JP2001275693A - Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution - Google Patents
Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solutionInfo
- Publication number
- JP2001275693A JP2001275693A JP2000098490A JP2000098490A JP2001275693A JP 2001275693 A JP2001275693 A JP 2001275693A JP 2000098490 A JP2000098490 A JP 2000098490A JP 2000098490 A JP2000098490 A JP 2000098490A JP 2001275693 A JP2001275693 A JP 2001275693A
- Authority
- JP
- Japan
- Prior art keywords
- starch
- enzyme
- dried
- sugar solution
- cassava
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、キャッサバ芋組織
体からタピオカ澱粉を分離・精製することなく直接糖化
して高濃度糖液を製造する方法並びに該高濃度糖液を発
酵原料に用いてアミノ酸を発酵生産する方法に関する。The present invention relates to a method for producing a high-concentration sugar solution by directly saccharifying tapioca starch from cassava potato tissue without separating and purifying the same, and an amino acid using the high-concentration sugar solution as a fermentation raw material. And a method for producing by fermentation.
【0002】[0002]
【従来の技術】タピオカは、キャッサバ芋から生産され
る澱粉であり、酵素糖化によりグルコースに変換され、
アミノ酸等各種発酵製品の主要原料として使われてい
る。2. Description of the Related Art Tapioca is a starch produced from cassava potato, which is converted into glucose by enzymatic saccharification.
It is used as a main raw material for various fermented products such as amino acids.
【0003】従来、タピオカは、原料のキャッサバ芋を
粉砕し、芋の中に蓄えられた澱粉の微粒子を水で抽出
し、目の細かい網で漉したり遠心分離等により澱粉以外
の繊維質等のカスから分離採取し、乾燥することによっ
て製造されている。通常、原料のキャッサバ芋(生芋)
は約50%の水分を含んでおり、その生芋の20〜25
%の収率でタピオカが得られ、これとほぼ同量のカスが
排出されているのが現状である。[0003] Conventionally, tapioca has been obtained by pulverizing cassava potato as a raw material, extracting fine starch particles stored in the potato with water, straining it with a fine mesh or centrifuging to remove fibers other than starch. It is manufactured by separating and collecting from scum and drying. Usually, raw cassava potato (raw potato)
Contains about 50% of water, and 20-25
% Of tapioca is obtained, and almost the same amount of scum is discharged at present.
【0004】[0004]
【発明が解決しようとする課題】ところが、キャッサバ
芋の澱粉含量を分析したところ、生芋の40〜45%が
澱粉であり、従って、相当量の澱粉が抽出されずに、排
出される繊維質等のカスの中に残留していることにな
る。However, when the starch content of cassava potato was analyzed, 40-45% of the raw potato was starch, and therefore, a considerable amount of starch was not extracted, and the discharged fiber Etc. will remain in the residue.
【0005】キャッサバ芋の破砕は、通常ノコギリ歯植
込式磨砕機(ラスパー)等によって行われているが、馬
鈴薯に比べて細胞膜が厚く、澱粉粒子も小さいので磨砕
効率もやや低く澱粉粒子の分離には充分とは言えず、澱
粉の収率に顕著な向上が認められない。事実、カスを走
査性電子顕微鏡で観察したところ、ほぼ均質で球状の澱
粉粒がびっしり存在し、多数の澱粉粒子が膜状のもので
覆われているのが明瞭に認められる。[0005] The cassava potato is usually crushed by a sawtooth tooth-implanting grinder (raspar) or the like. However, since the cell membrane is thicker and the starch particles are smaller than potatoes, the grinding efficiency is slightly lower and the starch particles are smaller. It is not sufficient for separation and no remarkable improvement in starch yield is observed. In fact, when the scum is observed with a scanning electron microscope, it can be clearly seen that almost homogeneous and spherical starch granules are present and many starch particles are covered with a film-like material.
【0006】ラスパーでのキャッサバ芋の破砕と同様の
状態を実験室で再現するために、図1に示すフローシー
トに従っておろし金でキャッサバ芋をすりおろし、澱粉
製造実験を行い、最終的に得られた澱粉、カスの各重量
を測定し、澱粉の収率(抽出率)を求めた。同一条件で
3回の実験を行った結果を表1に示す。[0006] In order to reproduce the same state as the crushing of cassava potato in a laboratory, cassava potatoes were grated with a grater according to a flow sheet shown in FIG. 1, and a starch production experiment was carried out. Each weight of starch and scum was measured to determine the starch yield (extraction rate). Table 1 shows the results of three experiments performed under the same conditions.
【0007】[0007]
【表1】 [Table 1]
【0008】表1に示すように、いずれの回も得られた
澱粉重量とカスの重量はほぼ同じであり、実際のタピオ
カ澱粉工場で製品であるタピオカとほぼ同量のカスが排
出されている状況とよく一致している。[0010] As shown in Table 1, the starch weight and the scum weight obtained in each case are almost the same, and almost the same amount of scum as the product tapioca is discharged from the actual tapioca starch factory. Well matched with the situation.
【0009】このように、カスの中でも多くの澱粉粒子
が残留し、膜状のもので覆われているため、澱粉採取の
ための通常の破砕処理においても同様、澱粉の得量に大
きな制約を受け、キャッサバ芋中の澱粉が充分に抽出で
きない。このことは、キャッサバ芋中の澱粉資源が有効
に利用されておらないばかりではなく、澱粉製造工場か
ら排出されるカス等の廃棄物中にまだ多くの澱粉が存在
していることが公害問題につながるおそれがある。As described above, a large amount of starch particles remain in the scum and are covered with a film-like material, so that the ordinary crushing process for collecting starch similarly imposes a great limitation on the yield of starch. As a result, the starch in the cassava potato cannot be sufficiently extracted. This is not only because the starch resources in cassava potatoes are not being used effectively, but also because there is still a large amount of starch in waste such as scum discharged from starch manufacturing plants. May be connected.
【0010】そこで、キャッサバ芋から澱粉の抽出工程
を経由せずに、直接糖化して高濃度の糖化液を製造して
これを発酵原料として利用できれば、キャッサバ芋から
の澱粉製造時に発生していたカス等の大幅な削減、ひい
ては公害問題の解消になるものと考えられる。[0010] Therefore, if a high-concentration saccharified liquid was produced by directly saccharifying the cassava potato without passing through the starch extraction step and used as a fermentation raw material, it was generated during the production of cassava potato starch. It is thought that this will greatly reduce the amount of scum and eventually resolve pollution problems.
【0011】本発明はかかる観点に着目してなされたも
ので、キャッサバ芋からタピオカ澱粉を分離・精製する
ことなく直接糖化して高濃度の糖化液を製造する方法並
びにこの高濃度の糖化液を用いてアミノ酸を発酵生産す
る方法を提供することを目的としている。The present invention has been made in view of such a viewpoint, and a method for producing a high-concentration saccharified solution by directly saccharifying tapioca starch from cassava potato without separation and purification, and a method for producing the high-concentration saccharified solution It is intended to provide a method for producing an amino acid by fermentation using the same.
【0012】[0012]
【課題を解決するための手段】本発明者らは上記目的を
達成するために鋭意検討した結果、生キャッサバ芋の皮
を剥き、その水分含有量が16重量%以下となるように
乾燥したものは簡単に微粉砕でき、この微粉砕によって
澱粉粒子を覆う膜を破壊してその中の澱粉をも糖化しう
ることを見出した。すなわち、水分含有量が16重量%
以下に乾燥したキャッサバ芋は、150μm以下の粒径
まで微粉砕すると、粉末の懸濁性がよく、スラリー濃度
が35%の高濃度であっても、なめらかな流動性を保持
しているので、取り扱い易く、しかも液化・糖化が円滑
に行われ、粉末含有中の澱粉の80%以上が糖化され、
発酵フィード液として利用可能な40%以上の高濃度の
糖液が得られること、また、キャッサバ芋粉末を液化・
糖化するために水に懸濁する際、セルラーゼを用いて液
化前処理を施しておくと、粉末芋を高濃度(45〜55g
/dl)に懸濁することができること、更にまた、キャ
ッサバ芋粉末を液化・糖化するために水に懸濁する際、
予め液化酵素を添加しておくことにより、液化酵素活性
の高い温度に加熱しなくとも、高濃度(45g/dl)
に粉末を懸濁することができ、その後の液化・糖化が円
滑に行われること、そして、この糖液はアミノ酸発酵原
料として好適であり、アミノ酸を高い収率で得て、キャ
ッサバ芋の澱粉の利用率を大幅に高めることができ、ひ
いては廃棄物量も削減できることを見出した。本発明は
かかる知見に基づいてなされた。Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, peeled cassava potato and dried it so that its water content was 16% by weight or less. Found that it was possible to easily pulverize, and by this pulverization, the film covering the starch particles was broken and the starch therein could also be saccharified. That is, the water content is 16% by weight.
The cassava potato dried below is finely pulverized to a particle size of 150 μm or less, so that the powder has good suspension properties and maintains a smooth fluidity even at a high slurry concentration of 35%. It is easy to handle, and liquefaction and saccharification are carried out smoothly. More than 80% of starch in powder is saccharified,
A sugar solution with a high concentration of 40% or more, which can be used as a fermentation feed solution, is obtained.
When suspended in water for saccharification, if pre-liquefaction treatment is performed using cellulase, the powdered potato can be concentrated at a high concentration (45 to 55 g).
/ Dl), and further, when the cassava potato powder is suspended in water for liquefaction and saccharification,
By adding the liquefaction enzyme in advance, it is possible to obtain a high concentration (45 g / dl) without heating to a temperature at which liquefaction enzyme activity is high.
Powder can be suspended, and subsequent liquefaction and saccharification can be performed smoothly, and this sugar solution is suitable as a raw material for amino acid fermentation, amino acids can be obtained in high yield, and starch of cassava potato can be obtained. It has been found that the utilization rate can be greatly increased and the amount of waste can be reduced. The present invention has been made based on such findings.
【0013】すなわち、本請求項1の発明は、剥皮、乾
燥させて水分含量を16重量%以下とした乾燥キャッサ
バ芋を150μm以下に粉砕し、これを水に懸濁して3
5重量%以上の澱粉を含む粗澱粉スラリーを調製した
後、澱粉液化酵素および糖化酵素を作用させて酵素液化
および酵素糖化することを特徴とる高濃度糖液の製造方
法であり、本請求項2の発明は、剥皮、乾燥させて水分
含量を16重量%以下とした乾燥キャッサバ芋を150
μm以下に粉砕してセルラーゼを含む水溶液中に懸濁し
てセルラーゼによる酵素的処理を施しながら35重量%
以上の澱粉を含む粗澱粉スラリーを調製した後、澱粉液
化酵素および糖化酵素を作用させて酵素液化および酵素
糖化することを特徴とる高濃度糖液の製造方法であり、
本請求項3の発明は、剥皮、乾燥させて水分含量を16
重量%以下とした乾燥キャッサバ芋を150μm以下に
粉砕して澱粉液化酵素を含む水溶液中に懸濁して35重
量%以上の澱粉を含む粗澱粉スラリーを調製しつつ、酵
素液化を行った後、糖化酵素を作用させて酵素糖化する
ことを特徴とる高濃度糖液の製造方法であり、本請求項
4の発明は、乾燥キャッサバ芋の水分含量が5〜10重
量%である請求項1乃至3のいずれかに記載の高濃度糖
液の製造方法であり、本請求項5の発明は、請求項1乃
至4のいずれかに記載の方法によって製造された高濃度
糖液を発酵原料に用いることを特徴とするアミノ酸の発
酵生産方法である。That is, according to the first aspect of the present invention, dried cassava potato having a water content of 16% by weight or less by peeling and drying is crushed to 150 μm or less, and this is suspended in water to obtain 3%.
A method for producing a high-concentration sugar solution, comprising preparing a crude starch slurry containing 5% by weight or more of starch and then reacting with a starch liquefying enzyme and a saccharifying enzyme to liquefy and saccharify the enzyme. In the invention of the present invention, dried cassava potatoes having a water content of 16% by weight or less by peeling and drying are used.
Pulverized to not more than μm, suspended in an aqueous solution containing cellulase and subjected to enzymatic treatment with cellulase, 35% by weight
After preparing a crude starch slurry containing the above starch, a method for producing a high-concentration sugar solution, characterized in that enzyme liquefaction and enzymatic saccharification by acting starch liquefaction enzyme and saccharification enzyme,
The invention according to claim 3 is characterized in that the water content is reduced to 16 by peeling and drying.
The dried cassava potatoes having a weight percentage of not more than 150% are crushed to 150 μm or less and suspended in an aqueous solution containing a starch liquefying enzyme to prepare a crude starch slurry containing not less than 35% by weight of starch. A method for producing a high-concentration saccharide solution characterized by enzymatic saccharification by the action of an enzyme, wherein the invention of claim 4 is characterized in that the dried cassava potato has a water content of 5 to 10% by weight. A method for producing a high-concentration sugar solution according to any one of claims 1 to 4, wherein the invention according to claim 5 uses the high-concentration sugar solution produced by the method according to any one of claims 1 to 4 as a fermentation raw material. This is a method for producing amino acids by fermentation.
【0014】[0014]
【発明の実施の形態】以下、本発明について詳細に説明
する。原料として使用される生キャッサバ芋は、収穫後
の品質低下が大きいので、直ぐに皮を剥き、乾燥させる
ことにより保存が可能となり、また、皮剥き乾燥芋は粉
砕機により粉末化することによりタピオカ澱粉同様の微
粉末とすることができる。その乾物あたりの澱粉含量は
約90%であり、従って、澱粉を主体とする粗澱粉粉末
である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Raw cassava potato used as a raw material has a large deterioration in quality after harvesting, so it can be preserved by immediately peeling and drying, and the peeled and dried potato is powdered by a crusher to make tapioca starch. A similar fine powder can be used. The starch content per dry matter is about 90%, and thus it is a starch-based crude starch powder.
【0015】水分含量を16%以下に乾燥したキャッサ
バ芋を常法に従って破砕機を用いて1〜10mmの粒子
に粉砕する。引き続き、150μm以下にまで粉砕す
る。工業的規模での大量処理に際し、粉砕を行う装置と
しては、ホモジナイザー、ボールミル等が挙げられる。Cassava potato having a water content of 16% or less is crushed into particles of 1 to 10 mm using a crusher according to a conventional method. Subsequently, it is pulverized to 150 μm or less. Apparatuses for performing pulverization during large-scale processing on an industrial scale include a homogenizer and a ball mill.
【0016】粉末の水分含量が少ない程150μm以下
の粉末の占める重量割合が高くなり、また、液化・糖化
し易くなるので、水分含量16重量%以下、好ましくは
5〜10重量%の範囲にある乾燥粉末が使用される。The smaller the water content of the powder, the higher the weight ratio of the powder having a size of 150 μm or less, and the easier it is to liquefy and saccharify. Therefore, the water content is 16% by weight or less, preferably 5 to 10% by weight. Dry powder is used.
【0017】粉砕された150μm以下の粉末は懸濁性
がよく、45%スラリー濃度においても良好な流動性を
保持し、得られる糖液の粘度も500センチポイズ以下
と低く操作性が良好である。粒子を細かくすることで液
化時間の短縮や液の取り扱い易さといった利点を享受す
ることができる。The pulverized powder having a size of 150 μm or less has good suspension properties, maintains good fluidity even at a slurry concentration of 45%, and has a low viscosity of 500 centipoise or less, and has good operability. By making the particles finer, advantages such as a shorter liquefaction time and easier handling of the liquid can be enjoyed.
【0018】粉末キャッサバ芋は、タピオカ澱粉同様に
澱粉液化酵素および糖化酵素を用いて直接液化・糖化す
ることができる。乾燥芋の粉末を液化・糖化すると、澱
粉はグルコースとなり可溶化するが、繊維素等の澱粉以
外の成分は固形物のまま残留するので、糖化完了後、遠
心分離、濾過等の固液分離操作によって容易に除去する
ことができる。The powdered cassava potato can be directly liquefied and saccharified using a starch liquefying enzyme and a saccharifying enzyme, like tapioca starch. When the powder of dried potato is liquefied and saccharified, the starch becomes glucose and is solubilized, but components other than starch such as cellulose remain as solids. Can be easily removed.
【0019】乾燥キャッサバ芋粉末を水に懸濁する際
に、液化前にセルラーゼによる酵素的処理を施しておく
と、高濃度に懸濁することができ、液化・糖化を促進さ
せ、糖化率が向上し、それに伴い残渣量も少なくなっ
て、糖液を発酵原料として使用するときの残渣の悪影響
を防ぐことができる。When the dried cassava potato powder is suspended in water, if it is subjected to an enzymatic treatment with cellulase before liquefaction, it can be suspended at a high concentration, liquefaction and saccharification are promoted, and the saccharification rate is reduced. As a result, the amount of the residue is reduced, and the adverse effect of the residue when the sugar liquid is used as a fermentation raw material can be prevented.
【0020】セルラーゼを含有する液に液化すべき乾燥
キャッサバ芋粉末の全量を一度に添加せずに少量ずつ分
けて添加すると、45〜55g/dlの高濃度に懸濁で
きるので、40〜45%の高濃度糖化液を製造すること
ができる。If the whole amount of the dried cassava potato powder to be liquefied into the cellulase-containing solution is not added all at once but is added in small portions, the suspension can be suspended at a high concentration of 45 to 55 g / dl, so that 40 to 45% Can be produced.
【0021】セルラーゼを作用させることにより、澱粉
粒子を覆う膜を酵素分解して、その結果、澱粉の液化・
糖化が効果的に行われるものと考えられる。セルラーゼ
して「CELLULASE YC」(商品名、キッコー
マン社製)等の市販のセルラーゼが使用可能であり、ト
リコデルマ属のカビの産出するセルラーゼが好適に使用
される。使用量は濾紙崩壊活性(FPA:地人書館「酵
素利用ハンドブック」297〜298頁参照)で10ユ
ニット以上程度であればよい。粉末1g当たり100ユ
ニット以上、好ましくは300〜1500ユニットであ
る。反応は、40〜50℃の温度範囲でpH5〜7で行
われる。反応時間は通常2〜4時間程度でよい。By acting cellulase, the membrane covering the starch particles is enzymatically degraded, resulting in liquefaction of the starch.
It is considered that saccharification is effectively performed. As the cellulase, a commercially available cellulase such as “CELLULASE YC” (trade name, manufactured by Kikkoman Corporation) can be used, and a cellulase produced by a fungus of the genus Trichoderma is preferably used. The amount used may be about 10 units or more in the filter paper disintegration activity (FPA: see Jinjinshokan "Enzyme Utilization Handbook", pp. 297-298). It is 100 units or more, preferably 300 to 1500 units per gram of powder. The reaction is carried out at a temperature in the range of 40-50 ° C. and pH 5-7. The reaction time may be generally about 2 to 4 hours.
【0022】セルラーゼ反応を行った後、液化酵素、例
えば「T−5」〔商品名、大和化成(株)製〕を粉末1
g当たり20になるように添加し、85〜95℃で1時
間加熱攪拌する。放冷し、希硫酸にてpHを4.2に調
整したならば、引き続き、糖化酵素、例えば「NC−
4.2」〔商品名、天野製薬(株)製〕を粉末1g当たり
2〜5単位になるように添加し、55〜65℃に加熱
し、同温度に保ちながら40〜48時間加熱攪拌して酵
素反応を完結させる。After performing the cellulase reaction, a liquefying enzyme, for example, "T-5" (trade name, manufactured by Daiwa Kasei Co., Ltd.) is added to powder 1
It is added so as to be 20 per g, and the mixture is heated and stirred at 85 to 95 ° C. for 1 hour. After allowing to cool and adjusting the pH to 4.2 with dilute sulfuric acid, the saccharifying enzyme, for example, “NC-
4.2 "(trade name, manufactured by Amano Pharmaceutical Co., Ltd.) in an amount of 2 to 5 units per 1 g of powder, heated to 55 to 65 ° C, and heated and stirred for 40 to 48 hours while maintaining the same temperature. To complete the enzymatic reaction.
【0023】また、乾燥キャッサバ芋粉末を水に懸濁す
る際に、あらかじめ液化酵素を20ユニット/粉末g添
加しておいた方が液化が早く進行する。また、液化酵素
活性の高い90℃まで加熱しなくとも、40〜60℃で
液化酵素含有液に粉末を徐々に添加することにより液化
・糖化効率があがり、高濃度(45〜55g/dl)の
粉末を糖化してグルコース濃度40〜45g/dlの糖
液を製造することができる。When suspending the dried cassava potato powder in water, liquefaction proceeds more quickly if 20 units / g of powdered liquefaction enzyme are added in advance. Also, without heating to 90 ° C., where liquefaction enzyme activity is high, liquefaction / saccharification efficiency is increased by gradually adding powder to a liquefaction enzyme-containing solution at 40 to 60 ° C., and high concentration (45 to 55 g / dl) is obtained. The powder can be saccharified to produce a sugar solution having a glucose concentration of 40 to 45 g / dl.
【0024】乾燥皮剥き芋粉末の粒径と糖化率、残渣率
の関係を以下実験例1にて示す。The relationship between the particle size of the dried peeled potato powder, the saccharification ratio and the residue ratio is shown in Experimental Example 1 below.
【0025】実験例1 インドネシア、ランプン産の芋を収穫後直ちに皮を剥
き、重量が2/3に減少するまで天日乾燥し、更に40
℃減圧下で重量の変化がなくなるまで約24時間乾燥し
た。この粉末の水分含量は5%程度であった。また、粉
末を酸分解(7.6N HClを加え、沸騰水中で2時
間加熱)し、HPLCによりグルコースとして澱粉含有
量を定量したところ、粉末中の澱粉含有量は89.4%
であった。Test Example 1 Immediately after harvesting potatoes from Lampung, Indonesia, the potatoes were peeled, dried in the sun until the weight was reduced to 2/3, and further dried for 40 days.
The mixture was dried under reduced pressure at about 24 ° C. for about 24 hours until no change in weight was observed. The water content of this powder was about 5%. The powder was acid-decomposed (7.6N HCl was added and heated in boiling water for 2 hours), and the starch content as glucose was determined by HPLC. The starch content in the powder was 89.4%.
Met.
【0026】長さ10〜20cm程度の乾燥芋を1cm
2まで破砕し、卓上ブレンダー「Osterrizer
16−speed」〔SUN BEAM OSTER
製〕を用いて微粉砕した。A dried potato of about 10 to 20 cm in length is 1 cm.
Crushed to 2 and the desktop blender "Osterizer"
16-speed "[SUN BEAM OSTER
Manufactured by the company).
【0027】粉砕した粉末を9,16,40,100メ
ッシュをそれぞれ通過した4種で分類し、それぞれの粒
径の粉末5gをあらかじめ液化酵素「T−5」〔大和化
成(株)製〕(20単位/粉末g量)を添加した液に攪拌
しながら5回に分けて添加した。添加終了後、さらに振
とう攪拌を行いながら沸騰水中で1時間反応させた。室
温になるまで放冷し、希硫酸でpHを4.2に調整し
た。糖化酵素「NC−4.2」を粉末1g当たり3単位
添加し、60℃に加熱し、同温度にて48時間攪拌し
た。糖化終了後の液を遠心分離し、糖化液の糖化率と残
渣比率を分析した。The pulverized powder is classified into four types that have passed through 9, 16, 40, and 100 meshes, respectively, and 5 g of the powder having each particle size is previously liquefied enzyme "T-5" (manufactured by Daiwa Kasei Co., Ltd.) ( (20 units / g of powder) was added in five portions while stirring. After completion of the addition, the mixture was further reacted for 1 hour in boiling water while shaking and stirring. The mixture was allowed to cool to room temperature, and the pH was adjusted to 4.2 with dilute sulfuric acid. The saccharification enzyme "NC-4.2" was added in 3 units per 1 g of powder, heated to 60 ° C, and stirred at the same temperature for 48 hours. The liquid after completion of saccharification was centrifuged, and the saccharification rate and residue ratio of the saccharified liquid were analyzed.
【0028】粒径と糖化率、残渣比率の関係を調べた結
果は表1に示す如く、粒径が細かいほど糖化はスムーズ
であり、150μm以下の粒径まで粉砕することにより
粉末あたり82%のグルコースが得られ、含有澱粉の9
4%が糖化されたことが分かる。As a result of examining the relationship between the particle size, the saccharification ratio and the residue ratio, as shown in Table 1, the smaller the particle size, the smoother the saccharification, and by grinding to a particle size of 150 μm or less, 82% of the powder is reduced. Glucose is obtained and 9 of the starch content
It can be seen that 4% was saccharified.
【0029】[0029]
【表2】 [Table 2]
【0030】次に乾燥皮剥き芋の水分含量と粉砕機を用
いて一定時間粉砕したときの100メッシュパス(%)
の関係を実験例2にて示す。Next, the moisture content of the dried peeled potatoes and the 100-mesh pass (%) when crushed for a certain time using a crusher.
Is shown in Experimental Example 2.
【0031】実験例2 卓上ブレンダー「Osterrizer 16−spe
ed」を用いて恒湿度容器にて8〜22%の水分含量に
調整した3〜5cm程度の大きさの皮剥き芋を45gず
つ4分間粉砕した。Experimental Example 2 Desktop blender “Osterizer 16-spe”
45 g of peeled potatoes having a size of about 3 to 5 cm each adjusted to a water content of 8 to 22% in a constant humidity container using "ed" were crushed for 4 minutes.
【0032】粉砕したサンプルを105℃、4時間乾燥
後、100メッシュで篩分し、100メッシュを通過し
たものの重量%を算出した。皮剥き乾燥芋の水分含量
(%)と100メッシュパス(%)との関係は、図2に
示したように、サンプル水分含量が16%を超えると、
目標粒径150μm以下まで粉砕できる割合が大きく下
がり、17%を超えると、目標粒径に達しない割合が1
0%以上増加することから、サンプル水分含量を16%
以下にして粉砕を行うことが150μm以下まで粉砕可
能な割合78%(約35g/バッチ)に達し、粉砕効率
がよく、高濃度スラリーに仕込むことができる。The pulverized sample was dried at 105 ° C. for 4 hours, sieved with 100 mesh, and the weight% of the sample passing through 100 mesh was calculated. The relationship between the water content (%) of the peeled and dried potatoes and the 100 mesh pass (%) is as shown in FIG. 2, when the sample water content exceeds 16%.
The ratio that can be pulverized to the target particle size of 150 μm or less greatly decreases, and if it exceeds 17%, the ratio that does not reach the target particle size is 1
The sample moisture content is increased by 16% because it increases by 0% or more.
When the pulverization is performed in the following manner, the pulverizable ratio reaches 78% (about 35 g / batch) up to 150 μm or less, and the pulverization efficiency is good, and a high-concentration slurry can be charged.
【0033】乾燥キャッサバ芋粉末を水に懸濁する際
に、液化前にセルラーゼ処理を施した場合の酵素処理効
果を実験例3にて示す。Experimental Example 3 shows the enzyme treatment effect when cellulase treatment was performed before liquefaction when suspending dried cassava potato powder in water.
【0034】実験例3 セルラーゼ「CELLULASE YC」0.3gを水
7.2mlに溶解した液に、実験例1において用いた1
00メッシュパスのキャッサバ芋粉末(水分含量5%程
度)5gを少量ずつ攪拌しながら添加した。全量を添加
してから、さらに振とう攪拌を行いながら50℃で2時
間反応させた。水7mlを添加した後、液化酵素「T−
5」0.02ml(20単位/粉末g量)を添加し、9
5℃で1時間振とう攪拌を行った。室温になるまで放冷
し、希硫酸でpHを4.2に調整し、糖化酵素「NC−
4.2」を0.004ml(3単位/粉末g量)添加
し、60℃に加熱し、同温度にて48時間攪拌した。糖
化終了後の液を遠心分離し、糖化液の糖化率と残渣比率
を分析した。比較のために、セルラーゼを使用せずに同
様の操作を行った場合の結果を併せて表3に示した。EXPERIMENTAL EXAMPLE 3 A solution prepared by dissolving 0.3 g of cellulase "CELLULASE YC" in 7.2 ml of water was used in Example 1.
5 g of cassava potato powder (water content: about 5%) of a 00 mesh pass was added little by little while stirring. After the total amount was added, the mixture was reacted at 50 ° C. for 2 hours while further shaking and stirring. After adding 7 ml of water, the liquefaction enzyme “T-
5) 0.02 ml (20 units / g of powder) was added, and 9
Shaking and stirring was performed at 5 ° C. for 1 hour. After cooling to room temperature, the pH was adjusted to 4.2 with diluted sulfuric acid, and the saccharification enzyme "NC-
"4.2" (3 units / g of powder) was added, heated to 60 ° C., and stirred at the same temperature for 48 hours. The liquid after completion of saccharification was centrifuged, and the saccharification rate and residue ratio of the saccharified liquid were analyzed. For comparison, Table 3 also shows the results obtained when the same operation was performed without using cellulase.
【0035】[0035]
【表3】 [Table 3]
【0036】表3に示す結果より、液化前にセルラーゼ
処理を施すことにより、セルラーゼ無処理区に比較して
糖化率が高い上に、残渣率も小さいことが分かる。従っ
て、粉末キャッサバのセルラーゼ処理は、その後に行う
糖化において、その効率、さらには糖液の質の向上に効
果があるといえる。From the results shown in Table 3, it can be seen that the cellulase treatment prior to liquefaction has a higher saccharification rate and a lower residue rate than the cellulase untreated section. Therefore, it can be said that the cellulase treatment of the powdered cassava is effective in improving the efficiency and the quality of the sugar solution in the saccharification performed thereafter.
【0037】また、セルラーゼがFPA10(ユニット
/ml)程度の濃度でも、粉末を少量ずつ添加すること
により、高濃度(50g/dl)まで流動性を保つこと
ができ、流動性を保ったスラリーの液化・糖化は順調で
あり、高濃度の糖液を与える。Even if the cellulase has a concentration of about 10 FPA (unit / ml), by adding the powder little by little, the fluidity can be maintained up to a high concentration (50 g / dl). Liquefaction / saccharification is smooth and gives a high concentration of sugar solution.
【0038】乾燥キャッサバ芋粉末を水に懸濁する際
に、液化酵素を事前に添加しておいた場合の液化酵素効
果を実験例4にて示す。Experimental Example 4 shows the effect of the liquefied enzyme when the liquefied enzyme was added in advance when the dried cassava potato powder was suspended in water.
【0039】実験例4 所定量の液化酵素「T−5」を水4mlに添加した液を
40℃に保ち、これに100メッシュパスの粉末キャッ
サバ芋(水分含量5%程度)6gを徐々に添加し、全容
10mlとし、そのスラリーを実験例1と同じ条件で液
化、糖化した。液化酵素の添加量は、澱粉量に対して標
準量である100ユニット/g,その倍量、および無添
加を設定し、液化処理直前には各設定区とも200ユニ
ット/gとなるようにさらに酵素を添加した。Experimental Example 4 A solution obtained by adding a predetermined amount of liquefying enzyme "T-5" to 4 ml of water was kept at 40 ° C., and 6 g of powdered cassava potato (moisture content: about 5%) with a 100 mesh pass was gradually added thereto. The total volume was 10 ml, and the slurry was liquefied and saccharified under the same conditions as in Experimental Example 1. The amount of liquefied enzyme to be added is set to 100 units / g, which is a standard amount with respect to the amount of starch, a double amount thereof, and no addition. The enzyme was added.
【0040】粉末懸濁時には、酵素量により懸濁しやす
さには差が見られなかったが、その後温度を上げ液化を
行う際、予め酵素を添加しておいた方が液化が早く進
み、通常の液化反応時間の半分である30分で完全にな
めらからな液状となった。その時、酵素を事前に添加し
なかったサンプルは液化していなかった。各酵素量添加
時の残渣率、糖化率を表4に示す。At the time of powder suspension, there was no difference in the ease of suspension depending on the amount of the enzyme. However, when the temperature was increased and then liquefaction was carried out, the liquefaction proceeded more quickly if the enzyme had been added in advance. The liquid became completely smooth in 30 minutes, which is half of the liquefaction reaction time. At that time, the sample to which the enzyme had not been previously added was not liquefied. Table 4 shows the residue ratio and saccharification ratio when each enzyme amount was added.
【0041】[0041]
【表4】 [Table 4]
【0042】表4に示す結果より、酵素を事前に添加し
た区は、無添加区に比して残渣率、糖化率に有意な差が
見られ、液化・糖化が効率よく行えることが分かる。From the results shown in Table 4, it can be seen that there is a significant difference in the residue ratio and the saccharification ratio in the group to which the enzyme was added in advance compared to the group without addition of the enzyme, indicating that liquefaction and saccharification can be performed efficiently.
【0043】また、粉末キャッサバ芋55gを徐々に添
加し、全容を100mlとし、粉末懸濁時の設定温度
を、液化前温度の40℃、糊化直前温度の60℃、液化
酵素活性の高い80℃とした以外は実験例1と同じ条件
で液化、糖化した。その結果を表5に示した。Also, 55 g of powdered cassava potato is gradually added to make a total volume of 100 ml. The set temperature at the time of powder suspension is 40 ° C. before liquefaction, 60 ° C. immediately before gelatinization, and 80 ° C. having high liquefying enzyme activity. Liquefaction and saccharification were performed under the same conditions as in Experimental Example 1 except that the temperature was changed to ° C. Table 5 shows the results.
【0044】[0044]
【表5】 [Table 5]
【0045】糖液濃度としては大差ない。同条件での懸
濁時の温度による比較では、60℃が最も糖化率が良い
結果となったが、懸濁のスムーズさは40℃が最も優れ
ていた。80℃では粘度の上昇が見られ、反応容器壁面
への付着も多かった。There is no great difference in the sugar solution concentration. In comparison with the temperature at the time of suspension under the same conditions, the result of the best saccharification rate was 60 ° C, but the smoothness of the suspension was the best at 40 ° C. At 80 ° C., an increase in viscosity was observed, and there was much adhesion to the wall surface of the reaction vessel.
【0046】本発明においては、更にこのようにして得
られた乾燥キャッサバ芋の糖液をアミノ酸発酵原料に用
いるところに特徴がある。The present invention is further characterized in that the sugar solution of dried cassava potato thus obtained is used as a raw material for amino acid fermentation.
【0047】アミノ酸発酵の種類は問わないが、例えば
グルタミン酸、リジン、メチオニン、トリプトファン、
スレオニン、セリン、プロリン、アラニン、バリン、ロ
イシン、フェニルアラニン、ヒスチジン、アルギニン、
オルニチン、グルタミン、アスパラギン酸等のアミノ酸
の発酵を例に挙げることができる。The type of amino acid fermentation is not limited. For example, glutamic acid, lysine, methionine, tryptophan,
Threonine, serine, proline, alanine, valine, leucine, phenylalanine, histidine, arginine,
Fermentation of amino acids such as ornithine, glutamine and aspartic acid can be mentioned as an example.
【0048】これらの発酵に用いられる微生物はそれぞ
れの発酵に公知のものを用いることができる。例を挙げ
れば、次のとおりである。 L−グルタミン酸発酵:ブレビバクテリウム・ラクトフ
ェルメンタム ATCC 13869 L−リジン発酵:ブレビバクテリウム・ラクトフェルメ
ンタム ATCC 21800 L−トリプトファン発酵:エシェリヒア・コリAGX1
7(PGX44)[NRRL B−12263] L−フェニルアラニン発酵:ブレビバクテリウム・ラク
トフェルメンタム AJ12637(FERM BP−4
160) フランス特許出願公開第2,686,898
号参照 L−チロシン発酵:ブレビバクテリウム・ラクトファー
メンタム AJ12081(FERM P−7249)
特開昭60―70093号公報参照 L−スレオニン発酵:コリネバクテリウム・アセトアシ
ドフィラム AJ12318(FERM BP−117
2) 米国特許第5,188,945号参照 L−イソロイシン発酵:ブレビバクテリウム・フラバム
AJ12149(FERM BP−759) 米国特許
第4,656,135号参照As the microorganism used for these fermentations, those known for each fermentation can be used. An example is as follows. L-glutamic acid fermentation: Brevibacterium lactofermentum ATCC 13869 L-lysine fermentation: Brevibacterium lactofermentum ATCC 21800 L-tryptophan fermentation: Escherichia coli AGX1
7 (PGX44) [NRRL B-12263] L-phenylalanine fermentation: Brevibacterium lactofermentum AJ12637 (FERM BP-4)
160) French Patent Application Publication No. 2,686,898
See L-Tyrosine fermentation: Brevibacterium lactofermentum AJ12081 (FERM P-7249)
See JP-A-60-70093. L-threonine fermentation: Corynebacterium acetoacidophilum AJ12318 (FERM BP-117)
2) See US Pat. No. 5,188,945 L-isoleucine fermentation: Brevibacterium flavum AJ12149 (FERM BP-759) See US Pat. No. 4,656,135.
【0049】発酵に用いる培地も炭素源として本発明の
糖液を用いるほかは公知の培地と同様でよい。上記の糖
液は炭素源の全量に使用してもよく、その1部に使用し
てもよい。1部に使用する場合の残余の炭素源は従来用
いていたものと同様でよい。The medium used for fermentation may be the same as a known medium except that the sugar solution of the present invention is used as a carbon source. The above sugar solution may be used for the entire amount of the carbon source, or may be used for a part thereof. The remaining carbon source when used for one part may be the same as that used conventionally.
【0050】発酵方法も従来と同様でよいが、本発明の
糖液を用いると菌の増殖速度がはやくなり、発酵時間を
グルコースを発酵原料に用いる従来法よりも1〜5時間
程度短縮できる。The fermentation method may be the same as the conventional one. However, when the sugar solution of the present invention is used, the growth rate of the bacteria is increased, and the fermentation time can be shortened by about 1 to 5 hours as compared with the conventional method using glucose as a raw material for fermentation.
【0051】発酵で得られる各アミノ酸の濃度や対糖収
率も従来とほぼ同等になる。The concentration of each amino acid obtained by fermentation and the yield to sugar are also almost the same as those of the conventional method.
【0052】発酵液にはキャッサバ芋をそのまま糖化し
て用いたことによるキャッサバ芋由来の微小固形物等が
混入しているが、それによる発酵液からの目的アミノ酸
の分離精製にはほとんど影響ない。ただ、菌体を膜濾過
する場合には発酵菌の種類やキャッサバ芋の粉砕の程度
によっては濾過速度が低下することがある。その場合に
は菌体を遠心分離する等の手段を採用すればよい。ま
た、リジン等のアミノ酸の場合には主な用途が飼料であ
る。そこで、リジン等を飼料に用いる場合には発酵液を
そのまま乾燥して飼料添加物とすることができる。The fermented liquor contains minute solids and the like derived from cassava syrup obtained by saccharifying the cassava potato as it is, but has little effect on the separation and purification of the target amino acid from the fermented liquor. However, when the cells are subjected to membrane filtration, the filtration rate may decrease depending on the type of the fermenting bacteria and the degree of pulverization of the cassava potato. In that case, means such as centrifugation of the cells may be employed. In the case of amino acids such as lysine, the main use is feed. Therefore, when lysine or the like is used for the feed, the fermented liquid can be dried as it is to obtain a feed additive.
【0053】[0053]
【実施例】糖液製造例1 100メッシュパスのキャッサバ芋粉末(水分含量5%
程度)450gを水に懸濁し、全容が1Lになるように
調整した。これを攪拌しつつ85℃に加熱し、液化酵素
「T−5」を1.5ml添加し、1時間液化反応を行っ
た。液化終了後、60℃まで冷やした時点で希硫酸にて
pHを4.5に調整し、糖化酵素「NC−4.2」を
0.5ml添加した。糖化反応は、60℃で48時間振
とう攪拌により行った。糖液中のグルコース濃度は3
7.5g/dl(糖化率90%)であった。EXAMPLES Sugar solution production example 1 Cassava potato powder (moisture content 5%) of 100 mesh pass
About 450 g of water was suspended in water and adjusted to a total volume of 1 L. This was heated to 85 ° C. with stirring, 1.5 ml of liquefied enzyme “T-5” was added, and a liquefaction reaction was performed for 1 hour. After the completion of liquefaction, when the temperature was cooled to 60 ° C., the pH was adjusted to 4.5 with dilute sulfuric acid, and 0.5 ml of saccharifying enzyme “NC-4.2” was added. The saccharification reaction was performed by shaking at 60 ° C. for 48 hours. The glucose concentration in the sugar solution is 3
It was 7.5 g / dl (saccharification rate 90%).
【0054】糖液製造比較例 糖液製造例1において水分含量20%の乾燥キャッサバ
芋粉末(100メッシュパスの割合52%)を用いた以
外は糖液製造例1と同様に液化/糖化を行ったところ、
糖液中のグルコース濃度は34.6g/dl(糖化率8
3%)であった。Comparative Example of Sugar Solution Production Liquefaction / saccharification was carried out in the same manner as in Sugar Solution Production Example 1, except that dried cassava potato powder having a water content of 20% (52% in a 100 mesh pass) was used. Where
The glucose concentration in the sugar solution was 34.6 g / dl (saccharification rate 8
3%).
【0055】糖液製造例2 セルラーゼ「CELLULASE YC」40gを水1
0Lに攪拌溶解した液を40℃に加熱し、これに攪拌下
100メッシュパスのキャッサバ芋粉末(澱粉含量89
%)10kgを1時間を要して少量ずつ添加した。キャ
ッサバ芋粉末の全量を添加後、さらに攪拌を行いながら
50℃で2時間反応させた。Sugar solution production example 2 40 g of cellulase "CELLULASE YC" was added to water 1
The solution, which was stirred and dissolved in 0 L, was heated to 40 ° C., and stirred with a 100-mesh pass cassava potato powder (starch content 89%).
%) Was added little by little over 1 hour. After adding the whole amount of cassava potato powder, the mixture was reacted at 50 ° C. for 2 hours while stirring.
【0056】液化酵素「T−5」を33.3ml添加
し、90℃で1時間振とう攪拌を行った。60℃になる
まで放冷し、希硫酸でpHを4.2に調整し、糖化酵素
「NC−4.2」を11.3ml添加し、60℃に加熱
し、同温度にて48時間攪拌した。室温に冷却し、糖液
18.5Lを得た。この糖液中のグルコース濃度は44
g/dl(糖化率87%)であった。33.3 ml of the liquefying enzyme "T-5" was added, and the mixture was shaken and stirred at 90 ° C. for 1 hour. The mixture was allowed to cool to 60 ° C., the pH was adjusted to 4.2 with dilute sulfuric acid, 11.3 ml of saccharifying enzyme “NC-4.2” was added, heated to 60 ° C., and stirred at the same temperature for 48 hours. did. After cooling to room temperature, 18.5 L of a sugar solution was obtained. The glucose concentration in this sugar solution is 44
g / dl (saccharification rate 87%).
【0057】糖液製造例3 液化酵素「T−5」133mlを水20Lに攪拌溶解し
た液を40℃に加熱し、これに攪拌下100メッシュパ
スのキャッサバ芋粉末(澱粉含量74%)17kgを1
時間を要して少量ずつ添加した。90℃で1時間攪拌を
行った。室温になるまで放冷し、希硫酸でpHを4.2
に調整し、糖化酵素「NC−4.2」を20ml添加
し、60℃に加熱し、同温度にて48時間攪拌した。室
温に冷却し、糖液37.5Lを得た。この糖液中のグル
コース濃度は35g/dl(糖化率97%)であった。Sugar Liquid Production Example 3 A solution prepared by stirring and dissolving 133 ml of the liquefying enzyme "T-5" in 20 L of water was heated to 40 ° C., and 17 kg of cassava potato powder (starch content: 74%) of a 100 mesh pass was stirred under stirring. 1
It was added in small portions over time. Stirring was performed at 90 ° C. for 1 hour. Cool to room temperature and adjust the pH to 4.2 with dilute sulfuric acid.
, And 20 ml of saccharifying enzyme "NC-4.2" was added, heated to 60 ° C, and stirred at the same temperature for 48 hours. After cooling to room temperature, 37.5 L of a sugar solution was obtained. The glucose concentration in this sugar solution was 35 g / dl (saccharification rate 97%).
【0058】発酵例1 培地には、グルコース60g/L及びMgSO41g/
L、KH2PO41g/L、大豆蛋白酸加水分解物15ml
/L、ビオチン300μg/Lを含む基質溶液270m
lを120℃で15分間加熱殺菌してS型ジャーに張込
んだ。Fermentation Example 1 The culture medium contained glucose 60 g / L and MgSO 4 1 g /
L, KH 2 PO 4 1g / L, soybean protein acid hydrolyzate 15ml
/ L, substrate solution containing biotin 300 μg / L 270 m
1 was heat-sterilized at 120 ° C. for 15 minutes and placed in an S-shaped jar.
【0059】これに予め培養しておいたグルタミン酸生
産菌ブレビバクテリウム・ラクトフェルメンタム(AT
CC 13869)の種培養液30mlを加えて全量30
0mlとし、発酵を開始した。発酵は1〜1.2krp
mの攪拌と1/1vvmの通気をし、pHをアンモニア
で7.5に維持して行った。発酵温度は30℃にし、培
養開始後5時間目にポリオキシエチレンソルビタンモノ
パルミテート2000mg/L濃度になるよう添加し
た。The glutamate-producing bacterium Brevibacterium lactofermentum (AT
CC 13869) and a total volume of 30 ml.
The volume was 0 ml, and the fermentation was started. Fermentation is 1 to 1.2 krp
m and agitation at 1/1 vvm, and the pH was maintained at 7.5 with ammonia. The fermentation temperature was set at 30 ° C., and 5 hours after the start of the culture, polyoxyethylene sorbitan monopalmitate was added to a concentration of 2000 mg / L.
【0060】糖液には糖液製造例1で得られた糖液(キ
ャッサバ糖液1)にグルコースを添加してグルコース濃
度40g/dlとした液及び市販のグルコースを用いて
調製したグルコース濃度40g/dlの液(グルコース
液)をいずれも120℃で15分間加熱殺菌して用い
た。糖液は上記のキャッサバ糖液、グルコース液及び両
者を1:1で混合した液を用い、ポリオキシエチレンソ
ルビタンモノパルミテートを2000mg/Lになるよ
う添加して基質溶液として発酵液中の糖濃度を1〜2g
/dlに保つように連続供給した。発酵結果はグルコー
ス基質溶液を連続供給した場合の収率が56%であった
のに対し50%キャッサバ基質が56%、100%キャ
ッサバ基質が57%となった。培養時間はグルコース基
質に対し50%キャッサバ基質が3.7時間、100%
キャッサバ基質が4.2時間短縮された。The sugar solution was prepared by adding glucose to the sugar solution (cassava sugar solution 1) obtained in the sugar solution production example 1 to a glucose concentration of 40 g / dl, and a glucose concentration of 40 g prepared using commercially available glucose. / Dl solution (glucose solution) was used after heat sterilization at 120 ° C for 15 minutes. As the sugar solution, the above-mentioned cassava sugar solution, glucose solution, and a solution obtained by mixing both at a ratio of 1: 1 are used. Polyoxyethylene sorbitan monopalmitate is added at a concentration of 2000 mg / L, and the sugar concentration in the fermentation solution is used as a substrate solution. 1-2 g
/ Dl. As a result of the fermentation, the yield when the glucose substrate solution was continuously supplied was 56%, whereas the 50% cassava substrate was 56% and the 100% cassava substrate was 57%. The culturing time was 3.7 hours for 50% cassava substrate and 100% for glucose substrate.
The cassava substrate was shortened by 4.2 hours.
【0061】上記で得られた各発酵液を市販の中空糸ペ
ンシル型膜モジュールで膜分離したところ膜透過性の顕
著な差異は認められなかった。また、各膜透過液に塩酸
を添加してpH3.2に調整してグルタミン酸結晶を晶
析分離したところ、いずれも良好であった。When each of the fermented liquors obtained above was subjected to membrane separation using a commercially available hollow fiber pencil type membrane module, no remarkable difference in membrane permeability was observed. Further, hydrochloric acid was added to each membrane permeate to adjust the pH to 3.2, and glutamic acid crystals were separated by crystallization.
【0062】発酵例2 糖液製造例2で作製した糖液(キャッサバ糖液2)を用
いて50Lジャーでグルタミン酸発酵試験を行った。発
酵は、種培養液の液量を2.8l、発酵開始時の液量を
20l、攪拌を250rpm、糖液のグルコース濃度を
44g/dlとした点を除いて、発酵例1と同じ条件で
行った。発酵結果はグルコース基質を供給した場合の収
率50%とキャッサバ基質を供給しても同収率であっ
た。培養時間は1時間程度短縮された。Fermentation Example 2 A glutamic acid fermentation test was carried out in a 50 L jar using the sugar solution (cassava sugar solution 2) prepared in the sugar solution production example 2. The fermentation was performed under the same conditions as in Fermentation Example 1 except that the liquid volume of the seed culture solution was 2.8 liters, the liquid volume at the start of fermentation was 20 liters, stirring was 250 rpm, and the glucose concentration of the sugar solution was 44 g / dl. went. The result of fermentation was 50% when the glucose substrate was supplied, and the same yield when the cassava substrate was supplied. The culture time was reduced by about one hour.
【0063】発酵例3 グルコース30g/L、塩化アンモニウム10g/L、尿
素3g/L、KH2PO41g/L、MgSO4・7H2O
100mg/L,FeSO4・7H2O10mg/L,
MnSO4・4H2O8mg/L,大豆蛋白酸加水分解
物(窒素として)1g/L、サイアミン塩酸塩0.1mg
/L及びビオチン0.3mg/Lを含有する培地(pH
7.0)を、500ml容振とうフラスコ3本に各20
mLづつ分注した。115℃で10分間加熱殺菌後、こ
の培地に、予めブイヨンスラント上で48時間生育させ
たブレビバクテリウム・ラクトフェルメンタム(ATC
C21800)を1白金耳接種し、31.5℃で24時
間振糖培養した。以上は種培養である。廃糖蜜として8
0g/L、硫酸アンモニウム50g/L、KH2PO41g
/L、MgSO4・7H2O1g/L、大豆蛋白質加水
分解物(窒素として)100mg/L、サイアミン塩酸
塩0.1mg/L,及びビオチン0.3mg/Lを含有
する培地(pH7.0)を、3基の1L容ガラス製小型
発酵槽に300mLづつ分注し、120℃15分間加熱
殺菌した。31.5℃まで冷却後、上記のフラスコ培養
終了液を発酵槽1基当り15mLづつ添加し、温度3
1.5℃、通気量1/2vvm、攪拌数700rpmの
条件で培養を行った。培養液中の糖濃度が5g/L以下
になった時点よりフィード培地のフィードを開始した。
培地はグルコース(40g/dL)または、糖液製造例
3で得られた糖液にグルコースを添加してグルコース濃
度40g/dLになるよう調整した糖液、大豆蛋白質加
水分解物(窒素として100mg/L)、サイアミン塩
酸塩(0.1mg/L)及びビオチン(0.3mg/
L)を含有していた。いずれも培養液中の糖濃度が5g
/L以下になるようにフィード培地のフィード速度を調
節しつつ培養を続け、それぞれ100mLのフィード培
地をフィード終了後、培養液中の糖が消費し尽くされた
時点で培養を終了し、培養液中に蓄積したL−リジン濃
度を定量した。2基の培養の結果はグルコースフィード
の場合の収率が35%であったのに対し、キャッサバフ
ィードの場合の収率が38%であった。[0063] Fermentation Example 3 Glucose 30 g / L, ammonium chloride 10 g / L, urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7H 2 O
100mg / L, FeSO 4 · 7H 2 O10mg / L,
MnSO 4 · 4H 2 O8mg / L , soybean protein acid hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1mg
/ L and a medium containing 0.3 mg / L of biotin (pH
7.0) was added to each of three 500 ml shake flasks.
Dispensed by mL. After heat sterilization at 115 ° C. for 10 minutes, this medium was mixed with Brevibacterium lactofermentum (ATC) which had been grown on bouillon slant for 48 hours.
C21800) was inoculated with one platinum loop and shake-cultured at 31.5 ° C. for 24 hours. The above is a seed culture. 8 as molasses
0 g / L, ammonium sulfate 50 g / L, KH 2 PO 4 1 g
/ L, MgSO 4 .7H 2 O 1 g / L, soybean protein hydrolyzate (as nitrogen) 100 mg / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3 mg / L (pH 7.0) Was dispensed into three 1-L small glass fermenters in 300 mL increments and sterilized by heating at 120 ° C. for 15 minutes. After cooling to 31.5 ° C., the above-mentioned flask culture termination solution was added in 15 mL portions per fermenter, and the temperature was adjusted to 3 ° C.
The culture was performed under the conditions of 1.5 ° C., an aeration rate of 1/2 vvm, and a stirring speed of 700 rpm. Feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less.
The medium was glucose (40 g / dL) or a sugar solution prepared by adding glucose to the sugar solution obtained in the sugar solution production example 3 to adjust the glucose concentration to 40 g / dL, a soybean protein hydrolyzate (100 mg / nitrogen). L), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L
L). In each case, the sugar concentration in the culture solution was 5 g
The culture is continued while controlling the feed rate of the feed medium so as to be not more than / L. After the feed of 100 mL of the feed medium is completed, the culture is terminated when the sugar in the culture medium is consumed, and the culture medium is stopped. The L-lysine concentration accumulated therein was quantified. As a result of the culture of the two plants, the yield in the case of the glucose feed was 35%, while the yield in the case of the cassava feed was 38%.
【0064】発酵例4 キャッサバ糖液3を用いて50Lジャーでリジン発酵試
験を行った。発酵は、種培養液の液量を2.75l、発
酵開始時の液量を18l、攪拌を250rpm、通気を
1/2vvmとしたほかは発酵例3と同じ条件で行っ
た。発酵結果はグルコースフィードの場合の収率が34
%であったのに対し、キャッサバフィードの場合の収率
が37%であった。Fermentation Example 4 A lysine fermentation test was performed using cassava sugar solution 3 in a 50 L jar. The fermentation was performed under the same conditions as in Fermentation Example 3 except that the liquid volume of the seed culture was 2.75 l, the liquid volume at the start of fermentation was 18 l, the stirring was 250 rpm, and the aeration was 1/2 vvm. The fermentation results show a yield of 34 for glucose feed.
%, While the yield in the case of cassava feed was 37%.
【0065】[0065]
【発明の効果】以上説明したように、本発明によれば、
澱粉の抽出工程を経由せずに、皮剥き乾燥キャッサバ芋
を粉末化して直接酵素液化・糖化することにより、粉末
含有中の澱粉の80%以上が糖化し、発酵フィード液と
して利用可能な40%以上の高濃度の糖液を効率よく製
造することができ、この糖液を用いてアミノ酸を短時間
に高い収率で取得することができる。また、本発明によ
りキャッサバ澱粉のほとんどを糖化更にはアミノ酸発酵
に利用することができ、廃棄物の量を削減することがで
きる。As described above, according to the present invention,
By bypassing the starch extraction step, by peeling and drying the dried cassava potato and directly liquefying and saccharifying the enzyme, more than 80% of the starch contained in the powder is saccharified and 40% available as a fermentation feed solution. The high-concentration sugar solution described above can be efficiently produced, and amino acids can be obtained in a short time and with high yield using this sugar solution. Further, according to the present invention, most of cassava starch can be used for saccharification and also for amino acid fermentation, and the amount of waste can be reduced.
【図1】 キャッサバ芋から澱粉及びカスの製造例を示
すフローシート。FIG. 1 is a flow sheet showing an example of producing starch and scum from cassava potatoes.
【図2】 皮剥き乾燥キャッサバ芋の水分含量(%)と
粒度150μm以下の粉末の占める重量割合(%)との
関係を示すグラフ。FIG. 2 is a graph showing the relationship between the water content (%) of peeled and dried cassava potato and the weight ratio (%) of powder having a particle size of 150 μm or less.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成13年5月11日(2001.5.1
1)[Submission date] May 11, 2001 (2001.5.1
1)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0028[Correction target item name] 0028
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0028】粒径と糖化率、残渣比率の関係を調べた結
果は表2に示す如く、粒径が細かいほど糖化はスムーズ
であり、150μm以下の粒径まで粉砕することにより
粉末あたり82%のグルコースが得られ、含有澱粉の9
4%が糖化されたことが分かる。As a result of examining the relationship between the particle size, the saccharification ratio and the residue ratio, as shown in Table 2, saccharification is smoother as the particle size is smaller, and 82% of the powder is obtained by pulverizing to a particle size of 150 μm or less. Glucose is obtained and 9 of the starch content
It can be seen that 4% was saccharified.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
Claims (5)
以下とした乾燥キャッサバ芋を150μm以下に粉砕
し、これを水に懸濁して35重量%以上の澱粉を含む粗
澱粉スラリーを調製した後、澱粉液化酵素および糖化酵
素を作用させて酵素液化および酵素糖化することを特徴
とる高濃度糖液の製造方法。1. Peeled and dried to a moisture content of 16% by weight
The dried cassava potato as described below is pulverized to 150 μm or less and suspended in water to prepare a crude starch slurry containing 35% by weight or more of starch. A method for producing a high-concentration sugar solution characterized by saccharification.
以下とした乾燥キャッサバ芋を150μm以下に粉砕
し、セルラーゼを含む水溶液中に懸濁してセルラーゼに
よる酵素的処理を施しながら35重量%以上の澱粉を含
む粗澱粉スラリーを調製した後、澱粉液化酵素および糖
化酵素を作用させて酵素液化および酵素糖化することを
特徴とる高濃度糖液の製造方法。2. Peeling and drying to give a water content of 16% by weight
The dried cassava potato was ground to 150 μm or less, suspended in an aqueous solution containing cellulase, and subjected to enzymatic treatment with cellulase to prepare a crude starch slurry containing 35% by weight or more of starch. A method for producing a high-concentration sugar solution, which comprises liquefying an enzyme and saccharifying the enzyme by reacting a saccharifying enzyme.
以下とした乾燥キャッサバ芋を150μm以下に粉砕
し、澱粉液化酵素を含む水溶液中に懸濁して35重量%
以上の澱粉を含む粗澱粉スラリーを調製しつつ、酵素液
化を行った後、糖化酵素を作用させて酵素糖化すること
を特徴とる高濃度糖液の製造方法。3. Peeled and dried to obtain a water content of 16% by weight.
The dried cassava potato as described below is pulverized to 150 μm or less, suspended in an aqueous solution containing starch liquefying enzyme, and then 35% by weight.
A method for producing a high-concentration sugar solution, which comprises liquefying an enzyme while preparing a crude starch slurry containing the above-mentioned starch, and then saccharifying the enzyme by the action of a saccharifying enzyme.
量%である請求項1乃至3のいずれかに記載の高濃度糖
液の製造方法。4. The method for producing a high-concentration sugar solution according to claim 1, wherein the water content of the dried cassava potato is 5 to 10% by weight.
によって製造された高濃度糖液を発酵原料に用いること
を特徴とするアミノ酸の発酵生産方法。5. A method for fermentative production of amino acids, comprising using a high-concentration sugar solution produced by the method according to claim 1 as a fermentation raw material.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000098490A JP2001275693A (en) | 2000-03-31 | 2000-03-31 | Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution |
IDP20010289D ID29734A (en) | 2000-03-31 | 2001-03-30 | A DIRECT SAKARIFICATION OF SINGKONG FLAKES AND A AMINO ACID FERMENTATION USING SAKARIDA SOLUTIONS |
CN 01117387 CN1321772A (en) | 2000-03-31 | 2001-03-31 | Direct saccharifying of cassave and amino acid fermentation using saccharide solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000098490A JP2001275693A (en) | 2000-03-31 | 2000-03-31 | Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001275693A true JP2001275693A (en) | 2001-10-09 |
Family
ID=18612964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000098490A Pending JP2001275693A (en) | 2000-03-31 | 2000-03-31 | Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2001275693A (en) |
CN (1) | CN1321772A (en) |
ID (1) | ID29734A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309751A (en) * | 2000-05-02 | 2001-11-06 | Ajinomoto Co Inc | Additive for feed |
JP2003164265A (en) * | 2001-12-03 | 2003-06-10 | Gun Ei Chem Ind Co Ltd | Method for producing fermented food |
WO2005116228A3 (en) * | 2004-05-28 | 2006-05-11 | Basf Ag | Fermentative production of fine chemicals |
WO2007028804A1 (en) * | 2005-09-07 | 2007-03-15 | Basf Se | Fermentative production of non-volatile microbial metabolism products in solid form |
WO2007060233A1 (en) * | 2005-11-28 | 2007-05-31 | Basf Se | Fermentative production of organic compounds |
WO2007060235A1 (en) * | 2005-11-28 | 2007-05-31 | Basf Se | Fermentative production of organic compounds |
JP2009517011A (en) * | 2005-11-28 | 2009-04-30 | ビーエーエスエフ ソシエタス・ヨーロピア | Fermentative production of organic compounds using dextrin-containing substances |
JP2010270273A (en) * | 2009-05-25 | 2010-12-02 | Oji Paper Co Ltd | Method for producing starch glue solution, starch glue solution, and coated paper prepared by coating or impregnation with the starch glue solution |
WO2010129648A3 (en) * | 2009-05-07 | 2010-12-29 | Danisco Us Inc. | Starch separation process |
KR101425172B1 (en) | 2012-11-27 | 2014-08-01 | 한국화학연구원 | Method of improving sugar yield from starch-containing biomass |
KR101497225B1 (en) * | 2013-07-30 | 2015-02-27 | 주식회사 창해에탄올 | Manufacturing method of the fermentation product from starchy biomass |
WO2017025482A1 (en) * | 2015-08-07 | 2017-02-16 | Novozymes A/S | Starch extraction |
CN107119091A (en) * | 2016-02-25 | 2017-09-01 | 安徽泰德康农业科技发展有限公司 | A kind of cassava whole-powder direct method method for manufacturing sugar |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101280331B (en) * | 2008-06-02 | 2011-07-20 | 湖南农业大学 | Fast liquefying-saccharifying method for starch |
CN104498554A (en) * | 2014-12-15 | 2015-04-08 | 安徽丰原发酵技术工程研究有限公司 | Method for enhancing fermentation yield of lysine |
CN104726509A (en) * | 2015-02-09 | 2015-06-24 | 苏州科技学院 | Method for producing epsilon-polylysine through fermentation of cassava starch |
CN105087703A (en) * | 2015-08-06 | 2015-11-25 | 安徽丰原发酵技术工程研究有限公司 | Fermentation production method of L-tryptophan |
CN105385727A (en) * | 2015-12-17 | 2016-03-09 | 广西大学 | Method of preparing sugar through enzymatic hydrolysis of cassava residues |
-
2000
- 2000-03-31 JP JP2000098490A patent/JP2001275693A/en active Pending
-
2001
- 2001-03-30 ID IDP20010289D patent/ID29734A/en unknown
- 2001-03-31 CN CN 01117387 patent/CN1321772A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309751A (en) * | 2000-05-02 | 2001-11-06 | Ajinomoto Co Inc | Additive for feed |
JP2003164265A (en) * | 2001-12-03 | 2003-06-10 | Gun Ei Chem Ind Co Ltd | Method for producing fermented food |
JP4659825B2 (en) * | 2004-05-28 | 2011-03-30 | ビーエーエスエフ ソシエタス・ヨーロピア | Fine chemical fermentation production |
WO2005116228A3 (en) * | 2004-05-28 | 2006-05-11 | Basf Ag | Fermentative production of fine chemicals |
US9109244B2 (en) | 2004-05-28 | 2015-08-18 | Basf Se | Fermentative production of fine chemicals |
KR101479583B1 (en) * | 2004-05-28 | 2015-01-06 | 바스프 에스이 | Fermentative production of fine chemicals |
KR101317064B1 (en) * | 2004-05-28 | 2013-10-16 | 바스프 에스이 | Fermentative production of fine chemicals |
JP2008500823A (en) * | 2004-05-28 | 2008-01-17 | ビーエーエスエフ アクチェンゲゼルシャフト | Fine chemical fermentation production |
EA015492B9 (en) * | 2004-05-28 | 2012-02-28 | Басф Акциенгезелльшафт | Method for producing at least one microbial metabolic product having at least three carbon atoms or at least two carbon atoms and at least one nitrogen atom by means of sugar-based microbial fermentation, and protein composition obtained by this method |
EA015492B1 (en) * | 2004-05-28 | 2011-08-30 | Басф Акциенгезелльшафт | Method for producing at least one microbial metabolic product having at least three carbon atoms or at least two carbon atoms and at least one nitrogen atom by means of sugar-based microbial fermentation, and protein composition obtained by this method |
JP2009506783A (en) * | 2005-09-07 | 2009-02-19 | ビーエーエスエフ ソシエタス・ヨーロピア | Fermentative production of non-volatile microbial metabolites in solid form |
JP2013048625A (en) * | 2005-09-07 | 2013-03-14 | Basf Se | Fertilization production of solid-state nonvolatile microorganism metabolic product |
WO2007028804A1 (en) * | 2005-09-07 | 2007-03-15 | Basf Se | Fermentative production of non-volatile microbial metabolism products in solid form |
KR101388759B1 (en) * | 2005-09-07 | 2014-04-28 | 바스프 에스이 | Fermentative production of non-volatile microbial metabolism products in solid form |
JP2009517010A (en) * | 2005-11-28 | 2009-04-30 | ビーエーエスエフ ソシエタス・ヨーロピア | Fermentative production of organic compounds |
US8728773B2 (en) | 2005-11-28 | 2014-05-20 | Matthias Boy | Fermentative production of organic compounds using substances containing dextrin |
JP2009517011A (en) * | 2005-11-28 | 2009-04-30 | ビーエーエスエフ ソシエタス・ヨーロピア | Fermentative production of organic compounds using dextrin-containing substances |
WO2007060235A1 (en) * | 2005-11-28 | 2007-05-31 | Basf Se | Fermentative production of organic compounds |
KR101388733B1 (en) * | 2005-11-28 | 2014-04-25 | 바스프 에스이 | Fermentative production of organic compounds |
JP2009517012A (en) * | 2005-11-28 | 2009-04-30 | ビーエーエスエフ ソシエタス・ヨーロピア | Fermentative production of organic compounds |
US8728762B2 (en) | 2005-11-28 | 2014-05-20 | Basf Se | Fermentative production of organic compounds |
WO2007060233A1 (en) * | 2005-11-28 | 2007-05-31 | Basf Se | Fermentative production of organic compounds |
US8741599B2 (en) | 2005-11-28 | 2014-06-03 | Basf Se | Fermentative production of organic compounds |
KR101440160B1 (en) * | 2005-11-28 | 2014-09-12 | 바스프 에스이 | Fermentative production of organic compounds |
WO2010129648A3 (en) * | 2009-05-07 | 2010-12-29 | Danisco Us Inc. | Starch separation process |
JP2010270273A (en) * | 2009-05-25 | 2010-12-02 | Oji Paper Co Ltd | Method for producing starch glue solution, starch glue solution, and coated paper prepared by coating or impregnation with the starch glue solution |
KR101425172B1 (en) | 2012-11-27 | 2014-08-01 | 한국화학연구원 | Method of improving sugar yield from starch-containing biomass |
KR101497225B1 (en) * | 2013-07-30 | 2015-02-27 | 주식회사 창해에탄올 | Manufacturing method of the fermentation product from starchy biomass |
WO2017025482A1 (en) * | 2015-08-07 | 2017-02-16 | Novozymes A/S | Starch extraction |
CN107119091A (en) * | 2016-02-25 | 2017-09-01 | 安徽泰德康农业科技发展有限公司 | A kind of cassava whole-powder direct method method for manufacturing sugar |
Also Published As
Publication number | Publication date |
---|---|
ID29734A (en) | 2001-10-04 |
CN1321772A (en) | 2001-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001275693A (en) | Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution | |
CN109504719B (en) | Method for improving acid production rate and extraction rate of glutamic acid | |
FI96122C (en) | Process for producing ethanol and collecting glycerol as a by-product | |
US3764475A (en) | Enzymatic hydrolysis of cellulose to soluble sugars | |
CN109504720B (en) | Green production process of glutamic acid | |
CN112195171A (en) | Method for preparing beta-alanine by using immobilized enzyme | |
CA1185551A (en) | PROCESS FOR THE PREPARATION OF ISOMALTULOSE (6-0-.alpha.- D-GLUCOPYRANOSIDO-D-FRUCTOSE) BY THE USE OF IMMOBILIZED BACTERIAL CELLS | |
JP2001072701A (en) | Manufacture of tapioca starch and production of amino acid by fermentation | |
JP2001309751A (en) | Additive for feed | |
US5916782A (en) | Process for producing aspartase and process for producing L-aspartic acid | |
CN108285914B (en) | Fermentation process of L-tryptophan | |
US7358072B2 (en) | Fermentative production of mannitol | |
Nampoothiri et al. | Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column | |
CN113080307B (en) | Method for producing feed by using amino acid fermentation mother liquor and corn sugar residues | |
JP2003259892A (en) | Method for producing sugar solution by direct liquefaction method of starch-stored harvest and method for fermentative production of amino acid with the sugar solution | |
US4734368A (en) | Process for the bioconversion of fumarate to L-malate | |
JP2832723B2 (en) | Method for producing L-alanine | |
WO2020049313A1 (en) | Process and product thereof | |
WO2024212577A1 (en) | Strain culture medium for fermented cordyceps fungus powder and preparation method therefor | |
JP4723325B2 (en) | Method for producing pure shochu | |
JPS62289192A (en) | Continuous production of amino acid by fermentation | |
JPS63202395A (en) | Production of sugar syrup from starchy raw material | |
CN108754035B (en) | Method for preparing maltose by sweet potato self-hydrolysis | |
JP2000014394A (en) | Prevention of browning of amino acid | |
KR100345847B1 (en) | Process for preparing cefazolin by using immobilized enzyme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070330 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100310 |