[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001221609A - Interference fringe analysis method - Google Patents

Interference fringe analysis method

Info

Publication number
JP2001221609A
JP2001221609A JP2000028303A JP2000028303A JP2001221609A JP 2001221609 A JP2001221609 A JP 2001221609A JP 2000028303 A JP2000028303 A JP 2000028303A JP 2000028303 A JP2000028303 A JP 2000028303A JP 2001221609 A JP2001221609 A JP 2001221609A
Authority
JP
Japan
Prior art keywords
interference fringe
optical
measured
light beam
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000028303A
Other languages
Japanese (ja)
Other versions
JP4218919B2 (en
Inventor
Kenichi Hibino
謙一 日比野
Nobuaki Ueki
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Fuji Photo Optical Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000028303A priority Critical patent/JP4218919B2/en
Publication of JP2001221609A publication Critical patent/JP2001221609A/en
Application granted granted Critical
Publication of JP4218919B2 publication Critical patent/JP4218919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the influence of umbilical noise from interference fringe analysis data by performing arithmetic processing on the image data of interfer ence fringes, obtained through a plurality of steps, using a prescribed algorithm by setting the umbilical noise as a higher harmonic signal which is an integer multiple of a data signal to be found. SOLUTION: An optical distance Δ1, between a plane 3 or 4 of a collimator lens 12 and a datum plane 1 or a surface to be measured 2 on the optical axis of the lens 12, is set at a prescribed integral multiple of an optical distance Δ2 between the datum plane 1 and surface 2, and the image of the interference fringes is picked up with a CCD camera 11, whenever the wavelength λ of output light is changed by about λ2/mΔ1 (where m is the number of images picked up). Then the interference fringes are analyzed by subjecting them to arithmetic processings on a plurality of information Ir (x, y) obtained by taking the images, based on equation (1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長可変レーザを
観察用光源とする干渉計装置において被測定体の位相情
報を得るための干渉縞解析方法に関し、特に、コリメー
タレンズ等の光学面と基準面双方からの出力光の光干渉
によって生じる干渉縞ノイズを除去する干渉縞解析方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference fringe analyzing method for obtaining phase information of an object to be measured in an interferometer apparatus using a wavelength tunable laser as an observation light source, and more particularly to an optical surface such as a collimator lens and a reference. The present invention relates to an interference fringe analysis method for removing interference fringe noise caused by optical interference of output light from both surfaces.

【0002】[0002]

【従来の技術】従来より、精密な光学鏡面やレンズ形状
を測定する光学測定装置として、例えばフィゾー型干渉
計装置が知られている。
2. Description of the Related Art Conventionally, for example, a Fizeau interferometer has been known as an optical measuring device for measuring a precise optical mirror surface and lens shape.

【0003】このようなフィゾー型干渉計装置では、被
測定面に基準面を接近させ、単色の平面光波で両者を照
明し、両面からの反射光により生成される干渉縞を、C
CDカメラ等の撮像装置で撮像し、得られた干渉縞画像
を解析して上記被検面表面の形状(位相変化)を観察測
定する。
In such a Fizeau-type interferometer device, the reference surface is brought close to the surface to be measured, the two are illuminated with a monochromatic plane light wave, and the interference fringes generated by the reflected light from both surfaces are converted into C fringes.
An image is taken by an imaging device such as a CD camera, and the obtained interference fringe image is analyzed to observe and measure the shape (phase change) of the surface of the test surface.

【0004】一方、干渉縞解析を行う際の、凹凸判別等
の有効な手法として、最近、光源に波長可変レーザを用
いて波長走査する手法が知られている。この波長可変レ
ーザを用いた干渉縞解析の原理は以下のようになってい
る。
On the other hand, as an effective technique for discriminating irregularities when performing interference fringe analysis, a technique of wavelength scanning using a wavelength variable laser as a light source has recently been known. The principle of interference fringe analysis using this tunable laser is as follows.

【0005】すなわち、基準面からの反射光と被測定面
からの反射光により生成される干渉縞の位相差は、光源
の波長がλであるとき、良く知られているように光路長
Δを波長λで割った値、すなわち2πΔ/λとなる。波
長がわずかな量δλだけ変化すると、この位相は2πΔ
/λから2πΔ/(λ+δλ)となりα≒(2πΔ/λ
)δλだけ変化することになる。この位相変化量α
は、干渉縞が生成されるための反射面間の光路長Δに比
例している。ここで、撮像手段で撮像される干渉縞情報
は、ノイズを考えなければ、下式の如く表される。
That is, when the wavelength of the light source is λ, the phase difference between the interference fringes generated by the reflected light from the reference surface and the reflected light from the surface to be measured has an optical path length Δ as well known. The value is divided by the wavelength λ, that is, 2πΔ / λ. If the wavelength changes by a small amount δλ, this phase becomes 2πΔ
/ Λ becomes 2πΔ / (λ + δλ), and α ≒ (2πΔ / λ
2 ) It will change by δλ. This phase change amount α
Is proportional to the optical path length Δ between the reflecting surfaces for generating interference fringes. Here, the interference fringe information picked up by the image pickup means is expressed by the following equation unless noise is considered.

【0006】[0006]

【数2】 ここでr 、r はそれぞれの面の反射光強度であ
る。
(Equation 2) Wherein r 1 2, r 2 2 is a reflected light intensity of respective faces.

【0007】この干渉計装置は、位相シフト量αが、そ
れぞれ、例えば0、π/2、π、3π/2となるように
波長変化量δλを選択し、画像データI(例えばr=
0、1、2、3)を記録し、例えば4サンプルアルゴリ
ズム(後述する)等で位相値2πΔ/λを求めて、被測
定面の形状を決定するものである。
In this interferometer apparatus, the wavelength change amount δλ is selected so that the phase shift amount α becomes, for example, 0, π / 2, π, 3π / 2, respectively, and the image data I r (for example, r =
0, 1, 2, 3), and the phase value 2πΔ / λ is obtained by, for example, a four-sample algorithm (described later) or the like to determine the shape of the surface to be measured.

【0008】[0008]

【発明が解決しようとする課題】このような波長を可変
とし得るレーザ光源を用いた波長走査フィゾー型干渉計
装置における代表的な系統誤差要因として、平行光束を
生成するコリメータレンズと基準面あるいは被測定面と
の間の干渉縞ノイズが知られている。このノイズにより
測定結果には、被測定面の中央部に、実際には存在しな
い俗に「へそ」と称される凸部(または凹部)があたかも
存在するように解析されてしまう。
As a typical systematic error factor in a wavelength-scanning Fizeau interferometer using a laser light source capable of changing the wavelength, a collimator lens for generating a parallel light beam and a reference surface or a cover are known. Interference fringe noise between the measurement surface and the measurement surface is known. Due to this noise, the measurement result is analyzed as if a convex portion (or concave portion) commonly called “navel”, which does not actually exist, exists at the center of the surface to be measured.

【0009】すなわち、基準面からの反射光と被測定面
からの反射光の他に、コリメータレンズ等の光学面から
の反射光がノイズ光としてCCDカメラ等の撮像手段に
入射し、それぞれが基準面からの反射光や被測定面から
の反射光との間で干渉縞を形成するために、干渉縞に余
分なノイズ縞(へそ)が加わり、縞強度測定の精度を低
下させる原因となっていた。そして、特に高精度な被測
定面を測定する場合には大きな問題となっていた。
That is, in addition to the light reflected from the reference surface and the light reflected from the surface to be measured, the light reflected from an optical surface such as a collimator lens enters the imaging means such as a CCD camera as noise light, and each of the light is reflected as a reference light. Since interference fringes are formed between the reflected light from the surface and the reflected light from the surface to be measured, extra noise fringes (navels) are added to the interference fringes, which causes the accuracy of the fringe intensity measurement to decrease. Was. In particular, when measuring a highly accurate surface to be measured, this has been a serious problem.

【0010】なお、このような問題はフィゾー型干渉計
装置に限られるものではなく、マイケルソン型やマッハ
ツェンダ型等の他の波長走査型干渉計装置においても生
じている問題である。
[0010] Such a problem is not limited to the Fizeau-type interferometer, but also occurs in other wavelength-scanning interferometers such as the Michelson type and the Mach-Zehnder type.

【0011】本発明は上記事情に鑑みなされたもので、
波長走査型干渉計装置において、コリメータレンズ等の
光学面と、基準面および/または被測定面からの出力光
との光干渉によって生じる干渉縞ノイズを良好かつ簡易
にその解析結果から除去し得る干渉縞解析方法を提供す
ることを目的とするものである。
The present invention has been made in view of the above circumstances,
In a wavelength scanning interferometer device, interference fringes caused by optical interference between an optical surface such as a collimator lens and output light from a reference surface and / or a surface to be measured can be easily and easily removed from the analysis result. It is an object of the present invention to provide a fringe analysis method.

【0012】[0012]

【課題を解決するための手段】本発明の干渉縞解析方法
は、出力光の波長λを時間的に変化させ得るレーザ光源
と、該レーザ光源からの光束を平行光束とした後基準面
上および被測定面上に導く光学系と、該基準面および/
または被測定面からの光束の光干渉により得られた干渉
縞情報を撮像する撮像手段とを備えた干渉計装置におい
て、前記光学系のうち所定の光学面と、前記基準面また
は前記被測定面との光軸上での光学的距離Δを、前記
基準面と前記被測定面との光学的距離Δの所定の整数
倍に設定し、前記出力光の波長λを略λ/mΔ(m
は取り込む画像の枚数)ずつ変化させる毎に、前記撮像
手段により干渉縞画像を撮像し、該撮像して得られた複
数の干渉縞画像情報I(x,y)に対して、下式
(1)に基づく演算処理を施して、干渉縞解析を行うこ
とを特徴とするものである。
An interference fringe analyzing method according to the present invention comprises a laser light source capable of changing a wavelength λ of output light with time, a light beam from the laser light source being converted into a parallel light beam, and An optical system for guiding on the surface to be measured, the reference surface and / or
Alternatively, in an interferometer apparatus including an imaging unit that captures interference fringe information obtained by optical interference of a light beam from a measured surface, a predetermined optical surface of the optical system, the reference surface or the measured surface optical distance delta 1, wherein the set to a predetermined integer multiple of the optical path length delta 2 between the surface to be measured and the reference plane, substantially λ 2 / mΔ the wavelength lambda of the output light on the optical axis between 1 (m
(The number of images to be captured) each time, the interference fringe image is imaged by the imaging means, and a plurality of interference fringe image information I r (x, y) obtained by the imaging is expressed by the following equation ( The method is characterized in that arithmetic processing based on 1) is performed to perform interference fringe analysis.

【0013】[0013]

【数3】 (Equation 3)

【0014】また、前記所定の光学面がコリメータレン
ズの発散光束側および/または平行光束側のレンズ面で
あることを特徴とするものである。また、前記干渉計装
置がフィゾー型であることを特徴とするものである。
Further, the predetermined optical surface is a lens surface on a divergent light beam side and / or a parallel light beam side of a collimator lens. Further, the interferometer device is a Fizeau type.

【0015】さらに、前記所定の光学面が複数個とされ
る場合に、それぞれの光学面についての前記干渉縞解析
により得られた、それぞれの光学面に基づくノイズが除
去された画像情報を組合せて最終干渉縞画像情報を得る
ように構成することも可能である。
Further, when the plurality of predetermined optical surfaces are provided, image information obtained by performing the interference fringe analysis for each optical surface and from which noise based on each optical surface has been removed is combined. It is also possible to configure so as to obtain the final interference fringe image information.

【0016】また、前記基準面または前記被測定面が光
軸の延びる方向に移動可能とされ、前記各光学面に基づ
くノイズが最小となる位置で前記移動に係る前記基準面
または前記被測定面を停止せしめることが好ましい。
Further, the reference surface or the measured surface can be moved in a direction in which the optical axis extends, and the reference surface or the measured surface is related to the movement at a position where noise based on each of the optical surfaces is minimized. Is preferably stopped.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施形態に係る
干渉縞解析方法について図面を参照しつつ説明する。図
1は本実施形態に係る干渉縞解析方法を実施するための
フィゾー型干渉計装置を示すものである。なお、本実施
形態においては、上述した所定の光学面をコリメータレ
ンズのレンズ面とした場合を例にあげて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an interference fringe analysis method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a Fizeau-type interferometer apparatus for performing an interference fringe analysis method according to the present embodiment. In the present embodiment, a case where the above-described predetermined optical surface is a lens surface of a collimator lens will be described as an example.

【0018】このフィゾー型干渉計装置において、出力
光の波長λを可変とし得るレーザダイオード等の単色の
波長可変レーザ光源11から出射されたレーザ光は、コ
リメータレンズ12(入射面を3、出射面を4により示
す)によって平行光束とされ、基準板13の基準面1お
よび被測定体14の被測定面2に入射する。基準面1で
反射された光束と被測定面2で反射された光束は互いに
干渉しつつ光路を逆行し、半透鏡15で反射され、CC
Dカメラ16の撮像面上に被測定面2の位相情報を有す
る干渉縞を形成する。
In this Fizeau-type interferometer, laser light emitted from a monochromatic wavelength-variable laser light source 11 such as a laser diode capable of changing the wavelength λ of output light is collimated by a collimator lens 12 (having an incident surface of 3 and an exit surface of 3). Are indicated by 4), and are incident on the reference surface 1 of the reference plate 13 and the measurement surface 2 of the measurement object 14. The light beam reflected by the reference surface 1 and the light beam reflected by the measured surface 2 go back in the optical path while interfering with each other, are reflected by the semi-transparent mirror 15, and
An interference fringe having phase information of the measured surface 2 is formed on the imaging surface of the D camera 16.

【0019】ここで得られた干渉縞画像情報は演算装置
17において所定の演算処理が施され、有効かつ高精度
な干渉縞解析がなされる。
The obtained interference fringe image information is subjected to predetermined arithmetic processing in an arithmetic unit 17 so that effective and highly accurate interference fringe analysis is performed.

【0020】ところで、このような波長可変レーザ光源
11を用いた干渉計装置においては、平行光束を生成す
るコリメータレンズ12の入射面3あるいは出射面4と
基準面1との間で干渉縞ノイズが発生し、測定結果に
は、被測定面の中央部に、実際には存在しない俗に「へ
そ」と称される凸部(または凹部)があたかも存在する
ように解析されてしまう。
In the interferometer apparatus using such a wavelength tunable laser light source 11, interference fringe noise is generated between the reference surface 1 and the entrance surface 3 or the exit surface 4 of the collimator lens 12 that generates a parallel light beam. The measurement results are analyzed as if a convex portion (or concave portion) commonly called “navel”, which does not actually exist, exists in the center of the surface to be measured.

【0021】これは、系内においては、基準面1からの
反射光と被測定面2からの反射光の他に、上記コリメー
タレンズ12の入射面3あるいは出射面4等からの反射
光がノイズ光としてCCDカメラ16に入射し、それぞ
れが基準面1からの反射光や被測定面2からの反射光と
の間で干渉縞を形成するために、そして上記コリメータ
レンズ12の入射面3あるいは出射面4は光軸付近にお
いて最も平面に近い状態となるために、干渉縞の光軸に
相当する位置付近に図2に示す如き余分なノイズ縞(へ
そノイズ)20が加わり、縞強度測定の精度を低下させ
る原因となるものである。
This is because, in the system, in addition to the reflected light from the reference surface 1 and the reflected light from the measured surface 2, reflected light from the entrance surface 3 or the exit surface 4 of the collimator lens 12 is noise. The light enters the CCD camera 16 as light, and forms interference fringes between the light reflected from the reference surface 1 and the light reflected from the surface 2 to be measured. Since the surface 4 is almost flat near the optical axis, an extra noise fringe (navel noise) 20 is added near the position corresponding to the optical axis of the interference fringe as shown in FIG. Is a cause of the decrease.

【0022】そこで、本実施形態においては、基準面
1、被測定面2、およびコリメータレンズ12の入射面
3あるいは出射面4の配設位置を所定位置に設定すると
ともに、得られた干渉縞画像データに対し、上記演算装
置17において後述する演算処理を施し、上記「へそノ
イズ」を除去するようにしている。
Therefore, in the present embodiment, the arrangement positions of the reference surface 1, the measured surface 2, and the entrance surface 3 or the exit surface 4 of the collimator lens 12 are set at predetermined positions, and the obtained interference fringe image is obtained. The data is subjected to arithmetic processing described later in the arithmetic unit 17 so as to remove the "navel noise".

【0023】以下、上記各光学面1、2、3、4の配設
位置および上記演算装置17においてなされる演算処理
について説明する。
Hereinafter, the arrangement positions of the optical surfaces 1, 2, 3, and 4 and the arithmetic processing performed by the arithmetic unit 17 will be described.

【0024】ここで、基準面1と被測定面2の間の距離
をdとし、また、基準板13の厚さをd、その屈折
率をnとし、また、コリメータレンズ12の厚さをd
、屈折率をnとし、さらにコリメータレンズ12と
基準板13の間の距離をdとする。なお、空気の屈折
率をnとする。また、被測定面2の完全平面からの偏
差量をδ(x,y)とする。
Here, the distance between the reference surface 1 and the surface to be measured 2 is d 1 , the thickness of the reference plate 13 is d 2 , its refractive index is n 2, and the thickness of the collimator lens 12 is D
3 , the refractive index is n 3, and the distance between the collimator lens 12 and the reference plate 13 is d 4 . Incidentally, the refractive index of air and n 1. The amount of deviation of the measured surface 2 from a perfect plane is δ (x, y).

【0025】また、 基準面1と被測定面2間の光路長をΔ(=n) 基準面1とレンズ面4間の光路長をΔ14(=n+n
) 基準面1とレンズ面3間の光路長をΔ13(=n+n
+n) 被測定面2とレンズ面4間の光路長をΔ2414+Δ 被測定面2とレンズ面3間の光路長をΔ2313+Δ と定義する。
Further, the optical path length between the reference surface 1 and the measured surface 2 is Δ (= n 1 d 1 ). The optical path length between the reference surface 1 and the lens surface 4 is Δ 14 (= n 2 d 2 + n).
1 d 4 ) The optical path length between the reference surface 1 and the lens surface 3 is Δ 13 (= n 2 d 2 + n
1 d 4 + n 3 d 3 ) The optical path length between the measured surface 2 and the lens surface 4 is Δ 24 = Δ 14 + Δ The optical path length between the measured surface 2 and the lens surface 3 is Δ 23 = Δ 13 + Δ. Define.

【0026】このように定義した場合、本実施形態にお
いては、へそノイズの原因となるコリメータレンズ12
の各レンズ面3,4からの反射光(散乱光)の影響を排
除するための第1条件として、散乱に関わる面1、2、
3、4の間の所定の光路長が以下に示す如くΔの整数倍
となるよう、これら各面1、2、3、4の配設位置を設
定している。
With this definition, in the present embodiment, the collimator lens 12 that causes navel noise is used.
As the first condition for eliminating the influence of the reflected light (scattered light) from each of the lens surfaces 3 and 4, the surfaces 1, 2, and
The arrangement positions of these surfaces 1, 2, 3, and 4 are set so that the predetermined optical path length between 3 and 4 becomes an integral multiple of Δ as shown below.

【0027】 基準面1とレンズ面4間の光路長をΔ14=(mp+2)Δ 基準面1とレンズ面3間の光路長をΔ131434={m
(p+p)+2}Δ 被測定面2とレンズ面4間の光路長をΔ24=Δ+Δ14=(m
+3)Δ 被測定面2とレンズ面3間の光路長をΔ23=Δ+Δ13={m
(p+p)+3}Δ なお、光路長Δは、Δ=Δ34/mpであり、Δ34はコ
リメータレンズ表裏面間の光路長=nであり、m
は画像数、p、pは自然数である。
The optical path length between the reference surface 1 and the lens surface 4 is Δ 14 = (mp 2 +2) Δ The optical path length between the reference surface 1 and the lens surface 3 is Δ 13 = Δ 14 + Δ 34 = {m
(p 1 + p 2 ) +2} Δ The optical path length between the surface 2 to be measured and the lens surface 4 is Δ 24 = Δ + Δ 14 = (m
p 2 +3) Δ The optical path length between the surface 2 to be measured and the lens surface 3 is Δ 23 = Δ + Δ 13 = {m
(p 1 + p 2) +3 } Δ The optical path length delta is Δ = Δ 34 / mp 1, Δ 34 is an optical path length = n 3 d 3 between the collimator lens front and back surfaces, m
Is the number of images, and p 1 and p 2 are natural numbers.

【0028】ここで、基準面1からの反射光とレンズ面
4からの反射光により生成される干渉縞は、位相が2π
Δ14/λとなるので、これら各面1、4の配設位置を上
記の如く設定すると、光源11の出力波長がδλだけ変
化したときの位相変化量は光路長Δ14に比例して、(2
πΔ14/λ)δλ=(mp+2)αとなる。
Here, the interference fringes generated by the reflected light from the reference surface 1 and the reflected light from the lens surface 4 have a phase of 2π.
Because the delta 14 / lambda, when the arrangement position of these surfaces 1,4 set as above, the phase change amount when the output wavelength of the light source 11 has just changed δλ is proportional to the optical path length delta 14, (2
πΔ 14 / λ 2 ) δλ = (mp 2 +2) α.

【0029】したがって、CCDカメラ16から得られ
た、面1、4からの反射光により生成される干渉縞を考
慮した画像データI(x、y)は次式(2)で表わされる。
Accordingly, the image data I (x, y) obtained from the CCD camera 16 and taking into account the interference fringes generated by the reflected light from the surfaces 1, 4 is represented by the following equation (2).

【0030】[0030]

【数4】 (Equation 4)

【0031】なお、r 、r 、r はそれぞれ
面1、2、3の反射光強度である。同様にして、基準面
1とレンズ面3、被測定面2とレンズ面4、被測定面2
とレンズ面3の干渉縞も考慮すると、CCDカメラ16
から得られる画像データは、近似的に次式(3)で表わ
される。
It should be noted, it is a reflected light intensity of r 1 2, r 2 2, r 3 2 Each face 1,2,3. Similarly, the reference surface 1 and the lens surface 3, the measured surface 2 and the lens surface 4, and the measured surface 2
Considering the interference fringes on the lens surface 3 and the CCD camera 16
Is approximately expressed by the following equation (3).

【0032】[0032]

【数5】 (Equation 5)

【0033】上式(3)において、右辺の第1項が求め
たい信号データを表す項で、第2項以下がノイズを表す
項となる。上式(3)により示されるように、上記レン
ズ面3,4と基準面1および被測定面2各々の間の光路
長を距離Δの整数倍となるように設定することで、ノイ
ズを表すすべての項が位相シフト量αの整数次の高調波
となる。
In the above equation (3), the first term on the right side is a term representing signal data to be obtained, and the second and subsequent terms are terms representing noise. As shown by the above equation (3), noise is represented by setting the optical path length between the lens surfaces 3 and 4 and each of the reference surface 1 and the measured surface 2 to be an integral multiple of the distance Δ. All terms are harmonics of the integer order of the phase shift amount α.

【0034】ここで、ノイズ項の次数は、小さいほうか
らそれぞれ、mp+2次,mp+3次,m(p+
)+2次,m(p+p)+3次である。一般に知られ
ているように、m枚の画像(mは5以上の整数)の位相シ
フトアルゴリズム(下式(1)で示される)は、mk+2
次およびmk+3次(kは0以上の整数値)の高調波成
分の影響を抑制して位相検出できるから、このアルゴリ
ズムを上式(3)で表わされたカメラ入力画像信号(C
CDカメラ16から得られる画像データ信号)に適用す
ることで、右辺第1項の信号項の位相αをノイズの影響
を受けずに検出することができる。
Here, the order of the noise terms is mp 2 +2, mp 2 +3, and m (p 1 +
p 2) +2 order, m (p 1 + p 2 ) a + 3rd. As is generally known, a phase shift algorithm (shown by the following equation (1)) of m images (m is an integer of 5 or more) is mk + 2
Since the phase detection can be performed while suppressing the influence of the harmonic components of the 3rd and mk + 3rd order (k is an integer of 0 or more), this algorithm is applied to the camera input image signal (C
When applied to the image data signal obtained from the CD camera 16, the phase α of the signal term of the first term on the right side can be detected without being affected by noise.

【0035】[0035]

【数6】 (Equation 6)

【0036】ここで、上記方法において具体的数値を示
す。なお、この方法に必要な最小画像数mは5である。
コリメータレンズ12の光学的厚さΔ34=150mmのとき例
えばm=5,p=1,p=1とすると、エアギャップ
Δ=30mm,コリメータレンズ12と基準面1の光学的な
間隔Δ14=210mmとなる。また、ノイズは、各々第7,
8,12,13次高調波となる。
Here, specific numerical values in the above method are shown. Note that the minimum number of images m required for this method is 5.
When the optical thickness Δ 34 of the collimator lens 12 is 150 mm, for example, m = 5, p 1 = 1, and p 2 = 1, the air gap Δ = 30 mm, and the optical distance Δ between the collimator lens 12 and the reference surface 1 14 = 210 mm. Also, the noises are the seventh and
8, 12, and 13 harmonics.

【0037】なお、上式(1)で示される位相シフトア
ルゴリズムに用いられるm枚の画像のデータとしては、
具体的には、上記波長可変レーザ光源11の出力波長
を、その振幅δλ(λ/mn;通常1nmより小
さい)ずつずらし、順次CCDカメラ16で撮像したm
枚の干渉縞画像データI(x,y)を用いる。
The data of m images used in the phase shift algorithm expressed by the above equation (1) is as follows.
Specifically, the output wavelength of the tunable laser light source 11 is shifted by an amplitude δλ (λ 2 / mn 1 d 1 ; usually smaller than 1 nm), and m is sequentially imaged by the CCD camera 16.
The interference fringe image data I r (x, y) is used.

【0038】ところで、へそノイズの発生原因となる光
学面が複数(3面以上)存在する場合には、これら全て
の光学面を上述したような理想的な位置に設定すること
が一般には困難となることから、基準面1あるいは被測
定面2を図面中の上下方向に移動できるようにしてお
き、最も除去したいへそノイズが消えたように見える位
置でその移動を停止し、干渉縞解析のための画像を取り
込むように構成することが好ましい。
When there are a plurality (three or more) of optical surfaces that cause navel noise, it is generally difficult to set all of these optical surfaces to the ideal positions as described above. Therefore, the reference plane 1 or the measurement target plane 2 is allowed to move in the vertical direction in the drawing, and the movement is stopped at a position where the navel noise to be removed most seems to have disappeared. It is preferable to configure so as to capture the image of (1).

【0039】なお、上記停止位置は計算により決定する
ようにしてもよい。すなわち、上記の例において、基準
面1と被測定面2との距離をはじめとするその他の面間
の光学的距離は、コリメータレンズ12の表裏面間の光
路長Δ34との関係において下記の式(4)が満足される
ように設定する。 Δ=Δ34/mp (4)
The stop position may be determined by calculation. That is, in the above example, the reference surface 1 optical distance between the other surfaces, including the distance between the surface to be measured 2, the following in relation to the optical path length delta 34 between the front and back surfaces of the collimator lens 12 The setting is made so that the expression (4) is satisfied. Δ = Δ 34 / mp 1 (4)

【0040】さらに、この場合において、各へそノイズ
が消えたように見える各位置において干渉縞解析のため
の画像を取り込み、それぞれの画像からへそノイズが消
えた部分を切り出し、これらを画像処理により合成する
ことで全てのへそノイズを除去した干渉縞画像データを
得ることができる。図3は、このことを概念的に示すも
ので、例えば、図3(A)の如く3つのへそノイズ20
A〜Cが存在する場合において、基準面1あるいは被測
定面2を図面中の上下方向に移動せしめて、各へそノイ
ズ20A〜Cが消えたように見える各位置でそれぞれ干
渉縞解析のための画像を取り込み(図3(B)〜
(D))、この後画像処理により図3(B)〜(D)に
示す画像データを合成することで全てのへそノイズを除
去した干渉縞画像データを得るようにする。
Further, in this case, an image for interference fringe analysis is taken in each position where each navel noise seems to have disappeared, a portion where the navel noise has disappeared is cut out from each image, and these are synthesized by image processing. By doing so, it is possible to obtain interference fringe image data from which all navel noise has been removed. FIG. 3 conceptually illustrates this. For example, as shown in FIG.
When A to C are present, the reference surface 1 or the measured surface 2 is moved in the vertical direction in the drawing, and at each position where the navel noises 20A to 20C appear to disappear, the interference fringe analysis is performed. Import image (Fig. 3 (B) ~
(D)) Thereafter, the image data shown in FIGS. 3B to 3D are synthesized by image processing to obtain interference fringe image data from which all navel noise has been removed.

【0041】なお、本発明の干渉縞解析方法としては上
記実施形態のものに限られるものではなく、その他種々
の態様の変更が可能であり、例えばコリメータレンズ面
のみならずその他のへそノイズの発生原因となる全ての
光学面(例えばハーフミラー面)についての適用が可能
であり、またコリメータレンズが複数枚よりなる場合に
は、その全てあるいは一部のレンズ面についての適用が
可能である。
The interference fringe analysis method of the present invention is not limited to the above-described embodiment, and various other modes can be changed. For example, not only the collimator lens surface but also other navel noise The present invention can be applied to all optical surfaces (for example, a half mirror surface) that cause a problem, and when a plurality of collimator lenses are used, all or some of the lens surfaces can be applied.

【0042】また、本発明方法はフィゾー型の干渉計装
置を使用する場合のみならず、その他の干渉計装置、例
えば、マイケルソン型あるいはマッハツェンダ型等の干
渉計装置に適用が可能である。
The method of the present invention is applicable not only to the case of using a Fizeau-type interferometer, but also to other interferometers, for example, Michelson-type or Mach-Zehnder-type interferometers.

【0043】[0043]

【発明の効果】以上説明したように、本発明の干渉縞解
析方法によれば、波長可変型レーザを観察用光源とした
干渉計装置において、へそノイズの発生原因となる光学
面と、基準面または被測定面との光学的距離Δを、基
準面と被測定面との光学的距離Δの所定の整数倍に設
定して、へそノイズを表わすノイズ縞の位相変化量が被
測定面のデータ信号の位相変化量の整数倍となるように
している。これによりへそノイズのノイズ縞は、求めた
いデータ信号の整数倍高調波信号となるので、出力光波
長を所定量ずつずらす毎に得られた複数の干渉縞画像デ
ータに所定の離散的フーリエ変換アルゴリズムを施すこ
とにより、最終的に得られる干渉縞解析データ中からへ
そノイズの影響を排除することができる。これにより高
精度で信頼性の高い被測定面形状を求めることができ
る。
As described above, according to the interference fringe analysis method of the present invention, in the interferometer apparatus using the wavelength variable laser as the observation light source, the optical surface causing the navel noise and the reference surface or optical distance delta 1 between the surface to be measured, is set to a predetermined integer multiple of the optical path length delta 2 between the reference surface and the measurement surface, the phase change amount is surface measured noise fringes representing the navel noise Is an integral multiple of the phase change amount of the data signal. As a result, the noise fringe of the navel noise becomes an integer multiple harmonic signal of the data signal to be obtained, so that a predetermined discrete Fourier transform algorithm is applied to a plurality of interference fringe image data obtained each time the output light wavelength is shifted by a predetermined amount. , The influence of navel noise can be eliminated from the interference fringe analysis data finally obtained. As a result, a highly accurate and highly reliable measured surface shape can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の干渉縞解析方法を実施するための干渉
計装置を示す概略図
FIG. 1 is a schematic diagram showing an interferometer apparatus for performing an interference fringe analysis method of the present invention.

【図2】本発明の干渉縞解析方法により除去するへそノ
イズを説明するための図
FIG. 2 is a diagram for explaining navel noise removed by the interference fringe analysis method of the present invention.

【図3】本発明の実施形態に係る干渉縞解析方法の一例
を説明するための図
FIG. 3 is a diagram for explaining an example of an interference fringe analysis method according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基準面 2 被測定面 3 レンズ面(入射面) 4 レンズ面(出射面) 11 波長可変レーザ光源 12 コリメータレンズ 13 基準板 14 被測定体 15 ハーフミラー 16 CCDカメラ 17 演算装置 20、20A〜C へそノイズ REFERENCE SIGNS LIST 1 reference surface 2 measured surface 3 lens surface (incident surface) 4 lens surface (exit surface) 11 tunable laser light source 12 collimator lens 13 reference plate 14 measured object 15 half mirror 16 CCD camera 17 arithmetic unit 20, 20A to 20C Navel noise

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植木 伸明 埼玉県大宮市植竹町1丁目324番地 富士 写真光機株式会社内 Fターム(参考) 2F064 AA09 AA15 CC03 CC04 EE05 FF01 FF08 GG22 GG44 HH03 HH08 JJ01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Nobuaki Ueki 1-324 Uetake-cho, Omiya-shi, Saitama F-term in Fuji Photo Optical Co., Ltd. (reference) 2F064 AA09 AA15 CC03 CC04 EE05 FF01 FF08 GG22 GG44 HH03 HH08 JJ01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 出力光の波長λを時間的に変化させ得る
レーザ光源と、 該レーザ光源からの光束を平行光束とした後基準面上お
よび被測定面上に導く光学系と、 該基準面および該被測定面からの光束の光干渉により得
られた干渉縞情報を撮像する撮像手段とを備えた干渉計
装置において、 前記光学系のうち所定の光学面と、前記基準面または前
記被測定面との光軸上での光学的距離Δを、前記基準
面と前記被測定面との光学的距離Δの所定の整数倍に
設定し、 前記出力光の波長λを略λ/mΔ(mは取り込む画
像の枚数)ずつ変化させる毎に、前記撮像手段により干
渉縞画像を撮像し、 該撮像して得られた複数の干渉縞画像情報I(x,
y)に対して、下式(1)に基づく演算処理を施して干
渉縞解析を行うことを特徴とする干渉縞解析方法。 【数1】
1. A laser light source capable of changing a wavelength λ of output light with time, an optical system for converting a light beam from the laser light source into a parallel light beam and guiding the light beam onto a reference surface and a surface to be measured, and the reference surface. And an imaging means for imaging interference fringe information obtained by optical interference of a light beam from the measured surface, wherein: a predetermined optical surface of the optical system; the reference surface or the measured surface; the optical distance delta 1 on the optical axis between the surface, the said reference plane is set to a predetermined integer multiple of the optical path length delta 2 between the surface to be measured, substantially the wavelength lambda of the output light lambda 2 / Each time the image is changed by mΔ 1 (m is the number of images to be captured), an interference fringe image is captured by the imaging unit, and a plurality of interference fringe image information I r (x,
An interference fringe analysis method, wherein y) is subjected to arithmetic processing based on the following equation (1) to perform interference fringe analysis. (Equation 1)
【請求項2】 前記所定の光学面がコリメータレンズの
発散光束側および/または平行光束側のレンズ面である
ことを特徴とする請求項1記載の干渉縞解析方法。
2. The interference fringe analyzing method according to claim 1, wherein the predetermined optical surface is a lens surface on a divergent light beam side and / or a parallel light beam side of a collimator lens.
【請求項3】 前記干渉計装置がフィゾー型であること
を特徴とする請求項1または2記載の干渉縞解析方法。
3. The method according to claim 1, wherein the interferometer is a Fizeau type.
【請求項4】 前記所定の光学面が複数個とされる場合
に、それぞれの光学面についての前記干渉縞解析により
得られた、それぞれの光学面に基づくノイズが除去され
た画像情報を組合せて最終干渉縞画像情報を得ることを
特徴とする請求項1〜3のうちいずれか1項記載の干渉
縞解析方法。
4. When there are a plurality of said predetermined optical surfaces, image information obtained by performing said interference fringe analysis on each optical surface and from which noise based on each optical surface has been removed is combined. The interference fringe analysis method according to claim 1, wherein final interference fringe image information is obtained.
【請求項5】 前記基準面または前記被測定面が光軸の
延びる方向に移動可能とされ、 前記各光学面に基づくノイズが最小となる位置で前記移
動に係る前記基準面または前記被測定面を停止せしめる
ことを特徴とする請求項1〜4のうちいずれか1項記載
の干渉縞解析方法。
5. The reference surface or the measured surface at a position where the reference surface or the measured surface is movable in a direction in which the optical axis extends, and the noise based on each of the optical surfaces is minimized. The interference fringe analysis method according to claim 1, wherein the method is stopped.
JP2000028303A 2000-02-04 2000-02-04 Interference fringe analysis method Expired - Lifetime JP4218919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028303A JP4218919B2 (en) 2000-02-04 2000-02-04 Interference fringe analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028303A JP4218919B2 (en) 2000-02-04 2000-02-04 Interference fringe analysis method

Publications (2)

Publication Number Publication Date
JP2001221609A true JP2001221609A (en) 2001-08-17
JP4218919B2 JP4218919B2 (en) 2009-02-04

Family

ID=18553734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028303A Expired - Lifetime JP4218919B2 (en) 2000-02-04 2000-02-04 Interference fringe analysis method

Country Status (1)

Country Link
JP (1) JP4218919B2 (en)

Also Published As

Publication number Publication date
JP4218919B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP2011154042A (en) Wavefront operation and improved 3d measuring apparatus
EP2998693B1 (en) Surface-geometry measurement method and device used therein
JP2020517911A (en) Radius of curvature measurement by spectrum controlled interferometry
TW202004121A (en) Optical measuring device and optical measuring method
JP5428538B2 (en) Interfering device
US7719691B2 (en) Wavefront measuring apparatus for optical pickup
JP4183220B2 (en) Optical spherical curvature radius measuring device
JP4469951B2 (en) Shape / step measurement method using interference fringes
CN109997010A (en) For optimizing the method and apparatus of the optical property of interferometer
US7304745B2 (en) Phase measuring method and apparatus for multi-frequency interferometry
JP6700071B2 (en) Method and apparatus for measuring refractive index distribution of cylindrical optical waveguide
JP4144828B2 (en) Interference fringe measurement analysis method
JP4667965B2 (en) Light beam measuring device
JP2005537475A6 (en) Phase measurement method and multi-frequency interferometer
JP4081538B2 (en) Interference fringe analysis method for transparent parallel plates
JP2001221609A (en) Interference fringe analysis method
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
JP2001201326A (en) Interference fringe measuring and analyzing method
US7701583B2 (en) Coherence spectrometry devices
JP7419603B2 (en) Refractive index measuring device and refractive index measuring method
JP2001050727A (en) Form measuring method using fringe modulation
JPH10170340A (en) Measuring apparatus for interference efficiency of interferometer for ft
KR100747044B1 (en) System for measurement of thickness and surface profile
JP2024530836A (en) Spectrophilometer
JP2022110874A (en) Laser wavelength measurement method and laser wavelength measurement device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term