the bush 42 is not worn as shown in FIG. 9A. The reflection time of the ultrasonic wave reflected at the interface 71 with the surface is shortened as a whole. That is,
Since the reflection time of an ultrasonic wave depends on its transmission distance,
The shorter the transmission distance due to wear, the shorter the reflection time.
The wear state of the bush 42 can be measured from the decrease in the reflection time. As a result of the comparison, if the measured reflection time is shorter than a predetermined reflection time, it is determined that the amount of abnormal wear has occurred, and a signal is sent to the alarm 6 to inform the alarm 6 of the time to replace the bearing.

【0020】ボスとブシュとの接合面における剥離状態
の判定、並びにブシュの摩耗状態の判定はどちらも超音
波の反射時間を用いて計測するが、異常状態を判定する
反射時間の既定値はそれぞれ異なるものであり、この2
つの判定は別個に行われる。ボスとブシュとの接合面の
剥離部における反射時間はブシュ表面と回転軸表面との
界面における反射時間に比べて常に短くなり、しかも決
まった値を取る。それに対して、ブシュの摩耗による反
射時間の変化は時間とともに徐々に変化していく性質を
持つ。
The determination of the peeling state at the joint surface between the boss and the bush and the determination of the abrasion state of the bush are both measured using the reflection time of the ultrasonic wave. Different, this 2
The two decisions are made separately. The reflection time at the peeling portion of the joint surface between the boss and the bush is always shorter than the reflection time at the interface between the bush surface and the rotating shaft surface, and has a determined value. On the other hand, the change in the reflection time due to the abrasion of the bushing has the property of gradually changing over time.

【0021】さらに、回転軸表面とブシュ表面との間へ
の異物の混入等によりブシュ表面にキズなどの損傷が発
生したり、あらさが大きくなった場合には計測される反
射波の強度の頂点が分散し、この分散状態からブシュ表
面の損傷状態を知ることが出来る。
Further, if foreign matter enters the space between the rotating shaft surface and the bushing surface, etc., the bushing surface may be damaged such as a scratch, or if the roughness becomes large, the peak of the intensity of the reflected wave measured is measured. Are dispersed, and the state of damage on the bush surface can be known from the dispersed state.

【0022】また、判定回路3は過去の計測結果を記録
しており、最新の計測結果と比較することにより単位時
間あたりの反射時間の変化量を算出する。そして、現段
階においてその時点における単位時間あたりの反射時間
の変化量を用いた場合の軸受余寿命を算出して、その値
に対応した別々の信号をアラーム6に送信する。本実施
例においては余寿命が1年以上あると予測されるもの、
余寿命が90日以上と予測されるもの、余寿命が90日
未満であり軸受交換時期であるものの3段階に判定を行
い、およその余寿命を知らせる3種類の別々なアラーム
が点灯する。また、単位時間あたりの反射時間の変化量
の絶対値が予め決定しておいたしきい値よりも大きくな
った場合には、急激に軸受の損傷が進行していると判定
し、軸受交換時期を示す信号をアラーム6に送信する。
このように、単位時間あたりの反射時間の変化量の動き
を余寿命予測及び軸受交換時期の判定に用いることによ
り、軸受の剥離及び摩耗の進行状態の遅い変化にも速い
変化にも対応して、早い段階で滑り軸受の異常を予知す
ることができる。
The determination circuit 3 records the past measurement results, and calculates the amount of change in the reflection time per unit time by comparing with the latest measurement results. Then, at the present stage, the remaining bearing life when the change amount of the reflection time per unit time at that time is used is calculated, and a separate signal corresponding to the value is transmitted to the alarm 6. In this embodiment, the remaining life is expected to be one year or more,
Judgment is made in three stages, that is, when the remaining life is predicted to be 90 days or more, and when the remaining life is less than 90 days and it is time to replace the bearing, and three different alarms that indicate the approximate remaining life are turned on. If the absolute value of the amount of change in the reflection time per unit time becomes larger than a predetermined threshold value, it is determined that the damage to the bearing is rapidly progressing, and the time for replacing the bearing is determined. A signal is transmitted to the alarm 6.
As described above, by using the movement of the amount of change in the reflection time per unit time for the prediction of the remaining life and the determination of the bearing replacement time, it is possible to cope with a slow change and a fast change in the progress of the separation and wear of the bearing. It is possible to predict an abnormality of the sliding bearing at an early stage.

【0023】被計測物表面のあらさが大きい場合や表面
形状が曲面を描き複雑なため走査型超音波プローブ表面
との十分な接触が得られにくい場合には、走査型超音波
プローブから被計測物への超音波の伝播が阻害されやす
い。この場合、プローブ表面と被計測物表面との間に液
体を介在させることにより、10(a)のように乾燥状
態のまま設置した場合に比べて伝達特性を大きく向上さ
せることが出来る。図10(b)のようにプローブを連
結する弾性体52にシール部53を設けるか、図10
(c)や図10(d)のようにプローブ周辺にシール部
材54を設ける等の構造をとることにより走査型超音波
プローブ集合体51のあらゆる設置姿勢においても、長
期間にわたり液体55を走査型超音波プローブ2の近傍
に保持でき、安定して高感度な計測を行うことが出来
る。また、図示していないが、シール部材54に逆流防
止弁を備えた給油孔と空気抜き孔を設けることにより泡
を混入させずに液体を封入できる。
When the surface of the object to be measured is large, or when it is difficult to obtain sufficient contact with the surface of the scanning ultrasonic probe because the surface shape is curved and complicated, the object to be measured is Propagation of ultrasonic waves to the laser is likely to be hindered. In this case, by interposing a liquid between the surface of the probe and the surface of the object to be measured, the transfer characteristics can be greatly improved as compared with the case where the liquid is installed in a dry state as shown in FIG. As shown in FIG. 10 (b), a seal portion 53 is provided on the elastic body 52 for connecting the probe, or FIG.
By adopting a structure such as providing a seal member 54 around the probe as shown in FIG. 10 (c) or FIG. 10 (d), the liquid 55 can be scanned for a long period of time even in any installation posture of the scanning ultrasonic probe assembly 51. The measurement can be held in the vicinity of the ultrasonic probe 2 and stable and highly sensitive measurement can be performed. Further, although not shown, by providing an oil supply hole provided with a check valve and an air vent hole in the seal member 54, liquid can be sealed without mixing bubbles.

【0024】[0024]

【発明の効果】以上、説明したように、この発明の異常
予知装置によると、軸受けにおけるボスとブシュとの接
合面の剥離状態,ブシュの摩耗状態、及びブシュの損傷
状態を回転機械が運転中に計測すること、及び将来の軸
受け異常を予知することが可能となる。また、既存の回
転機械を大きく解体することなく取り付けることが可能
であり、従来大幅な解体作業で余儀なくされた作業者の
負担が大幅に軽減される。
As described above, according to the abnormality predicting apparatus of the present invention, the rotating machine is operated while the bearing is in the separated state at the joint surface between the boss and the bush, the worn state of the bush, and the damaged state of the bush. , And it is possible to predict future bearing errors. In addition, the existing rotating machine can be attached without being dismantled greatly, and the burden on the operator who has been forced to perform the conventional dismantling work is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかる異常予知装置を示したブロッ
ク図。
FIG. 1 is a block diagram showing an abnormality prediction device according to the present invention.

【図2】この発明を実施した横軸型水力発電装置を示し
た概略図。
FIG. 2 is a schematic view showing a horizontal axis type hydroelectric power generation device embodying the present invention.

【図3】走査型超音波プローブ集合体の構成を示した模
式図。
FIG. 3 is a schematic diagram showing a configuration of a scanning ultrasonic probe assembly.

【図4】走査型超音波プローブによる超音波の送受信機
構を示す図。
FIG. 4 is a diagram showing a transmission / reception mechanism of an ultrasonic wave by a scanning ultrasonic probe.

【図5】超音波映像装置のモニタ上に表示される断面映
像の例を示した図。
FIG. 5 is a diagram showing an example of a cross-sectional image displayed on a monitor of the ultrasonic imaging apparatus.

【図6】軸受外周に走査型超音波プローブ集合体を設置
した例を示した図。
FIG. 6 is a diagram showing an example in which a scanning ultrasonic probe assembly is provided on the outer periphery of a bearing.

【図7】軸受端面に走査型超音波プローブ集合体を設置
した例を示した図。
FIG. 7 is a diagram showing an example in which a scanning ultrasonic probe assembly is provided on a bearing end surface.

【図8】超音波による剥離状態の判定法を示した図。FIG. 8 is a diagram showing a method of determining a peeling state using ultrasonic waves.

【図9】超音波によるブシュの摩耗状態の判定法を示し
た図。
FIG. 9 is a diagram showing a method of determining a wear state of a bush using ultrasonic waves.

【図10】走査型超音波プローブ近傍への液体保持法を
示した図。
FIG. 10 is a diagram showing a method for holding a liquid near a scanning ultrasonic probe.

【符号の説明】[Explanation of symbols]

1…滑りジャーナル軸受部、2…走査型超音波プロー
ブ、3…計測回路、4…判定回路、5…超音波映像装
置、6…アラーム、21…導入路、22…回転軸、23
…回転翼部、25…放出路、26…発電部、30…軸受
ジグ、32…信号ケーブル、41…ボス、42…ブシ
ュ、51…走査型超音波プローブ集合体、52…弾性
体、53…シール部、54…シール部材、55…液体、
60…表示回路、61…モニタ、70…剥離部、71…
ボスとブシュとの接合面、75…ブシュと回転軸との界
面での超音波の反射波による像、76…剥離部における
超音波の反射波による像。
DESCRIPTION OF SYMBOLS 1 ... Sliding journal bearing part, 2 ... Scanning ultrasonic probe, 3 ... Measurement circuit, 4 ... Determination circuit, 5 ... Ultrasonic imaging apparatus, 6 ... Alarm, 21 ... Introduction path, 22 ... Rotary axis, 23
... Rotating blade part, 25 ... Discharge path, 26 ... Power generation part, 30 ... Bearing jig, 32 ... Signal cable, 41 ... Boss, 42 ... Bushing, 51 ... Scanning ultrasonic probe assembly, 52 ... Elastic body, 53 ... Seal part, 54 ... seal member, 55 ... liquid,
Reference numeral 60: display circuit, 61: monitor, 70: peeling part, 71:
A joining surface between the boss and the bush, 75... An image based on the reflected ultrasonic wave at the interface between the bush and the rotating shaft, and 76. An image based on the reflected ultrasonic wave at the peeling portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 29/06 G01N 29/06 29/10 504 29/10 504 (72)発明者 井上 陽一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 2F068 AA39 AA44 CC04 FF00 FF03 FF12 FF15 FF16 FF25 GG01 JJ02 KK12 KK17 KK18 QQ45 RR02 RR09 RR13 RR14 2G024 AC03 BA12 BA21 DA30 2G047 AA07 AC08 BA03 BB02 BC02 BC03 BC08 DA02 EA13 EA19 3J011 AA20 BA02 EA10 KA02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G01N 29/06 G01N 29/06 29/10 504 29/10 504 (72) Inventor Yoichi Inoue Tsuchiura, Ibaraki 502 Kandachicho F-term in Machinery Research Laboratories, Hitachi, Ltd. F-term (reference) DA02 EA13 EA19 3J011 AA20 BA02 EA10 KA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】印加された電圧に応じて超音波を発生する
と共に、被計測物から反射してくる音波を受信して電気
信号に変換する機能を持ち、その音波の送受信方向を自
在に走査することのできる走査型超音波プローブと、前
記プローブにより発射された超音波が物体界面で反射さ
れて、再び前記プローブに戻ってくるまでの時間である
反射時間、及びその時の反射波の強度を計測する計測回
路と、前記計測回路からの信号を基に、軸受本体と平軸
受との接合部における剥離状態を判断する判定回路とを
備えたことを特徴とする大型回転機械におけるジャーナ
ル軸受の異常予知装置。
An apparatus has a function of generating an ultrasonic wave according to an applied voltage, receiving a sound wave reflected from an object to be measured and converting it into an electric signal, and freely scanning a transmission / reception direction of the sound wave. A scanning ultrasonic probe that can be used, a reflection time that is a time until the ultrasonic wave emitted by the probe is reflected at the object interface and returns to the probe again, and the intensity of the reflected wave at that time. An abnormality of a journal bearing in a large rotating machine, comprising: a measurement circuit for measuring; and a determination circuit for determining a peeling state at a joint between the bearing body and the flat bearing based on a signal from the measurement circuit. Forecasting device.
JP2000041385A 2000-02-15 2000-02-15 Apparatus for predicting abnormality of journal bearing of large rotating machine Pending JP2001227935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041385A JP2001227935A (en) 2000-02-15 2000-02-15 Apparatus for predicting abnormality of journal bearing of large rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041385A JP2001227935A (en) 2000-02-15 2000-02-15 Apparatus for predicting abnormality of journal bearing of large rotating machine

Publications (1)

Publication Number Publication Date
JP2001227935A true JP2001227935A (en) 2001-08-24

Family

ID=18564635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041385A Pending JP2001227935A (en) 2000-02-15 2000-02-15 Apparatus for predicting abnormality of journal bearing of large rotating machine

Country Status (1)

Country Link
JP (1) JP2001227935A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325978A (en) * 2004-05-17 2005-11-24 Koyo Seiko Co Ltd Shaft coupling monitoring device
GB2458793A (en) * 2008-03-31 2009-10-07 Hitachi Ltd Determining wear in a sliding surface of a rotary machine
JP2013072735A (en) * 2011-09-27 2013-04-22 Toshiba Corp Material deterioration diagnostic device and method thereof
JP2014035337A (en) * 2012-08-10 2014-02-24 Toshiba Corp Motor diagnostic device, method and program
CN106323637A (en) * 2016-08-22 2017-01-11 合肥德泰科通测控技术有限公司 Fault inspection method for rolling bearing of railway freight car
JP2017044497A (en) * 2015-08-24 2017-03-02 株式会社荏原製作所 Measurement method, inclination management method, and diagnosis method
CN107380200A (en) * 2017-07-28 2017-11-24 合肥杰代机电科技有限公司 Railway freight-car rolling bearing fault inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325978A (en) * 2004-05-17 2005-11-24 Koyo Seiko Co Ltd Shaft coupling monitoring device
JP4599889B2 (en) * 2004-05-17 2010-12-15 株式会社ジェイテクト Shaft coupling monitoring device
GB2458793A (en) * 2008-03-31 2009-10-07 Hitachi Ltd Determining wear in a sliding surface of a rotary machine
JP2013072735A (en) * 2011-09-27 2013-04-22 Toshiba Corp Material deterioration diagnostic device and method thereof
JP2014035337A (en) * 2012-08-10 2014-02-24 Toshiba Corp Motor diagnostic device, method and program
JP2017044497A (en) * 2015-08-24 2017-03-02 株式会社荏原製作所 Measurement method, inclination management method, and diagnosis method
CN106323637A (en) * 2016-08-22 2017-01-11 合肥德泰科通测控技术有限公司 Fault inspection method for rolling bearing of railway freight car
CN107380200A (en) * 2017-07-28 2017-11-24 合肥杰代机电科技有限公司 Railway freight-car rolling bearing fault inspection method

Similar Documents

Publication Publication Date Title
KR100993048B1 (en) Condition-detecting device, method, and information-recording medium
US7757559B2 (en) Oblique flaw detection using ultrasonic transducers
JPH06509873A (en) Method and apparatus for detecting changes in structural components of a turbine and determining their location
KR101424070B1 (en) Ultrasonic inspection device with rotatable head
JP2001227935A (en) Apparatus for predicting abnormality of journal bearing of large rotating machine
JPH0544688A (en) Monitoring device for abrasion quantity of thrust bearing in immersion type motor-driven pump
CN109752185B (en) Method for measuring left-right skew swinging state of rolling bearing roller
JP2009236596A (en) Vibration sensor and method for determining state of the same
JP3567140B2 (en) Diagnosis device and diagnosis method for vertical pump
CN110685865A (en) Method and system for detecting cracks in a wind turbine
JP4440129B2 (en) Calibration curve acquisition method
JP2010008151A (en) Inspection device of clamped state and inspection method
JP2010151773A (en) Compound sensor for monitoring state of rotation device
JP2012242388A (en) Transducer device, and method for assembling transducer device
US6688178B1 (en) Roller transducer apparatus
JP2013054039A (en) Inspection device and method of fastening state
CA3122436C (en) Device and system for monitoring wear of a wearable component mounted in mining equipment
JP2002188411A (en) Abnormality diagnosing apparatus
KR20020001127A (en) Method for diagnosing the conditions of machine and diagnostic sensor
EP2626558B1 (en) Main shaft for a wind turbine
WO2009094627A1 (en) Method and apparatus for inspection of gas turbine discs
JP6243940B2 (en) Wind power generation system abnormality sign diagnosis system
CN213337456U (en) Novel detection device for high-speed motor spindle cracks
KR101684428B1 (en) Multi-Directional Damage Detection System Embedded in Concrete And Method for Detecting Damage in Concrete Structure
JP2021032769A (en) State monitoring method and state monitoring device for rolling bearing