JP2001205277A - Method and apparatus for removing hardly decomposable organic compound in water - Google Patents
Method and apparatus for removing hardly decomposable organic compound in waterInfo
- Publication number
- JP2001205277A JP2001205277A JP2000346048A JP2000346048A JP2001205277A JP 2001205277 A JP2001205277 A JP 2001205277A JP 2000346048 A JP2000346048 A JP 2000346048A JP 2000346048 A JP2000346048 A JP 2000346048A JP 2001205277 A JP2001205277 A JP 2001205277A
- Authority
- JP
- Japan
- Prior art keywords
- water
- tower
- oxidation
- ozone
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、浸出水、下水、工
業排水、河川水、湖沼水、池の水、水道水、地下水等の
水に含まれるダイオキシン、環境ホルモンのような難分
解性有機化合物の除去方法および装置に関する。BACKGROUND OF THE INVENTION The present invention relates to dioxin contained in water such as leachate, sewage, industrial wastewater, river water, lake water, pond water, tap water, groundwater, etc. The present invention relates to a method and an apparatus for removing a compound.
【0002】[0002]
【従来の技術】従来、一般廃棄物最終処分場の廃棄物置
き場等から雨水に伴って出る浸出水は、図12のフロー
チャートに示すように、調整槽およびカルシウム除去設
備に導入してここで水量やpHの調整およびカルシウム
除去を行い、その後生物処理設備に送って接触曝気法や
回転円板法により汚水中の有機物や窒素成分を生物学的
に処理している。そして、生物処理水を凝集槽に導いて
凝集剤の添加により汚染物質を凝集させ、この凝集処理
水を凝集沈殿槽に送って凝集物を沈降分離するととも
に、上澄水は砂濾過塔および活性炭吸着塔を経て処理水
として系外へ放流している。2. Description of the Related Art Conventionally, leachate generated along with rainwater from a waste storage site of a general waste final disposal site is introduced into a regulating tank and a calcium removal facility as shown in a flowchart of FIG. After that, it adjusts pH and removes calcium, and then sends it to biological treatment equipment to biologically treat organic matter and nitrogen components in sewage by contact aeration and rotating disk method. Then, the biologically treated water is introduced into a coagulation tank to coagulate contaminants by adding a coagulant, and the coagulated water is sent to a coagulation sedimentation tank to settle and separate the agglomerates. It is discharged outside the system as treated water through the tower.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記し
たような最終処分場浸出水や産業廃水などの汚水中に微
量含まれているダイオキシン類などの有害な難分解性有
機化合物は、上記のような方法では処理されずに残存す
る場合が多い。However, harmful hard-to-decompose organic compounds such as dioxins contained in trace amounts of effluent such as leachate at final disposal sites and industrial wastewater as described above are as described above. It often remains without being treated by the method.
【0004】本発明は、浸出水、下水、工業排水、河川
水、湖沼水、池の水、水道水、地下水等に含まれるダイ
オキシン、環境ホルモン等の難分解性有機化合物を効果
的に除去することができる方法および装置を提供するこ
とを課題とする。The present invention effectively removes hardly decomposable organic compounds such as dioxins and environmental hormones contained in leachate, sewage, industrial effluent, river water, lake water, pond water, tap water, groundwater and the like. An object of the present invention is to provide a method and an apparatus that can perform the method.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めに、第1の水中の難分解性有機化合物の除去方法は、
処理すべき水を、触媒酸化塔において酸化触媒の存在下
にオゾンで酸化処理し、次いで促進酸化塔においてさら
に紫外線およびオゾンで酸化処理することを特徴とす
る。In order to solve the above-mentioned problems, a first method for removing a hardly decomposable organic compound in water is as follows.
The water to be treated is oxidized with ozone in the presence of an oxidation catalyst in a catalytic oxidation tower, and then further oxidized with ultraviolet light and ozone in a promoted oxidation tower.
【0006】第2の水中の難分解性有機化合物の除去方
法は、処理すべき水を、促進酸化塔において紫外線およ
びオゾンで酸化処理し、次いで触媒酸化塔においてさら
に酸化触媒の存在下にオゾンで酸化処理することを特徴
とする。A second method for removing hardly decomposable organic compounds in water is to oxidize water to be treated with ultraviolet light and ozone in a promoted oxidation tower, and then in a catalytic oxidation tower with ozone in the presence of an oxidation catalyst. It is characterized by performing an oxidation treatment.
【0007】第3の水中の難分解性有機化合物の除去方
法は、処理すべき水を、酸化反応塔の触媒酸化帯域にお
いて酸化触媒の存在下にオゾンで酸化処理し、次いで同
塔の促進酸化帯域においてさらに紫外線およびオゾンで
酸化処理することを特徴とする。A third method for removing hardly decomposable organic compounds in water is to oxidize water to be treated with ozone in the presence of an oxidation catalyst in a catalytic oxidation zone of an oxidation reaction tower, and then to promote accelerated oxidation of the tower. It is characterized in that the zone is further oxidized with ultraviolet light and ozone.
【0008】第4の水中の難分解性有機化合物の除去方
法は、処理すべき水を、酸化反応塔の促進酸化帯域にお
いて紫外線およびオゾンで酸化処理し、次いで触媒酸化
帯域においてさらに酸化触媒の存在下にオゾンで酸化処
理することを特徴とする。In a fourth method for removing hardly decomposable organic compounds in water, the water to be treated is oxidized with ultraviolet light and ozone in an accelerated oxidation zone of an oxidation reaction tower, and then the presence of an oxidation catalyst in a catalytic oxidation zone. It is characterized in that it is oxidized with ozone below.
【0009】第5の水中の難分解性有機化合物の除去方
法は、処理すべき水を、触媒酸化塔において酸化触媒の
存在下にオゾンで酸化処理することを特徴とする。A fifth method for removing hardly decomposable organic compounds in water is characterized in that water to be treated is oxidized with ozone in a catalytic oxidation tower in the presence of an oxidation catalyst.
【0010】第1〜5の方法において、処理すべき水
は、例えば、一般廃棄物最終処分場の廃棄物置き場等か
ら雨水に伴って出る浸出水や、上水、下水、工業排水、
河川水、湖沼水、池の水、水道水、地下水などである。
このような水は、ダイオキシンや環境ホルモンのような
難分解性有機化合物を含んでいることが多い。In the first to fifth methods, the water to be treated is, for example, leachate discharged from a waste storage site of a general waste final disposal site along with rainwater, clean water, sewage, industrial waste water, or the like.
River water, lake water, pond water, tap water, groundwater, etc.
Such water often contains persistent organic compounds such as dioxins and environmental hormones.
【0011】酸化触媒としては、Mn、Ni、Cr、F
e等の金属の酸化物を含むものが好ましい。As the oxidation catalyst, Mn, Ni, Cr, F
Those containing an oxide of a metal such as e are preferable.
【0012】オゾンとしては、水電解法により製造され
たオゾンガスを使用するのが好ましい。オゾンの最適注
入率は50〜500mg/Lであるが、CODなどの成
分含有量によって最適注入率が異なる場合があり得る。As ozone, it is preferable to use ozone gas produced by a water electrolysis method. The optimum injection rate of ozone is 50 to 500 mg / L, but the optimum injection rate may vary depending on the content of components such as COD.
【0013】第1の方法において、処理すべき水を触媒
酸化塔に底部から上向流になるよう供給し、触媒酸化塔
で酸化処理された水を頂部から一次処理水として取り出
し、一次処理水を促進酸化塔に底部から上向流になるよ
う供給し、促進酸化塔で酸化処理された水を頂部から二
次処理水として取り出す場合がある。また、処理すべき
水を触媒酸化塔に頂部から下向流になるよう供給し、触
媒酸化塔で酸化処理された水を底部から一次処理水とし
て取り出し、一次処理水を促進酸化塔に頂部から下向流
になるよう供給し、促進酸化塔で酸化処理された水を底
部から二次処理水として取り出す場合もあり得る。In the first method, water to be treated is supplied to the catalytic oxidation tower so as to flow upward from the bottom, and water oxidized in the catalytic oxidation tower is taken out from the top as primary treated water, and the primary treated water is treated. May be supplied to the promoted oxidation tower from the bottom so as to flow upward, and water oxidized in the promoted oxidation tower may be taken out from the top as secondary treated water. Also, the water to be treated is supplied to the catalytic oxidation tower in a downward flow from the top, the water oxidized in the catalytic oxidation tower is taken out from the bottom as primary treated water, and the primary treated water is supplied to the accelerated oxidation tower from the top. In some cases, the water is supplied in a downward flow, and the water oxidized by the accelerated oxidation tower is taken out from the bottom as secondary treated water.
【0014】第2の方法において、処理すべき水を促進
酸化塔に底部から上向流になるよう供給し、促進酸化塔
で酸化処理された水を頂部から一次処理水として取り出
し、一次処理水を触媒酸化塔に底部から上向流になるよ
う供給し、触媒酸化塔で酸化処理された水を頂部から二
次処理水として取り出す場合がある。また、処理すべき
水を促進酸化塔に頂部から下向流になるよう供給し、促
進酸化塔で酸化処理された水を底部から一次処理水とし
て取り出し、一次処理水を触媒酸化塔に頂部から下向流
になるよう供給し、触媒酸化塔で酸化処理された水を底
部から二次処理水として取り出す場合もある。In the second method, the water to be treated is supplied to the promoted oxidation tower so as to flow upward from the bottom, and the water oxidized in the promoted oxidation tower is taken out from the top as primary treated water, and is treated as primary treated water. May be supplied to the catalytic oxidation tower from the bottom so as to flow upward, and water oxidized in the catalytic oxidation tower may be taken out from the top as secondary treated water. In addition, water to be treated is supplied to the promoted oxidation tower from the top in a downward flow, water oxidized in the promoted oxidation tower is taken out from the bottom as primary treated water, and the primary treated water is supplied to the catalytic oxidation tower from the top. In some cases, water is supplied in a downward flow, and water oxidized in the catalytic oxidation tower is taken out from the bottom as secondary treated water.
【0015】第3の方法において、処理すべき水を酸化
反応塔に底部から上向流になるよう供給し、同塔下側の
触媒酸化帯域および上側の促進酸化帯域において順次酸
化処理された水を頂部から処理水として取り出す場合が
ある。また、処理すべき水を酸化反応塔に頂部から下向
流になるよう供給し、同塔上側の触媒酸化帯域および下
側の促進酸化帯域において順次酸化処理された水を底部
から処理水として取り出す場合もある。In the third method, the water to be treated is supplied to the oxidation reaction tower so as to flow upward from the bottom, and the water which has been sequentially oxidized in the catalytic oxidation zone below the column and the accelerated oxidation zone above the column is removed. It may be taken out from the top as treated water. Also, water to be treated is supplied to the oxidation reaction tower from the top in a downward flow, and water that has been sequentially oxidized in the catalytic oxidation zone on the upper side of the tower and the promoted oxidation zone on the lower side is taken out as treated water from the bottom. In some cases.
【0016】第4の方法において、処理すべき水を酸化
反応塔に底部から上向流になるよう供給し、同塔下側の
促進酸化帯域および上側の触媒酸化帯域において順次酸
化処理された水を頂部から処理水として取り出す場合が
ある。また、処理すべき水を酸化反応塔に頂部から下向
流になるよう供給し、同塔上側の促進酸化帯域および下
側の触媒酸化帯域において順次酸化処理された水を底部
から処理水として取り出す場合もある。In the fourth method, the water to be treated is supplied to the oxidation reaction tower so as to flow upward from the bottom, and the water which has been sequentially oxidized in the promoted oxidation zone at the lower side of the tower and the catalytic oxidation zone at the upper side of the tower is removed. It may be taken out from the top as treated water. In addition, water to be treated is supplied to the oxidation reaction tower from the top in a downward flow, and water that has been sequentially oxidized in the promoted oxidation zone on the upper side of the tower and the catalytic oxidation zone on the lower side is taken out as treated water from the bottom. In some cases.
【0017】第5の方法において、処理すべき水を触媒
酸化塔に底部から上向流になるよう供給し、オゾンを同
塔に底部から散気し、同塔で酸化処理された水を頂部か
ら処理水として取り出す場合がある。また、処理すべき
水を触媒酸化塔に頂部から下向流になるよう供給し、オ
ゾンを同塔に底部から散気し、同塔で酸化処理された水
を底部から処理水として取り出す場合もある。In the fifth method, water to be treated is supplied to the catalytic oxidation tower so as to flow upward from the bottom, ozone is diffused into the tower from the bottom, and water oxidized in the tower is supplied to the top. May be taken out as treated water. Also, the water to be treated is supplied to the catalytic oxidation tower from the top in a downward flow, the ozone is diffused into the tower from the bottom, and the water oxidized in the tower is taken out as treated water from the bottom. is there.
【0018】第1および第2の方法では、触媒酸化塔で
生じた一次処理水の一部を同塔頂部または底部から取り
出し、同塔底部または頂部に循環させることが好まし
い。第3および第4の方法では、酸化反応塔で生じた処
理水の一部を同塔頂部または底部から取り出し、同塔底
部または頂部に循環させることが好ましい。また、第5
の方法では、触媒酸化塔で生じた処理水の一部を同塔頂
部または底部から取り出し、同塔底部または頂部に循環
させることが好ましい。このような一次処理水または処
理水の循環により、触媒とオゾンの接触面積が増えるこ
とによる効率的酸化分解が達成される利点が得られる。
触媒に気体を通過させることは、触媒層中に気体が抜け
る流路ができるなど大変難しいことであるが、上記のよ
うに一次処理水を循環させることによって管内流速を上
げることができ、触媒に気体を通過させることができ
る。In the first and second methods, it is preferable that a part of the primary treated water generated in the catalytic oxidation tower is removed from the top or bottom of the tower and circulated to the bottom or top of the tower. In the third and fourth methods, it is preferable that a part of the treated water generated in the oxidation reaction tower be taken out from the top or bottom of the tower and circulated to the bottom or top of the tower. In addition, the fifth
In the above method, it is preferable that a part of the treated water generated in the catalytic oxidation tower is taken out from the top or bottom of the tower and circulated to the bottom or top of the tower. By circulating such primary treated water or treated water, there is obtained an advantage that efficient oxidative decomposition is achieved by increasing the contact area between the catalyst and ozone.
Passing gas through the catalyst is very difficult, such as creating a channel through which gas can escape in the catalyst layer.However, by circulating the primary treatment water as described above, the flow velocity in the tube can be increased, and Gas can be passed.
【0019】第1〜第5の方法において、触媒酸化塔頂
部または酸化反応塔頂部の溶存オゾン量を測定し、測定
値が設定値以下となった場合に同塔にオゾンを供給する
こともできる。これによって、オゾンの不足分をオゾン
濃度計で把握し、設定濃度以下になったときにオゾン発
生器からオゾンが供給される。In the first to fifth methods, the amount of dissolved ozone at the top of the catalytic oxidation tower or at the top of the oxidation reaction tower is measured, and when the measured value falls below a set value, ozone can be supplied to the tower. . Thus, the ozone shortage is grasped by the ozone concentration meter, and when the concentration becomes lower than the set concentration, ozone is supplied from the ozone generator.
【0020】第1および第3の方法では、促進酸化塔ま
たは酸化反応塔の促進酸化帯域に供給される水がSS成
分を含んでいると、紫外線照射の妨げになるため、SS
成分も除去できる触媒酸化塔または触媒酸化帯域を促進
酸化塔または促進酸化帯域の前段に配置する。これによ
り、促進酸化塔または促進酸化帯域では紫外線ランプに
SS成分の汚れが付きにくく、メンテナンスが容易であ
る。In the first and third methods, if the water supplied to the promoted oxidation zone of the promoted oxidation tower or the oxidation reaction tower contains the SS component, the irradiation of ultraviolet rays is hindered.
A catalytic oxidation tower or catalytic oxidation zone from which components can also be removed is disposed upstream of the promoted oxidation tower or promoted oxidation zone. Thereby, in the promoted oxidation tower or the promoted oxidation zone, the stain of the SS component does not easily adhere to the ultraviolet lamp, and maintenance is easy.
【0021】第1〜第4の方法では、促進酸化塔または
促進酸化帯域において、触媒では酸化しにくい有機化合
物がオゾンおよび紫外線の併用によって酸化分解処理さ
れる。In the first to fourth methods, an organic compound which is hardly oxidized by a catalyst is oxidatively decomposed in a promoted oxidation tower or a promoted oxidation zone by using both ozone and ultraviolet rays.
【0022】第1および第2の方法では、触媒酸化塔で
使用されたオゾンを同塔頂部から促進酸化塔に送り、さ
らに促進酸化塔から再び触媒酸化塔に戻すことが好まし
い。第3および第4の方法では、酸化反応塔で使用され
たオゾンを同塔頂部から同塔底部に戻すことが好まし
い。また、第5の方法では、触媒酸化塔で使用されたオ
ゾンを同塔頂部から同塔底部に戻すことが好ましい。こ
れによって、オゾン使用量を必要最小限に抑えることが
できる。触媒酸化塔、促進酸化塔および酸化反応塔にお
けるオゾンの最適注入率は50〜500mg/Lである
が、CODなどの成分の含有量によって最適注入率が異
なる場合があり得る。In the first and second methods, it is preferable that the ozone used in the catalytic oxidation tower is sent from the top of the catalytic oxidation tower to the promotion oxidation tower, and then returned from the promotion oxidation tower to the catalyst oxidation tower again. In the third and fourth methods, it is preferable to return the ozone used in the oxidation reaction tower from the top to the bottom of the oxidation reaction tower. In the fifth method, it is preferable to return the ozone used in the catalytic oxidation tower from the top to the bottom of the same. As a result, the amount of ozone used can be minimized. The optimum injection rate of ozone in the catalytic oxidation tower, the promotion oxidation tower and the oxidation reaction tower is 50 to 500 mg / L, but the optimum injection rate may differ depending on the content of components such as COD.
【0023】第5の方法において、水中の難分解性有機
化合物の濃度が高い場合や、処理水中の同化合物濃度を
極めて低くすることが要求される場合には、複数、例え
ば3〜5基の触媒酸化塔を直列に配置することが好まし
い。In the fifth method, when the concentration of the hardly decomposable organic compound in the water is high or when the concentration of the compound in the treated water is required to be extremely low, a plurality of, for example, 3 to 5 groups are used. Preferably, the catalytic oxidation towers are arranged in series.
【0024】第1〜第5の方法において、処理すべき水
に予め酸化剤を加えておくことが好ましい。処理すべき
水に加える酸化剤としては、次亜塩素酸ナトリウムや過
酸化水素水などの通常の酸化剤が使用できる。In the first to fifth methods, it is preferable to add an oxidizing agent to the water to be treated in advance. As the oxidizing agent to be added to the water to be treated, a common oxidizing agent such as sodium hypochlorite and aqueous hydrogen peroxide can be used.
【0025】第1の方法を実施するには、酸化触媒が充
填されかつオゾンが供給される触媒酸化塔と、紫外線ラ
ンプが内蔵されかつオゾンが供給される促進酸化塔とか
らなる除去装置を用い、処理すべき水を、触媒酸化塔に
おいて酸化触媒の存在下にオゾンで酸化分解処理し、次
いで促進酸化塔においてさらに紫外線およびオゾンで酸
化処理する。In order to carry out the first method, a removing device comprising a catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone and a promoting oxidation tower provided with an ultraviolet lamp and supplied with ozone is used. The water to be treated is oxidatively decomposed with ozone in a catalytic oxidation tower in the presence of an oxidation catalyst, and then further oxidized with ultraviolet light and ozone in a promoted oxidation tower.
【0026】第2の方法を実施するには、紫外線ランプ
が内蔵されかつオゾンが供給される促進酸化塔と、酸化
触媒が充填されかつオゾンが供給される触媒酸化塔とか
らなる除去装置を用い、処理すべき水を、促進酸化塔に
おいて紫外線およびオゾンで酸化処理し、次いで触媒酸
化塔においてさらに酸化触媒の存在下にオゾンで酸化処
理する。In order to carry out the second method, a removing device comprising a promotion oxidation tower having a built-in ultraviolet lamp and supplied with ozone and a catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone is used. The water to be treated is oxidized with ultraviolet light and ozone in a promoted oxidation tower, and then oxidized with ozone in the catalytic oxidation tower in the presence of an oxidation catalyst.
【0027】第3の方法を実施するには、酸化触媒が充
填されている触媒酸化帯域と紫外線ランプが内蔵されて
いる促進酸化帯域とを有し、かつこれらの帯域にオゾン
が供給される酸化反応塔からなる除去装置を用い、処理
すべき水を、触媒酸化帯域において酸化触媒の存在下に
オゾンで酸化処理し、次いで促進酸化帯域においてさら
に紫外線およびオゾンで酸化処理する。In order to carry out the third method, there is provided a catalytic oxidation zone filled with an oxidation catalyst and an accelerated oxidation zone containing a built-in ultraviolet lamp, and these zones are supplied with ozone. Using a removal device consisting of a reaction tower, the water to be treated is oxidized with ozone in the presence of an oxidation catalyst in the catalytic oxidation zone, and then further oxidized with ultraviolet light and ozone in the accelerated oxidation zone.
【0028】第4の方法を実施するには、紫外線ランプ
が内蔵されている促進酸化帯域と酸化触媒が充填されて
いる触媒酸化帯域とを有し、かつこれらの帯域にオゾン
が供給される酸化反応塔からなる除去装置を用い、処理
すべき水を、促進酸化帯域において紫外線およびオゾン
で酸化処理し、次いで触媒酸化帯域においてさらに酸化
触媒の存在下にオゾンで酸化処理する。In order to carry out the fourth method, there is provided an oxidation zone having a built-in ultraviolet lamp and a catalyst oxidation zone filled with an oxidation catalyst, and these zones are supplied with ozone. Using a removal device consisting of a reaction tower, the water to be treated is oxidized with ultraviolet light and ozone in a promoted oxidation zone and then oxidized with ozone in the catalytic oxidation zone in the presence of an oxidation catalyst.
【0029】第5の方法を実施するには、酸化触媒が充
填されかつオゾンが供給される触媒酸化塔からなる除去
装置を用い、処理すべき水を、同塔において酸化触媒の
存在下にオゾンで酸化処理する。In order to carry out the fifth method, a removal device comprising a catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone is used. Oxidation treatment.
【0030】第1および第2の方法を実施する装置にお
いて、触媒酸化塔および促進酸化塔の底部に水導入口
が、同頂部に水排出口がそれぞれ設けられ、触媒酸化塔
および促進酸化塔における水の流れがいずれも上向流と
なされる場合がある。また、触媒酸化塔および促進酸化
塔の頂部に水導入口が、同底部に水排出口がそれぞれ設
けられ、触媒酸化塔および促進酸化塔における水の流れ
がいずれも下向流となされる場合もある。In the apparatus for carrying out the first and second methods, a water inlet is provided at the bottom of the catalytic oxidation tower and the promoted oxidation tower, and a water outlet is provided at the top of the catalytic oxidation tower and the promoted oxidation tower. In some cases, the flow of water may be upward. Further, a water inlet is provided at the top of the catalytic oxidation tower and the promoted oxidation tower, and a water outlet is provided at the bottom of the catalytic oxidation tower and the promoted oxidation tower. is there.
【0031】第3の方法を実施する装置において、酸化
反応塔の下側に触媒酸化帯域が、同上側に促進酸化帯域
がそれぞれ設けられているとともに、同塔の底部に水導
入口が、同頂部に水排出口がそれぞれ設けられ、酸化反
応塔における水の流れが上向流となされる場合がある。
また、酸化反応塔の上側に触媒酸化帯域が、同下側に促
進酸化帯域がそれぞれ設けられているとともに、同塔の
頂部に水導入口が、同底部に水排出口がそれぞれ設けら
れ、酸化反応塔における水の流れが下向流となされる場
合もある。In the apparatus for carrying out the third method, a catalytic oxidation zone is provided below the oxidation reaction tower and a promotion oxidation zone is provided above the oxidation reaction tower, and a water inlet is provided at the bottom of the oxidation reaction tower. Water outlets are provided at the tops, respectively, and the flow of water in the oxidation reaction tower may be upward.
In addition, a catalytic oxidation zone is provided above the oxidation reaction tower, and a promotion oxidation zone is provided below the oxidation reaction tower. A water inlet is provided at the top of the tower, and a water outlet is provided at the bottom of the tower. The flow of water in the reaction tower may be a downward flow.
【0032】第4の方法を実施する装置において、酸化
反応塔の下側に促進酸化帯域が、同上側に触媒酸化帯域
がそれぞれ設けられているとともに、同塔の底部に水導
入口が、同頂部に水排出口がそれぞれ設けられ、酸化反
応塔における水の流れが上向流となされる場合がある。
また、酸化反応塔の上側に促進酸化帯域が、同下側に触
媒酸化帯域がそれぞれ設けられているとともに、同塔の
頂部に水導入口が、同底部に水排出口がそれぞれ設けら
れ、酸化反応塔における水の流れが下向流となされる場
合もある。In the apparatus for carrying out the fourth method, a promotion oxidation zone is provided below the oxidation reaction tower and a catalyst oxidation zone is provided above the oxidation reaction tower, and a water inlet is provided at the bottom of the tower. Water outlets are provided at the tops, respectively, and the flow of water in the oxidation reaction tower may be upward.
In addition, a promoted oxidation zone is provided above the oxidation reaction tower, and a catalytic oxidation zone is provided below the oxidation reaction tower. A water inlet is provided at the top of the tower, and a water outlet is provided at the bottom thereof. The flow of water in the reaction tower may be a downward flow.
【0033】第5の方法を実施する装置において、触媒
酸化塔の底部に水導入口が、同頂部に水排出口がそれぞ
れ設けられ、同塔における水の流れが上向流となされる
場合がある。また、触媒酸化塔の頂部に水導入口が、同
底部に水排出口がそれぞれ設けられ、同塔における水の
流れが下向流となされる場合もある。In the apparatus for carrying out the fifth method, a water inlet may be provided at the bottom of the catalytic oxidation tower and a water outlet may be provided at the top of the catalytic oxidation tower, and the flow of water in the tower may be upward. is there. A water inlet may be provided at the top of the catalytic oxidation tower, and a water outlet may be provided at the bottom of the catalytic oxidation tower, so that the flow of water in the tower may be a downward flow.
【0034】第1および第2の方法を実施する装置にあ
っては、触媒酸化塔および/または促進酸化塔の頂部か
ら排出された廃オゾンを分解処理する廃オゾン処理装置
を備えているのが好ましい。第3および第4の方法を実
施する装置にあっては、酸化反応塔の頂部から排出され
た廃オゾンを分解処理する廃オゾン処理装置を備えてい
るのが好ましい。また、第5の方法を実施する装置にあ
っては、触媒酸化塔の頂部から排出された廃オゾンを分
解処理する廃オゾン処理装置を備えているのが好まし
い。The apparatus for performing the first and second methods is provided with a waste ozone treatment apparatus for decomposing waste ozone discharged from the top of the catalytic oxidation tower and / or the promotion oxidation tower. preferable. It is preferable that the apparatus for performing the third and fourth methods includes a waste ozone treatment apparatus for decomposing waste ozone discharged from the top of the oxidation reaction tower. Further, it is preferable that the apparatus for performing the fifth method includes a waste ozone treatment apparatus for decomposing waste ozone discharged from the top of the catalytic oxidation tower.
【0035】第1〜第5の方法を実施する装置におい
て、さらに、触媒酸化塔および/または促進酸化塔の頂
部、酸化反応塔の頂部または触媒酸化塔の頂部と、廃オ
ゾン処理装置との間に、気液分離塔が設けられている場
合がある。[0035] In the apparatus for carrying out the first to fifth methods, the waste ozone treatment apparatus further comprises a top of a catalytic oxidation tower and / or a promotion oxidation tower, a top of an oxidation reaction tower or a top of a catalytic oxidation tower, and a waste ozone treatment apparatus. In some cases, a gas-liquid separation tower is provided.
【0036】また、第1〜第5の方法を実施する装置に
あっては、さらに、処理すべき水に予め酸化剤を加える
ための酸化剤供給装置を備えているのが好ましい。It is preferable that the apparatus for performing the first to fifth methods further includes an oxidizing agent supply device for adding an oxidizing agent to water to be treated in advance.
【0037】[0037]
【作用】第1および第2の方法においては、酸化触媒が
充填された触媒酸化塔と紫外線照射装置を備えた促進酸
化塔とを直列に配置し、これらにそれぞれオゾンを散気
するので、各塔内に酸化力の最も強いヒドロキシラジカ
ルが生成する。第3および第4の方法においては、酸化
触媒が充填された触媒酸化帯域と紫外線照射装置を備え
た促進酸化帯域とを酸化反応塔内に直列に配置し、これ
らにそれぞれオゾンを散気するので、同塔内にヒドロキ
シラジカルが生成する。第5の方法においては、酸化触
媒が充填された触媒酸化塔にオゾンを散気し、同塔内に
ヒドロキシラジカルが生成する。また、第1〜第5の方
法において、処理すべき水に予め酸化剤を加えておけ
ば、各塔内にさらに多くのヒドロキシラジカルが生成す
る。このヒドロキシラジカルによって、水中に含まれる
ダイオキシン、環境ホルモン等の難分解性有機化合物を
分解することができる。In the first and second methods, a catalytic oxidation tower filled with an oxidation catalyst and a promoted oxidation tower equipped with an ultraviolet irradiation device are arranged in series, and ozone is diffused into each of them. Hydroxy radical having the strongest oxidizing power is generated in the tower. In the third and fourth methods, a catalyst oxidation zone filled with an oxidation catalyst and a promotion oxidation zone provided with an ultraviolet irradiation device are arranged in series in an oxidation reaction tower, and each of them is diffused with ozone. Then, a hydroxyl radical is generated in the tower. In the fifth method, ozone is diffused into a catalytic oxidation tower filled with an oxidation catalyst, and hydroxyl radicals are generated in the tower. In the first to fifth methods, if an oxidizing agent is added to the water to be treated in advance, more hydroxyl radicals are generated in each column. These hydroxyl radicals can decompose hard-to-decompose organic compounds such as dioxins and environmental hormones contained in water.
【0038】酸化触媒は、ヒドロキシラジカルを発生さ
せるために酸素を1分子失うが、オゾンを供給すること
によって酸素を1分子得ることができるため、半永久的
に使用することができる。このことにより、触媒に含ま
れる金属類などは漏出してくることは少ない。The oxidation catalyst loses one molecule of oxygen to generate a hydroxyl radical, but one molecule of oxygen can be obtained by supplying ozone, so that it can be used semipermanently. As a result, metals and the like contained in the catalyst rarely leak.
【0039】[0039]
【発明の実施の形態】以下、本発明の一実施例を図1〜
11を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.
【0040】実施例1 この実施例は、本発明による第1の除去方法の実施例を
示すものであって、図1にそのフローシートが示されて
いる。この実施例では、図12を用いて先に説明した処
理フローにおける砂濾過塔および活性炭吸着塔を経た水
を被処理水として処理する。図1において、処理すべき
水を、調整槽(2)に導入して、ここから原水供給ポンプ
(3)によって触媒酸化塔(4)に送る。触媒酸化塔(4)内に
は触媒層(5)が設けられ、触媒層(5)には金属酸化物を担
持させた触媒が詰められている。上記水を触媒酸化塔
(4)へその底部に設けられた水導入口より供給し、さら
にオゾン発生器(13)からオゾンをオゾンライン(6)で底
部より注入散気する。同時に、触媒酸化塔(4)内の一次
処理水を循環させるため、その一部を頂部より循環ポン
プ(8)で循環ライン(7)を通って触媒酸化塔(4)の底部に
返送する。Embodiment 1 This embodiment shows an embodiment of the first removing method according to the present invention, and its flow sheet is shown in FIG. In this embodiment, water that has passed through the sand filtration tower and the activated carbon adsorption tower in the processing flow described above with reference to FIG. 12 is treated as the water to be treated. In FIG. 1, water to be treated is introduced into a regulating tank (2), from which a raw water supply pump is supplied.
It is sent to the catalytic oxidation tower (4) by (3). A catalyst layer (5) is provided in the catalytic oxidation tower (4), and the catalyst layer (5) is packed with a catalyst supporting a metal oxide. The above water is used as a catalytic oxidation tower
(4) Water is supplied from a water inlet provided at the bottom of the navel, and ozone is injected and diffused from the bottom through an ozone line (6) from an ozone generator (13). At the same time, in order to circulate the primary treated water in the catalytic oxidation tower (4), a part of the water is returned from the top to the bottom of the catalytic oxidation tower (4) through the circulation line (7) by the circulation pump (8).
【0041】残った一次処理水は、触媒酸化塔(4)の頂
部に設けられた水排出口から排出され、次いで促進酸化
塔(9)にその底部に設けられた水導入口より供給され、
触媒酸化塔(4)では分解しきれなかったダイオキシン、
環境ホルモンなど難分解性有機化合物をここで酸化分解
させる。促進酸化塔(9)には紫外線ランプ(10)が垂直に
内蔵され、紫外線とオゾンを反応させることによりヒド
ロキシラジカルを発生させ、このヒドロキシラジカルに
よりダイオキシンをはじめとする難分解性有機化合物を
分解する。処理された二次処理水は、促進酸化塔(9)の
頂部に設けられた水排出口から排出される。The remaining primary treated water is discharged from a water outlet provided at the top of the catalytic oxidation tower (4), and then supplied to the promoted oxidation tower (9) from a water inlet provided at the bottom thereof.
Dioxin that could not be decomposed in the catalytic oxidation tower (4),
Here, hardly decomposable organic compounds such as environmental hormones are oxidatively decomposed. The accelerated oxidation tower (9) has a vertically built-in ultraviolet lamp (10), which reacts ultraviolet light with ozone to generate hydroxy radicals, which decompose dioxin and other hardly decomposable organic compounds. . The treated secondary treated water is discharged from a water outlet provided at the top of the promoted oxidation tower (9).
【0042】オゾンは、触媒酸化塔(4)の頂部からガス
循環ポンプ(11)によって促進酸化塔(9)に送られ使用さ
れる。残ったオゾンは再び触媒酸化塔(4)に戻される。
両反応塔で使用されることによって不足するオゾンは、
触媒酸化塔に設けたオゾン濃度測定制御装置(12)によっ
て把握し、設定した濃度以下になった場合に、オゾン発
生器(13)からオゾンが供給される。このことによりオゾ
ンの使用量を最低限にすることができる。また、少量の
廃オゾンを除去するために、触媒酸化塔(4)の頂部に排
気口を設け、そこに廃オゾン処理装置(1)を接続し、同
装置(1)で廃オゾンを分解処理した。Ozone is sent from the top of the catalytic oxidation tower (4) to the promotion oxidation tower (9) by the gas circulation pump (11) and used. The remaining ozone is returned to the catalytic oxidation tower (4) again.
The shortage of ozone due to the use in both reactors,
Ozone is supplied from the ozone generator (13) when the concentration becomes lower than or equal to the set value, which is grasped by the ozone concentration measurement control device (12) provided in the catalytic oxidation tower. This allows the use of ozone to be minimized. In order to remove a small amount of waste ozone, an exhaust port is provided at the top of the catalytic oxidation tower (4), and a waste ozone treatment device (1) is connected to it, and the device (1) decomposes waste ozone. did.
【0043】実施例2 この実施例は、本発明による第1の除去方法の他の実施
例を示すものであって、図2にそのフローシートが示さ
れている。図2に示すように、この実施例では、触媒酸
化塔(4)底部および促進酸化塔(9)底部へのオゾンの注入
散気を、いずれもオゾン発生器(13)からオゾンライン
(6)を経て行っている。また、触媒酸化塔(4)頂部および
促進酸化塔(9)頂部に排気口を設け、これらの排気口に
廃オゾン分解装置(1)を接続し、同装置(1)で両塔(4)(9)
から排出される廃オゾンを分解処理している。なお、こ
の実施例では、ガス循環ポンプによるオゾンの触媒酸化
塔(4)と促進酸化塔(9)との間での循環を行っておらず、
触媒酸化塔(4)にはオゾン濃度測定制御装置が設けられ
ていない。また、触媒酸化塔(4)内の一次処理水の循環
も、この実施例では行っていない。その他の点は、実施
例1と同様に処理を行った。Embodiment 2 This embodiment shows another embodiment of the first removing method according to the present invention, and its flow sheet is shown in FIG. As shown in FIG. 2, in this embodiment, the injection and diffusion of ozone into the bottom of the catalytic oxidation tower (4) and the bottom of the promotion oxidation tower (9) are all performed by an ozone generator (13).
Going through (6). Further, exhaust ports are provided at the top of the catalytic oxidation tower (4) and the top of the promoted oxidation tower (9), and a waste ozone decomposer (1) is connected to these exhaust ports. (9)
Decomposes waste ozone discharged from In this embodiment, the gas circulation pump does not circulate ozone between the catalytic oxidation tower (4) and the promotion oxidation tower (9),
The catalytic oxidation tower (4) is not provided with an ozone concentration measurement control device. Further, the circulation of the primary treated water in the catalytic oxidation tower (4) was not performed in this embodiment. In other respects, processing was performed in the same manner as in Example 1.
【0044】実施例3 この実施例は、本発明による第1の除去方法のさらに別
の実施例を示すものであって、図3にそのフローシート
が示されている。図3に示すように、この実施例では、
調整槽(2)から来た処理すべき水を、触媒酸化塔(4)にそ
の頂部に設けた水導入口から下向流になるよう供給し、
触媒酸化塔(4)で酸化処理された水を同塔(4)底部に設け
た水排出口から一次処理水として取り出している。次い
で、この一次処理水を促進酸化塔(9)にその頂部に設け
た水導入口から下向流になるよう供給し、促進酸化塔
(9)で酸化処理された水を同塔(9)底部に設けた水排出口
から二次処理水として取り出している。その他の点は、
実施例2と同様に処理を行った。Embodiment 3 This embodiment shows still another embodiment of the first removing method according to the present invention, and its flow sheet is shown in FIG. As shown in FIG. 3, in this embodiment,
Water to be treated coming from the regulating tank (2) is supplied to the catalytic oxidation tower (4) so as to flow downward from a water inlet provided at the top thereof,
Water oxidized in the catalytic oxidation tower (4) is taken out as primary treated water from a water outlet provided at the bottom of the tower (4). Next, this primary treated water is supplied to the promoted oxidation tower (9) so as to flow downward from a water inlet provided at the top of the promoted oxidation tower (9).
Water oxidized in (9) is taken out as secondary treated water from a water outlet provided at the bottom of the tower (9). Other points are
The processing was performed in the same manner as in Example 2.
【0045】実施例4 この実施例は、本発明による第2の除去方法の実施例を
示すものであって、図4にそのフローシートが示されて
いる。なお、図12を用いて先に説明した処理フローに
おける砂濾過塔および活性炭吸着塔を経た水を被処理水
として処理する点は、この実施例も同じである。図4に
おいて、処理すべき水を、調整槽(2)に導入して、ここ
から原水供給ポンプ(3)によって促進酸化塔(9)に送る。
促進酸化塔(9)には、紫外線ランプ(10)が垂直に内蔵さ
れている。上記水を促進酸化塔(9)へその底部より供給
し、さらにオゾン発生器(13)からオゾンをオゾンライン
(6)で底部より注入散気する。促進酸化塔(9)では、紫外
線とオゾンを反応させることによりヒドロキシラジカル
を発生させ、このヒドロキシラジカルによりダイオキシ
ンをはじめとする難分解性有機化合物、特に、後述する
触媒酸化塔(4)では分解されにくい難分解性有機化合物
を酸化分解させる。Embodiment 4 This embodiment shows an embodiment of the second removing method according to the present invention, and its flow sheet is shown in FIG. This embodiment is also the same in that the water that has passed through the sand filtration tower and the activated carbon adsorption tower in the processing flow described above with reference to FIG. 12 is treated as the water to be treated. In FIG. 4, water to be treated is introduced into a regulating tank (2), from which it is sent to a promoted oxidation tower (9) by a raw water supply pump (3).
An ultraviolet lamp (10) is vertically built in the promoted oxidation tower (9). The above water is supplied to the promoted oxidation tower (9) from the bottom thereof, and ozone is further supplied from an ozone generator (13) to an ozone line.
In (6), air is injected from the bottom. In the promoted oxidation tower (9), hydroxyl radicals are generated by reacting ultraviolet rays and ozone, and the hydroxyl radicals are decomposed in dioxin and other hardly decomposable organic compounds, particularly in the catalytic oxidation tower (4) described below. Oxidatively decomposes difficult-to-decompose organic compounds.
【0046】促進酸化塔(9)から取り出された一次処理
水は触媒酸化塔(4)内に供給され、促進酸化塔(9)では分
解しきれなかったダイオキシン、環境ホルモンなど難分
解性有機化合物をここで酸化分解させる。触媒酸化塔
(4)内には触媒層(5)が設けられ、触媒層(5)には金属酸
化物を担持させた触媒が詰められている。上記水を触媒
酸化塔(4)へその底部より供給し、さらにオゾン発生器
(13)からオゾンをオゾンライン(6)で底部より注入散気
する。処理された二次処理水は、触媒酸化塔(4)の頂部
から排出される。The primary treated water taken out from the promoted oxidation tower (9) is supplied into the catalytic oxidation tower (4), and is difficult to decompose in the promoted oxidation tower (9). Is oxidatively decomposed here. Catalytic oxidation tower
A catalyst layer (5) is provided in (4), and the catalyst layer (5) is packed with a catalyst supporting a metal oxide. The above water is supplied to the catalytic oxidation tower (4) from the bottom thereof, and furthermore, an ozone generator
From (13), ozone is injected and diffused from the bottom through an ozone line (6). The treated secondary treated water is discharged from the top of the catalytic oxidation tower (4).
【0047】少量の廃オゾンを除去するために、促進酸
化塔(9)頂部および触媒酸化塔(4)頂部にそれぞれ排気口
を設け、これらの排気口に、廃オゾン処理装置(1)を接
続し、同装置(1)で廃オゾンを分解処理した。In order to remove a small amount of waste ozone, exhaust ports are provided at the top of the promotion oxidation tower (9) and the top of the catalyst oxidation tower (4), respectively, and the waste ozone treatment device (1) is connected to these exhaust ports. Then, the waste ozone was decomposed by the same device (1).
【0048】実施例5 この実施例は、本発明による第2の除去方法の別の実施
例を示すものであって、図5にそのフローシートが示さ
れている。図5に示すように、この実施例では、調整槽
(2)から来た処理すべき水を、促進酸化塔(9)にその頂部
に設けた水導入口から下向流になるよう供給し、促進酸
化塔(9)で酸化処理された水を同塔(9)底部に設けた水排
出口から一次処理水として取り出している。次いで、こ
の一次処理水を触媒酸化塔(4)にその頂部に設けた水導
入口から下向流になるよう供給し、触媒酸化塔(4)で酸
化処理された水を同塔(4)底部に設けた水排出口から二
次処理水として取り出している。その他の点は、実施例
4と同様に処理を行った。Embodiment 5 This embodiment shows another embodiment of the second removing method according to the present invention, and its flow sheet is shown in FIG. As shown in FIG. 5, in this embodiment, the adjustment tank
The water to be treated coming from (2) is supplied to the promoted oxidation tower (9) so as to flow downward from a water inlet provided at the top of the promoted oxidation tower (9). It is taken out as primary treated water from a water outlet provided at the bottom of the tower (9). Next, this primary treated water is supplied to the catalytic oxidation tower (4) from the water inlet provided at the top so as to flow downward, and the water oxidized by the catalytic oxidation tower (4) is supplied to the tower (4). It is taken out as secondary treated water from a water outlet provided at the bottom. Otherwise, the processing was performed in the same manner as in Example 4.
【0049】実施例6 この実施例は、実施例1〜5の変形例を示すものであっ
て、図6にそのフローシートが示されている。図6に示
すように、調整槽(2)から触媒酸化塔(4)への水移送過程
で、酸化剤槽(14)から供給ポンプ(15)を介して処理すべ
き水に次亜鉛素酸ナトリウムまたは過酸化水素水を添加
する。これにより、後段の触媒酸化塔(4)および促進酸
化塔(9)において、より多くのヒドロキシラジカルが生
成される。その他の点は、実施例1〜5と同様に処理を
行った。Embodiment 6 This embodiment is a modification of Embodiments 1 to 5, and FIG. 6 shows a flow sheet thereof. As shown in FIG. 6, in the process of transferring water from the regulating tank (2) to the catalytic oxidation tower (4), the water to be treated is supplied from the oxidizing agent tank (14) via the supply pump (15) to the water to be treated. Add sodium or hydrogen peroxide solution. As a result, more hydroxyl radicals are generated in the subsequent catalytic oxidation tower (4) and promoted oxidation tower (9). Otherwise, the processing was performed in the same manner as in Examples 1 to 5.
【0050】実施例7 この実施例は、本発明による第3の除去方法の実施例を
示すものであって、図7にそのフローシートが示されて
いる。なお、図12を用いて先に説明した処理フローに
おける砂濾過塔および活性炭吸着塔を経た水を被処理水
として処理する点は、この実施例も同じである。図7に
おいて、処理すべき水を、調整槽(2)に導入して、ここ
から原水供給ポンプ(3)によって酸化反応塔(16)に送
る。酸化反応塔(16)は、上側小径部および下側大径部よ
りなる段差付き筒状のものである。酸化反応塔(16)の下
側大径部には、金属酸化物を担持させた触媒が詰められ
ている触媒層(5)が設けられ、同大径部が触媒酸化帯域
(16A)を構成している。酸化反応塔(16)の上側小径部に
は、紫外線ランプ(10)が垂直に内蔵され、同小径部が促
進酸化帯域(16B)を構成している。Embodiment 7 This embodiment shows an embodiment of the third removing method according to the present invention, and its flow sheet is shown in FIG. This embodiment is also the same in that the water that has passed through the sand filtration tower and the activated carbon adsorption tower in the processing flow described above with reference to FIG. 12 is treated as the water to be treated. In FIG. 7, water to be treated is introduced into a regulating tank (2), from which it is sent to an oxidation reaction tower (16) by a raw water supply pump (3). The oxidation reaction tower (16) is a stepped cylindrical one having an upper small diameter portion and a lower large diameter portion. At the lower large-diameter portion of the oxidation reaction tower (16), a catalyst layer (5) packed with a catalyst supporting a metal oxide is provided, and the large-diameter portion has a catalytic oxidation zone.
(16A). An ultraviolet lamp (10) is vertically built in an upper small-diameter portion of the oxidation reaction tower (16), and the small-diameter portion constitutes an accelerated oxidation zone (16B).
【0051】上記水は酸化反応塔(16)へその底部に設け
られた水導入口より供給されるが、これと同時に、酸化
反応塔(16)内に、オゾン発生器(13)で発生したオゾンを
オゾンライン(6)を経て酸化反応塔(16)底部の散気管(1
7)より注入散気する。酸化反応塔(16)を上向きに流れる
水は、まず触媒酸化帯域(16A)に入り、ここでは酸化触
媒の存在下にオゾンを反応させることによりヒドロキシ
ラジカルが生成され、このヒドロキシラジカルによりダ
イオキシン、環境ホルモンをはじめとする水中の難分解
性有機化合物を酸化分解させる。次いで、水は、促進酸
化帯域(16B)に入り、ここでは紫外線およびオゾンを反
応させることによりヒドロキシラジカルが生成され、こ
のヒドロキシラジカルにより触媒酸化帯域(16A)では分
解しきれなかったダイオキシン、環境ホルモン等の難分
解性有機化合物を酸化分解させる。処理水は、酸化反応
塔(16)の頂部に設けられた水排出口から排出される。The water is supplied to the oxidation reaction tower (16) from a water inlet provided at the bottom of the oxidation reaction tower (16). At the same time, the water is generated in the oxidation reaction tower (16) by the ozone generator (13). Ozone is passed through the ozone line (6) to the oxidation reaction tower (16)
7) Inject and diffuse more. The water flowing upward in the oxidation reaction tower (16) first enters the catalytic oxidation zone (16A), where ozone is reacted in the presence of an oxidation catalyst to generate hydroxy radicals. Oxidatively decomposes insoluble organic compounds in water, including hormones. Next, water enters the accelerated oxidation zone (16B), where hydroxyl radicals are generated by reacting ultraviolet light and ozone, and dioxins and environmental hormones that could not be completely decomposed in the catalytic oxidation zone (16A) by the hydroxyl radicals. Oxidatively decomposes hard-to-decompose organic compounds. The treated water is discharged from a water outlet provided at the top of the oxidation reaction tower (16).
【0052】少量の廃オゾンは、酸化反応塔(16)頂部に
設けた排気口から排出し、排気口に接続された気液分離
塔(18)において水と分離した後、廃オゾン処理装置(1)
に送り、ここで分解処理した。A small amount of waste ozone is discharged from an exhaust port provided at the top of the oxidation reaction tower (16), and is separated from water in a gas-liquid separation tower (18) connected to the exhaust port. 1)
And was decomposed here.
【0053】実施例8 この実施例は、本発明による第4の除去方法の実施例を
示すものであって、図8にそのフローシートが示されて
いる。なお、図12を用いて先に説明した処理フローに
おける砂濾過塔および活性炭吸着塔を経た水を被処理水
として処理する点は、この実施例も同じである。図8に
おいて、処理すべき水を、調整槽(2)に導入して、ここ
から原水供給ポンプ(3)によって酸化反応塔(16)に送
る。酸化反応塔(16)は、上側小径部および下側大径部よ
りなる段差付き筒状のものである。酸化反応塔(16)の下
側大径部には、金属酸化物を担持させた触媒が詰められ
ている触媒層(5)が設けられ、同大径部が触媒酸化帯域
(16A)を構成している。酸化反応塔(16)の上側小径部に
は、紫外線ランプ(10)が垂直に内蔵され、同小径部が促
進酸化帯域(16B)を構成している。Embodiment 8 This embodiment shows an embodiment of the fourth removing method according to the present invention, and its flow sheet is shown in FIG. This embodiment is also the same in that the water that has passed through the sand filtration tower and the activated carbon adsorption tower in the processing flow described above with reference to FIG. 12 is treated as the water to be treated. In FIG. 8, water to be treated is introduced into a regulating tank (2), from which it is sent to an oxidation reaction tower (16) by a raw water supply pump (3). The oxidation reaction tower (16) is a stepped cylindrical one having an upper small diameter portion and a lower large diameter portion. At the lower large-diameter portion of the oxidation reaction tower (16), a catalyst layer (5) packed with a catalyst supporting a metal oxide is provided, and the large-diameter portion has a catalytic oxidation zone.
(16A). An ultraviolet lamp (10) is vertically built in an upper small-diameter portion of the oxidation reaction tower (16), and the small-diameter portion constitutes an accelerated oxidation zone (16B).
【0054】上記水は酸化反応塔(16)へその頂部に設け
られた水導入口より供給されるが、これと同時に、酸化
反応塔(16)内に、オゾン発生器(13)で発生したオゾンを
オゾンライン(6)を経て酸化反応塔(16)底部の散気管(1
7)より注入散気する。酸化反応塔(16)を下向きに流れる
水は、まず促進酸化帯域(16B)に入り、ここでは紫外線
およびオゾンを反応させることによりヒドロキシラジカ
ルが生成され、このヒドロキシラジカルにより触媒酸化
帯域(16A)では分解されにくいダイオキシン、環境ホル
モン等の水中の難分解性有機化合物を酸化分解させる。
次いで、水は、触媒酸化帯域(16A)に入り、ここでは酸
化触媒の存在下にオゾンを反応させることによりヒドロ
キシラジカルが生成され、このヒドロキシラジカルによ
り促進酸化帯域(16B)では分解しきれなかったダイオキ
シン等の難分解性有機化合物を酸化分解させる。処理水
は、酸化反応塔(16)の底部に設けられた水排出口から排
出される。The water is supplied to the oxidation reaction tower (16) from a water inlet provided at the top thereof, and at the same time, the water is generated in the oxidation reaction tower (16) by the ozone generator (13). Ozone is passed through the ozone line (6) to the oxidation reaction tower (16)
7) Inject and diffuse more. The water flowing downward in the oxidation reaction tower (16) first enters the accelerated oxidation zone (16B), where a hydroxyl radical is generated by reacting ultraviolet light and ozone, and the hydroxyl radical generates a hydroxyl radical in the catalytic oxidation zone (16A). It oxidatively decomposes hardly decomposable organic compounds in water such as dioxins and environmental hormones that are difficult to decompose.
The water then enters the catalytic oxidation zone (16A), where hydroxyl radicals are generated by reacting ozone in the presence of the oxidation catalyst, which hydroxyl radicals did not decompose in the accelerated oxidation zone (16B). Oxidatively decomposes hardly decomposable organic compounds such as dioxin. The treated water is discharged from a water outlet provided at the bottom of the oxidation reaction tower (16).
【0055】少量の廃オゾンは、酸化反応塔(16)頂部に
設けた排気口から排出し、排気口に接続された気液分離
塔(18)において処理水と分離した後、廃オゾン処理装置
(1)に送り、ここで分解処理した。A small amount of waste ozone is discharged from an exhaust port provided at the top of the oxidation reaction tower (16), and separated from treated water in a gas-liquid separation tower (18) connected to the exhaust port.
It was sent to (1), where it was disassembled.
【0056】実施例9 この実施例は、実施例7および8の変形例を示すもので
あって、図9にそのフローシートが示されている。図9
に示すように、調整槽(2)から酸化反応塔(16)への水移
送過程で、酸化剤槽(14)から供給ポンプ(15)を介して処
理すべき水に次亜鉛素酸ナトリウムまたは過酸化水素水
を添加する。これにより、後段の酸化反応塔(16)の触媒
酸化帯域(16A)および促進酸化帯域(16B)において、より
多くのヒドロキシラジカルが生成される。その他の点
は、実施例7および8と同様に処理を行った。Embodiment 9 This embodiment is a modification of Embodiments 7 and 8, and its flow sheet is shown in FIG. FIG.
As shown in the figure, in the process of transferring water from the adjustment tank (2) to the oxidation reaction tower (16), the water to be treated from the oxidant tank (14) via the supply pump (15) is added to sodium hypochlorite or Add hydrogen peroxide solution. Thereby, more hydroxyl radicals are generated in the catalytic oxidation zone (16A) and the promoted oxidation zone (16B) of the subsequent oxidation reaction tower (16). Otherwise, the processing was performed in the same manner as in Examples 7 and 8.
【0057】実施例10 この実施例は、本発明による第5の除去方法の実施例を
示すものであって、図10にそのフローシートが示され
ている。なお、図12を用いて先に説明した処理フロー
における砂濾過塔および活性炭吸着塔を経た水を被処理
水として処理する点は、この実施例も同じである。図1
0において、処理すべき水を調整槽(2)に導入して、こ
こから原水供給ポンプ(3)によって触媒酸化塔(4)に送
る。Embodiment 10 This embodiment shows an embodiment of the fifth removing method according to the present invention, and its flow sheet is shown in FIG. This embodiment is also the same in that the water that has passed through the sand filtration tower and the activated carbon adsorption tower in the processing flow described above with reference to FIG. 12 is treated as the water to be treated. FIG.
At 0, the water to be treated is introduced into a regulating tank (2), from which it is sent by a raw water supply pump (3) to a catalytic oxidation tower (4).
【0058】触媒酸化塔(4)内には触媒層(5)が設けら
れ、触媒層(5)には金属酸化物を担持させた触媒が詰め
られている。上記水を触媒酸化塔(4)へその底部に設け
た水導入口より供給し、さらにオゾン発生器(13)からオ
ゾンをオゾンライン(6)で底部より注入散気する。同時
に、触媒酸化塔(4)内の一次処理水を循環させるため、
その一部を頂部より循環ポンプ(8)で循環ライン(7)を通
って触媒酸化塔(4)の底部に返送し、残りの処理水は触
媒酸化塔(4)頂部に設けた水排出口から系外へ排出す
る。A catalyst layer (5) is provided in the catalytic oxidation tower (4), and the catalyst layer (5) is packed with a catalyst supporting a metal oxide. The water is supplied to the catalytic oxidation tower (4) from a water inlet provided at the bottom thereof, and ozone is injected and diffused from the bottom of the ozone generator (13) through the ozone line (6). At the same time, to circulate the primary treated water in the catalytic oxidation tower (4),
Part of the water is returned from the top to the bottom of the catalytic oxidation tower (4) through the circulation line (7) by the circulation pump (8), and the remaining treated water is discharged from the water outlet provided at the top of the catalytic oxidation tower (4). From the system.
【0059】触媒酸化塔(4)頂部から出たオゾンは、ガ
ス循環ポンプ(11)により同塔底部に戻すことによって循
環させる。The ozone discharged from the top of the catalytic oxidation tower (4) is circulated by returning it to the bottom of the catalytic oxidation tower (4) by a gas circulation pump (11).
【0060】触媒酸化塔(4)で使用されることによって
不足するオゾンは、同塔に設けたオゾン濃度測定制御装
置(12)によって把握し、設定した濃度以下になった場合
に、オゾン発生器(13)からオゾンが供給される。このこ
とによりオゾンの使用量を最低限にすることができる。
また、少量の廃オゾンを除去するために、触媒酸化塔
(4)の頂部に排気口を設け、そこに廃オゾン分解装置(1)
を接続し、同装置(1)で廃オゾンを分解処理した。The ozone deficient due to use in the catalytic oxidation tower (4) is grasped by an ozone concentration measurement control device (12) provided in the tower, and when the concentration falls below a set concentration, an ozone generator is used. Ozone is supplied from (13). This allows the use of ozone to be minimized.
In order to remove a small amount of waste ozone, a catalytic oxidation tower
An exhaust port is provided at the top of (4), and there is a waste ozone decomposer (1)
And the same apparatus (1) was used to decompose waste ozone.
【0061】実施例11 この実施例は、本発明による第5の除去方法の他の実施
例を示すものであって、図11にそのフローシートが示
されている。この実施例では、調整槽(2)から触媒酸化
塔(4)への水移送過程で、酸化剤槽(14)から供給ポンプ
(15)を介して処理すべき水に次亜鉛素酸ナトリウムまた
は過酸化水素水を添加する。これにより、後段の触媒酸
化塔(4)において、より多くのヒドロキシラジカルが生
成される。その他の点は実施例10と同様に処理を行っ
た。Embodiment 11 This embodiment shows another embodiment of the fifth removing method according to the present invention, and its flow sheet is shown in FIG. In this embodiment, in the process of transferring water from the regulating tank (2) to the catalytic oxidation tower (4), the supply pump is supplied from the oxidizing tank (14).
Add sodium hypochlorite or hydrogen peroxide to the water to be treated via (15). Thereby, more hydroxyl radicals are generated in the subsequent catalytic oxidation tower (4). The other points were the same as in Example 10.
【0062】[0062]
【発明の効果】本発明の方法によれば、浸出水、下水、
工業排水、河川水、湖沼水、池の水、水道水、地下水等
に含まれるダイオキシン、環境ホルモン等の難分解性有
機化合物を効果的に除去することができる。According to the method of the present invention, leachate, sewage,
It is possible to effectively remove hard-to-decompose organic compounds such as dioxins and environmental hormones contained in industrial wastewater, river water, lake water, pond water, tap water, groundwater, and the like.
【図1】実施例1の方法を示すフローシートである。FIG. 1 is a flow sheet showing a method of Example 1.
【図2】実施例2の方法を示すフローシートである。FIG. 2 is a flow sheet showing a method of Example 2.
【図3】実施例3の方法を示すフローシートである。FIG. 3 is a flow sheet showing a method of Example 3.
【図4】実施例4の方法を示すフローシートである。FIG. 4 is a flow sheet showing a method of Example 4.
【図5】実施例5の方法を示すフローシートである。FIG. 5 is a flow sheet showing a method of Example 5.
【図6】実施例6の方法を示すフローシートである。FIG. 6 is a flow sheet showing a method of Example 6.
【図7】実施例7の方法を示すフローシートである。FIG. 7 is a flow sheet showing a method of Example 7.
【図8】実施例8の方法を示すフローシートである。FIG. 8 is a flow sheet showing a method of an eighth embodiment.
【図9】実施例9の方法を示すフローシートである。FIG. 9 is a flow sheet showing a method of Example 9.
【図10】実施例10の方法を示すフローシートであ
る。FIG. 10 is a flow sheet showing a method of Example 10.
【図11】実施例11の方法を示すフローシートであ
る。FIG. 11 is a flow sheet showing a method of Example 11.
【図12】従来法を示すフローシートである。FIG. 12 is a flow sheet showing a conventional method.
(1):廃オゾン除去装置 (2):調整槽 (3):原水供給ポンプ (4):触媒酸化塔 (5):触媒層 (6):オゾンライン (7):循環ライン (8):循環ポンプ (9):促進酸化塔 (10):紫外線ランプ (11):ガス循環ポンプ (12):オゾン濃度測定制御装置 (13):オゾン発生器 (14):酸化剤槽 (15):酸化剤供給ポンプ (16):酸化反応塔 (16A):触媒酸化帯域 (16B):促進酸化帯域 (17):散気管 (18):気液分離塔 (1): Waste ozone removal device (2): Regulating tank (3): Raw water supply pump (4): Catalytic oxidation tower (5): Catalyst bed (6): Ozone line (7): Circulation line (8): Circulation pump (9): Accelerated oxidation tower (10): UV lamp (11): Gas circulation pump (12): Ozone concentration measurement control device (13): Ozone generator (14): Oxidizer tank (15): Oxidation Agent supply pump (16): Oxidation reaction tower (16A): Catalytic oxidation zone (16B): Accelerated oxidation zone (17): Aeration tube (18): Gas-liquid separation tower
フロントページの続き (72)発明者 井上 司朗 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内Continued on the front page (72) Inventor Shiro Inoue 1-7-89 Minami Kohoku, Suminoe-ku, Osaka Nichi-Shipbuilding Corporation
Claims (70)
化触媒の存在下にオゾンで酸化処理し、次いで促進酸化
塔においてさらに紫外線およびオゾンで酸化処理するこ
とを特徴とする、水中の難分解性有機化合物の除去方
法。1. Hardly decomposable water, characterized in that the water to be treated is oxidized with ozone in a catalytic oxidation tower in the presence of an oxidation catalyst, and then further oxidized with ultraviolet light and ozone in a promoted oxidation tower. Method for removing a volatile organic compound.
向流になるよう供給し、触媒酸化塔で酸化処理された水
を頂部から一次処理水として取り出し、一次処理水を促
進酸化塔に底部から上向流になるよう供給し、促進酸化
塔で酸化処理された水を頂部から二次処理水として取り
出す、請求項1記載の方法。2. The water to be treated is supplied to the catalytic oxidation tower so as to flow upward from the bottom, and the water oxidized in the catalytic oxidation tower is taken out from the top as primary treated water. 2. The method according to claim 1, wherein the water is supplied so as to flow upward from the bottom, and water oxidized in the accelerated oxidation tower is taken out from the top as secondary treated water.
取り出し、同塔底部に循環させる、請求項2記載の方
法。3. The process according to claim 2, wherein a part of the primary treated water is taken out from the top of the catalytic oxidation column and circulated to the bottom of the column.
向流になるよう供給し、触媒酸化塔で酸化処理された水
を底部から一次処理水として取り出し、一次処理水を促
進酸化塔に頂部から下向流になるよう供給し、促進酸化
塔で酸化処理された水を底部から二次処理水として取り
出す、請求項1記載の方法。4. The water to be treated is supplied to the catalytic oxidation tower from the top in a downward flow, and water oxidized in the catalytic oxidation tower is taken out from the bottom as primary treated water. 2. The method according to claim 1, wherein the water is supplied from the top so as to flow downward, and water oxidized in the accelerated oxidation tower is taken out as secondary treated water from the bottom.
取り出し、同塔頂部に循環させる、請求項4記載の方
法。5. The method according to claim 4, wherein a part of the primary treated water is taken out from the bottom of the catalytic oxidation tower and circulated to the top of the same.
し、測定値が設定値以下となった場合に同塔にオゾンを
供給する、請求項1〜5のいずれか記載の方法。6. The method according to claim 1, wherein the amount of dissolved ozone at the top of the catalytic oxidation tower is measured, and when the measured value falls below a set value, ozone is supplied to the tower.
に送り、さらに促進酸化塔から再び触媒酸化塔に戻す、
請求項1〜6のいずれか記載の方法。7. Ozone is sent from the top of the catalytic oxidation tower to the promoted oxidation tower, and is returned from the promoted oxidation tower to the catalytic oxidation tower again.
The method according to claim 1.
く、請求項1〜7のいずれか記載の方法。8. The method according to claim 1, wherein an oxidizing agent is previously added to the water to be treated.
れる触媒酸化塔と、紫外線ランプが内蔵されかつオゾン
が供給される促進酸化塔とからなり、処理すべき水を、
触媒酸化塔において酸化触媒の存在下にオゾンで酸化処
理し、次いで促進酸化塔においてさらに紫外線およびオ
ゾンで酸化処理することを特徴とする、水中の難分解性
有機化合物の除去装置。9. A catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone, and a promoted oxidation tower provided with an ultraviolet lamp and supplied with ozone, wherein water to be treated is
An apparatus for removing hardly decomposable organic compounds in water, comprising oxidizing with ozone in the presence of an oxidation catalyst in a catalytic oxidation tower, and then oxidizing with an ultraviolet ray and ozone in a promoted oxidation tower.
水導入口が、同頂部に水排出口がそれぞれ設けられ、触
媒酸化塔および促進酸化塔における水の流れがいずれも
上向流となされる、請求項9記載の装置。10. A water inlet is provided at the bottom of the catalytic oxidation tower and the promoted oxidation tower, and a water outlet is provided at the top of the catalytic oxidation tower. The flow of water in the catalytic oxidation tower and the promoted oxidation tower is both upward flow. 10. The device of claim 9, wherein
水導入口が、同底部に水排出口がそれぞれ設けられ、触
媒酸化塔および促進酸化塔における水の流れがいずれも
下向流となされる、請求項9記載の装置。11. A water inlet is provided at the top of the catalytic oxidation tower and the promoted oxidation tower, and a water outlet is provided at the bottom thereof, so that the water flows in the catalytic oxidation tower and the promoted oxidation tower in a downward flow. 10. The device of claim 9, wherein
進酸化塔の頂部から排出された廃オゾンを分解処理する
廃オゾン処理装置を備えている、請求項9〜11のいず
れか記載の装置。12. The apparatus according to claim 9, further comprising a waste ozone treatment device for decomposing waste ozone discharged from the top of the catalytic oxidation tower and / or the promotion oxidation tower.
の頂部と廃オゾン処理装置との間に気液分離塔が設けら
れている、請求項12記載の装置。13. The apparatus according to claim 12, wherein a gas-liquid separation tower is provided between the top of the catalytic oxidation tower and / or the promoted oxidation tower and the waste ozonation apparatus.
加えるための酸化剤供給装置を備えている、請求項9〜
13のいずれか記載の装置。14. An oxidizing agent supply device for adding an oxidizing agent to water to be treated in advance.
The device according to any one of claims 13 to 13.
紫外線およびオゾンで酸化処理し、次いで触媒酸化塔に
おいてさらに酸化触媒の存在下にオゾンで酸化処理する
ことを特徴とする、水中の難分解性有機化合物の除去方
法。15. The hardly decomposable water, characterized in that the water to be treated is oxidized with ultraviolet light and ozone in a promoted oxidation tower, and then oxidized with ozone in a catalytic oxidation tower in the presence of an oxidation catalyst. Method for removing a volatile organic compound.
上向流になるよう供給し、促進酸化塔で酸化処理された
水を頂部から一次処理水として取り出し、一次処理水を
触媒酸化塔に底部から上向流になるよう供給し、触媒酸
化塔で酸化処理された水を頂部から二次処理水として取
り出す、請求項15記載の方法。16. The water to be treated is supplied to the promoted oxidation tower from the bottom so as to flow upward, water oxidized by the promoted oxidation tower is taken out from the top as primary treated water, and the primary treated water is removed from the catalytic oxidation tower. The method according to claim 15, wherein the water is supplied so as to flow upward from the bottom, and water oxidized in the catalytic oxidation tower is taken out as secondary treated water from the top.
を取り出し、同塔底部に循環させる、請求項16記載の
方法。17. The method according to claim 16, wherein a part of the primary treated water is taken out from the top of the catalytic oxidation tower and circulated to the bottom of the same.
下向流になるよう供給し、促進酸化塔で酸化処理された
水を底部から一次処理水として取り出し、一次処理水を
触媒酸化塔に頂部から下向流になるよう供給し、触媒酸
化塔で酸化処理された水を底部から二次処理水として取
り出す、請求項15記載の方法。18. The water to be treated is supplied to the promoted oxidation tower from the top in a downward flow, water oxidized in the promoted oxidation tower is taken out from the bottom as primary treated water, and the primary treated water is removed from the catalytic oxidation tower. The method according to claim 15, wherein water is supplied from the top so as to flow downward, and water oxidized in the catalytic oxidation tower is taken out as secondary treated water from the bottom.
を取り出し、同塔頂部に循環させる、請求項18記載の
方法。19. The method according to claim 18, wherein a part of the primary treated water is taken out from the bottom of the catalytic oxidation tower and circulated to the top of the same.
し、測定値が設定値以下となった場合に同塔にオゾンを
供給する、請求項15〜19のいずれか記載の方法。20. The method according to claim 15, wherein the amount of dissolved ozone at the top of the catalytic oxidation tower is measured, and when the measured value falls below a set value, ozone is supplied to the tower.
塔に送り、さらに促進酸化塔から再び触媒酸化塔に戻
す、請求項15〜20のいずれか記載の方法。21. The method according to claim 15, wherein the ozone is sent from the top of the catalytic oxidation tower to the promoted oxidation tower, and further returned from the promoted oxidation tower to the catalytic oxidation tower.
く、請求項15〜21のいずれか記載の方法。22. The method according to claim 15, wherein an oxidizing agent is added to the water to be treated in advance.
供給される促進酸化塔と、酸化触媒が充填されかつオゾ
ンが供給される触媒酸化塔とからなり、処理すべき水
を、促進酸化塔において紫外線およびオゾンで酸化処理
し、次いで触媒酸化塔においてさらに酸化触媒の存在下
にオゾンで酸化処理することを特徴とする、水中の難分
解性有機化合物の除去装置。23. A promoting oxidation tower having a built-in ultraviolet lamp and supplied with ozone, and a catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone. And an oxidation treatment with ozone in the catalytic oxidation tower, and then with an ozone in the presence of an oxidation catalyst in a catalytic oxidation tower.
水導入口が、同頂部に水排出口がそれぞれ設けられ、促
進酸化塔および触媒酸化塔における水の流れがいずれも
上向流となされる、請求項23記載の装置。24. A water inlet is provided at the bottom of the promoted oxidation tower and the catalytic oxidation tower, and a water outlet is provided at the top of the promoted oxidation tower and the catalytic oxidation tower. 24. The device of claim 23.
水導入口が、同底部に水排出口がそれぞれ設けられ、促
進酸化塔および触媒酸化塔における水の流れがいずれも
下向流となされる、請求項23記載の装置。25. A water inlet is provided at the top of the promoted oxidation tower and the catalytic oxidation tower, and a water outlet is provided at the bottom of the promoted oxidation tower and the catalytic oxidation tower. 24. The device of claim 23.
媒酸化塔の頂部から排出された廃オゾンを分解処理する
廃オゾン処理装置を備えている、請求項23〜25のい
ずれか記載の装置。26. The apparatus according to claim 23, further comprising a waste ozone treatment device for decomposing waste ozone discharged from the top of the promotion oxidation tower and / or the catalytic oxidation tower.
の頂部と廃オゾン処理装置との間に気液分離塔が設けら
れている、請求項26記載の装置。27. The apparatus according to claim 26, wherein a gas-liquid separation tower is provided between the top of the catalytic oxidation tower and / or the promoted oxidation tower and the waste ozonation apparatus.
加えるための酸化剤供給装置を備えている、請求項23
〜27のいずれか記載の装置。28. The apparatus according to claim 23, further comprising an oxidant supply device for adding an oxidant to water to be treated in advance.
28. The apparatus according to any one of -27.
化帯域において酸化触媒の存在下にオゾンで酸化処理
し、次いで同塔の促進酸化帯域においてさらに紫外線お
よびオゾンで酸化処理することを特徴とする、水中の難
分解性有機化合物の除去方法。29. The water to be treated is oxidized with ozone in the catalytic oxidation zone of the oxidation reaction tower in the presence of an oxidation catalyst, and then further oxidized with ultraviolet light and ozone in the accelerated oxidation zone of the tower. A method for removing hardly decomposable organic compounds in water.
上向流になるよう供給し、同塔下側の触媒酸化帯域およ
び上側の促進酸化帯域において順次酸化処理された水を
頂部から処理水として取り出す、請求項29記載の方
法。30. Water to be treated is supplied to the oxidation reaction tower from the bottom in an upward flow, and water oxidized sequentially in the catalytic oxidation zone on the lower side and the accelerated oxidation zone on the upper side is treated water from the top. 30. The method of claim 29, wherein the method comprises:
り出し、同塔底部に循環させる、請求項30記載の方
法。31. The method according to claim 30, wherein a part of the treated water is taken out from the top of the oxidation reaction column and circulated to the bottom of the column.
下向流になるよう供給し、同塔上側の触媒酸化帯域およ
び下側の促進酸化帯域において順次酸化処理された水を
底部から処理水として取り出す、請求項29記載の方
法。32. Water to be treated is supplied to the oxidation reaction tower from the top in a downward flow, and water oxidized sequentially in the catalytic oxidation zone on the upper side of the tower and the promoted oxidation zone on the lower side is treated from the bottom. 30. The method of claim 29, wherein the method is withdrawn as water.
り出し、同塔頂部に循環させる、請求項32記載の方
法。33. The method according to claim 32, wherein a part of the treated water is taken out from the bottom of the oxidation reaction column and circulated to the top of the column.
し、測定値が設定値以下となった場合に同塔にオゾンを
供給する、請求項29〜33のいずれか記載の方法。34. The method according to claim 29, wherein the amount of dissolved ozone at the top of the oxidation reaction tower is measured, and when the measured value falls below a set value, ozone is supplied to the oxidation reaction tower.
に戻す、請求項29〜34のいずれか記載の方法。35. The method according to claim 29, wherein the ozone is returned from the top of the oxidation reaction tower to the bottom of the oxidation reaction tower.
く、請求項29〜35のいずれか記載の方法。36. The method according to claim 29, wherein an oxidizing agent is added to the water to be treated in advance.
域と紫外線ランプが内蔵されている促進酸化帯域とを有
し、かつこれらの帯域にオゾンが供給される酸化反応塔
からなり、処理すべき水を、触媒酸化帯域において酸化
触媒の存在下にオゾンで酸化処理し、次いで促進酸化帯
域においてさらに紫外線およびオゾンで酸化処理するこ
とを特徴とする、水中の難分解性有機化合物の除去装
置。37. An oxidation reaction column having a catalytic oxidation zone filled with an oxidation catalyst and an accelerated oxidation zone containing an ultraviolet lamp, wherein ozone is supplied to these zones. An apparatus for removing hardly decomposable organic compounds in water, comprising oxidizing water with ozone in the presence of an oxidation catalyst in a catalytic oxidation zone, and then oxidizing the water with ultraviolet light and ozone in a promotion oxidation zone.
同上側に促進酸化帯域がそれぞれ設けられているととも
に、同塔の底部に水導入口が、同頂部に水排出口がそれ
ぞれ設けられ、酸化反応塔における水の流れが上向流と
なされる、請求項37記載の装置。38. A catalytic oxidation zone below the oxidation reaction tower,
A promoted oxidation zone is provided on the upper side, respectively, a water inlet is provided on the bottom of the column, and a water outlet is provided on the top, and the flow of water in the oxidation reaction tower is made to flow upward. 38. The device according to claim 37.
同下側に促進酸化帯域がそれぞれ設けられているととも
に、同塔の頂部に水導入口が、同底部に水排出口がそれ
ぞれ設けられ、酸化反応塔における水の流れが下向流と
なされる、請求項37記載の装置。39. A catalytic oxidation zone above the oxidation reaction tower,
A promoted oxidation zone is provided on the lower side, and a water inlet is provided on the top of the tower and a water outlet is provided on the bottom, respectively, so that the flow of water in the oxidation reaction tower is downward. 38. The apparatus of claim 37.
れた廃オゾンを分解処理する廃オゾン処理装置を備えて
いる、請求項37〜39のいずれか記載の装置。40. The apparatus according to claim 37, further comprising a waste ozone treatment device for decomposing waste ozone discharged from the top of the oxidation reaction tower.
との間に気液分離塔が設けられている、請求項40記載
の装置。41. The apparatus according to claim 40, wherein a gas-liquid separation tower is provided between the top of the oxidation reaction tower and the waste ozone treatment apparatus.
加えるための酸化剤供給装置を備えている、請求項37
〜41のいずれか記載の装置。42. The apparatus according to claim 37, further comprising an oxidant supply device for adding an oxidant to water to be treated in advance.
42. The apparatus according to any one of -41.
化帯域において紫外線およびオゾンで酸化処理し、次い
で触媒酸化帯域においてさらに酸化触媒の存在下にオゾ
ンで酸化処理することを特徴とする、水中の難分解性有
機化合物の除去方法。43. The water to be treated is oxidized with ultraviolet light and ozone in an accelerated oxidation zone of an oxidation reaction tower, and then oxidized with ozone in the presence of an oxidation catalyst in a catalytic oxidation zone. A method for removing hardly decomposable organic compounds in water.
上向流になるよう供給し、同塔下側の促進酸化帯域およ
び上側の触媒酸化帯域において順次酸化処理された水を
頂部から処理水として取り出す、請求項43記載の方
法。44. Water to be treated is supplied to an oxidation reaction tower from the bottom so as to flow upward, and water oxidized sequentially in a promoted oxidation zone below the tower and an upper catalytic oxidation zone is treated water from the top. 44. The method of claim 43, wherein the method retrieves
り出し、同塔底部に循環させる、請求項44記載の方
法。45. The method according to claim 44, wherein a part of the treated water is taken out from the top of the oxidation reaction column and circulated to the bottom of the column.
下向流になるよう供給し、同塔上側の促進酸化帯域およ
び下側の触媒酸化帯域において順次酸化処理された水を
底部から処理水として取り出す、請求項43記載の方
法。46. Water to be treated is supplied to the oxidation reaction tower from the top in a downward flow, and the water which has been sequentially oxidized in the promoted oxidation zone on the upper side and the catalytic oxidation zone on the lower side is treated from the bottom. 44. The method of claim 43, wherein the method is withdrawn as water.
り出し、同塔頂部に循環させる、請求項46記載の方
法。47. The method according to claim 46, wherein a part of the treated water is taken out from the bottom of the oxidation reaction tower and circulated to the top of the oxidation reaction tower.
し、測定値が設定値以下となった場合に同塔にオゾンを
供給する、請求項43〜47のいずれか記載の方法。48. The method according to claim 43, wherein the amount of dissolved ozone at the top of the oxidation reaction tower is measured, and when the measured value falls below a set value, ozone is supplied to the oxidation reaction tower.
に戻す、請求項43〜48のいずれか記載の方法。49. The method according to claim 43, wherein the ozone is returned from the top of the oxidation reaction column to the bottom of the oxidation reaction column.
く、請求項43〜49のいずれか記載の方法。50. The method according to claim 43, wherein an oxidizing agent is previously added to the water to be treated.
化帯域と酸化触媒が充填されている触媒酸化帯域とを有
し、かつこれらの帯域にオゾンが供給される酸化反応塔
からなり、処理すべき水を、促進酸化帯域において紫外
線およびオゾンで酸化処理し、次いで触媒酸化帯域にお
いてさらに酸化触媒の存在下にオゾンで酸化処理するこ
とを特徴とする、水中の難分解性有機化合物の除去装
置。51. An oxidation reaction column having an accelerated oxidation zone containing an ultraviolet lamp and a catalytic oxidation zone filled with an oxidation catalyst, and these zones being supplied with ozone, to be treated. An apparatus for removing hardly decomposable organic compounds in water, comprising oxidizing water with ultraviolet rays and ozone in an accelerated oxidation zone, and then oxidizing water with ozone in the presence of an oxidation catalyst in a catalytic oxidation zone.
同上側に触媒酸化帯域がそれぞれ設けられているととも
に、同塔の底部に水導入口が、同頂部に水排出口がそれ
ぞれ設けられ、酸化反応塔における水の流れが上向流と
なされる、請求項51記載の装置。52. A promoted oxidation zone below the oxidation reaction tower,
A catalyst oxidation zone is provided on the upper side, a water inlet is provided on the bottom of the column, and a water outlet is provided on the top, respectively, so that the flow of water in the oxidation reaction tower is upward. The device of claim 51.
同下側に触媒酸化帯域がそれぞれ設けられているととも
に、同塔の頂部に水導入口が、同底部に水排出口がそれ
ぞれ設けられ、酸化反応塔における水の流れが下向流と
なされる、請求項51記載の装置。53. A promoted oxidation zone above the oxidation reaction tower,
A catalytic oxidation zone is provided on the lower side, and a water inlet is provided on the top of the column and a water outlet is provided on the bottom, respectively, so that the flow of water in the oxidation reaction tower is downward. 52. The device of claim 51.
れた廃オゾンを分解処理する廃オゾン処理装置を備えて
いる、請求項51〜53のいずれか記載の装置。54. The apparatus according to claim 51, further comprising a waste ozone treatment device for decomposing waste ozone discharged from the top of the oxidation reaction tower.
との間に気液分離塔が設けられている、請求項54記載
の装置。55. The apparatus according to claim 54, wherein a gas-liquid separation tower is provided between the top of the oxidation reaction tower and the waste ozonation apparatus.
加えるための酸化剤供給装置を備えている、請求項51
〜55のいずれか記載の装置。56. The apparatus according to claim 51, further comprising an oxidant supply device for adding an oxidant to water to be treated in advance.
The apparatus according to any one of claims 55.
酸化触媒の存在下にオゾンで酸化処理することを特徴と
する、水中の難分解性有機化合物の除去方法。57. A method for removing hardly decomposable organic compounds in water, comprising oxidizing water to be treated with ozone in a catalytic oxidation tower in the presence of an oxidation catalyst.
上向流になるよう供給し、オゾンを同塔に底部から散気
し、同塔で酸化処理された水を頂部から処理水として取
り出す、請求項57に記載の方法。58. Water to be treated is supplied to the catalytic oxidation tower so as to flow upward from the bottom, ozone is diffused into the tower from the bottom, and water oxidized in the tower is treated as treated water from the top. 58. The method of claim 57, wherein removing.
り出し、同塔底部に循環させる、請求項58記載の方
法。59. The method according to claim 58, wherein a part of the treated water is taken out from the top of the catalytic oxidation tower and circulated to the bottom of the same.
下向流になるよう供給し、オゾンを同塔に底部から散気
し、同塔で酸化処理された水を底部から処理水として取
り出す、請求項57記載の方法。60. The water to be treated is supplied to the catalytic oxidation tower in a downward flow from the top, ozone is diffused into the tower from the bottom, and the water oxidized in the tower is treated as treated water from the bottom. 58. The method of claim 57, wherein removing.
り出し、同塔頂部に循環させる、請求項60記載の方
法。61. The method according to claim 60, wherein a part of the treated water is taken out from the bottom of the catalytic oxidation tower and circulated to the top of the same.
し、測定値が設定値以下となった場合に同塔にオゾンを
供給する、請求項57〜61のいずれか記載の方法。62. The method according to claim 57, wherein the amount of dissolved ozone at the top of the catalytic oxidation tower is measured, and when the measured value falls below a set value, ozone is supplied to the tower.
底部に戻す、請求項57〜62のいずれか記載の方法。63. The method according to claim 57, wherein the ozone discharged from the top of the catalytic oxidation tower is returned to the bottom of the catalytic oxidation tower.
く、請求項57〜63のいずれか記載の方法。64. The method according to claim 57, wherein an oxidizing agent is added to the water to be treated in advance.
される触媒酸化塔からなり、処理すべき水を、同塔にお
いて酸化触媒の存在下にオゾンで酸化処理することを特
徴とする、水中の難分解性有機化合物の除去装置。65. A catalytic oxidation tower filled with an oxidation catalyst and supplied with ozone, wherein water to be treated is oxidized with ozone in the tower in the presence of an oxidation catalyst. Removal device for persistent organic compounds.
部に水排出口がそれぞれ設けられ、同塔における水の流
れが上向流となされる、請求項65記載の装置。66. The apparatus according to claim 65, wherein a water inlet is provided at the bottom of the catalytic oxidation tower, and a water outlet is provided at the top of the catalytic oxidation tower, and the flow of water in the tower is upward.
部に水排出口がそれぞれ設けられ、同塔における水の流
れが下向流となされる、請求項65記載の装置。67. The apparatus according to claim 65, wherein a water inlet is provided at the top of the catalytic oxidation tower, and a water outlet is provided at the bottom of the catalytic oxidation tower, and the flow of water in the tower is a downward flow.
れる廃オゾンを分解処理する廃オゾン処理装置を備えて
いる、請求項65〜67のいずれか記載の装置。68. The apparatus according to claim 65, further comprising a waste ozone treatment device for decomposing waste ozone discharged from the top of the catalytic oxidation tower.
との間に気液分離塔が設けられている、請求項68記載
の装置。69. The apparatus according to claim 68, wherein a gas-liquid separation tower is provided between the top of the catalytic oxidation tower and the waste ozonation apparatus.
加えるための酸化剤供給装置を備えている、請求項65
〜69のいずれか記載の装置。70. The apparatus according to claim 65, further comprising an oxidant supply device for adding an oxidant to water to be treated in advance.
70. The apparatus according to any one of -69.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000346048A JP2001205277A (en) | 1999-11-19 | 2000-11-14 | Method and apparatus for removing hardly decomposable organic compound in water |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32941099 | 1999-11-19 | ||
JP11-329410 | 1999-11-19 | ||
JP2000346048A JP2001205277A (en) | 1999-11-19 | 2000-11-14 | Method and apparatus for removing hardly decomposable organic compound in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001205277A true JP2001205277A (en) | 2001-07-31 |
Family
ID=26573192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000346048A Pending JP2001205277A (en) | 1999-11-19 | 2000-11-14 | Method and apparatus for removing hardly decomposable organic compound in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001205277A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006341229A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Precision Prod Co Ltd | Advanced treating method of cyanide compound-containing drain |
JP2011078945A (en) * | 2009-10-09 | 2011-04-21 | Tsukishima Kankyo Engineering Ltd | Wastewater treatment apparatus and wastewater treatment method using catalyst layer |
CN102311156A (en) * | 2011-08-24 | 2012-01-11 | 科迈化工股份有限公司 | Method for processing rubber promoter production wastewater by photocatalysis |
CN104108783A (en) * | 2014-07-02 | 2014-10-22 | 同济大学 | Method for rapid, high-efficiency and selective degradation of trace benzopyrene in water |
CN104386849A (en) * | 2014-10-13 | 2015-03-04 | 同济大学 | Method for selectively degrading trace polycyclic aromatic hydrocarbon in water |
CN106006925A (en) * | 2016-06-23 | 2016-10-12 | 北京中环嘉诚环境工程有限公司 | Catalytic ozonization system and application thereof in catalytic ozonation of hardly-degradable organic wastewater |
CN107010767A (en) * | 2017-06-21 | 2017-08-04 | 中国环境科学研究院 | A kind of device and method of pharmacy tail water processing |
CN107381905A (en) * | 2017-09-05 | 2017-11-24 | 博天环境集团股份有限公司 | A kind of ozone-ultraviolet integration catalysis oxidizing tower |
CN107986425A (en) * | 2017-12-15 | 2018-05-04 | 江苏湖大化工科技有限公司 | A kind of sewage disposal ozone oxidation reaction device |
CN111377526A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Organic wastewater treatment method |
CN111375289A (en) * | 2018-12-31 | 2020-07-07 | 中国石油化工股份有限公司 | Treatment method of VOCs waste gas containing water-soluble organic matters |
CN111377523A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Catalytic wet oxidation treatment method for organic wastewater |
CN111377525A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by adopting ozone catalytic wet oxidation |
CN111377521A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating organic wastewater by catalytic oxidation of ozone |
CN111377522A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by ozone catalytic wet oxidation |
CN111377524A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by using ozone catalytic wet oxidation |
CN111377519A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating organic wastewater |
CN111377520A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Organic wastewater treatment process |
CN118388019A (en) * | 2024-06-28 | 2024-07-26 | 青岛科技大学 | Continuous oxidation treatment method and system for chlorine-containing wastewater |
-
2000
- 2000-11-14 JP JP2000346048A patent/JP2001205277A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006341229A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Precision Prod Co Ltd | Advanced treating method of cyanide compound-containing drain |
JP2011078945A (en) * | 2009-10-09 | 2011-04-21 | Tsukishima Kankyo Engineering Ltd | Wastewater treatment apparatus and wastewater treatment method using catalyst layer |
CN102311156A (en) * | 2011-08-24 | 2012-01-11 | 科迈化工股份有限公司 | Method for processing rubber promoter production wastewater by photocatalysis |
CN104108783A (en) * | 2014-07-02 | 2014-10-22 | 同济大学 | Method for rapid, high-efficiency and selective degradation of trace benzopyrene in water |
CN104108783B (en) * | 2014-07-02 | 2015-10-28 | 同济大学 | A kind of fast, the method for micro-benzopyrene in efficient, degradation selectivity water |
CN104386849A (en) * | 2014-10-13 | 2015-03-04 | 同济大学 | Method for selectively degrading trace polycyclic aromatic hydrocarbon in water |
CN106006925A (en) * | 2016-06-23 | 2016-10-12 | 北京中环嘉诚环境工程有限公司 | Catalytic ozonization system and application thereof in catalytic ozonation of hardly-degradable organic wastewater |
CN107010767A (en) * | 2017-06-21 | 2017-08-04 | 中国环境科学研究院 | A kind of device and method of pharmacy tail water processing |
CN107381905A (en) * | 2017-09-05 | 2017-11-24 | 博天环境集团股份有限公司 | A kind of ozone-ultraviolet integration catalysis oxidizing tower |
CN107381905B (en) * | 2017-09-05 | 2023-10-27 | 博天环境集团股份有限公司 | Ozone-ultraviolet integrated catalytic oxidation tower |
CN107986425A (en) * | 2017-12-15 | 2018-05-04 | 江苏湖大化工科技有限公司 | A kind of sewage disposal ozone oxidation reaction device |
CN111377521A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating organic wastewater by catalytic oxidation of ozone |
CN111377523B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Catalytic wet oxidation treatment method for organic wastewater |
CN111377525A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by adopting ozone catalytic wet oxidation |
CN111377526A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Organic wastewater treatment method |
CN111377522A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by ozone catalytic wet oxidation |
CN111377524A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating wastewater by using ozone catalytic wet oxidation |
CN111377519A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Method for treating organic wastewater |
CN111377520A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Organic wastewater treatment process |
CN111377525B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Method for treating wastewater by adopting ozone catalytic wet oxidation |
CN111377523A (en) * | 2018-12-28 | 2020-07-07 | 中国石油化工股份有限公司 | Catalytic wet oxidation treatment method for organic wastewater |
CN111377520B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Organic wastewater treatment process |
CN111377519B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Method for treating organic wastewater |
CN111377521B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Method for treating organic wastewater by catalytic oxidation of ozone |
CN111377522B (en) * | 2018-12-28 | 2021-05-04 | 中国石油化工股份有限公司 | Method for treating wastewater by ozone catalytic wet oxidation |
CN111377526B (en) * | 2018-12-28 | 2021-06-04 | 中国石油化工股份有限公司 | Organic wastewater treatment method |
CN111377524B (en) * | 2018-12-28 | 2021-06-04 | 中国石油化工股份有限公司 | Method for treating wastewater by using ozone catalytic wet oxidation |
CN111375289B (en) * | 2018-12-31 | 2021-10-08 | 中国石油化工股份有限公司 | Treatment method of VOCs waste gas containing water-soluble organic matters |
CN111375289A (en) * | 2018-12-31 | 2020-07-07 | 中国石油化工股份有限公司 | Treatment method of VOCs waste gas containing water-soluble organic matters |
CN118388019A (en) * | 2024-06-28 | 2024-07-26 | 青岛科技大学 | Continuous oxidation treatment method and system for chlorine-containing wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001205277A (en) | Method and apparatus for removing hardly decomposable organic compound in water | |
JP3440313B2 (en) | Method and apparatus for treating contaminated water | |
RU2148032C1 (en) | Method and apparatus for biological destruction of injurious impurities in water | |
JP2005058854A (en) | Method and apparatus for waste water treatment | |
JPH02164490A (en) | Water treatment method and apparatus | |
JP3516327B2 (en) | Method and apparatus for treating organic wastewater containing dioxins | |
JP2003088885A (en) | Method and apparatus for treating organic waste water | |
CN105130131A (en) | Treatment system and method of landfill refuse leachate | |
CN215559676U (en) | Advanced treatment equipment for landfill leachate | |
JP2002177981A (en) | Waste water treatment method and equipment | |
JP3552754B2 (en) | Advanced treatment method of organic sewage and its apparatus | |
JP3573322B2 (en) | Method and apparatus for treating dioxin-containing wastewater | |
JP2652493B2 (en) | COD removal method for leachate from landfill | |
CN202865059U (en) | Integral type sewage treatment device | |
JP2006281000A (en) | Apparatus for reducing trace of hazardous substance in water | |
JPH08267077A (en) | High degree treating method of waste water | |
JPH0938672A (en) | Pressurization type lower injection system multistage ozone contact vessel | |
JP2002361272A (en) | Accelerated oxidation treating apparatus | |
JP4025972B2 (en) | Advanced wastewater treatment method and advanced treatment equipment | |
JP2883009B2 (en) | Organic wastewater treatment method and apparatus | |
JP4522302B2 (en) | Detoxification method of organic arsenic | |
JPH11347576A (en) | Method and apparatus for treating water | |
JP2001170672A (en) | Waste water treatment method | |
JP3373138B2 (en) | Organic wastewater treatment method and apparatus | |
JP3859866B2 (en) | Water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081021 |