JP2001219093A - Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material - Google Patents
Classifying method and classifying device for structure including rare earth magnet and ferromagnetic materialInfo
- Publication number
- JP2001219093A JP2001219093A JP2000031832A JP2000031832A JP2001219093A JP 2001219093 A JP2001219093 A JP 2001219093A JP 2000031832 A JP2000031832 A JP 2000031832A JP 2000031832 A JP2000031832 A JP 2000031832A JP 2001219093 A JP2001219093 A JP 2001219093A
- Authority
- JP
- Japan
- Prior art keywords
- ferromagnetic material
- magnet
- rare earth
- temperature
- curie temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003302 ferromagnetic material Substances 0.000 title claims abstract description 51
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 36
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000696 magnetic material Substances 0.000 title description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 230000005291 magnetic effect Effects 0.000 claims description 65
- 238000000926 separation method Methods 0.000 claims description 22
- 230000005674 electromagnetic induction Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 35
- 239000000203 mixture Substances 0.000 abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 56
- 229910052742 iron Inorganic materials 0.000 description 27
- 229910001172 neodymium magnet Inorganic materials 0.000 description 9
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- -1 Sm-Co Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/025—High gradient magnetic separators
- B03C1/031—Component parts; Auxiliary operations
- B03C1/033—Component parts; Auxiliary operations characterised by the magnetic circuit
- B03C1/0332—Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/16—Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
- B03C1/22—Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with non-movable magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/20—Magnetic separation of bulk or dry particles in mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Sorting Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、希土類磁石と強磁
性材とを含んだ構造物から、互いのキュリー温度の差を
利用して分別する方法および分別装置に係わるものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for separating a structure containing a rare earth magnet and a ferromagnetic material by utilizing a difference in Curie temperatures between the structures.
【0002】[0002]
【従来の技術】廃電気・電子機器リサイクルの分別工程
において、永久磁石および永久磁石と固着している金属
類などの強磁性を示す強磁性材は廃電気・電子機器を破
砕工程に入れる前に手作業にて分別されている。一方、
従来、磁性体群の分別方法としては例えば特開平5−2
69402号公報に開示されているような磁気選別法が
用いられ、磁気吸着される磁性部品と磁気吸着されない
磁性部品が分別されてる。同様に例えば、屑鉄等の強磁
性材とプラスチック等の非強磁性材とを分別する工程で
は、磁石の磁気吸引を利用してこれらを選別している。
また、例えば特公平7−106327号公報に開示され
ているように、特性の異なる強磁性フェライト粒子を加
熱して特性の高い(キュリー温度の高いことと同等)フ
ェライト粒子を磁石が内部に固着した磁性ロールの外周
面上に放射方向に鎖状に磁気吸着させスクレッパ板で取
ることで分級する方法がとられている。当該特許では強
磁性材としてフェライトを詳細に説明しているが、希土
類磁石と強磁性材間の分別に係わっていない。2. Description of the Related Art In the separation process of waste electric / electronic equipment recycling, ferromagnetic materials such as permanent magnets and metals adhered to the permanent magnet and exhibiting ferromagnetism are used before waste electric / electronic equipment enters a crushing step. Sorted by hand. on the other hand,
Conventionally, as a method for separating magnetic substance groups, for example, Japanese Patent Laid-Open No. 5-2
A magnetic sorting method as disclosed in Japanese Patent No. 69402 is used to separate magnetic components that are magnetically attracted from magnetic components that are not magnetically attracted. Similarly, for example, in a process of separating a ferromagnetic material such as scrap iron from a non-ferromagnetic material such as plastic, these are separated by using magnetic attraction of a magnet.
Further, as disclosed in, for example, Japanese Patent Publication No. 7-106327, a ferromagnetic ferrite particle having different characteristics is heated to fix a ferrite particle having high characteristics (equivalent to a high Curie temperature) to the inside of the magnet. A method is employed in which a magnetic roll is magnetically adsorbed in a chain shape in the radial direction on the outer peripheral surface of a magnetic roll and is taken out by a scraper plate to perform classification. Although the patent describes ferrite as a ferromagnetic material in detail, it does not deal with the distinction between rare earth magnets and ferromagnetic materials.
【0003】[0003]
【発明が解決しようとする課題】廃電気・電子機器リサ
イクルの分別工程において永久磁石を利用した部材が廃
電気・電子機器を破砕工程に入れる前に手作業にて分別
されている訳は、破砕物の分級を各種寸法の開口を周回
面に設けたドラム等で行う際に、破砕された永久磁石が
ドラム開口部に磁気吸着して開口部を塞ぎ、分級機能を
著しく低下させるためである。更に、現在は永久磁石と
屑鉄等を適切に分別していないために、永久磁石に磁気
吸引された屑鉄等からなる構造物もまた前記開口部を塞
ぐ作用が有ることなど分級する上で不具合があった。故
に、この問題点を解決するために永久磁石と屑鉄等を分
別する必要があったが適当な方法および装置がなかっ
た。また、高価な希土類磁石を資源として利用するため
にも屑鉄等と分別する必要が有ったが適当な方法および
装置がなかった。永久磁石の分別は上記特開平5−26
9402号公報で示した磁気選別機の類似機で可能であ
るが、その際、永久磁石と共に屑鉄等の強磁性材も磁石
吸着されるため、当該磁気選別法では両者を分別できな
い問題点があった。The reason why members using permanent magnets are manually separated before the waste electric / electronic equipment is put into the crushing step in the waste electric / electronic equipment recycling separation step is that the crushing is performed. This is because when the objects are classified using a drum or the like having openings of various sizes provided on the orbital surface, the crushed permanent magnets magnetically attract the drum openings to close the openings, thereby significantly reducing the classification function. Further, since the permanent magnet and the scrap iron are not currently properly separated, the structure made of the scrap iron or the like magnetically attracted to the permanent magnet also has a problem in classifying that the opening has an action of closing the opening. there were. Therefore, in order to solve this problem, it was necessary to separate permanent magnets and scrap iron, but there was no suitable method and apparatus. Further, in order to use expensive rare earth magnets as resources, it was necessary to separate them from scrap iron and the like, but there was no suitable method and apparatus. Separation of permanent magnets is described in JP-A-5-26.
Although it is possible to use a magnetic separator similar to that disclosed in Japanese Patent No. 9402, a ferromagnetic material such as scrap iron is also attracted to the magnet together with the permanent magnet. Was.
【0004】現在、永久磁石としては、Baフェライト
系、Srフェライト系、アルニコ系、Sm-Co系、Nd-Fe-B
系、および、これらを樹脂、プラスチック等に埋め込ん
だボンド系等が実用に供されている。この中で、Nd-Fe-
B系永久磁石は(BH)max=50MGOe以上に及ぶ高い磁石特性
までのものが市販されており、機器の小型化、軽量化、
高性能化等のために需要が増大している。このため、当
該磁石を利用した廃電気・電子機器が今後増加すること
が想定されるために、分別工程を手作業で対応すること
は実質的に困難となる。故に、各種永久磁石、特にNd-F
e-B系永久磁石と屑鉄等の強磁性材を分別する方法およ
び分別装置の開発が迫られている。At present, as permanent magnets, Ba ferrite, Sr ferrite, alnico, Sm-Co, Nd-Fe-B
Systems and bond systems in which these are embedded in resins, plastics and the like have been put to practical use. Among them, Nd-Fe-
B-type permanent magnets with high magnet properties up to (BH) max = 50MGOe or more are commercially available.
Demand is increasing for higher performance. For this reason, it is expected that the number of waste electric / electronic devices using the magnets will increase in the future, and it is substantially difficult to manually cope with the sorting process. Therefore, various permanent magnets, especially Nd-F
Development of a method and apparatus for separating eB-based permanent magnets and ferromagnetic materials such as scrap iron is urgently required.
【0005】また、破砕後の強磁性材に付着している樹
脂、プラスチック等は加熱することにより有害ガスが発
生する可能性があるために、例えば上記特公平7−10
6327号公報で記載されているように、分別材を一括
して加熱することは好ましくない問題点がある。また、
機器内の永久磁石・強磁性材構造物の周囲には金属以外
にもプラスチック等各種材質の部材が配置されており、
破砕時に永久磁石・強磁性材構造物にはこれら各種部材
片が付着している。故に、分別時にこれら付着物を離す
が、従来の磁気選別方法の提案では一旦磁石吸着される
と磁気的に固着した状態とするのみで、例えば、磁気吸
着用磁石と分別吸着された分別物の中間に挟まれたプラ
スチック等を取り除くことができない問題点がある。ま
た、破砕後の大きさ、形状は様々であり、磁気吸引され
ない材の重みによってこれと相対的に小さな磁気吸着さ
れる材が固着されて磁気吸着分別できないために、分別
後の不純物割合を充分に小さくできない問題点がある。[0005] In addition, harmful gas may be generated by heating the resin, plastic and the like adhering to the crushed ferromagnetic material.
As described in Japanese Patent No. 6327, it is not preferable to collectively heat the fractionated material. Also,
Members of various materials such as plastic besides metal are arranged around the permanent magnet / ferromagnetic material structure in the equipment.
At the time of crushing, these various member pieces adhere to the permanent magnet / ferromagnetic material structure. Therefore, these adhering substances are separated at the time of separation, but in the proposal of the conventional magnetic separation method, once the magnet is attracted, only the magnetically fixed state is set. There is a problem that it is not possible to remove the plastic or the like sandwiched in the middle. In addition, the size and shape after crushing are various, and the weight of the material that is not magnetically attracted causes the material that is magnetically attracted to be relatively small to be fixed and cannot be separated by magnetic adsorption. There is a problem that cannot be reduced.
【0006】[0006]
【課題を解決するための手段】この発明に係わる分別方
法は、第1のキュリー温度を有する希土類磁石と上記第1
のキュリー温度より高い第2のキュリー温度を有する強
磁性材とを含む構造物を、上記第1と第2のキュリー温
度の中間温度に加熱する工程と、上記加熱された構造物
の中から上記強磁性材を磁気吸引により選別し第1のシ
ューターへ搬送する工程とを備え、上記第1のキュリー
温度より高い第2のキュリー温度を有する強磁性材を第
1のシューターに、第1のキュリー温度を有する希土類
磁石を含む構造物を第2のシューターに収集するもので
ある。According to the present invention, there is provided a method for separating a rare earth magnet having a first Curie temperature and a first rare earth magnet.
Heating a structure containing a ferromagnetic material having a second Curie temperature higher than the Curie temperature to an intermediate temperature between the first and second Curie temperatures; and Separating the ferromagnetic material by magnetic attraction and transporting the ferromagnetic material to the first shooter, wherein the ferromagnetic material having a second Curie temperature higher than the first Curie temperature is provided to the first shooter by the first Curie. A structure including a rare earth magnet having a temperature is collected in a second shooter.
【0007】また、上記分別方法において、希土類磁石
がNd2Fe14Bを主相とするものである。Further, in the above separation method, the rare earth magnet has Nd 2 Fe 14 B as a main phase.
【0008】この発明に係わる分別装置は、キュリー温
度の異なる希土類磁石と強磁性材とを含む構造物を搬送
する手段と、上記構造物を上記異なるキュリー温度の中
間温度に加熱する手段と、上記加熱された構造物の中か
ら上記強磁性材を磁気吸引する手段とを備えたものであ
る。[0008] The separation apparatus according to the present invention comprises: means for conveying a structure containing a rare earth magnet having a different Curie temperature and a ferromagnetic material; means for heating the structure to an intermediate temperature between the different Curie temperatures; Means for magnetically attracting the ferromagnetic material from the heated structure.
【0009】また、上記分別装置において、加熱手段と
して電磁誘導を用いたものである。Further, in the above-mentioned separation apparatus, electromagnetic induction is used as a heating means.
【0010】また、上記分別装置において、磁気吸引手
段として不均一磁界を印加するものである。さらに、不
均一磁界の印加手段が磁極の向きが不整列な磁石群であ
ることを規定するものである。Further, in the above-mentioned separation apparatus, a non-uniform magnetic field is applied as a magnetic attraction means. Further, it is provided that the means for applying the non-uniform magnetic field is a group of magnets whose magnetic pole directions are not aligned.
【0011】また、上記分別装置において、搬送手段に
励振器を配接したものである。Further, in the above-mentioned separation apparatus, an exciter is connected to the transport means.
【0012】[0012]
【発明の実施の形態】実施の形態1.異なるキュリー温
度を有する希土類磁石と強磁性材とを含む構造物を互い
のキュリー温度の中間温度に加熱することにより、加熱
温度を超えるキュリー温度を有する強磁性材は磁石に磁
気吸引される性質を維持するが、一方、加熱温度以下の
キュリー温度を有する希土類磁石は磁気吸引される性質
を消失する。この状態で磁石に接近させることにより中
間に配した搬送ベルトの表面に前記磁石の磁気吸引力に
より、加熱温度を超えるキュリー温度を有する強磁性材
と加熱温度以下のキュリー温度を有する希土類磁石は分
別される。電磁誘導により加熱することにより絶縁性の
樹脂、プラスチック等を直接加熱することなく導電性の
希土類磁石・強磁性材構造物を加熱できる。磁気吸引付
着した材に不均一磁界を印加する方式とすることで材が
揺動し、磁気吸引された材に付着した磁気吸引されない
材を払い落とす。磁気吸引用磁石を磁極の向きが不整列
な磁石群からなる構成とすることで磁界を不均一化す
る。加熱した材を磁気吸引用磁石に接近させる際に振動
を加える方式とすることにより、磁気吸引されない材に
より動きを阻害されていた材の拘束を解き放ち当該材の
磁気吸引を可能とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 By heating a structure containing a rare earth magnet and a ferromagnetic material having different Curie temperatures to an intermediate temperature between the Curie temperatures of each other, the ferromagnetic material having a Curie temperature exceeding the heating temperature has a property of being magnetically attracted to the magnet. On the other hand, rare earth magnets having a Curie temperature below the heating temperature lose their magnetic attraction properties. In this state, by approaching the magnet to the surface of the conveyor belt arranged in the middle by the magnetic attraction force of the magnet, a ferromagnetic material having a Curie temperature higher than the heating temperature and a rare earth magnet having a Curie temperature lower than the heating temperature are separated. Is done. By heating by electromagnetic induction, a conductive rare earth magnet / ferromagnetic material structure can be heated without directly heating an insulating resin, plastic, or the like. By applying a method of applying a non-uniform magnetic field to the magnetically attracted material, the material swings, and the material that is not magnetically attracted attached to the magnetically attracted material is wiped off. The magnetic attraction is made non-uniform by configuring the magnet for magnetic attraction to be composed of a group of magnets whose magnetic pole directions are not aligned. By using a method in which vibration is applied when the heated material approaches the magnet for magnetic attraction, the restraint of the material whose movement has been hindered by the material that is not magnetically attracted is released, and the material can be magnetically attracted.
【0013】[0013]
【実施例】実施例1.図1は本発明を実施する装置の概
略図である。実施例では、Nd、Fe、Bを主成分とするキ
ュリー温度約300℃の永久磁石、および、Feを主成分と
するキュリー温度約600℃の屑鉄を粉砕機により砕き概
ね粒径10mm以下とした永久磁石および屑鉄から成る希土
類永久磁石・強磁性材構造物1とした。これをホッパー
2から搬送ベルト(1)3の上に供給し、発熱体により当
該構造物1を前記永久磁石のキュリー温度以上(実験で
は約400℃)に加熱する加熱装置4へ搬送した。加熱さ
れた当該構造物1が第2シュータ5に至る過程に、搬送
ベルト(2)8を介して磁気吸引用磁石7が配置されてお
り当該磁石7の磁気吸引により屑鉄は搬送ベルト(2)8
に付着し当該ベルト8と共に搬送することができた。こ
の過程において搬送ベルト(1)3の上には永久磁石が残
され第2シュータ5に材(1)6として集めた。一方、搬
送ベルト(2)8に付着して搬送された屑鉄は磁気吸引用
磁石7の磁気吸引力が弱まる位置に至るまでに搬送ベル
ト(2)8から離れ第1シュータ9に材(2)10として集め
た。以上により、本装置を用いて永久磁石および屑鉄か
ら成る希土類永久磁石・強磁性材構造物において、両者
を分別することができた。[Embodiment 1] FIG. 1 is a schematic diagram of an apparatus for implementing the present invention. In the examples, Nd, Fe, a permanent magnet having a Curie temperature of about 300 ° C. containing B as a main component, and scrap iron having a Curie temperature of about 600 ° C. containing Fe as a main component were crushed by a crusher to have a particle size of approximately 10 mm or less. A rare earth permanent magnet / ferromagnetic material structure 1 made of a permanent magnet and scrap iron was used. This was supplied from the hopper 2 onto the conveyor belt (1) 3, and was conveyed to the heating device 4 which heats the structure 1 above the Curie temperature of the permanent magnet (about 400 ° C. in the experiment) by a heating element. In the process in which the heated structure 1 reaches the second shooter 5, a magnet 7 for magnetic attraction is arranged via a conveyor belt (2) 8, and scrap iron is removed by the magnetic attraction of the magnet 7 to the conveyor belt (2). 8
And was conveyed together with the belt 8. In this process, the permanent magnet was left on the conveyor belt (1) 3 and was collected as the material (1) 6 in the second shooter 5. On the other hand, the scrap iron adhering to and conveyed to the conveyor belt (2) 8 is separated from the conveyor belt (2) 8 until the magnetic attraction force of the magnetic attraction magnet 7 is weakened, and the material (2) is transferred to the first shooter 9. Collected as 10. As described above, the present apparatus was able to separate a permanent magnet and a rare earth permanent magnet / ferromagnetic material structure made of scrap iron using the present apparatus.
【0014】尚、搬送ベルト(1)3および搬送ベルト(2)
8は共に磁石吸引を阻害しないため、および、加熱可能
な材質としてステンレス製とした。分別時間の短縮には
搬送速度を上げることにより行った。これにはキュリー
温度以上に昇温する所要時間を短縮するために発熱体の
温度を高く設定し、設定温度は構造物の温度を放射温度
計により計数しキュリー温度以上(実験では400℃)に
なるように調節した。磁気吸引用磁石7にはエネルギー
積(BH)max=30MGOeのNd-Fe-B永久磁石を利用し、加熱さ
れた希土類永久磁石・強磁性材構造物1からの輻射熱に
よる昇温で減磁することを抑制するために磁気吸引用磁
石7と搬送ベルト(2)8の間に約5mm厚の断熱材を配置し
た。尚、本実施例では、希土類永久磁石・強磁性材構造
物に対向する搬送ベルト(2)8の面と磁気吸引用磁石の
磁極面との面間隔を10mmとし、搬送ベルト(1)3と搬送
ベルト(2)8が対向する面間隔を20mmとした。The transport belt (1) 3 and the transport belt (2)
8 is made of stainless steel because it does not hinder magnet attraction and can be heated. The separation time was shortened by increasing the transport speed. In order to reduce the time required to raise the temperature above the Curie temperature, the temperature of the heating element is set high, and the temperature of the structure is counted using a radiation thermometer to reach the temperature above the Curie temperature (400 ° C in the experiment). Adjusted to be. An Nd-Fe-B permanent magnet having an energy product (BH) max = 30MGOe is used as the magnet 7 for magnetic attraction, and is demagnetized by temperature rise due to radiant heat from the heated rare earth permanent magnet / ferromagnetic material structure 1. In order to suppress this, a heat insulating material having a thickness of about 5 mm was arranged between the magnet 7 for magnetic attraction and the conveyor belt (2) 8. In this embodiment, the distance between the surface of the conveyor belt (2) 8 facing the rare earth permanent magnet and the ferromagnetic material structure and the magnetic pole surface of the magnet for magnetic attraction is 10 mm, and the conveyor belt (1) 3 The distance between the surfaces facing the conveyor belt (2) 8 was 20 mm.
【0015】実施例2.図2は本発明の加熱方式として
高周波加熱炉13を利用して実施した分別装置の概略図
である。本実施例2では高周波コイルによる電磁誘導に
よって希土類永久磁石・強磁性材構造物1を加熱するた
めに、搬送ベルト(3)12には絶縁性材として耐熱ゴム
シートを利用、但し、昇温した希土類永久磁石・強磁性
材構造物1と直接接触することを避けるために表面にガ
ラスウールを張り付けた。当該加熱方式においても実施
例1で使用した希土類永久磁石・強磁性材構造物1を40
0℃以上に加熱することができ、Nd-Fe-B磁石と屑鉄を分
別することができた。Embodiment 2 FIG. FIG. 2 is a schematic diagram of a separation apparatus implemented using a high-frequency heating furnace 13 as a heating method of the present invention. In Example 2, in order to heat the rare earth permanent magnet / ferromagnetic material structure 1 by electromagnetic induction by a high-frequency coil, a heat-resistant rubber sheet was used as an insulating material for the transport belt (3) 12, but the temperature was raised. Glass wool was attached to the surface to avoid direct contact with the rare earth permanent magnet / ferromagnetic material structure 1. Also in the heating method, the rare earth permanent magnet / ferromagnetic material structure 1 used in the first embodiment was used for 40 times.
It could be heated to 0 ℃ or more, and Nd-Fe-B magnet and scrap iron could be separated.
【0016】尚、搬送ベルト(3)12上に位置する材に
比較して搬送ベルト(2)8に磁気吸引付着した材の温度
は低く、材と搬送ベルト(3)12を介して位置する高周
波加熱炉13の電磁誘導による加熱が搬送ベルト(3)1
2の上の材に有効に作用していることが分かった。この
事象は、磁気吸引用磁石7の昇温による磁力の低下の抑
制、搬送ベルト(2)8の面上に磁気吸引付着した材の昇
温抑制による当該材の磁力の低下の抑制(即ち、付着力
の低下抑制)に有効的であった。The temperature of the material magnetically attracted to the conveyor belt (2) 8 is lower than that of the material located on the conveyor belt (3) 12, and the material is located via the conveyor belt (3) 12 with the material. Heating of the high-frequency heating furnace 13 by electromagnetic induction is performed by the conveyor belt (3) 1.
It turned out that it works effectively on the material above No. 2. This phenomenon is caused by the suppression of the decrease in the magnetic force due to the temperature rise of the magnet for magnetic attraction 7 and the suppression of the decrease in the magnetic force of the material due to the suppression of the temperature rise of the material magnetically attached to the surface of the conveyor belt (2) 8 (ie, It was effective in suppressing the decrease in adhesive force).
【0017】実施例3.図3は本発明で実施した、磁極
の向きが反転した磁石配置を含む磁気吸引用磁石14を
利用した分別装置の概略図である。本実施例ではエネル
ギー積(BH)max=30MGOeのNd-Fe-B永久磁石棒(10mm×10m
m×50mm)を磁極の向きを反転させながら等間隔に配置
した。その他の仕様は実施例1の内容と同一である。当
該磁気吸引用磁石を用いる方式においても加熱された希
土類永久磁石・強磁性材構造物1の中から400℃以上の
キュリー温度を有する屑鉄を搬送ベルト2面上に磁気吸
引することができ、 Nd-Fe-B磁石と屑鉄を分別すること
ができた。本実施例による磁気吸引用磁石14を用いる
と、磁極の向きを一致させて整列させた場合(実施例
1)に比較して、搬送ベルト(2)8の面上で磁力線の向
きが反転する等するために屑鉄が揺動することが観測さ
れた。これにより、搬送ベルト(2)8面と屑鉄で挟まれ
ていたNd-Fe-B永久磁石が付着を解かれる効果が得ら
れ、磁石と屑鉄の分別能が向上した。Embodiment 3 FIG. FIG. 3 is a schematic view of a sorting apparatus using a magnetic attraction magnet 14 including a magnet arrangement in which the directions of magnetic poles are reversed, implemented in the present invention. In this embodiment, an Nd-Fe-B permanent magnet rod (10 mm × 10 m) having an energy product (BH) max = 30 MGOe
m × 50 mm) were arranged at equal intervals while reversing the direction of the magnetic poles. Other specifications are the same as those in the first embodiment. Also in the method using the magnet for magnetic attraction, scrap iron having a Curie temperature of 400 ° C. or more can be magnetically attracted from the heated rare-earth permanent magnet / ferromagnetic material structure 1 onto the surface of the transport belt 2. -Fe-B magnet and scrap iron could be separated. When the magnet 14 for magnetic attraction according to the present embodiment is used, the direction of the magnetic force lines is reversed on the surface of the conveyor belt (2) 8 as compared with the case where the magnetic poles are aligned and aligned (Example 1). It was observed that the scrap iron fluctuated to equalize. As a result, the Nd-Fe-B permanent magnet sandwiched between the eight surfaces of the conveyor belt (2) and the scrap iron was released from the adhesion, and the ability to separate the magnet and scrap iron was improved.
【0018】実施例4.図4は本発明で実施した、第2
シュータ5に至る搬送中に混合物を励振することを利用
した分別装置の概略図である。更に、図5に希土類永久
磁石・強磁性材構造物1を励振する部位(図4中X部)
の拡大概略図を示す。励振機15は、放射状に羽根が設
けられた回転部材を有し、羽根が回転する際に搬送ベル
ト(1)3を跳ね上げる機構を有している。その他の仕様
は実施例1の内容と同一である。当該励振機を設けた場
合においても加熱された希土類永久磁石・強磁性材構造
物1の中から400℃以上のキュリー温度を有する屑鉄を
搬送ベルト(2)8面上に磁気吸引することができ、Nd-Fe
-B磁石と屑鉄を分別することができた。本実施例による
励振機15を用いれば、図5に模擬的に示した様に、Nd
-Fe-B磁石粒と搬送ベルト(1)3に挟まれて磁気吸引漏れ
となる屑鉄18も羽根による配置擾乱により磁気吸引容
易となるために、分別漏れが低減した。Embodiment 4 FIG. FIG. 4 shows a second embodiment implemented in the present invention.
FIG. 4 is a schematic diagram of a separation apparatus that utilizes excitation of a mixture during transportation to a shooter 5. Further, FIG. 5 shows a portion for exciting the rare-earth permanent magnet / ferromagnetic material structure 1 (X part in FIG. 4).
FIG. The exciter 15 has a rotating member having blades provided radially, and has a mechanism for flipping up the transport belt (1) 3 when the blades rotate. Other specifications are the same as those in the first embodiment. Even when the exciter is provided, scrap iron having a Curie temperature of 400 ° C. or more can be magnetically attracted from the heated rare-earth permanent magnet / ferromagnetic material structure 1 onto the surface of the conveyor belt (2) 8. , Nd-Fe
-The B magnet and scrap iron could be separated. With the use of the exciter 15 according to the present embodiment, as schematically shown in FIG.
The scrap iron 18 which is magnetically attracted and leaked between the -Fe-B magnet particles and the conveyor belt (1) 3 is also easily magnetically attracted by the disturbed arrangement of the blades, so that the sorting leakage is reduced.
【0019】実施例5.図6は本発明で実施した、磁気
吸引用磁石14をローラ11の内部に配置した分別装置
の概略図である。磁気吸引用磁石14を搬送ベルト20
が周回するローラ11の内部に配置した(但し、磁石は
ローラの回転により回転軸の周りを公転しても良いし自
転しても良い配置、動きを付与することも可能であ
る)。希土類永久磁石・強磁性材構造物1は、実施例1
に利用した強磁性材と同一仕様である。搬送ベルト20
上に有る希土類永久磁石・強磁性材構造物1を、搬送路
に沿う熱放射が可能な加熱炉19により放射温度計によ
り400℃が計測される様に加熱し、磁気吸引用磁石14
を内在したローラ11へ移動させた。400℃を超えるキ
ュリー温度を有する屑鉄は磁気吸引用磁石14の磁気吸
引力により、搬送ベルト20がローラ11に接触してい
る間ベルト面に磁気吸引付着し、一方、400℃以下のキ
ュリー温度を有するNd-Fe-B材は(14)磁気吸引用磁石に
より磁気吸引されない。このため、磁力吸引された屑鉄
は搬送ベルトがローラに触れている間搬送ベルト20に
付着し更に搬送され磁力吸引が弱まると搬送ベルト20
から離れ、一方、磁力吸引されないNd-Fe-B材は搬送ベ
ルト20がローラを折り返す以降は搬送ベルト20から
離れる。よって、これら離点の鉛直下方にシュータ1、
2を配置する方式による装置においてもNd-Fe-B材と屑
鉄を分別が可能であった。Embodiment 5 FIG. FIG. 6 is a schematic view of a sorting apparatus according to the present invention, in which the magnetic attraction magnet 14 is disposed inside the roller 11. Transfer the magnet 14 for magnetic attraction to the transport belt 20
Are arranged inside the roller 11 which rotates (however, the magnet may be revolved around the rotation axis by the rotation of the roller, or may be arranged and moved so as to rotate). Rare-earth permanent magnet / ferromagnetic material structure 1 is described in Example 1.
It has the same specifications as the ferromagnetic material used for the above. Conveyor belt 20
The upper part of the rare earth permanent magnet / ferromagnetic material structure 1 is heated by a heating furnace 19 capable of radiating heat along the conveyance path so that the temperature is measured at 400 ° C. by a radiation thermometer.
Was moved to the roller 11 inside. Scrap iron having a Curie temperature exceeding 400 ° C. adheres to the belt surface magnetically while the conveyor belt 20 is in contact with the roller 11 due to the magnetic attraction of the magnet 14 for magnetic attraction, while reducing the Curie temperature below 400 ° C. The Nd—Fe—B material is not magnetically attracted by the magnetic attraction magnet (14). For this reason, the scrap iron that has been magnetically attracted adheres to the transport belt 20 while the transport belt is in contact with the rollers, and is further transported.
On the other hand, the Nd-Fe-B material that is not attracted by the magnetic force separates from the transport belt 20 after the transport belt 20 folds the rollers. Therefore, the shooter 1, vertically below these separation points,
Even in the apparatus using the method of arranging 2, the Nd-Fe-B material and the scrap iron could be separated.
【0020】以上に本発明の実施例を詳述したが、本発
明の有効性は下記の内容にても変わらない。即ち、詳述
した各実施例では搬送ベルト(1)3を水平方向に動かし
た例を示したが、ベルトを傾斜させることにより材を自
重によりベルト上を移動させることが可能であることを
確認しており、本方式を利用することも可能である。Although the embodiments of the present invention have been described in detail above, the effectiveness of the present invention is not changed by the following contents. That is, in each of the embodiments described in detail, the example in which the transport belt (1) 3 is moved in the horizontal direction is shown, but it is confirmed that the material can be moved on the belt by its own weight by tilting the belt. This method can be used.
【0021】また、実施例1では、搬送ベルト(2)8の
材質に非磁性ステンレスを用いたが、銅等の熱伝導性の
高い材質とすることにより放熱性を向上させ、磁気吸着
材の降温、磁気吸引用磁石の昇温抑制を図ることにより
分別能を改善することが可能である。また、実施例1で
は、混合物に対向する搬送ベルト(2)8の面と磁気吸引
用磁石の磁極面との面間隔を10mmとし、搬送ベルト(1)
3と搬送ベルト(2)8が対向する面間隔を20mmとした
が、磁気吸引用磁石としてより高い磁力を有する磁石を
利用することで各面間隔を広げることができる。In the first embodiment, the non-magnetic stainless steel is used as the material of the conveyor belt (2) 8. However, the heat radiation is improved by using a material having high thermal conductivity such as copper, and the magnetic adsorbing material is improved. It is possible to improve the sorting ability by suppressing the temperature decrease and the temperature increase of the magnetic attraction magnet. In the first embodiment, the distance between the surface of the conveyor belt (2) 8 facing the mixture and the magnetic pole surface of the magnetic attraction magnet is 10 mm, and the conveyor belt (1)
Although the distance between the surfaces of the belt 3 and the conveyor belt (2) 8 is set to 20 mm, the distance between the surfaces can be increased by using a magnet having a higher magnetic force as the magnet for magnetic attraction.
【0022】実施例2で利用した高周波加熱によれば、
例えば、希土類永久磁石・強磁性材構造物内に混入した
樹脂、プラスチックなどが発熱源となることが無く、有
害ガスの発生を抑制することができる。また、永久磁石
を利用した機器部材の破砕材には、強磁性では無い部材
や樹脂、プラスチック等の非金属が含まれている。本発
明の実施例で示した装置のみではこれらを分別すること
は出来ないが、本発明の装置により第1シュータに集め
られる粒に対して、加熱することなく磁気選別すれば永
久磁石とその他を分別することが出来る。According to the high-frequency heating used in the second embodiment,
For example, resin, plastic, or the like mixed in the rare-earth permanent magnet / ferromagnetic material structure does not become a heat source, and generation of harmful gas can be suppressed. In addition, the crushed material of the equipment member using the permanent magnet includes a non-ferromagnetic member and a nonmetal such as resin and plastic. Although it is not possible to separate these with the apparatus shown in the embodiment of the present invention alone, if the magnetic particles are collected without heating the particles collected in the first shooter by the apparatus of the present invention, the permanent magnet and others can be separated. Can be separated.
【0023】また、実施例3では不均一磁界を発生させ
る磁石として棒磁石の磁極を反転した配置を利用した
が、電磁石により発生する磁界の強さ向きを時間依存さ
せる方法、並びに、RBa2Cu3O7(RはY等の希土類元素)
で表記される相で代表される酸化物系超電導体を磁界中
で冷却して超電導と成したものを固着あるいは回転物と
して磁気吸引磁石として利用することもできる。In the third embodiment, an arrangement in which the poles of a bar magnet are reversed is used as a magnet for generating a non-uniform magnetic field. However, a method of making the strength direction of a magnetic field generated by an electromagnet time-dependent, and RBa 2 Cu 3 O7 (R is a rare earth element such as Y)
A superconductor obtained by cooling an oxide superconductor represented by a phase represented by the following formula in a magnetic field to form a superconductor can be used as a magnetic attracting magnet as a fixed or rotating object.
【0024】また、実施例4では、励振の方法として放
射状に羽根が設けられた回転部材が回転する際に搬送ベ
ルトを跳ね上げる機構を利用したが、励振には圧電体や
磁歪素子の振動を利用することもできる。Further, in the fourth embodiment, as a method of excitation, a mechanism for flipping up the transport belt when the rotating member having the radially arranged blades rotates is used, but the vibration of the piezoelectric body or the magnetostrictive element is used for the excitation. Can also be used.
【0025】[0025]
【発明の効果】以上のように、この発明によれば、キュ
リー温度の異なる希土類永久磁石と強磁性材とを含む構
造物を、互いのキュリー温度の中間温度に加熱して、磁
気吸引される材、磁気吸引されない材としたので、両者
を分別することが可能となり、手作業によらない分別装
置を提供することができる。As described above, according to the present invention, a structure including a rare-earth permanent magnet and a ferromagnetic material having different Curie temperatures is heated to an intermediate temperature between the Curie temperatures of each other to be magnetically attracted. Since the material and the material are not magnetically attracted, it is possible to separate them, and it is possible to provide a separation device that does not require manual operation.
【図1】 本発明の分別方法を実施した分別装置の概略
図である。FIG. 1 is a schematic diagram of a separation apparatus that performs a separation method of the present invention.
【図2】 本発明の加熱方式として高周波加熱炉を利用
実施した分別装置の概略図である。FIG. 2 is a schematic diagram of a separation apparatus using a high-frequency heating furnace as a heating method of the present invention.
【図3】 本発明で実施した磁極の向きが反転した磁石
配置を含む磁気吸引用磁石を利用した分別装置の概略図
である。FIG. 3 is a schematic diagram of a separation apparatus using a magnet for magnetic attraction including a magnet arrangement with reversed magnetic poles implemented in the present invention.
【図4】 本発明で実施した第2シュータに至る搬送中
に混合物を励振することを利用した分別装置の概略図で
ある。FIG. 4 is a schematic view of a separation apparatus utilizing excitation of a mixture during transportation to a second chute implemented in the present invention.
【図5】 図4中Xの強磁性材混合物を加振する部位の
拡大概略図である。FIG. 5 is an enlarged schematic view of a portion where the ferromagnetic material mixture indicated by X in FIG. 4 is vibrated.
【図6】 本発明で実施した磁気吸引用磁石をローラの
内部に配置した分別装置の概略図である。FIG. 6 is a schematic diagram of a sorting apparatus in which a magnet for magnetic attraction implemented in the present invention is disposed inside a roller.
1 希土類永久磁石・強磁性材構造物、 2 ホッ
パー、3 搬送ベルト(1)、 4 加熱装置、
5 第2シュータ、6 材(1)、 7 磁気吸引
用磁石、 8 搬送ベルト(2)、9 第1シュー
タ、 10 材(2)、 11 ローラ、12
搬送ベルト(3)、 13 高周波加熱炉、14 磁
気吸引用磁石、 15 励振機、16 Nd-Fe-B永
久磁石、 17 屑鉄、 18 屑鉄、19
加熱炉、 20 搬送ベルト。1 rare earth permanent magnet / ferromagnetic material structure, 2 hopper, 3 conveyor belt (1), 4 heating device,
5 second shooter, 6 material (1), 7 magnet for magnetic attraction, 8 conveyor belt (2), 9 first shooter, 10 material (2), 11 roller, 12
Conveyor belt (3), 13 high-frequency heating furnace, 14 magnet for magnetic attraction, 15 exciter, 16 Nd-Fe-B permanent magnet, 17 scrap iron, 18 scrap iron, 19
Heating furnace, 20 conveyor belt.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 健 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 薮 重洋 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Araki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Shigehiro Yabu 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Rishi Electric Co., Ltd.
Claims (7)
と上記第1のキュリー温度より高い第2のキュリー温度を
有する強磁性材とを含む構造物を、上記第1と第2のキ
ュリー温度の中間温度に加熱する工程と、上記加熱され
た構造物の中から上記強磁性材を磁気吸引により選別し
第1のシューターへ搬送する工程とを備え、上記第1の
キュリー温度より高い第2のキュリー温度を有する強磁
性材を第1のシューターに、第1のキュリー温度を有す
る希土類磁石を含む構造物を第2のシューターに収集す
ることを特徴とする希土類磁石と強磁性材とを含む構造
物の分別方法。1. A structure comprising a rare-earth magnet having a first Curie temperature and a ferromagnetic material having a second Curie temperature higher than the first Curie temperature, wherein a structure comprising the first and second Curie temperatures is provided. A step of heating to an intermediate temperature, and a step of selecting the ferromagnetic material from the heated structure by magnetic attraction and transporting the ferromagnetic material to a first shooter, wherein a second temperature higher than the first Curie temperature is provided. A structure including a rare earth magnet and a ferromagnetic material, wherein a ferromagnetic material having a Curie temperature is collected in a first shooter, and a structure including a rare earth magnet having a first Curie temperature is collected in a second shooter. How to sort things.
を特徴とする請求項1に記載の希土類磁石と強磁性材と
を含む構造物の分別方法。2. The method for separating a structure containing a rare earth magnet and a ferromagnetic material according to claim 1, wherein the rare earth magnet has Nd 2 Fe 14 B as a main phase.
性材とを含む構造物を搬送する手段と、上記構造物を上
記異なるキュリー温度の中間温度に加熱する手段と、上
記加熱された構造物の中から上記強磁性材を磁気吸引す
る手段とを備えたことを特徴とする分別装置。3. A means for transporting a structure containing a rare earth magnet having a different Curie temperature and a ferromagnetic material, a means for heating the structure to an intermediate temperature between the different Curie temperatures, Means for magnetically attracting the ferromagnetic material from the inside thereof.
特徴とする請求項3に記載の分別装置。4. The separation apparatus according to claim 3, wherein electromagnetic induction is used as the heating means.
ることを特徴とする請求項3に記載の分別装置。5. The separation apparatus according to claim 3, wherein a non-uniform magnetic field is applied as the magnetic attraction means.
整列な磁石群であることを特徴とする請求項5に記載の
分別装置。6. The sorting apparatus according to claim 5, wherein the means for applying the non-uniform magnetic field is a group of magnets whose magnetic pole directions are not aligned.
とする請求項3に記載の分別装置。7. The separation apparatus according to claim 3, wherein an exciter is connected to the transport means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031832A JP2001219093A (en) | 2000-02-09 | 2000-02-09 | Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031832A JP2001219093A (en) | 2000-02-09 | 2000-02-09 | Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001219093A true JP2001219093A (en) | 2001-08-14 |
Family
ID=18556528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000031832A Pending JP2001219093A (en) | 2000-02-09 | 2000-02-09 | Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001219093A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007210780A (en) * | 2006-02-13 | 2007-08-23 | Maruyasu Kikai Kk | Belt conveyor |
WO2008142197A1 (en) * | 2007-05-18 | 2008-11-27 | Outotec Oyj | Hot magnetic separator process and apparatus |
GB2500202A (en) * | 2012-03-13 | 2013-09-18 | Vacuumschmelze Gmbh & Co Kg | Classifying particles according to magnetic transition temperature |
JP2015216777A (en) * | 2014-05-12 | 2015-12-03 | 三菱マテリアル株式会社 | Method of magnet collection from rotor, and magnet collection facility |
US9498782B2 (en) | 2012-03-13 | 2016-11-22 | Vacummschmelze Gmbh & Co. Kg | Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange |
JP2017051948A (en) * | 2012-02-09 | 2017-03-16 | アー・カー・アー・イー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディート・ゲゼルシャフトAkai Gmbh & Co. Kg | Process and apparatus for separating all non-magnetic particle from agglomerate of metal scrap so as to attain pure iron scrap |
CN107159455A (en) * | 2017-05-11 | 2017-09-15 | 肖凤菊 | A kind of nonmetallic mineral transports sorting unit |
JP2017202460A (en) * | 2016-05-12 | 2017-11-16 | トヨタ自動車株式会社 | Magnetic selector |
KR20180017617A (en) * | 2016-08-10 | 2018-02-21 | (주) 대원씨앤알 | Dust cover inspection apparatus for ball joint |
CN108789174A (en) * | 2018-06-04 | 2018-11-13 | 金华职业技术学院 | A kind of fluid precision separator for rod iron abrasive Flow |
CN109250523A (en) * | 2018-10-31 | 2019-01-22 | 安徽科信矿山机械制造有限公司 | A kind of ore classification collecting box |
CN110302901A (en) * | 2019-07-09 | 2019-10-08 | 金华落日新能源科技有限公司 | A kind of workshop iron aluminium skimmings recycling separation equipment |
JP2020049416A (en) * | 2018-09-26 | 2020-04-02 | 太平洋セメント株式会社 | Processing method and processor of metal-containing wastes |
JP2020066748A (en) * | 2018-10-22 | 2020-04-30 | 国立大学法人 鹿児島大学 | Recycling method of rare earth-iron-based magnetic material |
WO2024126821A1 (en) * | 2022-12-16 | 2024-06-20 | Brgm | Method for recovering permanent magnets and valuable metals from hard disks |
-
2000
- 2000-02-09 JP JP2000031832A patent/JP2001219093A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007210780A (en) * | 2006-02-13 | 2007-08-23 | Maruyasu Kikai Kk | Belt conveyor |
WO2008142197A1 (en) * | 2007-05-18 | 2008-11-27 | Outotec Oyj | Hot magnetic separator process and apparatus |
JP2017051948A (en) * | 2012-02-09 | 2017-03-16 | アー・カー・アー・イー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディート・ゲゼルシャフトAkai Gmbh & Co. Kg | Process and apparatus for separating all non-magnetic particle from agglomerate of metal scrap so as to attain pure iron scrap |
GB2500202A (en) * | 2012-03-13 | 2013-09-18 | Vacuumschmelze Gmbh & Co Kg | Classifying particles according to magnetic transition temperature |
GB2500202B (en) * | 2012-03-13 | 2015-11-25 | Vacuumschmelze Gmbh & Co Kg | Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange |
DE102013102154B4 (en) * | 2012-03-13 | 2016-09-15 | Vacuumschmelze Gmbh & Co. Kg | Method for producing a magnetocalorically active component for magnetic heat exchange |
US9498782B2 (en) | 2012-03-13 | 2016-11-22 | Vacummschmelze Gmbh & Co. Kg | Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange |
JP2015216777A (en) * | 2014-05-12 | 2015-12-03 | 三菱マテリアル株式会社 | Method of magnet collection from rotor, and magnet collection facility |
JP2017202460A (en) * | 2016-05-12 | 2017-11-16 | トヨタ自動車株式会社 | Magnetic selector |
KR20180017617A (en) * | 2016-08-10 | 2018-02-21 | (주) 대원씨앤알 | Dust cover inspection apparatus for ball joint |
CN107159455A (en) * | 2017-05-11 | 2017-09-15 | 肖凤菊 | A kind of nonmetallic mineral transports sorting unit |
CN107159455B (en) * | 2017-05-11 | 2019-04-26 | 江西永丰县金丰萤石有限公司 | A kind of nonmetallic mineral transport sorting unit |
CN108789174A (en) * | 2018-06-04 | 2018-11-13 | 金华职业技术学院 | A kind of fluid precision separator for rod iron abrasive Flow |
CN108789174B (en) * | 2018-06-04 | 2020-04-21 | 金华职业技术学院 | Fluid precise separation device for steel bar abrasive flow |
JP2020049416A (en) * | 2018-09-26 | 2020-04-02 | 太平洋セメント株式会社 | Processing method and processor of metal-containing wastes |
JP7007034B2 (en) | 2018-09-26 | 2022-02-10 | 太平洋セメント株式会社 | Metal-containing waste treatment method and treatment equipment |
JP2020066748A (en) * | 2018-10-22 | 2020-04-30 | 国立大学法人 鹿児島大学 | Recycling method of rare earth-iron-based magnetic material |
JP7228873B2 (en) | 2018-10-22 | 2023-02-27 | 国立大学法人 鹿児島大学 | Recycling method of rare earth-ferrous magnetic materials |
CN109250523A (en) * | 2018-10-31 | 2019-01-22 | 安徽科信矿山机械制造有限公司 | A kind of ore classification collecting box |
CN110302901A (en) * | 2019-07-09 | 2019-10-08 | 金华落日新能源科技有限公司 | A kind of workshop iron aluminium skimmings recycling separation equipment |
WO2024126821A1 (en) * | 2022-12-16 | 2024-06-20 | Brgm | Method for recovering permanent magnets and valuable metals from hard disks |
FR3143386A1 (en) * | 2022-12-16 | 2024-06-21 | Brgm | Process for recovering permanent magnets and valuable metals from hard drives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001219093A (en) | Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material | |
CA2834663C (en) | Process and device for separation of all non-magnetic particles from a conglomerate of metal scrap in order to achieve pure iron scrap | |
US11250980B2 (en) | System and method for the recycling of rare earth magnets | |
JP2009539599A (en) | Magnetic sorting machine and sorting method for ferromagnetic materials | |
AU2016362141A1 (en) | Magnetic separator, magnetic separation method, and method for manufacturing iron source | |
JP3063560B2 (en) | Demagnetization method and demagnetization device for anisotropic magnet | |
JP4385469B2 (en) | Method for separating structures containing ferrite magnets | |
EP0687504A1 (en) | Process and device for separating stainless steel from mixed material containing it | |
KR101574843B1 (en) | Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange | |
JPH05146708A (en) | Sorting apparatus for crushed wastes | |
JP5921426B2 (en) | Rotating drum for neodymium magnet separation, neodymium magnet recovery device | |
US9498782B2 (en) | Method for classifying articles and method for fabricating a magnetocalorically active working component for magnetic heat exchange | |
CN217221909U (en) | Magnetic roller for dry magnetic separation device for minerals, magnetic separation assembly and dry magnetic separation device for minerals | |
JP3307443B2 (en) | Sorting method of magnetic powder | |
JP2004071854A (en) | Anisotropic sheet magnet and its manufacturing method | |
JP2722429B2 (en) | Magnetic powder sorting method and magnetic sorting device | |
JPH081041A (en) | Device for separating iron scraps from crushed material | |
JP2783995B2 (en) | Method and apparatus for separating weak magnetic metal from waste | |
JP2004202338A (en) | Eddy current type sorting method for non-ferrous metal entity and apparatus therefor | |
KR20010055821A (en) | Velt type magnetic separator for removing fine iron-particles on plates and sheets | |
JP2006068647A (en) | Magnetic separation apparatus for granular substance | |
CN210545677U (en) | Apparatus for separating magnetic impurities | |
US823492A (en) | Magnetic separator. | |
Wang et al. | Applying underwater explosion for the liberation of neodymium magnet rotor followed by thermal treatment for recycling | |
JPH09175624A (en) | Electromagnetic vibrating feeder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040630 |